2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / simplify-rtx.c
blob8e29d2da35c585a1bf9db0a5b35dc4bed24c5ae6
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "diagnostic-core.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "target.h"
43 /* Simplification and canonicalization of RTL. */
45 /* Much code operates on (low, high) pairs; the low value is an
46 unsigned wide int, the high value a signed wide int. We
47 occasionally need to sign extend from low to high as if low were a
48 signed wide int. */
49 #define HWI_SIGN_EXTEND(low) \
50 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
52 static rtx neg_const_int (enum machine_mode, const_rtx);
53 static bool plus_minus_operand_p (const_rtx);
54 static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
55 static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
56 static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
57 unsigned int);
58 static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
59 rtx, rtx);
60 static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
61 enum machine_mode, rtx, rtx);
62 static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
63 static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
64 rtx, rtx, rtx, rtx);
66 /* Negate a CONST_INT rtx, truncating (because a conversion from a
67 maximally negative number can overflow). */
68 static rtx
69 neg_const_int (enum machine_mode mode, const_rtx i)
71 return gen_int_mode (- INTVAL (i), mode);
74 /* Test whether expression, X, is an immediate constant that represents
75 the most significant bit of machine mode MODE. */
77 bool
78 mode_signbit_p (enum machine_mode mode, const_rtx x)
80 unsigned HOST_WIDE_INT val;
81 unsigned int width;
83 if (GET_MODE_CLASS (mode) != MODE_INT)
84 return false;
86 width = GET_MODE_BITSIZE (mode);
87 if (width == 0)
88 return false;
90 if (width <= HOST_BITS_PER_WIDE_INT
91 && CONST_INT_P (x))
92 val = INTVAL (x);
93 else if (width <= 2 * HOST_BITS_PER_WIDE_INT
94 && GET_CODE (x) == CONST_DOUBLE
95 && CONST_DOUBLE_LOW (x) == 0)
97 val = CONST_DOUBLE_HIGH (x);
98 width -= HOST_BITS_PER_WIDE_INT;
100 else
101 return false;
103 if (width < HOST_BITS_PER_WIDE_INT)
104 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
105 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
108 /* Make a binary operation by properly ordering the operands and
109 seeing if the expression folds. */
112 simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
113 rtx op1)
115 rtx tem;
117 /* If this simplifies, do it. */
118 tem = simplify_binary_operation (code, mode, op0, op1);
119 if (tem)
120 return tem;
122 /* Put complex operands first and constants second if commutative. */
123 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
124 && swap_commutative_operands_p (op0, op1))
125 tem = op0, op0 = op1, op1 = tem;
127 return gen_rtx_fmt_ee (code, mode, op0, op1);
130 /* If X is a MEM referencing the constant pool, return the real value.
131 Otherwise return X. */
133 avoid_constant_pool_reference (rtx x)
135 rtx c, tmp, addr;
136 enum machine_mode cmode;
137 HOST_WIDE_INT offset = 0;
139 switch (GET_CODE (x))
141 case MEM:
142 break;
144 case FLOAT_EXTEND:
145 /* Handle float extensions of constant pool references. */
146 tmp = XEXP (x, 0);
147 c = avoid_constant_pool_reference (tmp);
148 if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
150 REAL_VALUE_TYPE d;
152 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
153 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
155 return x;
157 default:
158 return x;
161 if (GET_MODE (x) == BLKmode)
162 return x;
164 addr = XEXP (x, 0);
166 /* Call target hook to avoid the effects of -fpic etc.... */
167 addr = targetm.delegitimize_address (addr);
169 /* Split the address into a base and integer offset. */
170 if (GET_CODE (addr) == CONST
171 && GET_CODE (XEXP (addr, 0)) == PLUS
172 && CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
174 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
175 addr = XEXP (XEXP (addr, 0), 0);
178 if (GET_CODE (addr) == LO_SUM)
179 addr = XEXP (addr, 1);
181 /* If this is a constant pool reference, we can turn it into its
182 constant and hope that simplifications happen. */
183 if (GET_CODE (addr) == SYMBOL_REF
184 && CONSTANT_POOL_ADDRESS_P (addr))
186 c = get_pool_constant (addr);
187 cmode = get_pool_mode (addr);
189 /* If we're accessing the constant in a different mode than it was
190 originally stored, attempt to fix that up via subreg simplifications.
191 If that fails we have no choice but to return the original memory. */
192 if (offset != 0 || cmode != GET_MODE (x))
194 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
195 if (tem && CONSTANT_P (tem))
196 return tem;
198 else
199 return c;
202 return x;
205 /* Simplify a MEM based on its attributes. This is the default
206 delegitimize_address target hook, and it's recommended that every
207 overrider call it. */
210 delegitimize_mem_from_attrs (rtx x)
212 /* MEMs without MEM_OFFSETs may have been offset, so we can't just
213 use their base addresses as equivalent. */
214 if (MEM_P (x)
215 && MEM_EXPR (x)
216 && MEM_OFFSET (x))
218 tree decl = MEM_EXPR (x);
219 enum machine_mode mode = GET_MODE (x);
220 HOST_WIDE_INT offset = 0;
222 switch (TREE_CODE (decl))
224 default:
225 decl = NULL;
226 break;
228 case VAR_DECL:
229 break;
231 case ARRAY_REF:
232 case ARRAY_RANGE_REF:
233 case COMPONENT_REF:
234 case BIT_FIELD_REF:
235 case REALPART_EXPR:
236 case IMAGPART_EXPR:
237 case VIEW_CONVERT_EXPR:
239 HOST_WIDE_INT bitsize, bitpos;
240 tree toffset;
241 int unsignedp = 0, volatilep = 0;
243 decl = get_inner_reference (decl, &bitsize, &bitpos, &toffset,
244 &mode, &unsignedp, &volatilep, false);
245 if (bitsize != GET_MODE_BITSIZE (mode)
246 || (bitpos % BITS_PER_UNIT)
247 || (toffset && !host_integerp (toffset, 0)))
248 decl = NULL;
249 else
251 offset += bitpos / BITS_PER_UNIT;
252 if (toffset)
253 offset += TREE_INT_CST_LOW (toffset);
255 break;
259 if (decl
260 && mode == GET_MODE (x)
261 && TREE_CODE (decl) == VAR_DECL
262 && (TREE_STATIC (decl)
263 || DECL_THREAD_LOCAL_P (decl))
264 && DECL_RTL_SET_P (decl)
265 && MEM_P (DECL_RTL (decl)))
267 rtx newx;
269 offset += INTVAL (MEM_OFFSET (x));
271 newx = DECL_RTL (decl);
273 if (MEM_P (newx))
275 rtx n = XEXP (newx, 0), o = XEXP (x, 0);
277 /* Avoid creating a new MEM needlessly if we already had
278 the same address. We do if there's no OFFSET and the
279 old address X is identical to NEWX, or if X is of the
280 form (plus NEWX OFFSET), or the NEWX is of the form
281 (plus Y (const_int Z)) and X is that with the offset
282 added: (plus Y (const_int Z+OFFSET)). */
283 if (!((offset == 0
284 || (GET_CODE (o) == PLUS
285 && GET_CODE (XEXP (o, 1)) == CONST_INT
286 && (offset == INTVAL (XEXP (o, 1))
287 || (GET_CODE (n) == PLUS
288 && GET_CODE (XEXP (n, 1)) == CONST_INT
289 && (INTVAL (XEXP (n, 1)) + offset
290 == INTVAL (XEXP (o, 1)))
291 && (n = XEXP (n, 0))))
292 && (o = XEXP (o, 0))))
293 && rtx_equal_p (o, n)))
294 x = adjust_address_nv (newx, mode, offset);
296 else if (GET_MODE (x) == GET_MODE (newx)
297 && offset == 0)
298 x = newx;
302 return x;
305 /* Make a unary operation by first seeing if it folds and otherwise making
306 the specified operation. */
309 simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
310 enum machine_mode op_mode)
312 rtx tem;
314 /* If this simplifies, use it. */
315 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
316 return tem;
318 return gen_rtx_fmt_e (code, mode, op);
321 /* Likewise for ternary operations. */
324 simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
325 enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
327 rtx tem;
329 /* If this simplifies, use it. */
330 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
331 op0, op1, op2)))
332 return tem;
334 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
337 /* Likewise, for relational operations.
338 CMP_MODE specifies mode comparison is done in. */
341 simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
342 enum machine_mode cmp_mode, rtx op0, rtx op1)
344 rtx tem;
346 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
347 op0, op1)))
348 return tem;
350 return gen_rtx_fmt_ee (code, mode, op0, op1);
353 /* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
354 and simplify the result. If FN is non-NULL, call this callback on each
355 X, if it returns non-NULL, replace X with its return value and simplify the
356 result. */
359 simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
360 rtx (*fn) (rtx, const_rtx, void *), void *data)
362 enum rtx_code code = GET_CODE (x);
363 enum machine_mode mode = GET_MODE (x);
364 enum machine_mode op_mode;
365 const char *fmt;
366 rtx op0, op1, op2, newx, op;
367 rtvec vec, newvec;
368 int i, j;
370 if (__builtin_expect (fn != NULL, 0))
372 newx = fn (x, old_rtx, data);
373 if (newx)
374 return newx;
376 else if (rtx_equal_p (x, old_rtx))
377 return copy_rtx ((rtx) data);
379 switch (GET_RTX_CLASS (code))
381 case RTX_UNARY:
382 op0 = XEXP (x, 0);
383 op_mode = GET_MODE (op0);
384 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
385 if (op0 == XEXP (x, 0))
386 return x;
387 return simplify_gen_unary (code, mode, op0, op_mode);
389 case RTX_BIN_ARITH:
390 case RTX_COMM_ARITH:
391 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
392 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
393 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
394 return x;
395 return simplify_gen_binary (code, mode, op0, op1);
397 case RTX_COMPARE:
398 case RTX_COMM_COMPARE:
399 op0 = XEXP (x, 0);
400 op1 = XEXP (x, 1);
401 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
402 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
403 op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
404 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
405 return x;
406 return simplify_gen_relational (code, mode, op_mode, op0, op1);
408 case RTX_TERNARY:
409 case RTX_BITFIELD_OPS:
410 op0 = XEXP (x, 0);
411 op_mode = GET_MODE (op0);
412 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
413 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
414 op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
415 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
416 return x;
417 if (op_mode == VOIDmode)
418 op_mode = GET_MODE (op0);
419 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
421 case RTX_EXTRA:
422 if (code == SUBREG)
424 op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
425 if (op0 == SUBREG_REG (x))
426 return x;
427 op0 = simplify_gen_subreg (GET_MODE (x), op0,
428 GET_MODE (SUBREG_REG (x)),
429 SUBREG_BYTE (x));
430 return op0 ? op0 : x;
432 break;
434 case RTX_OBJ:
435 if (code == MEM)
437 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
438 if (op0 == XEXP (x, 0))
439 return x;
440 return replace_equiv_address_nv (x, op0);
442 else if (code == LO_SUM)
444 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
445 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
447 /* (lo_sum (high x) x) -> x */
448 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
449 return op1;
451 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
452 return x;
453 return gen_rtx_LO_SUM (mode, op0, op1);
455 break;
457 default:
458 break;
461 newx = x;
462 fmt = GET_RTX_FORMAT (code);
463 for (i = 0; fmt[i]; i++)
464 switch (fmt[i])
466 case 'E':
467 vec = XVEC (x, i);
468 newvec = XVEC (newx, i);
469 for (j = 0; j < GET_NUM_ELEM (vec); j++)
471 op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
472 old_rtx, fn, data);
473 if (op != RTVEC_ELT (vec, j))
475 if (newvec == vec)
477 newvec = shallow_copy_rtvec (vec);
478 if (x == newx)
479 newx = shallow_copy_rtx (x);
480 XVEC (newx, i) = newvec;
482 RTVEC_ELT (newvec, j) = op;
485 break;
487 case 'e':
488 if (XEXP (x, i))
490 op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
491 if (op != XEXP (x, i))
493 if (x == newx)
494 newx = shallow_copy_rtx (x);
495 XEXP (newx, i) = op;
498 break;
500 return newx;
503 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
504 resulting RTX. Return a new RTX which is as simplified as possible. */
507 simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
509 return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
512 /* Try to simplify a unary operation CODE whose output mode is to be
513 MODE with input operand OP whose mode was originally OP_MODE.
514 Return zero if no simplification can be made. */
516 simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
517 rtx op, enum machine_mode op_mode)
519 rtx trueop, tem;
521 trueop = avoid_constant_pool_reference (op);
523 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
524 if (tem)
525 return tem;
527 return simplify_unary_operation_1 (code, mode, op);
530 /* Perform some simplifications we can do even if the operands
531 aren't constant. */
532 static rtx
533 simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
535 enum rtx_code reversed;
536 rtx temp;
538 switch (code)
540 case NOT:
541 /* (not (not X)) == X. */
542 if (GET_CODE (op) == NOT)
543 return XEXP (op, 0);
545 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
546 comparison is all ones. */
547 if (COMPARISON_P (op)
548 && (mode == BImode || STORE_FLAG_VALUE == -1)
549 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
550 return simplify_gen_relational (reversed, mode, VOIDmode,
551 XEXP (op, 0), XEXP (op, 1));
553 /* (not (plus X -1)) can become (neg X). */
554 if (GET_CODE (op) == PLUS
555 && XEXP (op, 1) == constm1_rtx)
556 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
558 /* Similarly, (not (neg X)) is (plus X -1). */
559 if (GET_CODE (op) == NEG)
560 return plus_constant (XEXP (op, 0), -1);
562 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
563 if (GET_CODE (op) == XOR
564 && CONST_INT_P (XEXP (op, 1))
565 && (temp = simplify_unary_operation (NOT, mode,
566 XEXP (op, 1), mode)) != 0)
567 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
569 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
570 if (GET_CODE (op) == PLUS
571 && CONST_INT_P (XEXP (op, 1))
572 && mode_signbit_p (mode, XEXP (op, 1))
573 && (temp = simplify_unary_operation (NOT, mode,
574 XEXP (op, 1), mode)) != 0)
575 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
578 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
579 operands other than 1, but that is not valid. We could do a
580 similar simplification for (not (lshiftrt C X)) where C is
581 just the sign bit, but this doesn't seem common enough to
582 bother with. */
583 if (GET_CODE (op) == ASHIFT
584 && XEXP (op, 0) == const1_rtx)
586 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
587 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
590 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
591 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
592 so we can perform the above simplification. */
594 if (STORE_FLAG_VALUE == -1
595 && GET_CODE (op) == ASHIFTRT
596 && GET_CODE (XEXP (op, 1))
597 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
598 return simplify_gen_relational (GE, mode, VOIDmode,
599 XEXP (op, 0), const0_rtx);
602 if (GET_CODE (op) == SUBREG
603 && subreg_lowpart_p (op)
604 && (GET_MODE_SIZE (GET_MODE (op))
605 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
606 && GET_CODE (SUBREG_REG (op)) == ASHIFT
607 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
609 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
610 rtx x;
612 x = gen_rtx_ROTATE (inner_mode,
613 simplify_gen_unary (NOT, inner_mode, const1_rtx,
614 inner_mode),
615 XEXP (SUBREG_REG (op), 1));
616 return rtl_hooks.gen_lowpart_no_emit (mode, x);
619 /* Apply De Morgan's laws to reduce number of patterns for machines
620 with negating logical insns (and-not, nand, etc.). If result has
621 only one NOT, put it first, since that is how the patterns are
622 coded. */
624 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
626 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
627 enum machine_mode op_mode;
629 op_mode = GET_MODE (in1);
630 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
632 op_mode = GET_MODE (in2);
633 if (op_mode == VOIDmode)
634 op_mode = mode;
635 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
637 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
639 rtx tem = in2;
640 in2 = in1; in1 = tem;
643 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
644 mode, in1, in2);
646 break;
648 case NEG:
649 /* (neg (neg X)) == X. */
650 if (GET_CODE (op) == NEG)
651 return XEXP (op, 0);
653 /* (neg (plus X 1)) can become (not X). */
654 if (GET_CODE (op) == PLUS
655 && XEXP (op, 1) == const1_rtx)
656 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
658 /* Similarly, (neg (not X)) is (plus X 1). */
659 if (GET_CODE (op) == NOT)
660 return plus_constant (XEXP (op, 0), 1);
662 /* (neg (minus X Y)) can become (minus Y X). This transformation
663 isn't safe for modes with signed zeros, since if X and Y are
664 both +0, (minus Y X) is the same as (minus X Y). If the
665 rounding mode is towards +infinity (or -infinity) then the two
666 expressions will be rounded differently. */
667 if (GET_CODE (op) == MINUS
668 && !HONOR_SIGNED_ZEROS (mode)
669 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
670 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
672 if (GET_CODE (op) == PLUS
673 && !HONOR_SIGNED_ZEROS (mode)
674 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
676 /* (neg (plus A C)) is simplified to (minus -C A). */
677 if (CONST_INT_P (XEXP (op, 1))
678 || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
680 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
681 if (temp)
682 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
685 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
686 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
687 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
690 /* (neg (mult A B)) becomes (mult (neg A) B).
691 This works even for floating-point values. */
692 if (GET_CODE (op) == MULT
693 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
695 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
696 return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
699 /* NEG commutes with ASHIFT since it is multiplication. Only do
700 this if we can then eliminate the NEG (e.g., if the operand
701 is a constant). */
702 if (GET_CODE (op) == ASHIFT)
704 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
705 if (temp)
706 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
709 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
710 C is equal to the width of MODE minus 1. */
711 if (GET_CODE (op) == ASHIFTRT
712 && CONST_INT_P (XEXP (op, 1))
713 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
714 return simplify_gen_binary (LSHIFTRT, mode,
715 XEXP (op, 0), XEXP (op, 1));
717 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
718 C is equal to the width of MODE minus 1. */
719 if (GET_CODE (op) == LSHIFTRT
720 && CONST_INT_P (XEXP (op, 1))
721 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
722 return simplify_gen_binary (ASHIFTRT, mode,
723 XEXP (op, 0), XEXP (op, 1));
725 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
726 if (GET_CODE (op) == XOR
727 && XEXP (op, 1) == const1_rtx
728 && nonzero_bits (XEXP (op, 0), mode) == 1)
729 return plus_constant (XEXP (op, 0), -1);
731 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
732 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
733 if (GET_CODE (op) == LT
734 && XEXP (op, 1) == const0_rtx
735 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
737 enum machine_mode inner = GET_MODE (XEXP (op, 0));
738 int isize = GET_MODE_BITSIZE (inner);
739 if (STORE_FLAG_VALUE == 1)
741 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
742 GEN_INT (isize - 1));
743 if (mode == inner)
744 return temp;
745 if (GET_MODE_BITSIZE (mode) > isize)
746 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
747 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
749 else if (STORE_FLAG_VALUE == -1)
751 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
752 GEN_INT (isize - 1));
753 if (mode == inner)
754 return temp;
755 if (GET_MODE_BITSIZE (mode) > isize)
756 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
757 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
760 break;
762 case TRUNCATE:
763 /* We can't handle truncation to a partial integer mode here
764 because we don't know the real bitsize of the partial
765 integer mode. */
766 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
767 break;
769 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
770 if ((GET_CODE (op) == SIGN_EXTEND
771 || GET_CODE (op) == ZERO_EXTEND)
772 && GET_MODE (XEXP (op, 0)) == mode)
773 return XEXP (op, 0);
775 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
776 (OP:SI foo:SI) if OP is NEG or ABS. */
777 if ((GET_CODE (op) == ABS
778 || GET_CODE (op) == NEG)
779 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
780 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
781 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
782 return simplify_gen_unary (GET_CODE (op), mode,
783 XEXP (XEXP (op, 0), 0), mode);
785 /* (truncate:A (subreg:B (truncate:C X) 0)) is
786 (truncate:A X). */
787 if (GET_CODE (op) == SUBREG
788 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
789 && subreg_lowpart_p (op))
790 return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
791 GET_MODE (XEXP (SUBREG_REG (op), 0)));
793 /* If we know that the value is already truncated, we can
794 replace the TRUNCATE with a SUBREG. Note that this is also
795 valid if TRULY_NOOP_TRUNCATION is false for the corresponding
796 modes we just have to apply a different definition for
797 truncation. But don't do this for an (LSHIFTRT (MULT ...))
798 since this will cause problems with the umulXi3_highpart
799 patterns. */
800 if ((TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (op)))
802 ? (num_sign_bit_copies (op, GET_MODE (op))
803 > (unsigned int) (GET_MODE_BITSIZE (GET_MODE (op))
804 - GET_MODE_BITSIZE (mode)))
805 : truncated_to_mode (mode, op))
806 && ! (GET_CODE (op) == LSHIFTRT
807 && GET_CODE (XEXP (op, 0)) == MULT))
808 return rtl_hooks.gen_lowpart_no_emit (mode, op);
810 /* A truncate of a comparison can be replaced with a subreg if
811 STORE_FLAG_VALUE permits. This is like the previous test,
812 but it works even if the comparison is done in a mode larger
813 than HOST_BITS_PER_WIDE_INT. */
814 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
815 && COMPARISON_P (op)
816 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
817 return rtl_hooks.gen_lowpart_no_emit (mode, op);
818 break;
820 case FLOAT_TRUNCATE:
821 if (DECIMAL_FLOAT_MODE_P (mode))
822 break;
824 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
825 if (GET_CODE (op) == FLOAT_EXTEND
826 && GET_MODE (XEXP (op, 0)) == mode)
827 return XEXP (op, 0);
829 /* (float_truncate:SF (float_truncate:DF foo:XF))
830 = (float_truncate:SF foo:XF).
831 This may eliminate double rounding, so it is unsafe.
833 (float_truncate:SF (float_extend:XF foo:DF))
834 = (float_truncate:SF foo:DF).
836 (float_truncate:DF (float_extend:XF foo:SF))
837 = (float_extend:SF foo:DF). */
838 if ((GET_CODE (op) == FLOAT_TRUNCATE
839 && flag_unsafe_math_optimizations)
840 || GET_CODE (op) == FLOAT_EXTEND)
841 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
842 0)))
843 > GET_MODE_SIZE (mode)
844 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
845 mode,
846 XEXP (op, 0), mode);
848 /* (float_truncate (float x)) is (float x) */
849 if (GET_CODE (op) == FLOAT
850 && (flag_unsafe_math_optimizations
851 || (SCALAR_FLOAT_MODE_P (GET_MODE (op))
852 && ((unsigned)significand_size (GET_MODE (op))
853 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
854 - num_sign_bit_copies (XEXP (op, 0),
855 GET_MODE (XEXP (op, 0))))))))
856 return simplify_gen_unary (FLOAT, mode,
857 XEXP (op, 0),
858 GET_MODE (XEXP (op, 0)));
860 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
861 (OP:SF foo:SF) if OP is NEG or ABS. */
862 if ((GET_CODE (op) == ABS
863 || GET_CODE (op) == NEG)
864 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
865 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
866 return simplify_gen_unary (GET_CODE (op), mode,
867 XEXP (XEXP (op, 0), 0), mode);
869 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
870 is (float_truncate:SF x). */
871 if (GET_CODE (op) == SUBREG
872 && subreg_lowpart_p (op)
873 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
874 return SUBREG_REG (op);
875 break;
877 case FLOAT_EXTEND:
878 if (DECIMAL_FLOAT_MODE_P (mode))
879 break;
881 /* (float_extend (float_extend x)) is (float_extend x)
883 (float_extend (float x)) is (float x) assuming that double
884 rounding can't happen.
886 if (GET_CODE (op) == FLOAT_EXTEND
887 || (GET_CODE (op) == FLOAT
888 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
889 && ((unsigned)significand_size (GET_MODE (op))
890 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
891 - num_sign_bit_copies (XEXP (op, 0),
892 GET_MODE (XEXP (op, 0)))))))
893 return simplify_gen_unary (GET_CODE (op), mode,
894 XEXP (op, 0),
895 GET_MODE (XEXP (op, 0)));
897 break;
899 case ABS:
900 /* (abs (neg <foo>)) -> (abs <foo>) */
901 if (GET_CODE (op) == NEG)
902 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
903 GET_MODE (XEXP (op, 0)));
905 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
906 do nothing. */
907 if (GET_MODE (op) == VOIDmode)
908 break;
910 /* If operand is something known to be positive, ignore the ABS. */
911 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
912 || ((GET_MODE_BITSIZE (GET_MODE (op))
913 <= HOST_BITS_PER_WIDE_INT)
914 && ((nonzero_bits (op, GET_MODE (op))
915 & ((HOST_WIDE_INT) 1
916 << (GET_MODE_BITSIZE (GET_MODE (op)) - 1)))
917 == 0)))
918 return op;
920 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
921 if (num_sign_bit_copies (op, mode) == GET_MODE_BITSIZE (mode))
922 return gen_rtx_NEG (mode, op);
924 break;
926 case FFS:
927 /* (ffs (*_extend <X>)) = (ffs <X>) */
928 if (GET_CODE (op) == SIGN_EXTEND
929 || GET_CODE (op) == ZERO_EXTEND)
930 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
931 GET_MODE (XEXP (op, 0)));
932 break;
934 case POPCOUNT:
935 switch (GET_CODE (op))
937 case BSWAP:
938 case ZERO_EXTEND:
939 /* (popcount (zero_extend <X>)) = (popcount <X>) */
940 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
941 GET_MODE (XEXP (op, 0)));
943 case ROTATE:
944 case ROTATERT:
945 /* Rotations don't affect popcount. */
946 if (!side_effects_p (XEXP (op, 1)))
947 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
948 GET_MODE (XEXP (op, 0)));
949 break;
951 default:
952 break;
954 break;
956 case PARITY:
957 switch (GET_CODE (op))
959 case NOT:
960 case BSWAP:
961 case ZERO_EXTEND:
962 case SIGN_EXTEND:
963 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
964 GET_MODE (XEXP (op, 0)));
966 case ROTATE:
967 case ROTATERT:
968 /* Rotations don't affect parity. */
969 if (!side_effects_p (XEXP (op, 1)))
970 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
971 GET_MODE (XEXP (op, 0)));
972 break;
974 default:
975 break;
977 break;
979 case BSWAP:
980 /* (bswap (bswap x)) -> x. */
981 if (GET_CODE (op) == BSWAP)
982 return XEXP (op, 0);
983 break;
985 case FLOAT:
986 /* (float (sign_extend <X>)) = (float <X>). */
987 if (GET_CODE (op) == SIGN_EXTEND)
988 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
989 GET_MODE (XEXP (op, 0)));
990 break;
992 case SIGN_EXTEND:
993 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
994 becomes just the MINUS if its mode is MODE. This allows
995 folding switch statements on machines using casesi (such as
996 the VAX). */
997 if (GET_CODE (op) == TRUNCATE
998 && GET_MODE (XEXP (op, 0)) == mode
999 && GET_CODE (XEXP (op, 0)) == MINUS
1000 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
1001 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
1002 return XEXP (op, 0);
1004 /* Check for a sign extension of a subreg of a promoted
1005 variable, where the promotion is sign-extended, and the
1006 target mode is the same as the variable's promotion. */
1007 if (GET_CODE (op) == SUBREG
1008 && SUBREG_PROMOTED_VAR_P (op)
1009 && ! SUBREG_PROMOTED_UNSIGNED_P (op)
1010 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
1011 return rtl_hooks.gen_lowpart_no_emit (mode, op);
1013 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1014 /* As we do not know which address space the pointer is refering to,
1015 we can do this only if the target does not support different pointer
1016 or address modes depending on the address space. */
1017 if (target_default_pointer_address_modes_p ()
1018 && ! POINTERS_EXTEND_UNSIGNED
1019 && mode == Pmode && GET_MODE (op) == ptr_mode
1020 && (CONSTANT_P (op)
1021 || (GET_CODE (op) == SUBREG
1022 && REG_P (SUBREG_REG (op))
1023 && REG_POINTER (SUBREG_REG (op))
1024 && GET_MODE (SUBREG_REG (op)) == Pmode)))
1025 return convert_memory_address (Pmode, op);
1026 #endif
1027 break;
1029 case ZERO_EXTEND:
1030 /* Check for a zero extension of a subreg of a promoted
1031 variable, where the promotion is zero-extended, and the
1032 target mode is the same as the variable's promotion. */
1033 if (GET_CODE (op) == SUBREG
1034 && SUBREG_PROMOTED_VAR_P (op)
1035 && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
1036 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
1037 return rtl_hooks.gen_lowpart_no_emit (mode, op);
1039 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1040 /* As we do not know which address space the pointer is refering to,
1041 we can do this only if the target does not support different pointer
1042 or address modes depending on the address space. */
1043 if (target_default_pointer_address_modes_p ()
1044 && POINTERS_EXTEND_UNSIGNED > 0
1045 && mode == Pmode && GET_MODE (op) == ptr_mode
1046 && (CONSTANT_P (op)
1047 || (GET_CODE (op) == SUBREG
1048 && REG_P (SUBREG_REG (op))
1049 && REG_POINTER (SUBREG_REG (op))
1050 && GET_MODE (SUBREG_REG (op)) == Pmode)))
1051 return convert_memory_address (Pmode, op);
1052 #endif
1053 break;
1055 default:
1056 break;
1059 return 0;
1062 /* Try to compute the value of a unary operation CODE whose output mode is to
1063 be MODE with input operand OP whose mode was originally OP_MODE.
1064 Return zero if the value cannot be computed. */
1066 simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
1067 rtx op, enum machine_mode op_mode)
1069 unsigned int width = GET_MODE_BITSIZE (mode);
1071 if (code == VEC_DUPLICATE)
1073 gcc_assert (VECTOR_MODE_P (mode));
1074 if (GET_MODE (op) != VOIDmode)
1076 if (!VECTOR_MODE_P (GET_MODE (op)))
1077 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
1078 else
1079 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
1080 (GET_MODE (op)));
1082 if (CONST_INT_P (op) || GET_CODE (op) == CONST_DOUBLE
1083 || GET_CODE (op) == CONST_VECTOR)
1085 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1086 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1087 rtvec v = rtvec_alloc (n_elts);
1088 unsigned int i;
1090 if (GET_CODE (op) != CONST_VECTOR)
1091 for (i = 0; i < n_elts; i++)
1092 RTVEC_ELT (v, i) = op;
1093 else
1095 enum machine_mode inmode = GET_MODE (op);
1096 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
1097 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
1099 gcc_assert (in_n_elts < n_elts);
1100 gcc_assert ((n_elts % in_n_elts) == 0);
1101 for (i = 0; i < n_elts; i++)
1102 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
1104 return gen_rtx_CONST_VECTOR (mode, v);
1108 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
1110 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1111 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1112 enum machine_mode opmode = GET_MODE (op);
1113 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
1114 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
1115 rtvec v = rtvec_alloc (n_elts);
1116 unsigned int i;
1118 gcc_assert (op_n_elts == n_elts);
1119 for (i = 0; i < n_elts; i++)
1121 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
1122 CONST_VECTOR_ELT (op, i),
1123 GET_MODE_INNER (opmode));
1124 if (!x)
1125 return 0;
1126 RTVEC_ELT (v, i) = x;
1128 return gen_rtx_CONST_VECTOR (mode, v);
1131 /* The order of these tests is critical so that, for example, we don't
1132 check the wrong mode (input vs. output) for a conversion operation,
1133 such as FIX. At some point, this should be simplified. */
1135 if (code == FLOAT && GET_MODE (op) == VOIDmode
1136 && (GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op)))
1138 HOST_WIDE_INT hv, lv;
1139 REAL_VALUE_TYPE d;
1141 if (CONST_INT_P (op))
1142 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
1143 else
1144 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
1146 REAL_VALUE_FROM_INT (d, lv, hv, mode);
1147 d = real_value_truncate (mode, d);
1148 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1150 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
1151 && (GET_CODE (op) == CONST_DOUBLE
1152 || CONST_INT_P (op)))
1154 HOST_WIDE_INT hv, lv;
1155 REAL_VALUE_TYPE d;
1157 if (CONST_INT_P (op))
1158 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
1159 else
1160 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
1162 if (op_mode == VOIDmode)
1164 /* We don't know how to interpret negative-looking numbers in
1165 this case, so don't try to fold those. */
1166 if (hv < 0)
1167 return 0;
1169 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
1171 else
1172 hv = 0, lv &= GET_MODE_MASK (op_mode);
1174 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
1175 d = real_value_truncate (mode, d);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1179 if (CONST_INT_P (op)
1180 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
1182 HOST_WIDE_INT arg0 = INTVAL (op);
1183 HOST_WIDE_INT val;
1185 switch (code)
1187 case NOT:
1188 val = ~ arg0;
1189 break;
1191 case NEG:
1192 val = - arg0;
1193 break;
1195 case ABS:
1196 val = (arg0 >= 0 ? arg0 : - arg0);
1197 break;
1199 case FFS:
1200 /* Don't use ffs here. Instead, get low order bit and then its
1201 number. If arg0 is zero, this will return 0, as desired. */
1202 arg0 &= GET_MODE_MASK (mode);
1203 val = exact_log2 (arg0 & (- arg0)) + 1;
1204 break;
1206 case CLZ:
1207 arg0 &= GET_MODE_MASK (mode);
1208 if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
1210 else
1211 val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
1212 break;
1214 case CTZ:
1215 arg0 &= GET_MODE_MASK (mode);
1216 if (arg0 == 0)
1218 /* Even if the value at zero is undefined, we have to come
1219 up with some replacement. Seems good enough. */
1220 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
1221 val = GET_MODE_BITSIZE (mode);
1223 else
1224 val = exact_log2 (arg0 & -arg0);
1225 break;
1227 case POPCOUNT:
1228 arg0 &= GET_MODE_MASK (mode);
1229 val = 0;
1230 while (arg0)
1231 val++, arg0 &= arg0 - 1;
1232 break;
1234 case PARITY:
1235 arg0 &= GET_MODE_MASK (mode);
1236 val = 0;
1237 while (arg0)
1238 val++, arg0 &= arg0 - 1;
1239 val &= 1;
1240 break;
1242 case BSWAP:
1244 unsigned int s;
1246 val = 0;
1247 for (s = 0; s < width; s += 8)
1249 unsigned int d = width - s - 8;
1250 unsigned HOST_WIDE_INT byte;
1251 byte = (arg0 >> s) & 0xff;
1252 val |= byte << d;
1255 break;
1257 case TRUNCATE:
1258 val = arg0;
1259 break;
1261 case ZERO_EXTEND:
1262 /* When zero-extending a CONST_INT, we need to know its
1263 original mode. */
1264 gcc_assert (op_mode != VOIDmode);
1265 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1267 /* If we were really extending the mode,
1268 we would have to distinguish between zero-extension
1269 and sign-extension. */
1270 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1271 val = arg0;
1273 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1274 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1275 else
1276 return 0;
1277 break;
1279 case SIGN_EXTEND:
1280 if (op_mode == VOIDmode)
1281 op_mode = mode;
1282 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1284 /* If we were really extending the mode,
1285 we would have to distinguish between zero-extension
1286 and sign-extension. */
1287 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1288 val = arg0;
1290 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1293 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1294 if (val
1295 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
1296 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1298 else
1299 return 0;
1300 break;
1302 case SQRT:
1303 case FLOAT_EXTEND:
1304 case FLOAT_TRUNCATE:
1305 case SS_TRUNCATE:
1306 case US_TRUNCATE:
1307 case SS_NEG:
1308 case US_NEG:
1309 case SS_ABS:
1310 return 0;
1312 default:
1313 gcc_unreachable ();
1316 return gen_int_mode (val, mode);
1319 /* We can do some operations on integer CONST_DOUBLEs. Also allow
1320 for a DImode operation on a CONST_INT. */
1321 else if (GET_MODE (op) == VOIDmode
1322 && width <= HOST_BITS_PER_WIDE_INT * 2
1323 && (GET_CODE (op) == CONST_DOUBLE
1324 || CONST_INT_P (op)))
1326 unsigned HOST_WIDE_INT l1, lv;
1327 HOST_WIDE_INT h1, hv;
1329 if (GET_CODE (op) == CONST_DOUBLE)
1330 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
1331 else
1332 l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
1334 switch (code)
1336 case NOT:
1337 lv = ~ l1;
1338 hv = ~ h1;
1339 break;
1341 case NEG:
1342 neg_double (l1, h1, &lv, &hv);
1343 break;
1345 case ABS:
1346 if (h1 < 0)
1347 neg_double (l1, h1, &lv, &hv);
1348 else
1349 lv = l1, hv = h1;
1350 break;
1352 case FFS:
1353 hv = 0;
1354 if (l1 == 0)
1356 if (h1 == 0)
1357 lv = 0;
1358 else
1359 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
1361 else
1362 lv = exact_log2 (l1 & -l1) + 1;
1363 break;
1365 case CLZ:
1366 hv = 0;
1367 if (h1 != 0)
1368 lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
1369 - HOST_BITS_PER_WIDE_INT;
1370 else if (l1 != 0)
1371 lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
1372 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1373 lv = GET_MODE_BITSIZE (mode);
1374 break;
1376 case CTZ:
1377 hv = 0;
1378 if (l1 != 0)
1379 lv = exact_log2 (l1 & -l1);
1380 else if (h1 != 0)
1381 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
1382 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1383 lv = GET_MODE_BITSIZE (mode);
1384 break;
1386 case POPCOUNT:
1387 hv = 0;
1388 lv = 0;
1389 while (l1)
1390 lv++, l1 &= l1 - 1;
1391 while (h1)
1392 lv++, h1 &= h1 - 1;
1393 break;
1395 case PARITY:
1396 hv = 0;
1397 lv = 0;
1398 while (l1)
1399 lv++, l1 &= l1 - 1;
1400 while (h1)
1401 lv++, h1 &= h1 - 1;
1402 lv &= 1;
1403 break;
1405 case BSWAP:
1407 unsigned int s;
1409 hv = 0;
1410 lv = 0;
1411 for (s = 0; s < width; s += 8)
1413 unsigned int d = width - s - 8;
1414 unsigned HOST_WIDE_INT byte;
1416 if (s < HOST_BITS_PER_WIDE_INT)
1417 byte = (l1 >> s) & 0xff;
1418 else
1419 byte = (h1 >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff;
1421 if (d < HOST_BITS_PER_WIDE_INT)
1422 lv |= byte << d;
1423 else
1424 hv |= byte << (d - HOST_BITS_PER_WIDE_INT);
1427 break;
1429 case TRUNCATE:
1430 /* This is just a change-of-mode, so do nothing. */
1431 lv = l1, hv = h1;
1432 break;
1434 case ZERO_EXTEND:
1435 gcc_assert (op_mode != VOIDmode);
1437 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1438 return 0;
1440 hv = 0;
1441 lv = l1 & GET_MODE_MASK (op_mode);
1442 break;
1444 case SIGN_EXTEND:
1445 if (op_mode == VOIDmode
1446 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1447 return 0;
1448 else
1450 lv = l1 & GET_MODE_MASK (op_mode);
1451 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
1452 && (lv & ((HOST_WIDE_INT) 1
1453 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
1454 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1456 hv = HWI_SIGN_EXTEND (lv);
1458 break;
1460 case SQRT:
1461 return 0;
1463 default:
1464 return 0;
1467 return immed_double_const (lv, hv, mode);
1470 else if (GET_CODE (op) == CONST_DOUBLE
1471 && SCALAR_FLOAT_MODE_P (mode))
1473 REAL_VALUE_TYPE d, t;
1474 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1476 switch (code)
1478 case SQRT:
1479 if (HONOR_SNANS (mode) && real_isnan (&d))
1480 return 0;
1481 real_sqrt (&t, mode, &d);
1482 d = t;
1483 break;
1484 case ABS:
1485 d = real_value_abs (&d);
1486 break;
1487 case NEG:
1488 d = real_value_negate (&d);
1489 break;
1490 case FLOAT_TRUNCATE:
1491 d = real_value_truncate (mode, d);
1492 break;
1493 case FLOAT_EXTEND:
1494 /* All this does is change the mode. */
1495 break;
1496 case FIX:
1497 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1498 break;
1499 case NOT:
1501 long tmp[4];
1502 int i;
1504 real_to_target (tmp, &d, GET_MODE (op));
1505 for (i = 0; i < 4; i++)
1506 tmp[i] = ~tmp[i];
1507 real_from_target (&d, tmp, mode);
1508 break;
1510 default:
1511 gcc_unreachable ();
1513 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1516 else if (GET_CODE (op) == CONST_DOUBLE
1517 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1518 && GET_MODE_CLASS (mode) == MODE_INT
1519 && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
1521 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1522 operators are intentionally left unspecified (to ease implementation
1523 by target backends), for consistency, this routine implements the
1524 same semantics for constant folding as used by the middle-end. */
1526 /* This was formerly used only for non-IEEE float.
1527 eggert@twinsun.com says it is safe for IEEE also. */
1528 HOST_WIDE_INT xh, xl, th, tl;
1529 REAL_VALUE_TYPE x, t;
1530 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1531 switch (code)
1533 case FIX:
1534 if (REAL_VALUE_ISNAN (x))
1535 return const0_rtx;
1537 /* Test against the signed upper bound. */
1538 if (width > HOST_BITS_PER_WIDE_INT)
1540 th = ((unsigned HOST_WIDE_INT) 1
1541 << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
1542 tl = -1;
1544 else
1546 th = 0;
1547 tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
1549 real_from_integer (&t, VOIDmode, tl, th, 0);
1550 if (REAL_VALUES_LESS (t, x))
1552 xh = th;
1553 xl = tl;
1554 break;
1557 /* Test against the signed lower bound. */
1558 if (width > HOST_BITS_PER_WIDE_INT)
1560 th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
1561 tl = 0;
1563 else
1565 th = -1;
1566 tl = (HOST_WIDE_INT) -1 << (width - 1);
1568 real_from_integer (&t, VOIDmode, tl, th, 0);
1569 if (REAL_VALUES_LESS (x, t))
1571 xh = th;
1572 xl = tl;
1573 break;
1575 REAL_VALUE_TO_INT (&xl, &xh, x);
1576 break;
1578 case UNSIGNED_FIX:
1579 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1580 return const0_rtx;
1582 /* Test against the unsigned upper bound. */
1583 if (width == 2*HOST_BITS_PER_WIDE_INT)
1585 th = -1;
1586 tl = -1;
1588 else if (width >= HOST_BITS_PER_WIDE_INT)
1590 th = ((unsigned HOST_WIDE_INT) 1
1591 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
1592 tl = -1;
1594 else
1596 th = 0;
1597 tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
1599 real_from_integer (&t, VOIDmode, tl, th, 1);
1600 if (REAL_VALUES_LESS (t, x))
1602 xh = th;
1603 xl = tl;
1604 break;
1607 REAL_VALUE_TO_INT (&xl, &xh, x);
1608 break;
1610 default:
1611 gcc_unreachable ();
1613 return immed_double_const (xl, xh, mode);
1616 return NULL_RTX;
1619 /* Subroutine of simplify_binary_operation to simplify a commutative,
1620 associative binary operation CODE with result mode MODE, operating
1621 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1622 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1623 canonicalization is possible. */
1625 static rtx
1626 simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
1627 rtx op0, rtx op1)
1629 rtx tem;
1631 /* Linearize the operator to the left. */
1632 if (GET_CODE (op1) == code)
1634 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1635 if (GET_CODE (op0) == code)
1637 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1638 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1641 /* "a op (b op c)" becomes "(b op c) op a". */
1642 if (! swap_commutative_operands_p (op1, op0))
1643 return simplify_gen_binary (code, mode, op1, op0);
1645 tem = op0;
1646 op0 = op1;
1647 op1 = tem;
1650 if (GET_CODE (op0) == code)
1652 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1653 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1655 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1656 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1659 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1660 tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1661 if (tem != 0)
1662 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1664 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1665 tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1666 if (tem != 0)
1667 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1670 return 0;
1674 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1675 and OP1. Return 0 if no simplification is possible.
1677 Don't use this for relational operations such as EQ or LT.
1678 Use simplify_relational_operation instead. */
1680 simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
1681 rtx op0, rtx op1)
1683 rtx trueop0, trueop1;
1684 rtx tem;
1686 /* Relational operations don't work here. We must know the mode
1687 of the operands in order to do the comparison correctly.
1688 Assuming a full word can give incorrect results.
1689 Consider comparing 128 with -128 in QImode. */
1690 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1691 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1693 /* Make sure the constant is second. */
1694 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1695 && swap_commutative_operands_p (op0, op1))
1697 tem = op0, op0 = op1, op1 = tem;
1700 trueop0 = avoid_constant_pool_reference (op0);
1701 trueop1 = avoid_constant_pool_reference (op1);
1703 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1704 if (tem)
1705 return tem;
1706 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1709 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1710 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1711 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1712 actual constants. */
1714 static rtx
1715 simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
1716 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
1718 rtx tem, reversed, opleft, opright;
1719 HOST_WIDE_INT val;
1720 unsigned int width = GET_MODE_BITSIZE (mode);
1722 /* Even if we can't compute a constant result,
1723 there are some cases worth simplifying. */
1725 switch (code)
1727 case PLUS:
1728 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1729 when x is NaN, infinite, or finite and nonzero. They aren't
1730 when x is -0 and the rounding mode is not towards -infinity,
1731 since (-0) + 0 is then 0. */
1732 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1733 return op0;
1735 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1736 transformations are safe even for IEEE. */
1737 if (GET_CODE (op0) == NEG)
1738 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1739 else if (GET_CODE (op1) == NEG)
1740 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1742 /* (~a) + 1 -> -a */
1743 if (INTEGRAL_MODE_P (mode)
1744 && GET_CODE (op0) == NOT
1745 && trueop1 == const1_rtx)
1746 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
1748 /* Handle both-operands-constant cases. We can only add
1749 CONST_INTs to constants since the sum of relocatable symbols
1750 can't be handled by most assemblers. Don't add CONST_INT
1751 to CONST_INT since overflow won't be computed properly if wider
1752 than HOST_BITS_PER_WIDE_INT. */
1754 if ((GET_CODE (op0) == CONST
1755 || GET_CODE (op0) == SYMBOL_REF
1756 || GET_CODE (op0) == LABEL_REF)
1757 && CONST_INT_P (op1))
1758 return plus_constant (op0, INTVAL (op1));
1759 else if ((GET_CODE (op1) == CONST
1760 || GET_CODE (op1) == SYMBOL_REF
1761 || GET_CODE (op1) == LABEL_REF)
1762 && CONST_INT_P (op0))
1763 return plus_constant (op1, INTVAL (op0));
1765 /* See if this is something like X * C - X or vice versa or
1766 if the multiplication is written as a shift. If so, we can
1767 distribute and make a new multiply, shift, or maybe just
1768 have X (if C is 2 in the example above). But don't make
1769 something more expensive than we had before. */
1771 if (SCALAR_INT_MODE_P (mode))
1773 double_int coeff0, coeff1;
1774 rtx lhs = op0, rhs = op1;
1776 coeff0 = double_int_one;
1777 coeff1 = double_int_one;
1779 if (GET_CODE (lhs) == NEG)
1781 coeff0 = double_int_minus_one;
1782 lhs = XEXP (lhs, 0);
1784 else if (GET_CODE (lhs) == MULT
1785 && CONST_INT_P (XEXP (lhs, 1)))
1787 coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
1788 lhs = XEXP (lhs, 0);
1790 else if (GET_CODE (lhs) == ASHIFT
1791 && CONST_INT_P (XEXP (lhs, 1))
1792 && INTVAL (XEXP (lhs, 1)) >= 0
1793 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1795 coeff0 = double_int_setbit (double_int_zero,
1796 INTVAL (XEXP (lhs, 1)));
1797 lhs = XEXP (lhs, 0);
1800 if (GET_CODE (rhs) == NEG)
1802 coeff1 = double_int_minus_one;
1803 rhs = XEXP (rhs, 0);
1805 else if (GET_CODE (rhs) == MULT
1806 && CONST_INT_P (XEXP (rhs, 1)))
1808 coeff1 = shwi_to_double_int (INTVAL (XEXP (rhs, 1)));
1809 rhs = XEXP (rhs, 0);
1811 else if (GET_CODE (rhs) == ASHIFT
1812 && CONST_INT_P (XEXP (rhs, 1))
1813 && INTVAL (XEXP (rhs, 1)) >= 0
1814 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1816 coeff1 = double_int_setbit (double_int_zero,
1817 INTVAL (XEXP (rhs, 1)));
1818 rhs = XEXP (rhs, 0);
1821 if (rtx_equal_p (lhs, rhs))
1823 rtx orig = gen_rtx_PLUS (mode, op0, op1);
1824 rtx coeff;
1825 double_int val;
1826 bool speed = optimize_function_for_speed_p (cfun);
1828 val = double_int_add (coeff0, coeff1);
1829 coeff = immed_double_int_const (val, mode);
1831 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1832 return rtx_cost (tem, SET, speed) <= rtx_cost (orig, SET, speed)
1833 ? tem : 0;
1837 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
1838 if ((CONST_INT_P (op1)
1839 || GET_CODE (op1) == CONST_DOUBLE)
1840 && GET_CODE (op0) == XOR
1841 && (CONST_INT_P (XEXP (op0, 1))
1842 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
1843 && mode_signbit_p (mode, op1))
1844 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
1845 simplify_gen_binary (XOR, mode, op1,
1846 XEXP (op0, 1)));
1848 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
1849 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
1850 && GET_CODE (op0) == MULT
1851 && GET_CODE (XEXP (op0, 0)) == NEG)
1853 rtx in1, in2;
1855 in1 = XEXP (XEXP (op0, 0), 0);
1856 in2 = XEXP (op0, 1);
1857 return simplify_gen_binary (MINUS, mode, op1,
1858 simplify_gen_binary (MULT, mode,
1859 in1, in2));
1862 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
1863 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
1864 is 1. */
1865 if (COMPARISON_P (op0)
1866 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
1867 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
1868 && (reversed = reversed_comparison (op0, mode)))
1869 return
1870 simplify_gen_unary (NEG, mode, reversed, mode);
1872 /* If one of the operands is a PLUS or a MINUS, see if we can
1873 simplify this by the associative law.
1874 Don't use the associative law for floating point.
1875 The inaccuracy makes it nonassociative,
1876 and subtle programs can break if operations are associated. */
1878 if (INTEGRAL_MODE_P (mode)
1879 && (plus_minus_operand_p (op0)
1880 || plus_minus_operand_p (op1))
1881 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1882 return tem;
1884 /* Reassociate floating point addition only when the user
1885 specifies associative math operations. */
1886 if (FLOAT_MODE_P (mode)
1887 && flag_associative_math)
1889 tem = simplify_associative_operation (code, mode, op0, op1);
1890 if (tem)
1891 return tem;
1893 break;
1895 case COMPARE:
1896 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1897 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
1898 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
1899 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
1901 rtx xop00 = XEXP (op0, 0);
1902 rtx xop10 = XEXP (op1, 0);
1904 #ifdef HAVE_cc0
1905 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
1906 #else
1907 if (REG_P (xop00) && REG_P (xop10)
1908 && GET_MODE (xop00) == GET_MODE (xop10)
1909 && REGNO (xop00) == REGNO (xop10)
1910 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
1911 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
1912 #endif
1913 return xop00;
1915 break;
1917 case MINUS:
1918 /* We can't assume x-x is 0 even with non-IEEE floating point,
1919 but since it is zero except in very strange circumstances, we
1920 will treat it as zero with -ffinite-math-only. */
1921 if (rtx_equal_p (trueop0, trueop1)
1922 && ! side_effects_p (op0)
1923 && (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
1924 return CONST0_RTX (mode);
1926 /* Change subtraction from zero into negation. (0 - x) is the
1927 same as -x when x is NaN, infinite, or finite and nonzero.
1928 But if the mode has signed zeros, and does not round towards
1929 -infinity, then 0 - 0 is 0, not -0. */
1930 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
1931 return simplify_gen_unary (NEG, mode, op1, mode);
1933 /* (-1 - a) is ~a. */
1934 if (trueop0 == constm1_rtx)
1935 return simplify_gen_unary (NOT, mode, op1, mode);
1937 /* Subtracting 0 has no effect unless the mode has signed zeros
1938 and supports rounding towards -infinity. In such a case,
1939 0 - 0 is -0. */
1940 if (!(HONOR_SIGNED_ZEROS (mode)
1941 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1942 && trueop1 == CONST0_RTX (mode))
1943 return op0;
1945 /* See if this is something like X * C - X or vice versa or
1946 if the multiplication is written as a shift. If so, we can
1947 distribute and make a new multiply, shift, or maybe just
1948 have X (if C is 2 in the example above). But don't make
1949 something more expensive than we had before. */
1951 if (SCALAR_INT_MODE_P (mode))
1953 double_int coeff0, negcoeff1;
1954 rtx lhs = op0, rhs = op1;
1956 coeff0 = double_int_one;
1957 negcoeff1 = double_int_minus_one;
1959 if (GET_CODE (lhs) == NEG)
1961 coeff0 = double_int_minus_one;
1962 lhs = XEXP (lhs, 0);
1964 else if (GET_CODE (lhs) == MULT
1965 && CONST_INT_P (XEXP (lhs, 1)))
1967 coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
1968 lhs = XEXP (lhs, 0);
1970 else if (GET_CODE (lhs) == ASHIFT
1971 && CONST_INT_P (XEXP (lhs, 1))
1972 && INTVAL (XEXP (lhs, 1)) >= 0
1973 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1975 coeff0 = double_int_setbit (double_int_zero,
1976 INTVAL (XEXP (lhs, 1)));
1977 lhs = XEXP (lhs, 0);
1980 if (GET_CODE (rhs) == NEG)
1982 negcoeff1 = double_int_one;
1983 rhs = XEXP (rhs, 0);
1985 else if (GET_CODE (rhs) == MULT
1986 && CONST_INT_P (XEXP (rhs, 1)))
1988 negcoeff1 = shwi_to_double_int (-INTVAL (XEXP (rhs, 1)));
1989 rhs = XEXP (rhs, 0);
1991 else if (GET_CODE (rhs) == ASHIFT
1992 && CONST_INT_P (XEXP (rhs, 1))
1993 && INTVAL (XEXP (rhs, 1)) >= 0
1994 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1996 negcoeff1 = double_int_setbit (double_int_zero,
1997 INTVAL (XEXP (rhs, 1)));
1998 negcoeff1 = double_int_neg (negcoeff1);
1999 rhs = XEXP (rhs, 0);
2002 if (rtx_equal_p (lhs, rhs))
2004 rtx orig = gen_rtx_MINUS (mode, op0, op1);
2005 rtx coeff;
2006 double_int val;
2007 bool speed = optimize_function_for_speed_p (cfun);
2009 val = double_int_add (coeff0, negcoeff1);
2010 coeff = immed_double_int_const (val, mode);
2012 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
2013 return rtx_cost (tem, SET, speed) <= rtx_cost (orig, SET, speed)
2014 ? tem : 0;
2018 /* (a - (-b)) -> (a + b). True even for IEEE. */
2019 if (GET_CODE (op1) == NEG)
2020 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
2022 /* (-x - c) may be simplified as (-c - x). */
2023 if (GET_CODE (op0) == NEG
2024 && (CONST_INT_P (op1)
2025 || GET_CODE (op1) == CONST_DOUBLE))
2027 tem = simplify_unary_operation (NEG, mode, op1, mode);
2028 if (tem)
2029 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
2032 /* Don't let a relocatable value get a negative coeff. */
2033 if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
2034 return simplify_gen_binary (PLUS, mode,
2035 op0,
2036 neg_const_int (mode, op1));
2038 /* (x - (x & y)) -> (x & ~y) */
2039 if (GET_CODE (op1) == AND)
2041 if (rtx_equal_p (op0, XEXP (op1, 0)))
2043 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
2044 GET_MODE (XEXP (op1, 1)));
2045 return simplify_gen_binary (AND, mode, op0, tem);
2047 if (rtx_equal_p (op0, XEXP (op1, 1)))
2049 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
2050 GET_MODE (XEXP (op1, 0)));
2051 return simplify_gen_binary (AND, mode, op0, tem);
2055 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
2056 by reversing the comparison code if valid. */
2057 if (STORE_FLAG_VALUE == 1
2058 && trueop0 == const1_rtx
2059 && COMPARISON_P (op1)
2060 && (reversed = reversed_comparison (op1, mode)))
2061 return reversed;
2063 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
2064 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2065 && GET_CODE (op1) == MULT
2066 && GET_CODE (XEXP (op1, 0)) == NEG)
2068 rtx in1, in2;
2070 in1 = XEXP (XEXP (op1, 0), 0);
2071 in2 = XEXP (op1, 1);
2072 return simplify_gen_binary (PLUS, mode,
2073 simplify_gen_binary (MULT, mode,
2074 in1, in2),
2075 op0);
2078 /* Canonicalize (minus (neg A) (mult B C)) to
2079 (minus (mult (neg B) C) A). */
2080 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2081 && GET_CODE (op1) == MULT
2082 && GET_CODE (op0) == NEG)
2084 rtx in1, in2;
2086 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
2087 in2 = XEXP (op1, 1);
2088 return simplify_gen_binary (MINUS, mode,
2089 simplify_gen_binary (MULT, mode,
2090 in1, in2),
2091 XEXP (op0, 0));
2094 /* If one of the operands is a PLUS or a MINUS, see if we can
2095 simplify this by the associative law. This will, for example,
2096 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
2097 Don't use the associative law for floating point.
2098 The inaccuracy makes it nonassociative,
2099 and subtle programs can break if operations are associated. */
2101 if (INTEGRAL_MODE_P (mode)
2102 && (plus_minus_operand_p (op0)
2103 || plus_minus_operand_p (op1))
2104 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
2105 return tem;
2106 break;
2108 case MULT:
2109 if (trueop1 == constm1_rtx)
2110 return simplify_gen_unary (NEG, mode, op0, mode);
2112 /* Maybe simplify x * 0 to 0. The reduction is not valid if
2113 x is NaN, since x * 0 is then also NaN. Nor is it valid
2114 when the mode has signed zeros, since multiplying a negative
2115 number by 0 will give -0, not 0. */
2116 if (!HONOR_NANS (mode)
2117 && !HONOR_SIGNED_ZEROS (mode)
2118 && trueop1 == CONST0_RTX (mode)
2119 && ! side_effects_p (op0))
2120 return op1;
2122 /* In IEEE floating point, x*1 is not equivalent to x for
2123 signalling NaNs. */
2124 if (!HONOR_SNANS (mode)
2125 && trueop1 == CONST1_RTX (mode))
2126 return op0;
2128 /* Convert multiply by constant power of two into shift unless
2129 we are still generating RTL. This test is a kludge. */
2130 if (CONST_INT_P (trueop1)
2131 && (val = exact_log2 (INTVAL (trueop1))) >= 0
2132 /* If the mode is larger than the host word size, and the
2133 uppermost bit is set, then this isn't a power of two due
2134 to implicit sign extension. */
2135 && (width <= HOST_BITS_PER_WIDE_INT
2136 || val != HOST_BITS_PER_WIDE_INT - 1))
2137 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
2139 /* Likewise for multipliers wider than a word. */
2140 if (GET_CODE (trueop1) == CONST_DOUBLE
2141 && (GET_MODE (trueop1) == VOIDmode
2142 || GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
2143 && GET_MODE (op0) == mode
2144 && CONST_DOUBLE_LOW (trueop1) == 0
2145 && (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
2146 return simplify_gen_binary (ASHIFT, mode, op0,
2147 GEN_INT (val + HOST_BITS_PER_WIDE_INT));
2149 /* x*2 is x+x and x*(-1) is -x */
2150 if (GET_CODE (trueop1) == CONST_DOUBLE
2151 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
2152 && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
2153 && GET_MODE (op0) == mode)
2155 REAL_VALUE_TYPE d;
2156 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2158 if (REAL_VALUES_EQUAL (d, dconst2))
2159 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
2161 if (!HONOR_SNANS (mode)
2162 && REAL_VALUES_EQUAL (d, dconstm1))
2163 return simplify_gen_unary (NEG, mode, op0, mode);
2166 /* Optimize -x * -x as x * x. */
2167 if (FLOAT_MODE_P (mode)
2168 && GET_CODE (op0) == NEG
2169 && GET_CODE (op1) == NEG
2170 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2171 && !side_effects_p (XEXP (op0, 0)))
2172 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2174 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2175 if (SCALAR_FLOAT_MODE_P (mode)
2176 && GET_CODE (op0) == ABS
2177 && GET_CODE (op1) == ABS
2178 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2179 && !side_effects_p (XEXP (op0, 0)))
2180 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2182 /* Reassociate multiplication, but for floating point MULTs
2183 only when the user specifies unsafe math optimizations. */
2184 if (! FLOAT_MODE_P (mode)
2185 || flag_unsafe_math_optimizations)
2187 tem = simplify_associative_operation (code, mode, op0, op1);
2188 if (tem)
2189 return tem;
2191 break;
2193 case IOR:
2194 if (trueop1 == const0_rtx)
2195 return op0;
2196 if (CONST_INT_P (trueop1)
2197 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2198 == GET_MODE_MASK (mode)))
2199 return op1;
2200 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2201 return op0;
2202 /* A | (~A) -> -1 */
2203 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2204 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2205 && ! side_effects_p (op0)
2206 && SCALAR_INT_MODE_P (mode))
2207 return constm1_rtx;
2209 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2210 if (CONST_INT_P (op1)
2211 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2212 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
2213 return op1;
2215 /* Canonicalize (X & C1) | C2. */
2216 if (GET_CODE (op0) == AND
2217 && CONST_INT_P (trueop1)
2218 && CONST_INT_P (XEXP (op0, 1)))
2220 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
2221 HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
2222 HOST_WIDE_INT c2 = INTVAL (trueop1);
2224 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2225 if ((c1 & c2) == c1
2226 && !side_effects_p (XEXP (op0, 0)))
2227 return trueop1;
2229 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2230 if (((c1|c2) & mask) == mask)
2231 return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
2233 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2234 if (((c1 & ~c2) & mask) != (c1 & mask))
2236 tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
2237 gen_int_mode (c1 & ~c2, mode));
2238 return simplify_gen_binary (IOR, mode, tem, op1);
2242 /* Convert (A & B) | A to A. */
2243 if (GET_CODE (op0) == AND
2244 && (rtx_equal_p (XEXP (op0, 0), op1)
2245 || rtx_equal_p (XEXP (op0, 1), op1))
2246 && ! side_effects_p (XEXP (op0, 0))
2247 && ! side_effects_p (XEXP (op0, 1)))
2248 return op1;
2250 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2251 mode size to (rotate A CX). */
2253 if (GET_CODE (op1) == ASHIFT
2254 || GET_CODE (op1) == SUBREG)
2256 opleft = op1;
2257 opright = op0;
2259 else
2261 opright = op1;
2262 opleft = op0;
2265 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
2266 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
2267 && CONST_INT_P (XEXP (opleft, 1))
2268 && CONST_INT_P (XEXP (opright, 1))
2269 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
2270 == GET_MODE_BITSIZE (mode)))
2271 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
2273 /* Same, but for ashift that has been "simplified" to a wider mode
2274 by simplify_shift_const. */
2276 if (GET_CODE (opleft) == SUBREG
2277 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2278 && GET_CODE (opright) == LSHIFTRT
2279 && GET_CODE (XEXP (opright, 0)) == SUBREG
2280 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2281 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2282 && (GET_MODE_SIZE (GET_MODE (opleft))
2283 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2284 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2285 SUBREG_REG (XEXP (opright, 0)))
2286 && CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
2287 && CONST_INT_P (XEXP (opright, 1))
2288 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2289 == GET_MODE_BITSIZE (mode)))
2290 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2291 XEXP (SUBREG_REG (opleft), 1));
2293 /* If we have (ior (and (X C1) C2)), simplify this by making
2294 C1 as small as possible if C1 actually changes. */
2295 if (CONST_INT_P (op1)
2296 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2297 || INTVAL (op1) > 0)
2298 && GET_CODE (op0) == AND
2299 && CONST_INT_P (XEXP (op0, 1))
2300 && CONST_INT_P (op1)
2301 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
2302 return simplify_gen_binary (IOR, mode,
2303 simplify_gen_binary
2304 (AND, mode, XEXP (op0, 0),
2305 GEN_INT (INTVAL (XEXP (op0, 1))
2306 & ~INTVAL (op1))),
2307 op1);
2309 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2310 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2311 the PLUS does not affect any of the bits in OP1: then we can do
2312 the IOR as a PLUS and we can associate. This is valid if OP1
2313 can be safely shifted left C bits. */
2314 if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
2315 && GET_CODE (XEXP (op0, 0)) == PLUS
2316 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
2317 && CONST_INT_P (XEXP (op0, 1))
2318 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2320 int count = INTVAL (XEXP (op0, 1));
2321 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2323 if (mask >> count == INTVAL (trueop1)
2324 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2325 return simplify_gen_binary (ASHIFTRT, mode,
2326 plus_constant (XEXP (op0, 0), mask),
2327 XEXP (op0, 1));
2330 tem = simplify_associative_operation (code, mode, op0, op1);
2331 if (tem)
2332 return tem;
2333 break;
2335 case XOR:
2336 if (trueop1 == const0_rtx)
2337 return op0;
2338 if (CONST_INT_P (trueop1)
2339 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2340 == GET_MODE_MASK (mode)))
2341 return simplify_gen_unary (NOT, mode, op0, mode);
2342 if (rtx_equal_p (trueop0, trueop1)
2343 && ! side_effects_p (op0)
2344 && GET_MODE_CLASS (mode) != MODE_CC)
2345 return CONST0_RTX (mode);
2347 /* Canonicalize XOR of the most significant bit to PLUS. */
2348 if ((CONST_INT_P (op1)
2349 || GET_CODE (op1) == CONST_DOUBLE)
2350 && mode_signbit_p (mode, op1))
2351 return simplify_gen_binary (PLUS, mode, op0, op1);
2352 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2353 if ((CONST_INT_P (op1)
2354 || GET_CODE (op1) == CONST_DOUBLE)
2355 && GET_CODE (op0) == PLUS
2356 && (CONST_INT_P (XEXP (op0, 1))
2357 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
2358 && mode_signbit_p (mode, XEXP (op0, 1)))
2359 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2360 simplify_gen_binary (XOR, mode, op1,
2361 XEXP (op0, 1)));
2363 /* If we are XORing two things that have no bits in common,
2364 convert them into an IOR. This helps to detect rotation encoded
2365 using those methods and possibly other simplifications. */
2367 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2368 && (nonzero_bits (op0, mode)
2369 & nonzero_bits (op1, mode)) == 0)
2370 return (simplify_gen_binary (IOR, mode, op0, op1));
2372 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2373 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2374 (NOT y). */
2376 int num_negated = 0;
2378 if (GET_CODE (op0) == NOT)
2379 num_negated++, op0 = XEXP (op0, 0);
2380 if (GET_CODE (op1) == NOT)
2381 num_negated++, op1 = XEXP (op1, 0);
2383 if (num_negated == 2)
2384 return simplify_gen_binary (XOR, mode, op0, op1);
2385 else if (num_negated == 1)
2386 return simplify_gen_unary (NOT, mode,
2387 simplify_gen_binary (XOR, mode, op0, op1),
2388 mode);
2391 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2392 correspond to a machine insn or result in further simplifications
2393 if B is a constant. */
2395 if (GET_CODE (op0) == AND
2396 && rtx_equal_p (XEXP (op0, 1), op1)
2397 && ! side_effects_p (op1))
2398 return simplify_gen_binary (AND, mode,
2399 simplify_gen_unary (NOT, mode,
2400 XEXP (op0, 0), mode),
2401 op1);
2403 else if (GET_CODE (op0) == AND
2404 && rtx_equal_p (XEXP (op0, 0), op1)
2405 && ! side_effects_p (op1))
2406 return simplify_gen_binary (AND, mode,
2407 simplify_gen_unary (NOT, mode,
2408 XEXP (op0, 1), mode),
2409 op1);
2411 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2412 comparison if STORE_FLAG_VALUE is 1. */
2413 if (STORE_FLAG_VALUE == 1
2414 && trueop1 == const1_rtx
2415 && COMPARISON_P (op0)
2416 && (reversed = reversed_comparison (op0, mode)))
2417 return reversed;
2419 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2420 is (lt foo (const_int 0)), so we can perform the above
2421 simplification if STORE_FLAG_VALUE is 1. */
2423 if (STORE_FLAG_VALUE == 1
2424 && trueop1 == const1_rtx
2425 && GET_CODE (op0) == LSHIFTRT
2426 && CONST_INT_P (XEXP (op0, 1))
2427 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
2428 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2430 /* (xor (comparison foo bar) (const_int sign-bit))
2431 when STORE_FLAG_VALUE is the sign bit. */
2432 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2433 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
2434 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
2435 && trueop1 == const_true_rtx
2436 && COMPARISON_P (op0)
2437 && (reversed = reversed_comparison (op0, mode)))
2438 return reversed;
2440 tem = simplify_associative_operation (code, mode, op0, op1);
2441 if (tem)
2442 return tem;
2443 break;
2445 case AND:
2446 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2447 return trueop1;
2448 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
2450 HOST_WIDE_INT nzop0 = nonzero_bits (trueop0, mode);
2451 HOST_WIDE_INT nzop1;
2452 if (CONST_INT_P (trueop1))
2454 HOST_WIDE_INT val1 = INTVAL (trueop1);
2455 /* If we are turning off bits already known off in OP0, we need
2456 not do an AND. */
2457 if ((nzop0 & ~val1) == 0)
2458 return op0;
2460 nzop1 = nonzero_bits (trueop1, mode);
2461 /* If we are clearing all the nonzero bits, the result is zero. */
2462 if ((nzop1 & nzop0) == 0
2463 && !side_effects_p (op0) && !side_effects_p (op1))
2464 return CONST0_RTX (mode);
2466 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2467 && GET_MODE_CLASS (mode) != MODE_CC)
2468 return op0;
2469 /* A & (~A) -> 0 */
2470 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2471 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2472 && ! side_effects_p (op0)
2473 && GET_MODE_CLASS (mode) != MODE_CC)
2474 return CONST0_RTX (mode);
2476 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2477 there are no nonzero bits of C outside of X's mode. */
2478 if ((GET_CODE (op0) == SIGN_EXTEND
2479 || GET_CODE (op0) == ZERO_EXTEND)
2480 && CONST_INT_P (trueop1)
2481 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2482 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2483 & INTVAL (trueop1)) == 0)
2485 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2486 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2487 gen_int_mode (INTVAL (trueop1),
2488 imode));
2489 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2492 /* Transform (and (truncate X) C) into (truncate (and X C)). This way
2493 we might be able to further simplify the AND with X and potentially
2494 remove the truncation altogether. */
2495 if (GET_CODE (op0) == TRUNCATE && CONST_INT_P (trueop1))
2497 rtx x = XEXP (op0, 0);
2498 enum machine_mode xmode = GET_MODE (x);
2499 tem = simplify_gen_binary (AND, xmode, x,
2500 gen_int_mode (INTVAL (trueop1), xmode));
2501 return simplify_gen_unary (TRUNCATE, mode, tem, xmode);
2504 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2505 if (GET_CODE (op0) == IOR
2506 && CONST_INT_P (trueop1)
2507 && CONST_INT_P (XEXP (op0, 1)))
2509 HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
2510 return simplify_gen_binary (IOR, mode,
2511 simplify_gen_binary (AND, mode,
2512 XEXP (op0, 0), op1),
2513 gen_int_mode (tmp, mode));
2516 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2517 insn (and may simplify more). */
2518 if (GET_CODE (op0) == XOR
2519 && rtx_equal_p (XEXP (op0, 0), op1)
2520 && ! side_effects_p (op1))
2521 return simplify_gen_binary (AND, mode,
2522 simplify_gen_unary (NOT, mode,
2523 XEXP (op0, 1), mode),
2524 op1);
2526 if (GET_CODE (op0) == XOR
2527 && rtx_equal_p (XEXP (op0, 1), op1)
2528 && ! side_effects_p (op1))
2529 return simplify_gen_binary (AND, mode,
2530 simplify_gen_unary (NOT, mode,
2531 XEXP (op0, 0), mode),
2532 op1);
2534 /* Similarly for (~(A ^ B)) & A. */
2535 if (GET_CODE (op0) == NOT
2536 && GET_CODE (XEXP (op0, 0)) == XOR
2537 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2538 && ! side_effects_p (op1))
2539 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2541 if (GET_CODE (op0) == NOT
2542 && GET_CODE (XEXP (op0, 0)) == XOR
2543 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2544 && ! side_effects_p (op1))
2545 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2547 /* Convert (A | B) & A to A. */
2548 if (GET_CODE (op0) == IOR
2549 && (rtx_equal_p (XEXP (op0, 0), op1)
2550 || rtx_equal_p (XEXP (op0, 1), op1))
2551 && ! side_effects_p (XEXP (op0, 0))
2552 && ! side_effects_p (XEXP (op0, 1)))
2553 return op1;
2555 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2556 ((A & N) + B) & M -> (A + B) & M
2557 Similarly if (N & M) == 0,
2558 ((A | N) + B) & M -> (A + B) & M
2559 and for - instead of + and/or ^ instead of |.
2560 Also, if (N & M) == 0, then
2561 (A +- N) & M -> A & M. */
2562 if (CONST_INT_P (trueop1)
2563 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2564 && ~INTVAL (trueop1)
2565 && (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
2566 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2568 rtx pmop[2];
2569 int which;
2571 pmop[0] = XEXP (op0, 0);
2572 pmop[1] = XEXP (op0, 1);
2574 if (CONST_INT_P (pmop[1])
2575 && (INTVAL (pmop[1]) & INTVAL (trueop1)) == 0)
2576 return simplify_gen_binary (AND, mode, pmop[0], op1);
2578 for (which = 0; which < 2; which++)
2580 tem = pmop[which];
2581 switch (GET_CODE (tem))
2583 case AND:
2584 if (CONST_INT_P (XEXP (tem, 1))
2585 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
2586 == INTVAL (trueop1))
2587 pmop[which] = XEXP (tem, 0);
2588 break;
2589 case IOR:
2590 case XOR:
2591 if (CONST_INT_P (XEXP (tem, 1))
2592 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
2593 pmop[which] = XEXP (tem, 0);
2594 break;
2595 default:
2596 break;
2600 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
2602 tem = simplify_gen_binary (GET_CODE (op0), mode,
2603 pmop[0], pmop[1]);
2604 return simplify_gen_binary (code, mode, tem, op1);
2608 /* (and X (ior (not X) Y) -> (and X Y) */
2609 if (GET_CODE (op1) == IOR
2610 && GET_CODE (XEXP (op1, 0)) == NOT
2611 && op0 == XEXP (XEXP (op1, 0), 0))
2612 return simplify_gen_binary (AND, mode, op0, XEXP (op1, 1));
2614 /* (and (ior (not X) Y) X) -> (and X Y) */
2615 if (GET_CODE (op0) == IOR
2616 && GET_CODE (XEXP (op0, 0)) == NOT
2617 && op1 == XEXP (XEXP (op0, 0), 0))
2618 return simplify_gen_binary (AND, mode, op1, XEXP (op0, 1));
2620 tem = simplify_associative_operation (code, mode, op0, op1);
2621 if (tem)
2622 return tem;
2623 break;
2625 case UDIV:
2626 /* 0/x is 0 (or x&0 if x has side-effects). */
2627 if (trueop0 == CONST0_RTX (mode))
2629 if (side_effects_p (op1))
2630 return simplify_gen_binary (AND, mode, op1, trueop0);
2631 return trueop0;
2633 /* x/1 is x. */
2634 if (trueop1 == CONST1_RTX (mode))
2635 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2636 /* Convert divide by power of two into shift. */
2637 if (CONST_INT_P (trueop1)
2638 && (val = exact_log2 (INTVAL (trueop1))) > 0)
2639 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
2640 break;
2642 case DIV:
2643 /* Handle floating point and integers separately. */
2644 if (SCALAR_FLOAT_MODE_P (mode))
2646 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2647 safe for modes with NaNs, since 0.0 / 0.0 will then be
2648 NaN rather than 0.0. Nor is it safe for modes with signed
2649 zeros, since dividing 0 by a negative number gives -0.0 */
2650 if (trueop0 == CONST0_RTX (mode)
2651 && !HONOR_NANS (mode)
2652 && !HONOR_SIGNED_ZEROS (mode)
2653 && ! side_effects_p (op1))
2654 return op0;
2655 /* x/1.0 is x. */
2656 if (trueop1 == CONST1_RTX (mode)
2657 && !HONOR_SNANS (mode))
2658 return op0;
2660 if (GET_CODE (trueop1) == CONST_DOUBLE
2661 && trueop1 != CONST0_RTX (mode))
2663 REAL_VALUE_TYPE d;
2664 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2666 /* x/-1.0 is -x. */
2667 if (REAL_VALUES_EQUAL (d, dconstm1)
2668 && !HONOR_SNANS (mode))
2669 return simplify_gen_unary (NEG, mode, op0, mode);
2671 /* Change FP division by a constant into multiplication.
2672 Only do this with -freciprocal-math. */
2673 if (flag_reciprocal_math
2674 && !REAL_VALUES_EQUAL (d, dconst0))
2676 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
2677 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2678 return simplify_gen_binary (MULT, mode, op0, tem);
2682 else
2684 /* 0/x is 0 (or x&0 if x has side-effects). */
2685 if (trueop0 == CONST0_RTX (mode))
2687 if (side_effects_p (op1))
2688 return simplify_gen_binary (AND, mode, op1, trueop0);
2689 return trueop0;
2691 /* x/1 is x. */
2692 if (trueop1 == CONST1_RTX (mode))
2693 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2694 /* x/-1 is -x. */
2695 if (trueop1 == constm1_rtx)
2697 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
2698 return simplify_gen_unary (NEG, mode, x, mode);
2701 break;
2703 case UMOD:
2704 /* 0%x is 0 (or x&0 if x has side-effects). */
2705 if (trueop0 == CONST0_RTX (mode))
2707 if (side_effects_p (op1))
2708 return simplify_gen_binary (AND, mode, op1, trueop0);
2709 return trueop0;
2711 /* x%1 is 0 (of x&0 if x has side-effects). */
2712 if (trueop1 == CONST1_RTX (mode))
2714 if (side_effects_p (op0))
2715 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2716 return CONST0_RTX (mode);
2718 /* Implement modulus by power of two as AND. */
2719 if (CONST_INT_P (trueop1)
2720 && exact_log2 (INTVAL (trueop1)) > 0)
2721 return simplify_gen_binary (AND, mode, op0,
2722 GEN_INT (INTVAL (op1) - 1));
2723 break;
2725 case MOD:
2726 /* 0%x is 0 (or x&0 if x has side-effects). */
2727 if (trueop0 == CONST0_RTX (mode))
2729 if (side_effects_p (op1))
2730 return simplify_gen_binary (AND, mode, op1, trueop0);
2731 return trueop0;
2733 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
2734 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
2736 if (side_effects_p (op0))
2737 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2738 return CONST0_RTX (mode);
2740 break;
2742 case ROTATERT:
2743 case ROTATE:
2744 case ASHIFTRT:
2745 if (trueop1 == CONST0_RTX (mode))
2746 return op0;
2747 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2748 return op0;
2749 /* Rotating ~0 always results in ~0. */
2750 if (CONST_INT_P (trueop0) && width <= HOST_BITS_PER_WIDE_INT
2751 && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
2752 && ! side_effects_p (op1))
2753 return op0;
2754 canonicalize_shift:
2755 if (SHIFT_COUNT_TRUNCATED && CONST_INT_P (op1))
2757 val = INTVAL (op1) & (GET_MODE_BITSIZE (mode) - 1);
2758 if (val != INTVAL (op1))
2759 return simplify_gen_binary (code, mode, op0, GEN_INT (val));
2761 break;
2763 case ASHIFT:
2764 case SS_ASHIFT:
2765 case US_ASHIFT:
2766 if (trueop1 == CONST0_RTX (mode))
2767 return op0;
2768 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2769 return op0;
2770 goto canonicalize_shift;
2772 case LSHIFTRT:
2773 if (trueop1 == CONST0_RTX (mode))
2774 return op0;
2775 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2776 return op0;
2777 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
2778 if (GET_CODE (op0) == CLZ
2779 && CONST_INT_P (trueop1)
2780 && STORE_FLAG_VALUE == 1
2781 && INTVAL (trueop1) < (HOST_WIDE_INT)width)
2783 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2784 unsigned HOST_WIDE_INT zero_val = 0;
2786 if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
2787 && zero_val == GET_MODE_BITSIZE (imode)
2788 && INTVAL (trueop1) == exact_log2 (zero_val))
2789 return simplify_gen_relational (EQ, mode, imode,
2790 XEXP (op0, 0), const0_rtx);
2792 goto canonicalize_shift;
2794 case SMIN:
2795 if (width <= HOST_BITS_PER_WIDE_INT
2796 && CONST_INT_P (trueop1)
2797 && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
2798 && ! side_effects_p (op0))
2799 return op1;
2800 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2801 return op0;
2802 tem = simplify_associative_operation (code, mode, op0, op1);
2803 if (tem)
2804 return tem;
2805 break;
2807 case SMAX:
2808 if (width <= HOST_BITS_PER_WIDE_INT
2809 && CONST_INT_P (trueop1)
2810 && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
2811 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
2812 && ! side_effects_p (op0))
2813 return op1;
2814 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2815 return op0;
2816 tem = simplify_associative_operation (code, mode, op0, op1);
2817 if (tem)
2818 return tem;
2819 break;
2821 case UMIN:
2822 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2823 return op1;
2824 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2825 return op0;
2826 tem = simplify_associative_operation (code, mode, op0, op1);
2827 if (tem)
2828 return tem;
2829 break;
2831 case UMAX:
2832 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
2833 return op1;
2834 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2835 return op0;
2836 tem = simplify_associative_operation (code, mode, op0, op1);
2837 if (tem)
2838 return tem;
2839 break;
2841 case SS_PLUS:
2842 case US_PLUS:
2843 case SS_MINUS:
2844 case US_MINUS:
2845 case SS_MULT:
2846 case US_MULT:
2847 case SS_DIV:
2848 case US_DIV:
2849 /* ??? There are simplifications that can be done. */
2850 return 0;
2852 case VEC_SELECT:
2853 if (!VECTOR_MODE_P (mode))
2855 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2856 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
2857 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2858 gcc_assert (XVECLEN (trueop1, 0) == 1);
2859 gcc_assert (CONST_INT_P (XVECEXP (trueop1, 0, 0)));
2861 if (GET_CODE (trueop0) == CONST_VECTOR)
2862 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
2863 (trueop1, 0, 0)));
2865 /* Extract a scalar element from a nested VEC_SELECT expression
2866 (with optional nested VEC_CONCAT expression). Some targets
2867 (i386) extract scalar element from a vector using chain of
2868 nested VEC_SELECT expressions. When input operand is a memory
2869 operand, this operation can be simplified to a simple scalar
2870 load from an offseted memory address. */
2871 if (GET_CODE (trueop0) == VEC_SELECT)
2873 rtx op0 = XEXP (trueop0, 0);
2874 rtx op1 = XEXP (trueop0, 1);
2876 enum machine_mode opmode = GET_MODE (op0);
2877 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
2878 int n_elts = GET_MODE_SIZE (opmode) / elt_size;
2880 int i = INTVAL (XVECEXP (trueop1, 0, 0));
2881 int elem;
2883 rtvec vec;
2884 rtx tmp_op, tmp;
2886 gcc_assert (GET_CODE (op1) == PARALLEL);
2887 gcc_assert (i < n_elts);
2889 /* Select element, pointed by nested selector. */
2890 elem = INTVAL (XVECEXP (op1, 0, i));
2892 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
2893 if (GET_CODE (op0) == VEC_CONCAT)
2895 rtx op00 = XEXP (op0, 0);
2896 rtx op01 = XEXP (op0, 1);
2898 enum machine_mode mode00, mode01;
2899 int n_elts00, n_elts01;
2901 mode00 = GET_MODE (op00);
2902 mode01 = GET_MODE (op01);
2904 /* Find out number of elements of each operand. */
2905 if (VECTOR_MODE_P (mode00))
2907 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
2908 n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
2910 else
2911 n_elts00 = 1;
2913 if (VECTOR_MODE_P (mode01))
2915 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
2916 n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
2918 else
2919 n_elts01 = 1;
2921 gcc_assert (n_elts == n_elts00 + n_elts01);
2923 /* Select correct operand of VEC_CONCAT
2924 and adjust selector. */
2925 if (elem < n_elts01)
2926 tmp_op = op00;
2927 else
2929 tmp_op = op01;
2930 elem -= n_elts00;
2933 else
2934 tmp_op = op0;
2936 vec = rtvec_alloc (1);
2937 RTVEC_ELT (vec, 0) = GEN_INT (elem);
2939 tmp = gen_rtx_fmt_ee (code, mode,
2940 tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
2941 return tmp;
2943 if (GET_CODE (trueop0) == VEC_DUPLICATE
2944 && GET_MODE (XEXP (trueop0, 0)) == mode)
2945 return XEXP (trueop0, 0);
2947 else
2949 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2950 gcc_assert (GET_MODE_INNER (mode)
2951 == GET_MODE_INNER (GET_MODE (trueop0)));
2952 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2954 if (GET_CODE (trueop0) == CONST_VECTOR)
2956 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2957 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2958 rtvec v = rtvec_alloc (n_elts);
2959 unsigned int i;
2961 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
2962 for (i = 0; i < n_elts; i++)
2964 rtx x = XVECEXP (trueop1, 0, i);
2966 gcc_assert (CONST_INT_P (x));
2967 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
2968 INTVAL (x));
2971 return gen_rtx_CONST_VECTOR (mode, v);
2975 if (XVECLEN (trueop1, 0) == 1
2976 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
2977 && GET_CODE (trueop0) == VEC_CONCAT)
2979 rtx vec = trueop0;
2980 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
2982 /* Try to find the element in the VEC_CONCAT. */
2983 while (GET_MODE (vec) != mode
2984 && GET_CODE (vec) == VEC_CONCAT)
2986 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
2987 if (offset < vec_size)
2988 vec = XEXP (vec, 0);
2989 else
2991 offset -= vec_size;
2992 vec = XEXP (vec, 1);
2994 vec = avoid_constant_pool_reference (vec);
2997 if (GET_MODE (vec) == mode)
2998 return vec;
3001 return 0;
3002 case VEC_CONCAT:
3004 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
3005 ? GET_MODE (trueop0)
3006 : GET_MODE_INNER (mode));
3007 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
3008 ? GET_MODE (trueop1)
3009 : GET_MODE_INNER (mode));
3011 gcc_assert (VECTOR_MODE_P (mode));
3012 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
3013 == GET_MODE_SIZE (mode));
3015 if (VECTOR_MODE_P (op0_mode))
3016 gcc_assert (GET_MODE_INNER (mode)
3017 == GET_MODE_INNER (op0_mode));
3018 else
3019 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
3021 if (VECTOR_MODE_P (op1_mode))
3022 gcc_assert (GET_MODE_INNER (mode)
3023 == GET_MODE_INNER (op1_mode));
3024 else
3025 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
3027 if ((GET_CODE (trueop0) == CONST_VECTOR
3028 || CONST_INT_P (trueop0)
3029 || GET_CODE (trueop0) == CONST_DOUBLE)
3030 && (GET_CODE (trueop1) == CONST_VECTOR
3031 || CONST_INT_P (trueop1)
3032 || GET_CODE (trueop1) == CONST_DOUBLE))
3034 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
3035 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
3036 rtvec v = rtvec_alloc (n_elts);
3037 unsigned int i;
3038 unsigned in_n_elts = 1;
3040 if (VECTOR_MODE_P (op0_mode))
3041 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
3042 for (i = 0; i < n_elts; i++)
3044 if (i < in_n_elts)
3046 if (!VECTOR_MODE_P (op0_mode))
3047 RTVEC_ELT (v, i) = trueop0;
3048 else
3049 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
3051 else
3053 if (!VECTOR_MODE_P (op1_mode))
3054 RTVEC_ELT (v, i) = trueop1;
3055 else
3056 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
3057 i - in_n_elts);
3061 return gen_rtx_CONST_VECTOR (mode, v);
3064 return 0;
3066 default:
3067 gcc_unreachable ();
3070 return 0;
3074 simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
3075 rtx op0, rtx op1)
3077 HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
3078 HOST_WIDE_INT val;
3079 unsigned int width = GET_MODE_BITSIZE (mode);
3081 if (VECTOR_MODE_P (mode)
3082 && code != VEC_CONCAT
3083 && GET_CODE (op0) == CONST_VECTOR
3084 && GET_CODE (op1) == CONST_VECTOR)
3086 unsigned n_elts = GET_MODE_NUNITS (mode);
3087 enum machine_mode op0mode = GET_MODE (op0);
3088 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
3089 enum machine_mode op1mode = GET_MODE (op1);
3090 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
3091 rtvec v = rtvec_alloc (n_elts);
3092 unsigned int i;
3094 gcc_assert (op0_n_elts == n_elts);
3095 gcc_assert (op1_n_elts == n_elts);
3096 for (i = 0; i < n_elts; i++)
3098 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
3099 CONST_VECTOR_ELT (op0, i),
3100 CONST_VECTOR_ELT (op1, i));
3101 if (!x)
3102 return 0;
3103 RTVEC_ELT (v, i) = x;
3106 return gen_rtx_CONST_VECTOR (mode, v);
3109 if (VECTOR_MODE_P (mode)
3110 && code == VEC_CONCAT
3111 && (CONST_INT_P (op0)
3112 || GET_CODE (op0) == CONST_DOUBLE
3113 || GET_CODE (op0) == CONST_FIXED)
3114 && (CONST_INT_P (op1)
3115 || GET_CODE (op1) == CONST_DOUBLE
3116 || GET_CODE (op1) == CONST_FIXED))
3118 unsigned n_elts = GET_MODE_NUNITS (mode);
3119 rtvec v = rtvec_alloc (n_elts);
3121 gcc_assert (n_elts >= 2);
3122 if (n_elts == 2)
3124 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
3125 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
3127 RTVEC_ELT (v, 0) = op0;
3128 RTVEC_ELT (v, 1) = op1;
3130 else
3132 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
3133 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
3134 unsigned i;
3136 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
3137 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
3138 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
3140 for (i = 0; i < op0_n_elts; ++i)
3141 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
3142 for (i = 0; i < op1_n_elts; ++i)
3143 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
3146 return gen_rtx_CONST_VECTOR (mode, v);
3149 if (SCALAR_FLOAT_MODE_P (mode)
3150 && GET_CODE (op0) == CONST_DOUBLE
3151 && GET_CODE (op1) == CONST_DOUBLE
3152 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3154 if (code == AND
3155 || code == IOR
3156 || code == XOR)
3158 long tmp0[4];
3159 long tmp1[4];
3160 REAL_VALUE_TYPE r;
3161 int i;
3163 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
3164 GET_MODE (op0));
3165 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
3166 GET_MODE (op1));
3167 for (i = 0; i < 4; i++)
3169 switch (code)
3171 case AND:
3172 tmp0[i] &= tmp1[i];
3173 break;
3174 case IOR:
3175 tmp0[i] |= tmp1[i];
3176 break;
3177 case XOR:
3178 tmp0[i] ^= tmp1[i];
3179 break;
3180 default:
3181 gcc_unreachable ();
3184 real_from_target (&r, tmp0, mode);
3185 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
3187 else
3189 REAL_VALUE_TYPE f0, f1, value, result;
3190 bool inexact;
3192 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3193 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3194 real_convert (&f0, mode, &f0);
3195 real_convert (&f1, mode, &f1);
3197 if (HONOR_SNANS (mode)
3198 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
3199 return 0;
3201 if (code == DIV
3202 && REAL_VALUES_EQUAL (f1, dconst0)
3203 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
3204 return 0;
3206 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3207 && flag_trapping_math
3208 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
3210 int s0 = REAL_VALUE_NEGATIVE (f0);
3211 int s1 = REAL_VALUE_NEGATIVE (f1);
3213 switch (code)
3215 case PLUS:
3216 /* Inf + -Inf = NaN plus exception. */
3217 if (s0 != s1)
3218 return 0;
3219 break;
3220 case MINUS:
3221 /* Inf - Inf = NaN plus exception. */
3222 if (s0 == s1)
3223 return 0;
3224 break;
3225 case DIV:
3226 /* Inf / Inf = NaN plus exception. */
3227 return 0;
3228 default:
3229 break;
3233 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3234 && flag_trapping_math
3235 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
3236 || (REAL_VALUE_ISINF (f1)
3237 && REAL_VALUES_EQUAL (f0, dconst0))))
3238 /* Inf * 0 = NaN plus exception. */
3239 return 0;
3241 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
3242 &f0, &f1);
3243 real_convert (&result, mode, &value);
3245 /* Don't constant fold this floating point operation if
3246 the result has overflowed and flag_trapping_math. */
3248 if (flag_trapping_math
3249 && MODE_HAS_INFINITIES (mode)
3250 && REAL_VALUE_ISINF (result)
3251 && !REAL_VALUE_ISINF (f0)
3252 && !REAL_VALUE_ISINF (f1))
3253 /* Overflow plus exception. */
3254 return 0;
3256 /* Don't constant fold this floating point operation if the
3257 result may dependent upon the run-time rounding mode and
3258 flag_rounding_math is set, or if GCC's software emulation
3259 is unable to accurately represent the result. */
3261 if ((flag_rounding_math
3262 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
3263 && (inexact || !real_identical (&result, &value)))
3264 return NULL_RTX;
3266 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
3270 /* We can fold some multi-word operations. */
3271 if (GET_MODE_CLASS (mode) == MODE_INT
3272 && width == HOST_BITS_PER_DOUBLE_INT
3273 && (CONST_DOUBLE_P (op0) || CONST_INT_P (op0))
3274 && (CONST_DOUBLE_P (op1) || CONST_INT_P (op1)))
3276 double_int o0, o1, res, tmp;
3278 o0 = rtx_to_double_int (op0);
3279 o1 = rtx_to_double_int (op1);
3281 switch (code)
3283 case MINUS:
3284 /* A - B == A + (-B). */
3285 o1 = double_int_neg (o1);
3287 /* Fall through.... */
3289 case PLUS:
3290 res = double_int_add (o0, o1);
3291 break;
3293 case MULT:
3294 res = double_int_mul (o0, o1);
3295 break;
3297 case DIV:
3298 if (div_and_round_double (TRUNC_DIV_EXPR, 0,
3299 o0.low, o0.high, o1.low, o1.high,
3300 &res.low, &res.high,
3301 &tmp.low, &tmp.high))
3302 return 0;
3303 break;
3305 case MOD:
3306 if (div_and_round_double (TRUNC_DIV_EXPR, 0,
3307 o0.low, o0.high, o1.low, o1.high,
3308 &tmp.low, &tmp.high,
3309 &res.low, &res.high))
3310 return 0;
3311 break;
3313 case UDIV:
3314 if (div_and_round_double (TRUNC_DIV_EXPR, 1,
3315 o0.low, o0.high, o1.low, o1.high,
3316 &res.low, &res.high,
3317 &tmp.low, &tmp.high))
3318 return 0;
3319 break;
3321 case UMOD:
3322 if (div_and_round_double (TRUNC_DIV_EXPR, 1,
3323 o0.low, o0.high, o1.low, o1.high,
3324 &tmp.low, &tmp.high,
3325 &res.low, &res.high))
3326 return 0;
3327 break;
3329 case AND:
3330 res = double_int_and (o0, o1);
3331 break;
3333 case IOR:
3334 res = double_int_ior (o0, o1);
3335 break;
3337 case XOR:
3338 res = double_int_xor (o0, o1);
3339 break;
3341 case SMIN:
3342 res = double_int_smin (o0, o1);
3343 break;
3345 case SMAX:
3346 res = double_int_smax (o0, o1);
3347 break;
3349 case UMIN:
3350 res = double_int_umin (o0, o1);
3351 break;
3353 case UMAX:
3354 res = double_int_umax (o0, o1);
3355 break;
3357 case LSHIFTRT: case ASHIFTRT:
3358 case ASHIFT:
3359 case ROTATE: case ROTATERT:
3361 unsigned HOST_WIDE_INT cnt;
3363 if (SHIFT_COUNT_TRUNCATED)
3364 o1 = double_int_zext (o1, GET_MODE_BITSIZE (mode));
3366 if (!double_int_fits_in_uhwi_p (o1)
3367 || double_int_to_uhwi (o1) >= GET_MODE_BITSIZE (mode))
3368 return 0;
3370 cnt = double_int_to_uhwi (o1);
3372 if (code == LSHIFTRT || code == ASHIFTRT)
3373 res = double_int_rshift (o0, cnt, GET_MODE_BITSIZE (mode),
3374 code == ASHIFTRT);
3375 else if (code == ASHIFT)
3376 res = double_int_lshift (o0, cnt, GET_MODE_BITSIZE (mode),
3377 true);
3378 else if (code == ROTATE)
3379 res = double_int_lrotate (o0, cnt, GET_MODE_BITSIZE (mode));
3380 else /* code == ROTATERT */
3381 res = double_int_rrotate (o0, cnt, GET_MODE_BITSIZE (mode));
3383 break;
3385 default:
3386 return 0;
3389 return immed_double_int_const (res, mode);
3392 if (CONST_INT_P (op0) && CONST_INT_P (op1)
3393 && width <= HOST_BITS_PER_WIDE_INT && width != 0)
3395 /* Get the integer argument values in two forms:
3396 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3398 arg0 = INTVAL (op0);
3399 arg1 = INTVAL (op1);
3401 if (width < HOST_BITS_PER_WIDE_INT)
3403 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
3404 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
3406 arg0s = arg0;
3407 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3408 arg0s |= ((HOST_WIDE_INT) (-1) << width);
3410 arg1s = arg1;
3411 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3412 arg1s |= ((HOST_WIDE_INT) (-1) << width);
3414 else
3416 arg0s = arg0;
3417 arg1s = arg1;
3420 /* Compute the value of the arithmetic. */
3422 switch (code)
3424 case PLUS:
3425 val = arg0s + arg1s;
3426 break;
3428 case MINUS:
3429 val = arg0s - arg1s;
3430 break;
3432 case MULT:
3433 val = arg0s * arg1s;
3434 break;
3436 case DIV:
3437 if (arg1s == 0
3438 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3439 && arg1s == -1))
3440 return 0;
3441 val = arg0s / arg1s;
3442 break;
3444 case MOD:
3445 if (arg1s == 0
3446 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3447 && arg1s == -1))
3448 return 0;
3449 val = arg0s % arg1s;
3450 break;
3452 case UDIV:
3453 if (arg1 == 0
3454 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3455 && arg1s == -1))
3456 return 0;
3457 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3458 break;
3460 case UMOD:
3461 if (arg1 == 0
3462 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3463 && arg1s == -1))
3464 return 0;
3465 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3466 break;
3468 case AND:
3469 val = arg0 & arg1;
3470 break;
3472 case IOR:
3473 val = arg0 | arg1;
3474 break;
3476 case XOR:
3477 val = arg0 ^ arg1;
3478 break;
3480 case LSHIFTRT:
3481 case ASHIFT:
3482 case ASHIFTRT:
3483 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
3484 the value is in range. We can't return any old value for
3485 out-of-range arguments because either the middle-end (via
3486 shift_truncation_mask) or the back-end might be relying on
3487 target-specific knowledge. Nor can we rely on
3488 shift_truncation_mask, since the shift might not be part of an
3489 ashlM3, lshrM3 or ashrM3 instruction. */
3490 if (SHIFT_COUNT_TRUNCATED)
3491 arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
3492 else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
3493 return 0;
3495 val = (code == ASHIFT
3496 ? ((unsigned HOST_WIDE_INT) arg0) << arg1
3497 : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
3499 /* Sign-extend the result for arithmetic right shifts. */
3500 if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
3501 val |= ((HOST_WIDE_INT) -1) << (width - arg1);
3502 break;
3504 case ROTATERT:
3505 if (arg1 < 0)
3506 return 0;
3508 arg1 %= width;
3509 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3510 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3511 break;
3513 case ROTATE:
3514 if (arg1 < 0)
3515 return 0;
3517 arg1 %= width;
3518 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3519 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3520 break;
3522 case COMPARE:
3523 /* Do nothing here. */
3524 return 0;
3526 case SMIN:
3527 val = arg0s <= arg1s ? arg0s : arg1s;
3528 break;
3530 case UMIN:
3531 val = ((unsigned HOST_WIDE_INT) arg0
3532 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3533 break;
3535 case SMAX:
3536 val = arg0s > arg1s ? arg0s : arg1s;
3537 break;
3539 case UMAX:
3540 val = ((unsigned HOST_WIDE_INT) arg0
3541 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3542 break;
3544 case SS_PLUS:
3545 case US_PLUS:
3546 case SS_MINUS:
3547 case US_MINUS:
3548 case SS_MULT:
3549 case US_MULT:
3550 case SS_DIV:
3551 case US_DIV:
3552 case SS_ASHIFT:
3553 case US_ASHIFT:
3554 /* ??? There are simplifications that can be done. */
3555 return 0;
3557 default:
3558 gcc_unreachable ();
3561 return gen_int_mode (val, mode);
3564 return NULL_RTX;
3569 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3570 PLUS or MINUS.
3572 Rather than test for specific case, we do this by a brute-force method
3573 and do all possible simplifications until no more changes occur. Then
3574 we rebuild the operation. */
3576 struct simplify_plus_minus_op_data
3578 rtx op;
3579 short neg;
3582 static bool
3583 simplify_plus_minus_op_data_cmp (rtx x, rtx y)
3585 int result;
3587 result = (commutative_operand_precedence (y)
3588 - commutative_operand_precedence (x));
3589 if (result)
3590 return result > 0;
3592 /* Group together equal REGs to do more simplification. */
3593 if (REG_P (x) && REG_P (y))
3594 return REGNO (x) > REGNO (y);
3595 else
3596 return false;
3599 static rtx
3600 simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
3601 rtx op1)
3603 struct simplify_plus_minus_op_data ops[8];
3604 rtx result, tem;
3605 int n_ops = 2, input_ops = 2;
3606 int changed, n_constants = 0, canonicalized = 0;
3607 int i, j;
3609 memset (ops, 0, sizeof ops);
3611 /* Set up the two operands and then expand them until nothing has been
3612 changed. If we run out of room in our array, give up; this should
3613 almost never happen. */
3615 ops[0].op = op0;
3616 ops[0].neg = 0;
3617 ops[1].op = op1;
3618 ops[1].neg = (code == MINUS);
3622 changed = 0;
3624 for (i = 0; i < n_ops; i++)
3626 rtx this_op = ops[i].op;
3627 int this_neg = ops[i].neg;
3628 enum rtx_code this_code = GET_CODE (this_op);
3630 switch (this_code)
3632 case PLUS:
3633 case MINUS:
3634 if (n_ops == 7)
3635 return NULL_RTX;
3637 ops[n_ops].op = XEXP (this_op, 1);
3638 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
3639 n_ops++;
3641 ops[i].op = XEXP (this_op, 0);
3642 input_ops++;
3643 changed = 1;
3644 canonicalized |= this_neg;
3645 break;
3647 case NEG:
3648 ops[i].op = XEXP (this_op, 0);
3649 ops[i].neg = ! this_neg;
3650 changed = 1;
3651 canonicalized = 1;
3652 break;
3654 case CONST:
3655 if (n_ops < 7
3656 && GET_CODE (XEXP (this_op, 0)) == PLUS
3657 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
3658 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
3660 ops[i].op = XEXP (XEXP (this_op, 0), 0);
3661 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
3662 ops[n_ops].neg = this_neg;
3663 n_ops++;
3664 changed = 1;
3665 canonicalized = 1;
3667 break;
3669 case NOT:
3670 /* ~a -> (-a - 1) */
3671 if (n_ops != 7)
3673 ops[n_ops].op = constm1_rtx;
3674 ops[n_ops++].neg = this_neg;
3675 ops[i].op = XEXP (this_op, 0);
3676 ops[i].neg = !this_neg;
3677 changed = 1;
3678 canonicalized = 1;
3680 break;
3682 case CONST_INT:
3683 n_constants++;
3684 if (this_neg)
3686 ops[i].op = neg_const_int (mode, this_op);
3687 ops[i].neg = 0;
3688 changed = 1;
3689 canonicalized = 1;
3691 break;
3693 default:
3694 break;
3698 while (changed);
3700 if (n_constants > 1)
3701 canonicalized = 1;
3703 gcc_assert (n_ops >= 2);
3705 /* If we only have two operands, we can avoid the loops. */
3706 if (n_ops == 2)
3708 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
3709 rtx lhs, rhs;
3711 /* Get the two operands. Be careful with the order, especially for
3712 the cases where code == MINUS. */
3713 if (ops[0].neg && ops[1].neg)
3715 lhs = gen_rtx_NEG (mode, ops[0].op);
3716 rhs = ops[1].op;
3718 else if (ops[0].neg)
3720 lhs = ops[1].op;
3721 rhs = ops[0].op;
3723 else
3725 lhs = ops[0].op;
3726 rhs = ops[1].op;
3729 return simplify_const_binary_operation (code, mode, lhs, rhs);
3732 /* Now simplify each pair of operands until nothing changes. */
3735 /* Insertion sort is good enough for an eight-element array. */
3736 for (i = 1; i < n_ops; i++)
3738 struct simplify_plus_minus_op_data save;
3739 j = i - 1;
3740 if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
3741 continue;
3743 canonicalized = 1;
3744 save = ops[i];
3746 ops[j + 1] = ops[j];
3747 while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
3748 ops[j + 1] = save;
3751 changed = 0;
3752 for (i = n_ops - 1; i > 0; i--)
3753 for (j = i - 1; j >= 0; j--)
3755 rtx lhs = ops[j].op, rhs = ops[i].op;
3756 int lneg = ops[j].neg, rneg = ops[i].neg;
3758 if (lhs != 0 && rhs != 0)
3760 enum rtx_code ncode = PLUS;
3762 if (lneg != rneg)
3764 ncode = MINUS;
3765 if (lneg)
3766 tem = lhs, lhs = rhs, rhs = tem;
3768 else if (swap_commutative_operands_p (lhs, rhs))
3769 tem = lhs, lhs = rhs, rhs = tem;
3771 if ((GET_CODE (lhs) == CONST || CONST_INT_P (lhs))
3772 && (GET_CODE (rhs) == CONST || CONST_INT_P (rhs)))
3774 rtx tem_lhs, tem_rhs;
3776 tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
3777 tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
3778 tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
3780 if (tem && !CONSTANT_P (tem))
3781 tem = gen_rtx_CONST (GET_MODE (tem), tem);
3783 else
3784 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
3786 /* Reject "simplifications" that just wrap the two
3787 arguments in a CONST. Failure to do so can result
3788 in infinite recursion with simplify_binary_operation
3789 when it calls us to simplify CONST operations. */
3790 if (tem
3791 && ! (GET_CODE (tem) == CONST
3792 && GET_CODE (XEXP (tem, 0)) == ncode
3793 && XEXP (XEXP (tem, 0), 0) == lhs
3794 && XEXP (XEXP (tem, 0), 1) == rhs))
3796 lneg &= rneg;
3797 if (GET_CODE (tem) == NEG)
3798 tem = XEXP (tem, 0), lneg = !lneg;
3799 if (CONST_INT_P (tem) && lneg)
3800 tem = neg_const_int (mode, tem), lneg = 0;
3802 ops[i].op = tem;
3803 ops[i].neg = lneg;
3804 ops[j].op = NULL_RTX;
3805 changed = 1;
3806 canonicalized = 1;
3811 /* If nothing changed, fail. */
3812 if (!canonicalized)
3813 return NULL_RTX;
3815 /* Pack all the operands to the lower-numbered entries. */
3816 for (i = 0, j = 0; j < n_ops; j++)
3817 if (ops[j].op)
3819 ops[i] = ops[j];
3820 i++;
3822 n_ops = i;
3824 while (changed);
3826 /* Create (minus -C X) instead of (neg (const (plus X C))). */
3827 if (n_ops == 2
3828 && CONST_INT_P (ops[1].op)
3829 && CONSTANT_P (ops[0].op)
3830 && ops[0].neg)
3831 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
3833 /* We suppressed creation of trivial CONST expressions in the
3834 combination loop to avoid recursion. Create one manually now.
3835 The combination loop should have ensured that there is exactly
3836 one CONST_INT, and the sort will have ensured that it is last
3837 in the array and that any other constant will be next-to-last. */
3839 if (n_ops > 1
3840 && CONST_INT_P (ops[n_ops - 1].op)
3841 && CONSTANT_P (ops[n_ops - 2].op))
3843 rtx value = ops[n_ops - 1].op;
3844 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
3845 value = neg_const_int (mode, value);
3846 ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
3847 n_ops--;
3850 /* Put a non-negated operand first, if possible. */
3852 for (i = 0; i < n_ops && ops[i].neg; i++)
3853 continue;
3854 if (i == n_ops)
3855 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
3856 else if (i != 0)
3858 tem = ops[0].op;
3859 ops[0] = ops[i];
3860 ops[i].op = tem;
3861 ops[i].neg = 1;
3864 /* Now make the result by performing the requested operations. */
3865 result = ops[0].op;
3866 for (i = 1; i < n_ops; i++)
3867 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
3868 mode, result, ops[i].op);
3870 return result;
3873 /* Check whether an operand is suitable for calling simplify_plus_minus. */
3874 static bool
3875 plus_minus_operand_p (const_rtx x)
3877 return GET_CODE (x) == PLUS
3878 || GET_CODE (x) == MINUS
3879 || (GET_CODE (x) == CONST
3880 && GET_CODE (XEXP (x, 0)) == PLUS
3881 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
3882 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
3885 /* Like simplify_binary_operation except used for relational operators.
3886 MODE is the mode of the result. If MODE is VOIDmode, both operands must
3887 not also be VOIDmode.
3889 CMP_MODE specifies in which mode the comparison is done in, so it is
3890 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
3891 the operands or, if both are VOIDmode, the operands are compared in
3892 "infinite precision". */
3894 simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
3895 enum machine_mode cmp_mode, rtx op0, rtx op1)
3897 rtx tem, trueop0, trueop1;
3899 if (cmp_mode == VOIDmode)
3900 cmp_mode = GET_MODE (op0);
3901 if (cmp_mode == VOIDmode)
3902 cmp_mode = GET_MODE (op1);
3904 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
3905 if (tem)
3907 if (SCALAR_FLOAT_MODE_P (mode))
3909 if (tem == const0_rtx)
3910 return CONST0_RTX (mode);
3911 #ifdef FLOAT_STORE_FLAG_VALUE
3913 REAL_VALUE_TYPE val;
3914 val = FLOAT_STORE_FLAG_VALUE (mode);
3915 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
3917 #else
3918 return NULL_RTX;
3919 #endif
3921 if (VECTOR_MODE_P (mode))
3923 if (tem == const0_rtx)
3924 return CONST0_RTX (mode);
3925 #ifdef VECTOR_STORE_FLAG_VALUE
3927 int i, units;
3928 rtvec v;
3930 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
3931 if (val == NULL_RTX)
3932 return NULL_RTX;
3933 if (val == const1_rtx)
3934 return CONST1_RTX (mode);
3936 units = GET_MODE_NUNITS (mode);
3937 v = rtvec_alloc (units);
3938 for (i = 0; i < units; i++)
3939 RTVEC_ELT (v, i) = val;
3940 return gen_rtx_raw_CONST_VECTOR (mode, v);
3942 #else
3943 return NULL_RTX;
3944 #endif
3947 return tem;
3950 /* For the following tests, ensure const0_rtx is op1. */
3951 if (swap_commutative_operands_p (op0, op1)
3952 || (op0 == const0_rtx && op1 != const0_rtx))
3953 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
3955 /* If op0 is a compare, extract the comparison arguments from it. */
3956 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3957 return simplify_gen_relational (code, mode, VOIDmode,
3958 XEXP (op0, 0), XEXP (op0, 1));
3960 if (GET_MODE_CLASS (cmp_mode) == MODE_CC
3961 || CC0_P (op0))
3962 return NULL_RTX;
3964 trueop0 = avoid_constant_pool_reference (op0);
3965 trueop1 = avoid_constant_pool_reference (op1);
3966 return simplify_relational_operation_1 (code, mode, cmp_mode,
3967 trueop0, trueop1);
3970 /* This part of simplify_relational_operation is only used when CMP_MODE
3971 is not in class MODE_CC (i.e. it is a real comparison).
3973 MODE is the mode of the result, while CMP_MODE specifies in which
3974 mode the comparison is done in, so it is the mode of the operands. */
3976 static rtx
3977 simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
3978 enum machine_mode cmp_mode, rtx op0, rtx op1)
3980 enum rtx_code op0code = GET_CODE (op0);
3982 if (op1 == const0_rtx && COMPARISON_P (op0))
3984 /* If op0 is a comparison, extract the comparison arguments
3985 from it. */
3986 if (code == NE)
3988 if (GET_MODE (op0) == mode)
3989 return simplify_rtx (op0);
3990 else
3991 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
3992 XEXP (op0, 0), XEXP (op0, 1));
3994 else if (code == EQ)
3996 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
3997 if (new_code != UNKNOWN)
3998 return simplify_gen_relational (new_code, mode, VOIDmode,
3999 XEXP (op0, 0), XEXP (op0, 1));
4003 /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
4004 (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
4005 if ((code == LTU || code == GEU)
4006 && GET_CODE (op0) == PLUS
4007 && CONST_INT_P (XEXP (op0, 1))
4008 && (rtx_equal_p (op1, XEXP (op0, 0))
4009 || rtx_equal_p (op1, XEXP (op0, 1))))
4011 rtx new_cmp
4012 = simplify_gen_unary (NEG, cmp_mode, XEXP (op0, 1), cmp_mode);
4013 return simplify_gen_relational ((code == LTU ? GEU : LTU), mode,
4014 cmp_mode, XEXP (op0, 0), new_cmp);
4017 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
4018 if ((code == LTU || code == GEU)
4019 && GET_CODE (op0) == PLUS
4020 && rtx_equal_p (op1, XEXP (op0, 1))
4021 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
4022 && !rtx_equal_p (op1, XEXP (op0, 0)))
4023 return simplify_gen_relational (code, mode, cmp_mode, op0,
4024 copy_rtx (XEXP (op0, 0)));
4026 if (op1 == const0_rtx)
4028 /* Canonicalize (GTU x 0) as (NE x 0). */
4029 if (code == GTU)
4030 return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
4031 /* Canonicalize (LEU x 0) as (EQ x 0). */
4032 if (code == LEU)
4033 return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
4035 else if (op1 == const1_rtx)
4037 switch (code)
4039 case GE:
4040 /* Canonicalize (GE x 1) as (GT x 0). */
4041 return simplify_gen_relational (GT, mode, cmp_mode,
4042 op0, const0_rtx);
4043 case GEU:
4044 /* Canonicalize (GEU x 1) as (NE x 0). */
4045 return simplify_gen_relational (NE, mode, cmp_mode,
4046 op0, const0_rtx);
4047 case LT:
4048 /* Canonicalize (LT x 1) as (LE x 0). */
4049 return simplify_gen_relational (LE, mode, cmp_mode,
4050 op0, const0_rtx);
4051 case LTU:
4052 /* Canonicalize (LTU x 1) as (EQ x 0). */
4053 return simplify_gen_relational (EQ, mode, cmp_mode,
4054 op0, const0_rtx);
4055 default:
4056 break;
4059 else if (op1 == constm1_rtx)
4061 /* Canonicalize (LE x -1) as (LT x 0). */
4062 if (code == LE)
4063 return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
4064 /* Canonicalize (GT x -1) as (GE x 0). */
4065 if (code == GT)
4066 return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
4069 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
4070 if ((code == EQ || code == NE)
4071 && (op0code == PLUS || op0code == MINUS)
4072 && CONSTANT_P (op1)
4073 && CONSTANT_P (XEXP (op0, 1))
4074 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
4076 rtx x = XEXP (op0, 0);
4077 rtx c = XEXP (op0, 1);
4079 c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
4080 cmp_mode, op1, c);
4081 return simplify_gen_relational (code, mode, cmp_mode, x, c);
4084 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
4085 the same as (zero_extract:SI FOO (const_int 1) BAR). */
4086 if (code == NE
4087 && op1 == const0_rtx
4088 && GET_MODE_CLASS (mode) == MODE_INT
4089 && cmp_mode != VOIDmode
4090 /* ??? Work-around BImode bugs in the ia64 backend. */
4091 && mode != BImode
4092 && cmp_mode != BImode
4093 && nonzero_bits (op0, cmp_mode) == 1
4094 && STORE_FLAG_VALUE == 1)
4095 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
4096 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
4097 : lowpart_subreg (mode, op0, cmp_mode);
4099 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
4100 if ((code == EQ || code == NE)
4101 && op1 == const0_rtx
4102 && op0code == XOR)
4103 return simplify_gen_relational (code, mode, cmp_mode,
4104 XEXP (op0, 0), XEXP (op0, 1));
4106 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
4107 if ((code == EQ || code == NE)
4108 && op0code == XOR
4109 && rtx_equal_p (XEXP (op0, 0), op1)
4110 && !side_effects_p (XEXP (op0, 0)))
4111 return simplify_gen_relational (code, mode, cmp_mode,
4112 XEXP (op0, 1), const0_rtx);
4114 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
4115 if ((code == EQ || code == NE)
4116 && op0code == XOR
4117 && rtx_equal_p (XEXP (op0, 1), op1)
4118 && !side_effects_p (XEXP (op0, 1)))
4119 return simplify_gen_relational (code, mode, cmp_mode,
4120 XEXP (op0, 0), const0_rtx);
4122 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
4123 if ((code == EQ || code == NE)
4124 && op0code == XOR
4125 && (CONST_INT_P (op1)
4126 || GET_CODE (op1) == CONST_DOUBLE)
4127 && (CONST_INT_P (XEXP (op0, 1))
4128 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
4129 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
4130 simplify_gen_binary (XOR, cmp_mode,
4131 XEXP (op0, 1), op1));
4133 if (op0code == POPCOUNT && op1 == const0_rtx)
4134 switch (code)
4136 case EQ:
4137 case LE:
4138 case LEU:
4139 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
4140 return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
4141 XEXP (op0, 0), const0_rtx);
4143 case NE:
4144 case GT:
4145 case GTU:
4146 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
4147 return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
4148 XEXP (op0, 0), const0_rtx);
4150 default:
4151 break;
4154 return NULL_RTX;
4157 enum
4159 CMP_EQ = 1,
4160 CMP_LT = 2,
4161 CMP_GT = 4,
4162 CMP_LTU = 8,
4163 CMP_GTU = 16
4167 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
4168 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
4169 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
4170 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
4171 For floating-point comparisons, assume that the operands were ordered. */
4173 static rtx
4174 comparison_result (enum rtx_code code, int known_results)
4176 switch (code)
4178 case EQ:
4179 case UNEQ:
4180 return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
4181 case NE:
4182 case LTGT:
4183 return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
4185 case LT:
4186 case UNLT:
4187 return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
4188 case GE:
4189 case UNGE:
4190 return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
4192 case GT:
4193 case UNGT:
4194 return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
4195 case LE:
4196 case UNLE:
4197 return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
4199 case LTU:
4200 return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
4201 case GEU:
4202 return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
4204 case GTU:
4205 return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
4206 case LEU:
4207 return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
4209 case ORDERED:
4210 return const_true_rtx;
4211 case UNORDERED:
4212 return const0_rtx;
4213 default:
4214 gcc_unreachable ();
4218 /* Check if the given comparison (done in the given MODE) is actually a
4219 tautology or a contradiction.
4220 If no simplification is possible, this function returns zero.
4221 Otherwise, it returns either const_true_rtx or const0_rtx. */
4224 simplify_const_relational_operation (enum rtx_code code,
4225 enum machine_mode mode,
4226 rtx op0, rtx op1)
4228 rtx tem;
4229 rtx trueop0;
4230 rtx trueop1;
4232 gcc_assert (mode != VOIDmode
4233 || (GET_MODE (op0) == VOIDmode
4234 && GET_MODE (op1) == VOIDmode));
4236 /* If op0 is a compare, extract the comparison arguments from it. */
4237 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4239 op1 = XEXP (op0, 1);
4240 op0 = XEXP (op0, 0);
4242 if (GET_MODE (op0) != VOIDmode)
4243 mode = GET_MODE (op0);
4244 else if (GET_MODE (op1) != VOIDmode)
4245 mode = GET_MODE (op1);
4246 else
4247 return 0;
4250 /* We can't simplify MODE_CC values since we don't know what the
4251 actual comparison is. */
4252 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
4253 return 0;
4255 /* Make sure the constant is second. */
4256 if (swap_commutative_operands_p (op0, op1))
4258 tem = op0, op0 = op1, op1 = tem;
4259 code = swap_condition (code);
4262 trueop0 = avoid_constant_pool_reference (op0);
4263 trueop1 = avoid_constant_pool_reference (op1);
4265 /* For integer comparisons of A and B maybe we can simplify A - B and can
4266 then simplify a comparison of that with zero. If A and B are both either
4267 a register or a CONST_INT, this can't help; testing for these cases will
4268 prevent infinite recursion here and speed things up.
4270 We can only do this for EQ and NE comparisons as otherwise we may
4271 lose or introduce overflow which we cannot disregard as undefined as
4272 we do not know the signedness of the operation on either the left or
4273 the right hand side of the comparison. */
4275 if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
4276 && (code == EQ || code == NE)
4277 && ! ((REG_P (op0) || CONST_INT_P (trueop0))
4278 && (REG_P (op1) || CONST_INT_P (trueop1)))
4279 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
4280 /* We cannot do this if tem is a nonzero address. */
4281 && ! nonzero_address_p (tem))
4282 return simplify_const_relational_operation (signed_condition (code),
4283 mode, tem, const0_rtx);
4285 if (! HONOR_NANS (mode) && code == ORDERED)
4286 return const_true_rtx;
4288 if (! HONOR_NANS (mode) && code == UNORDERED)
4289 return const0_rtx;
4291 /* For modes without NaNs, if the two operands are equal, we know the
4292 result except if they have side-effects. Even with NaNs we know
4293 the result of unordered comparisons and, if signaling NaNs are
4294 irrelevant, also the result of LT/GT/LTGT. */
4295 if ((! HONOR_NANS (GET_MODE (trueop0))
4296 || code == UNEQ || code == UNLE || code == UNGE
4297 || ((code == LT || code == GT || code == LTGT)
4298 && ! HONOR_SNANS (GET_MODE (trueop0))))
4299 && rtx_equal_p (trueop0, trueop1)
4300 && ! side_effects_p (trueop0))
4301 return comparison_result (code, CMP_EQ);
4303 /* If the operands are floating-point constants, see if we can fold
4304 the result. */
4305 if (GET_CODE (trueop0) == CONST_DOUBLE
4306 && GET_CODE (trueop1) == CONST_DOUBLE
4307 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
4309 REAL_VALUE_TYPE d0, d1;
4311 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
4312 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
4314 /* Comparisons are unordered iff at least one of the values is NaN. */
4315 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
4316 switch (code)
4318 case UNEQ:
4319 case UNLT:
4320 case UNGT:
4321 case UNLE:
4322 case UNGE:
4323 case NE:
4324 case UNORDERED:
4325 return const_true_rtx;
4326 case EQ:
4327 case LT:
4328 case GT:
4329 case LE:
4330 case GE:
4331 case LTGT:
4332 case ORDERED:
4333 return const0_rtx;
4334 default:
4335 return 0;
4338 return comparison_result (code,
4339 (REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
4340 REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
4343 /* Otherwise, see if the operands are both integers. */
4344 if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
4345 && (GET_CODE (trueop0) == CONST_DOUBLE
4346 || CONST_INT_P (trueop0))
4347 && (GET_CODE (trueop1) == CONST_DOUBLE
4348 || CONST_INT_P (trueop1)))
4350 int width = GET_MODE_BITSIZE (mode);
4351 HOST_WIDE_INT l0s, h0s, l1s, h1s;
4352 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
4354 /* Get the two words comprising each integer constant. */
4355 if (GET_CODE (trueop0) == CONST_DOUBLE)
4357 l0u = l0s = CONST_DOUBLE_LOW (trueop0);
4358 h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
4360 else
4362 l0u = l0s = INTVAL (trueop0);
4363 h0u = h0s = HWI_SIGN_EXTEND (l0s);
4366 if (GET_CODE (trueop1) == CONST_DOUBLE)
4368 l1u = l1s = CONST_DOUBLE_LOW (trueop1);
4369 h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
4371 else
4373 l1u = l1s = INTVAL (trueop1);
4374 h1u = h1s = HWI_SIGN_EXTEND (l1s);
4377 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4378 we have to sign or zero-extend the values. */
4379 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
4381 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
4382 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
4384 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4385 l0s |= ((HOST_WIDE_INT) (-1) << width);
4387 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4388 l1s |= ((HOST_WIDE_INT) (-1) << width);
4390 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
4391 h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
4393 if (h0u == h1u && l0u == l1u)
4394 return comparison_result (code, CMP_EQ);
4395 else
4397 int cr;
4398 cr = (h0s < h1s || (h0s == h1s && l0u < l1u)) ? CMP_LT : CMP_GT;
4399 cr |= (h0u < h1u || (h0u == h1u && l0u < l1u)) ? CMP_LTU : CMP_GTU;
4400 return comparison_result (code, cr);
4404 /* Optimize comparisons with upper and lower bounds. */
4405 if (SCALAR_INT_MODE_P (mode)
4406 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4407 && CONST_INT_P (trueop1))
4409 int sign;
4410 unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
4411 HOST_WIDE_INT val = INTVAL (trueop1);
4412 HOST_WIDE_INT mmin, mmax;
4414 if (code == GEU
4415 || code == LEU
4416 || code == GTU
4417 || code == LTU)
4418 sign = 0;
4419 else
4420 sign = 1;
4422 /* Get a reduced range if the sign bit is zero. */
4423 if (nonzero <= (GET_MODE_MASK (mode) >> 1))
4425 mmin = 0;
4426 mmax = nonzero;
4428 else
4430 rtx mmin_rtx, mmax_rtx;
4431 get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
4433 mmin = INTVAL (mmin_rtx);
4434 mmax = INTVAL (mmax_rtx);
4435 if (sign)
4437 unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
4439 mmin >>= (sign_copies - 1);
4440 mmax >>= (sign_copies - 1);
4444 switch (code)
4446 /* x >= y is always true for y <= mmin, always false for y > mmax. */
4447 case GEU:
4448 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4449 return const_true_rtx;
4450 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4451 return const0_rtx;
4452 break;
4453 case GE:
4454 if (val <= mmin)
4455 return const_true_rtx;
4456 if (val > mmax)
4457 return const0_rtx;
4458 break;
4460 /* x <= y is always true for y >= mmax, always false for y < mmin. */
4461 case LEU:
4462 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4463 return const_true_rtx;
4464 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4465 return const0_rtx;
4466 break;
4467 case LE:
4468 if (val >= mmax)
4469 return const_true_rtx;
4470 if (val < mmin)
4471 return const0_rtx;
4472 break;
4474 case EQ:
4475 /* x == y is always false for y out of range. */
4476 if (val < mmin || val > mmax)
4477 return const0_rtx;
4478 break;
4480 /* x > y is always false for y >= mmax, always true for y < mmin. */
4481 case GTU:
4482 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4483 return const0_rtx;
4484 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4485 return const_true_rtx;
4486 break;
4487 case GT:
4488 if (val >= mmax)
4489 return const0_rtx;
4490 if (val < mmin)
4491 return const_true_rtx;
4492 break;
4494 /* x < y is always false for y <= mmin, always true for y > mmax. */
4495 case LTU:
4496 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4497 return const0_rtx;
4498 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4499 return const_true_rtx;
4500 break;
4501 case LT:
4502 if (val <= mmin)
4503 return const0_rtx;
4504 if (val > mmax)
4505 return const_true_rtx;
4506 break;
4508 case NE:
4509 /* x != y is always true for y out of range. */
4510 if (val < mmin || val > mmax)
4511 return const_true_rtx;
4512 break;
4514 default:
4515 break;
4519 /* Optimize integer comparisons with zero. */
4520 if (trueop1 == const0_rtx)
4522 /* Some addresses are known to be nonzero. We don't know
4523 their sign, but equality comparisons are known. */
4524 if (nonzero_address_p (trueop0))
4526 if (code == EQ || code == LEU)
4527 return const0_rtx;
4528 if (code == NE || code == GTU)
4529 return const_true_rtx;
4532 /* See if the first operand is an IOR with a constant. If so, we
4533 may be able to determine the result of this comparison. */
4534 if (GET_CODE (op0) == IOR)
4536 rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
4537 if (CONST_INT_P (inner_const) && inner_const != const0_rtx)
4539 int sign_bitnum = GET_MODE_BITSIZE (mode) - 1;
4540 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4541 && (INTVAL (inner_const)
4542 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4544 switch (code)
4546 case EQ:
4547 case LEU:
4548 return const0_rtx;
4549 case NE:
4550 case GTU:
4551 return const_true_rtx;
4552 case LT:
4553 case LE:
4554 if (has_sign)
4555 return const_true_rtx;
4556 break;
4557 case GT:
4558 case GE:
4559 if (has_sign)
4560 return const0_rtx;
4561 break;
4562 default:
4563 break;
4569 /* Optimize comparison of ABS with zero. */
4570 if (trueop1 == CONST0_RTX (mode)
4571 && (GET_CODE (trueop0) == ABS
4572 || (GET_CODE (trueop0) == FLOAT_EXTEND
4573 && GET_CODE (XEXP (trueop0, 0)) == ABS)))
4575 switch (code)
4577 case LT:
4578 /* Optimize abs(x) < 0.0. */
4579 if (!HONOR_SNANS (mode)
4580 && (!INTEGRAL_MODE_P (mode)
4581 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
4583 if (INTEGRAL_MODE_P (mode)
4584 && (issue_strict_overflow_warning
4585 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
4586 warning (OPT_Wstrict_overflow,
4587 ("assuming signed overflow does not occur when "
4588 "assuming abs (x) < 0 is false"));
4589 return const0_rtx;
4591 break;
4593 case GE:
4594 /* Optimize abs(x) >= 0.0. */
4595 if (!HONOR_NANS (mode)
4596 && (!INTEGRAL_MODE_P (mode)
4597 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
4599 if (INTEGRAL_MODE_P (mode)
4600 && (issue_strict_overflow_warning
4601 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
4602 warning (OPT_Wstrict_overflow,
4603 ("assuming signed overflow does not occur when "
4604 "assuming abs (x) >= 0 is true"));
4605 return const_true_rtx;
4607 break;
4609 case UNGE:
4610 /* Optimize ! (abs(x) < 0.0). */
4611 return const_true_rtx;
4613 default:
4614 break;
4618 return 0;
4621 /* Simplify CODE, an operation with result mode MODE and three operands,
4622 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4623 a constant. Return 0 if no simplifications is possible. */
4626 simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
4627 enum machine_mode op0_mode, rtx op0, rtx op1,
4628 rtx op2)
4630 unsigned int width = GET_MODE_BITSIZE (mode);
4632 /* VOIDmode means "infinite" precision. */
4633 if (width == 0)
4634 width = HOST_BITS_PER_WIDE_INT;
4636 switch (code)
4638 case SIGN_EXTRACT:
4639 case ZERO_EXTRACT:
4640 if (CONST_INT_P (op0)
4641 && CONST_INT_P (op1)
4642 && CONST_INT_P (op2)
4643 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
4644 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
4646 /* Extracting a bit-field from a constant */
4647 HOST_WIDE_INT val = INTVAL (op0);
4649 if (BITS_BIG_ENDIAN)
4650 val >>= (GET_MODE_BITSIZE (op0_mode)
4651 - INTVAL (op2) - INTVAL (op1));
4652 else
4653 val >>= INTVAL (op2);
4655 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4657 /* First zero-extend. */
4658 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4659 /* If desired, propagate sign bit. */
4660 if (code == SIGN_EXTRACT
4661 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4662 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4665 /* Clear the bits that don't belong in our mode,
4666 unless they and our sign bit are all one.
4667 So we get either a reasonable negative value or a reasonable
4668 unsigned value for this mode. */
4669 if (width < HOST_BITS_PER_WIDE_INT
4670 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4671 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4672 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4674 return gen_int_mode (val, mode);
4676 break;
4678 case IF_THEN_ELSE:
4679 if (CONST_INT_P (op0))
4680 return op0 != const0_rtx ? op1 : op2;
4682 /* Convert c ? a : a into "a". */
4683 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
4684 return op1;
4686 /* Convert a != b ? a : b into "a". */
4687 if (GET_CODE (op0) == NE
4688 && ! side_effects_p (op0)
4689 && ! HONOR_NANS (mode)
4690 && ! HONOR_SIGNED_ZEROS (mode)
4691 && ((rtx_equal_p (XEXP (op0, 0), op1)
4692 && rtx_equal_p (XEXP (op0, 1), op2))
4693 || (rtx_equal_p (XEXP (op0, 0), op2)
4694 && rtx_equal_p (XEXP (op0, 1), op1))))
4695 return op1;
4697 /* Convert a == b ? a : b into "b". */
4698 if (GET_CODE (op0) == EQ
4699 && ! side_effects_p (op0)
4700 && ! HONOR_NANS (mode)
4701 && ! HONOR_SIGNED_ZEROS (mode)
4702 && ((rtx_equal_p (XEXP (op0, 0), op1)
4703 && rtx_equal_p (XEXP (op0, 1), op2))
4704 || (rtx_equal_p (XEXP (op0, 0), op2)
4705 && rtx_equal_p (XEXP (op0, 1), op1))))
4706 return op2;
4708 if (COMPARISON_P (op0) && ! side_effects_p (op0))
4710 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
4711 ? GET_MODE (XEXP (op0, 1))
4712 : GET_MODE (XEXP (op0, 0)));
4713 rtx temp;
4715 /* Look for happy constants in op1 and op2. */
4716 if (CONST_INT_P (op1) && CONST_INT_P (op2))
4718 HOST_WIDE_INT t = INTVAL (op1);
4719 HOST_WIDE_INT f = INTVAL (op2);
4721 if (t == STORE_FLAG_VALUE && f == 0)
4722 code = GET_CODE (op0);
4723 else if (t == 0 && f == STORE_FLAG_VALUE)
4725 enum rtx_code tmp;
4726 tmp = reversed_comparison_code (op0, NULL_RTX);
4727 if (tmp == UNKNOWN)
4728 break;
4729 code = tmp;
4731 else
4732 break;
4734 return simplify_gen_relational (code, mode, cmp_mode,
4735 XEXP (op0, 0), XEXP (op0, 1));
4738 if (cmp_mode == VOIDmode)
4739 cmp_mode = op0_mode;
4740 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4741 cmp_mode, XEXP (op0, 0),
4742 XEXP (op0, 1));
4744 /* See if any simplifications were possible. */
4745 if (temp)
4747 if (CONST_INT_P (temp))
4748 return temp == const0_rtx ? op2 : op1;
4749 else if (temp)
4750 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
4753 break;
4755 case VEC_MERGE:
4756 gcc_assert (GET_MODE (op0) == mode);
4757 gcc_assert (GET_MODE (op1) == mode);
4758 gcc_assert (VECTOR_MODE_P (mode));
4759 op2 = avoid_constant_pool_reference (op2);
4760 if (CONST_INT_P (op2))
4762 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
4763 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
4764 int mask = (1 << n_elts) - 1;
4766 if (!(INTVAL (op2) & mask))
4767 return op1;
4768 if ((INTVAL (op2) & mask) == mask)
4769 return op0;
4771 op0 = avoid_constant_pool_reference (op0);
4772 op1 = avoid_constant_pool_reference (op1);
4773 if (GET_CODE (op0) == CONST_VECTOR
4774 && GET_CODE (op1) == CONST_VECTOR)
4776 rtvec v = rtvec_alloc (n_elts);
4777 unsigned int i;
4779 for (i = 0; i < n_elts; i++)
4780 RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
4781 ? CONST_VECTOR_ELT (op0, i)
4782 : CONST_VECTOR_ELT (op1, i));
4783 return gen_rtx_CONST_VECTOR (mode, v);
4786 break;
4788 default:
4789 gcc_unreachable ();
4792 return 0;
4795 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_FIXED
4796 or CONST_VECTOR,
4797 returning another CONST_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
4799 Works by unpacking OP into a collection of 8-bit values
4800 represented as a little-endian array of 'unsigned char', selecting by BYTE,
4801 and then repacking them again for OUTERMODE. */
4803 static rtx
4804 simplify_immed_subreg (enum machine_mode outermode, rtx op,
4805 enum machine_mode innermode, unsigned int byte)
4807 /* We support up to 512-bit values (for V8DFmode). */
4808 enum {
4809 max_bitsize = 512,
4810 value_bit = 8,
4811 value_mask = (1 << value_bit) - 1
4813 unsigned char value[max_bitsize / value_bit];
4814 int value_start;
4815 int i;
4816 int elem;
4818 int num_elem;
4819 rtx * elems;
4820 int elem_bitsize;
4821 rtx result_s;
4822 rtvec result_v = NULL;
4823 enum mode_class outer_class;
4824 enum machine_mode outer_submode;
4826 /* Some ports misuse CCmode. */
4827 if (GET_MODE_CLASS (outermode) == MODE_CC && CONST_INT_P (op))
4828 return op;
4830 /* We have no way to represent a complex constant at the rtl level. */
4831 if (COMPLEX_MODE_P (outermode))
4832 return NULL_RTX;
4834 /* Unpack the value. */
4836 if (GET_CODE (op) == CONST_VECTOR)
4838 num_elem = CONST_VECTOR_NUNITS (op);
4839 elems = &CONST_VECTOR_ELT (op, 0);
4840 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
4842 else
4844 num_elem = 1;
4845 elems = &op;
4846 elem_bitsize = max_bitsize;
4848 /* If this asserts, it is too complicated; reducing value_bit may help. */
4849 gcc_assert (BITS_PER_UNIT % value_bit == 0);
4850 /* I don't know how to handle endianness of sub-units. */
4851 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
4853 for (elem = 0; elem < num_elem; elem++)
4855 unsigned char * vp;
4856 rtx el = elems[elem];
4858 /* Vectors are kept in target memory order. (This is probably
4859 a mistake.) */
4861 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4862 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4863 / BITS_PER_UNIT);
4864 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4865 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4866 unsigned bytele = (subword_byte % UNITS_PER_WORD
4867 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4868 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
4871 switch (GET_CODE (el))
4873 case CONST_INT:
4874 for (i = 0;
4875 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4876 i += value_bit)
4877 *vp++ = INTVAL (el) >> i;
4878 /* CONST_INTs are always logically sign-extended. */
4879 for (; i < elem_bitsize; i += value_bit)
4880 *vp++ = INTVAL (el) < 0 ? -1 : 0;
4881 break;
4883 case CONST_DOUBLE:
4884 if (GET_MODE (el) == VOIDmode)
4886 /* If this triggers, someone should have generated a
4887 CONST_INT instead. */
4888 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
4890 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4891 *vp++ = CONST_DOUBLE_LOW (el) >> i;
4892 while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
4894 *vp++
4895 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
4896 i += value_bit;
4898 /* It shouldn't matter what's done here, so fill it with
4899 zero. */
4900 for (; i < elem_bitsize; i += value_bit)
4901 *vp++ = 0;
4903 else
4905 long tmp[max_bitsize / 32];
4906 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
4908 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
4909 gcc_assert (bitsize <= elem_bitsize);
4910 gcc_assert (bitsize % value_bit == 0);
4912 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
4913 GET_MODE (el));
4915 /* real_to_target produces its result in words affected by
4916 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4917 and use WORDS_BIG_ENDIAN instead; see the documentation
4918 of SUBREG in rtl.texi. */
4919 for (i = 0; i < bitsize; i += value_bit)
4921 int ibase;
4922 if (WORDS_BIG_ENDIAN)
4923 ibase = bitsize - 1 - i;
4924 else
4925 ibase = i;
4926 *vp++ = tmp[ibase / 32] >> i % 32;
4929 /* It shouldn't matter what's done here, so fill it with
4930 zero. */
4931 for (; i < elem_bitsize; i += value_bit)
4932 *vp++ = 0;
4934 break;
4936 case CONST_FIXED:
4937 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
4939 for (i = 0; i < elem_bitsize; i += value_bit)
4940 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
4942 else
4944 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4945 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
4946 for (; i < 2 * HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4947 i += value_bit)
4948 *vp++ = CONST_FIXED_VALUE_HIGH (el)
4949 >> (i - HOST_BITS_PER_WIDE_INT);
4950 for (; i < elem_bitsize; i += value_bit)
4951 *vp++ = 0;
4953 break;
4955 default:
4956 gcc_unreachable ();
4960 /* Now, pick the right byte to start with. */
4961 /* Renumber BYTE so that the least-significant byte is byte 0. A special
4962 case is paradoxical SUBREGs, which shouldn't be adjusted since they
4963 will already have offset 0. */
4964 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
4966 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
4967 - byte);
4968 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4969 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4970 byte = (subword_byte % UNITS_PER_WORD
4971 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4974 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
4975 so if it's become negative it will instead be very large.) */
4976 gcc_assert (byte < GET_MODE_SIZE (innermode));
4978 /* Convert from bytes to chunks of size value_bit. */
4979 value_start = byte * (BITS_PER_UNIT / value_bit);
4981 /* Re-pack the value. */
4983 if (VECTOR_MODE_P (outermode))
4985 num_elem = GET_MODE_NUNITS (outermode);
4986 result_v = rtvec_alloc (num_elem);
4987 elems = &RTVEC_ELT (result_v, 0);
4988 outer_submode = GET_MODE_INNER (outermode);
4990 else
4992 num_elem = 1;
4993 elems = &result_s;
4994 outer_submode = outermode;
4997 outer_class = GET_MODE_CLASS (outer_submode);
4998 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
5000 gcc_assert (elem_bitsize % value_bit == 0);
5001 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
5003 for (elem = 0; elem < num_elem; elem++)
5005 unsigned char *vp;
5007 /* Vectors are stored in target memory order. (This is probably
5008 a mistake.) */
5010 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
5011 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
5012 / BITS_PER_UNIT);
5013 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5014 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5015 unsigned bytele = (subword_byte % UNITS_PER_WORD
5016 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5017 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
5020 switch (outer_class)
5022 case MODE_INT:
5023 case MODE_PARTIAL_INT:
5025 unsigned HOST_WIDE_INT hi = 0, lo = 0;
5027 for (i = 0;
5028 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
5029 i += value_bit)
5030 lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
5031 for (; i < elem_bitsize; i += value_bit)
5032 hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
5033 << (i - HOST_BITS_PER_WIDE_INT));
5035 /* immed_double_const doesn't call trunc_int_for_mode. I don't
5036 know why. */
5037 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
5038 elems[elem] = gen_int_mode (lo, outer_submode);
5039 else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
5040 elems[elem] = immed_double_const (lo, hi, outer_submode);
5041 else
5042 return NULL_RTX;
5044 break;
5046 case MODE_FLOAT:
5047 case MODE_DECIMAL_FLOAT:
5049 REAL_VALUE_TYPE r;
5050 long tmp[max_bitsize / 32];
5052 /* real_from_target wants its input in words affected by
5053 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5054 and use WORDS_BIG_ENDIAN instead; see the documentation
5055 of SUBREG in rtl.texi. */
5056 for (i = 0; i < max_bitsize / 32; i++)
5057 tmp[i] = 0;
5058 for (i = 0; i < elem_bitsize; i += value_bit)
5060 int ibase;
5061 if (WORDS_BIG_ENDIAN)
5062 ibase = elem_bitsize - 1 - i;
5063 else
5064 ibase = i;
5065 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
5068 real_from_target (&r, tmp, outer_submode);
5069 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
5071 break;
5073 case MODE_FRACT:
5074 case MODE_UFRACT:
5075 case MODE_ACCUM:
5076 case MODE_UACCUM:
5078 FIXED_VALUE_TYPE f;
5079 f.data.low = 0;
5080 f.data.high = 0;
5081 f.mode = outer_submode;
5083 for (i = 0;
5084 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
5085 i += value_bit)
5086 f.data.low |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
5087 for (; i < elem_bitsize; i += value_bit)
5088 f.data.high |= ((HOST_WIDE_INT)(*vp++ & value_mask)
5089 << (i - HOST_BITS_PER_WIDE_INT));
5091 elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
5093 break;
5095 default:
5096 gcc_unreachable ();
5099 if (VECTOR_MODE_P (outermode))
5100 return gen_rtx_CONST_VECTOR (outermode, result_v);
5101 else
5102 return result_s;
5105 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
5106 Return 0 if no simplifications are possible. */
5108 simplify_subreg (enum machine_mode outermode, rtx op,
5109 enum machine_mode innermode, unsigned int byte)
5111 /* Little bit of sanity checking. */
5112 gcc_assert (innermode != VOIDmode);
5113 gcc_assert (outermode != VOIDmode);
5114 gcc_assert (innermode != BLKmode);
5115 gcc_assert (outermode != BLKmode);
5117 gcc_assert (GET_MODE (op) == innermode
5118 || GET_MODE (op) == VOIDmode);
5120 gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
5121 gcc_assert (byte < GET_MODE_SIZE (innermode));
5123 if (outermode == innermode && !byte)
5124 return op;
5126 if (CONST_INT_P (op)
5127 || GET_CODE (op) == CONST_DOUBLE
5128 || GET_CODE (op) == CONST_FIXED
5129 || GET_CODE (op) == CONST_VECTOR)
5130 return simplify_immed_subreg (outermode, op, innermode, byte);
5132 /* Changing mode twice with SUBREG => just change it once,
5133 or not at all if changing back op starting mode. */
5134 if (GET_CODE (op) == SUBREG)
5136 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
5137 int final_offset = byte + SUBREG_BYTE (op);
5138 rtx newx;
5140 if (outermode == innermostmode
5141 && byte == 0 && SUBREG_BYTE (op) == 0)
5142 return SUBREG_REG (op);
5144 /* The SUBREG_BYTE represents offset, as if the value were stored
5145 in memory. Irritating exception is paradoxical subreg, where
5146 we define SUBREG_BYTE to be 0. On big endian machines, this
5147 value should be negative. For a moment, undo this exception. */
5148 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5150 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
5151 if (WORDS_BIG_ENDIAN)
5152 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5153 if (BYTES_BIG_ENDIAN)
5154 final_offset += difference % UNITS_PER_WORD;
5156 if (SUBREG_BYTE (op) == 0
5157 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
5159 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
5160 if (WORDS_BIG_ENDIAN)
5161 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5162 if (BYTES_BIG_ENDIAN)
5163 final_offset += difference % UNITS_PER_WORD;
5166 /* See whether resulting subreg will be paradoxical. */
5167 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
5169 /* In nonparadoxical subregs we can't handle negative offsets. */
5170 if (final_offset < 0)
5171 return NULL_RTX;
5172 /* Bail out in case resulting subreg would be incorrect. */
5173 if (final_offset % GET_MODE_SIZE (outermode)
5174 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
5175 return NULL_RTX;
5177 else
5179 int offset = 0;
5180 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
5182 /* In paradoxical subreg, see if we are still looking on lower part.
5183 If so, our SUBREG_BYTE will be 0. */
5184 if (WORDS_BIG_ENDIAN)
5185 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5186 if (BYTES_BIG_ENDIAN)
5187 offset += difference % UNITS_PER_WORD;
5188 if (offset == final_offset)
5189 final_offset = 0;
5190 else
5191 return NULL_RTX;
5194 /* Recurse for further possible simplifications. */
5195 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
5196 final_offset);
5197 if (newx)
5198 return newx;
5199 if (validate_subreg (outermode, innermostmode,
5200 SUBREG_REG (op), final_offset))
5202 newx = gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
5203 if (SUBREG_PROMOTED_VAR_P (op)
5204 && SUBREG_PROMOTED_UNSIGNED_P (op) >= 0
5205 && GET_MODE_CLASS (outermode) == MODE_INT
5206 && IN_RANGE (GET_MODE_SIZE (outermode),
5207 GET_MODE_SIZE (innermode),
5208 GET_MODE_SIZE (innermostmode))
5209 && subreg_lowpart_p (newx))
5211 SUBREG_PROMOTED_VAR_P (newx) = 1;
5212 SUBREG_PROMOTED_UNSIGNED_SET
5213 (newx, SUBREG_PROMOTED_UNSIGNED_P (op));
5215 return newx;
5217 return NULL_RTX;
5220 /* Merge implicit and explicit truncations. */
5222 if (GET_CODE (op) == TRUNCATE
5223 && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
5224 && subreg_lowpart_offset (outermode, innermode) == byte)
5225 return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
5226 GET_MODE (XEXP (op, 0)));
5228 /* SUBREG of a hard register => just change the register number
5229 and/or mode. If the hard register is not valid in that mode,
5230 suppress this simplification. If the hard register is the stack,
5231 frame, or argument pointer, leave this as a SUBREG. */
5233 if (REG_P (op) && HARD_REGISTER_P (op))
5235 unsigned int regno, final_regno;
5237 regno = REGNO (op);
5238 final_regno = simplify_subreg_regno (regno, innermode, byte, outermode);
5239 if (HARD_REGISTER_NUM_P (final_regno))
5241 rtx x;
5242 int final_offset = byte;
5244 /* Adjust offset for paradoxical subregs. */
5245 if (byte == 0
5246 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5248 int difference = (GET_MODE_SIZE (innermode)
5249 - GET_MODE_SIZE (outermode));
5250 if (WORDS_BIG_ENDIAN)
5251 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5252 if (BYTES_BIG_ENDIAN)
5253 final_offset += difference % UNITS_PER_WORD;
5256 x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
5258 /* Propagate original regno. We don't have any way to specify
5259 the offset inside original regno, so do so only for lowpart.
5260 The information is used only by alias analysis that can not
5261 grog partial register anyway. */
5263 if (subreg_lowpart_offset (outermode, innermode) == byte)
5264 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
5265 return x;
5269 /* If we have a SUBREG of a register that we are replacing and we are
5270 replacing it with a MEM, make a new MEM and try replacing the
5271 SUBREG with it. Don't do this if the MEM has a mode-dependent address
5272 or if we would be widening it. */
5274 if (MEM_P (op)
5275 && ! mode_dependent_address_p (XEXP (op, 0))
5276 /* Allow splitting of volatile memory references in case we don't
5277 have instruction to move the whole thing. */
5278 && (! MEM_VOLATILE_P (op)
5279 || ! have_insn_for (SET, innermode))
5280 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
5281 return adjust_address_nv (op, outermode, byte);
5283 /* Handle complex values represented as CONCAT
5284 of real and imaginary part. */
5285 if (GET_CODE (op) == CONCAT)
5287 unsigned int part_size, final_offset;
5288 rtx part, res;
5290 part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
5291 if (byte < part_size)
5293 part = XEXP (op, 0);
5294 final_offset = byte;
5296 else
5298 part = XEXP (op, 1);
5299 final_offset = byte - part_size;
5302 if (final_offset + GET_MODE_SIZE (outermode) > part_size)
5303 return NULL_RTX;
5305 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
5306 if (res)
5307 return res;
5308 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
5309 return gen_rtx_SUBREG (outermode, part, final_offset);
5310 return NULL_RTX;
5313 /* Optimize SUBREG truncations of zero and sign extended values. */
5314 if ((GET_CODE (op) == ZERO_EXTEND
5315 || GET_CODE (op) == SIGN_EXTEND)
5316 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
5318 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
5320 /* If we're requesting the lowpart of a zero or sign extension,
5321 there are three possibilities. If the outermode is the same
5322 as the origmode, we can omit both the extension and the subreg.
5323 If the outermode is not larger than the origmode, we can apply
5324 the truncation without the extension. Finally, if the outermode
5325 is larger than the origmode, but both are integer modes, we
5326 can just extend to the appropriate mode. */
5327 if (bitpos == 0)
5329 enum machine_mode origmode = GET_MODE (XEXP (op, 0));
5330 if (outermode == origmode)
5331 return XEXP (op, 0);
5332 if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
5333 return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
5334 subreg_lowpart_offset (outermode,
5335 origmode));
5336 if (SCALAR_INT_MODE_P (outermode))
5337 return simplify_gen_unary (GET_CODE (op), outermode,
5338 XEXP (op, 0), origmode);
5341 /* A SUBREG resulting from a zero extension may fold to zero if
5342 it extracts higher bits that the ZERO_EXTEND's source bits. */
5343 if (GET_CODE (op) == ZERO_EXTEND
5344 && bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
5345 return CONST0_RTX (outermode);
5348 /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
5349 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
5350 the outer subreg is effectively a truncation to the original mode. */
5351 if ((GET_CODE (op) == LSHIFTRT
5352 || GET_CODE (op) == ASHIFTRT)
5353 && SCALAR_INT_MODE_P (outermode)
5354 /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
5355 to avoid the possibility that an outer LSHIFTRT shifts by more
5356 than the sign extension's sign_bit_copies and introduces zeros
5357 into the high bits of the result. */
5358 && (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
5359 && CONST_INT_P (XEXP (op, 1))
5360 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
5361 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
5362 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
5363 && subreg_lsb_1 (outermode, innermode, byte) == 0)
5364 return simplify_gen_binary (ASHIFTRT, outermode,
5365 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
5367 /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
5368 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
5369 the outer subreg is effectively a truncation to the original mode. */
5370 if ((GET_CODE (op) == LSHIFTRT
5371 || GET_CODE (op) == ASHIFTRT)
5372 && SCALAR_INT_MODE_P (outermode)
5373 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
5374 && CONST_INT_P (XEXP (op, 1))
5375 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
5376 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
5377 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
5378 && subreg_lsb_1 (outermode, innermode, byte) == 0)
5379 return simplify_gen_binary (LSHIFTRT, outermode,
5380 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
5382 /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
5383 to (ashift:QI (x:QI) C), where C is a suitable small constant and
5384 the outer subreg is effectively a truncation to the original mode. */
5385 if (GET_CODE (op) == ASHIFT
5386 && SCALAR_INT_MODE_P (outermode)
5387 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
5388 && CONST_INT_P (XEXP (op, 1))
5389 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
5390 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
5391 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
5392 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
5393 && subreg_lsb_1 (outermode, innermode, byte) == 0)
5394 return simplify_gen_binary (ASHIFT, outermode,
5395 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
5397 /* Recognize a word extraction from a multi-word subreg. */
5398 if ((GET_CODE (op) == LSHIFTRT
5399 || GET_CODE (op) == ASHIFTRT)
5400 && SCALAR_INT_MODE_P (outermode)
5401 && GET_MODE_BITSIZE (outermode) >= BITS_PER_WORD
5402 && GET_MODE_BITSIZE (innermode) >= (2 * GET_MODE_BITSIZE (outermode))
5403 && CONST_INT_P (XEXP (op, 1))
5404 && (INTVAL (XEXP (op, 1)) & (GET_MODE_BITSIZE (outermode) - 1)) == 0
5405 && INTVAL (XEXP (op, 1)) >= 0
5406 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (innermode)
5407 && byte == subreg_lowpart_offset (outermode, innermode))
5409 int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
5410 return simplify_gen_subreg (outermode, XEXP (op, 0), innermode,
5411 (WORDS_BIG_ENDIAN
5412 ? byte - shifted_bytes
5413 : byte + shifted_bytes));
5416 return NULL_RTX;
5419 /* Make a SUBREG operation or equivalent if it folds. */
5422 simplify_gen_subreg (enum machine_mode outermode, rtx op,
5423 enum machine_mode innermode, unsigned int byte)
5425 rtx newx;
5427 newx = simplify_subreg (outermode, op, innermode, byte);
5428 if (newx)
5429 return newx;
5431 if (GET_CODE (op) == SUBREG
5432 || GET_CODE (op) == CONCAT
5433 || GET_MODE (op) == VOIDmode)
5434 return NULL_RTX;
5436 if (validate_subreg (outermode, innermode, op, byte))
5437 return gen_rtx_SUBREG (outermode, op, byte);
5439 return NULL_RTX;
5442 /* Simplify X, an rtx expression.
5444 Return the simplified expression or NULL if no simplifications
5445 were possible.
5447 This is the preferred entry point into the simplification routines;
5448 however, we still allow passes to call the more specific routines.
5450 Right now GCC has three (yes, three) major bodies of RTL simplification
5451 code that need to be unified.
5453 1. fold_rtx in cse.c. This code uses various CSE specific
5454 information to aid in RTL simplification.
5456 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
5457 it uses combine specific information to aid in RTL
5458 simplification.
5460 3. The routines in this file.
5463 Long term we want to only have one body of simplification code; to
5464 get to that state I recommend the following steps:
5466 1. Pour over fold_rtx & simplify_rtx and move any simplifications
5467 which are not pass dependent state into these routines.
5469 2. As code is moved by #1, change fold_rtx & simplify_rtx to
5470 use this routine whenever possible.
5472 3. Allow for pass dependent state to be provided to these
5473 routines and add simplifications based on the pass dependent
5474 state. Remove code from cse.c & combine.c that becomes
5475 redundant/dead.
5477 It will take time, but ultimately the compiler will be easier to
5478 maintain and improve. It's totally silly that when we add a
5479 simplification that it needs to be added to 4 places (3 for RTL
5480 simplification and 1 for tree simplification. */
5483 simplify_rtx (const_rtx x)
5485 const enum rtx_code code = GET_CODE (x);
5486 const enum machine_mode mode = GET_MODE (x);
5488 switch (GET_RTX_CLASS (code))
5490 case RTX_UNARY:
5491 return simplify_unary_operation (code, mode,
5492 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
5493 case RTX_COMM_ARITH:
5494 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5495 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
5497 /* Fall through.... */
5499 case RTX_BIN_ARITH:
5500 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5502 case RTX_TERNARY:
5503 case RTX_BITFIELD_OPS:
5504 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
5505 XEXP (x, 0), XEXP (x, 1),
5506 XEXP (x, 2));
5508 case RTX_COMPARE:
5509 case RTX_COMM_COMPARE:
5510 return simplify_relational_operation (code, mode,
5511 ((GET_MODE (XEXP (x, 0))
5512 != VOIDmode)
5513 ? GET_MODE (XEXP (x, 0))
5514 : GET_MODE (XEXP (x, 1))),
5515 XEXP (x, 0),
5516 XEXP (x, 1));
5518 case RTX_EXTRA:
5519 if (code == SUBREG)
5520 return simplify_subreg (mode, SUBREG_REG (x),
5521 GET_MODE (SUBREG_REG (x)),
5522 SUBREG_BYTE (x));
5523 break;
5525 case RTX_OBJ:
5526 if (code == LO_SUM)
5528 /* Convert (lo_sum (high FOO) FOO) to FOO. */
5529 if (GET_CODE (XEXP (x, 0)) == HIGH
5530 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5531 return XEXP (x, 1);
5533 break;
5535 default:
5536 break;
5538 return NULL;