2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / sel-sched.c
blob3a86e22feef43d6cba796a04651cef69a72eb31d
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
68 Terminology
69 ===========
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
95 High-level overview
96 ===================
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
118 Computing available expressions
119 ===============================
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
135 Choosing the best expression
136 ============================
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
149 Scheduling the best expression
150 ==============================
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
162 Finalizing the schedule
163 =======================
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
169 Dependence analysis changes
170 ===========================
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
181 Initialization changes
182 ======================
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193 Target contexts
194 ===============
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
204 Various speedups
205 ================
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
263 /* Definitions of local types and macros. */
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
284 /* What we are searching for. */
285 rtx x;
287 /* The occurence counter. */
288 int n;
291 typedef struct rtx_search_arg *rtx_search_arg_p;
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
349 /* Local params used in move_op_* functions. */
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
371 /* Destination register. */
372 rtx dest;
374 /* Current C_EXPR. */
375 expr_t c_expr;
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
463 /* Current fences. */
464 flist_t fences;
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
540 /* Variables to accumulate different statistics. */
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572 static void debug_state (state_t);
575 /* Functions that work with fences. */
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
581 unsigned i;
582 int cycle;
583 rtx insn;
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 if (INSN_READY_CYCLE (insn) < cycle)
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
600 i++;
602 if (sched_verbose >= 2)
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
614 basic_block bb = BLOCK_FOR_INSN (insn);
616 if (bb == BLOCK_FOR_INSN (succ))
617 return true;
619 if (find_fallthru_edge (bb))
620 bb = find_fallthru_edge (bb)->dest;
621 else
622 return false;
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
627 return bb == BLOCK_FOR_INSN (succ);
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 gcc_assert (!was_here_p);
650 was_here_p = true;
652 gcc_assert (was_here_p && insn != NULL_RTX);
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
661 insn_t succ;
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 return;
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 int seqno = INSN_SEQNO (succ);
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
710 /* Functions to support substitution. */
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
733 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
762 rtx new_insn;
763 rtx *where_replace;
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_regno (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
798 return true;
800 else
801 return false;
803 else
804 return false;
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
813 /* The last param FOR_GCSE is true, because otherwise it performs excessive
814 substitutions like
815 r8 = r33
816 r16 = r33
817 for the last insn it presumes r33 equivalent to r8, so it changes it to
818 r33. Actually, there's no change, but it spoils debugging. */
819 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
821 /* Bail out if we occupy more than one register. */
822 if (REG_P (*cur_rtx)
823 && HARD_REGISTER_P (*cur_rtx)
824 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
826 p->n = 0;
827 return 1;
830 p->n++;
832 /* Do not traverse subexprs. */
833 return -1;
836 if (GET_CODE (*cur_rtx) == SUBREG
837 && REG_P (p->x)
838 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
840 /* ??? Do not support substituting regs inside subregs. In that case,
841 simplify_subreg will be called by validate_replace_rtx, and
842 unsubstitution will fail later. */
843 p->n = 0;
844 return 1;
847 /* Continue search. */
848 return 0;
851 /* Return the number of places WHAT appears within WHERE.
852 Bail out when we found a reference occupying several hard registers. */
853 static int
854 count_occurrences_equiv (rtx what, rtx where)
856 struct rtx_search_arg arg;
858 arg.x = what;
859 arg.n = 0;
861 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
863 return arg.n;
866 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
867 static bool
868 rtx_ok_for_substitution_p (rtx what, rtx where)
870 return (count_occurrences_equiv (what, where) > 0);
874 /* Functions to support register renaming. */
876 /* Substitute VI's set source with REGNO. Returns newly created pattern
877 that has REGNO as its source. */
878 static rtx
879 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
881 rtx lhs_rtx;
882 rtx pattern;
883 rtx insn_rtx;
885 lhs_rtx = copy_rtx (VINSN_LHS (vi));
887 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
888 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
890 return insn_rtx;
893 /* Returns whether INSN's src can be replaced with register number
894 NEW_SRC_REG. E.g. the following insn is valid for i386:
896 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
897 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
898 (reg:SI 0 ax [orig:770 c1 ] [770]))
899 (const_int 288 [0x120])) [0 str S1 A8])
900 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
901 (nil))
903 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
904 because of operand constraints:
906 (define_insn "*movqi_1"
907 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
908 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
911 So do constrain_operands here, before choosing NEW_SRC_REG as best
912 reg for rhs. */
914 static bool
915 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
917 vinsn_t vi = INSN_VINSN (insn);
918 enum machine_mode mode;
919 rtx dst_loc;
920 bool res;
922 gcc_assert (VINSN_SEPARABLE_P (vi));
924 get_dest_and_mode (insn, &dst_loc, &mode);
925 gcc_assert (mode == GET_MODE (new_src_reg));
927 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
928 return true;
930 /* See whether SET_SRC can be replaced with this register. */
931 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
932 res = verify_changes (0);
933 cancel_changes (0);
935 return res;
938 /* Returns whether INSN still be valid after replacing it's DEST with
939 register NEW_REG. */
940 static bool
941 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
943 vinsn_t vi = INSN_VINSN (insn);
944 bool res;
946 /* We should deal here only with separable insns. */
947 gcc_assert (VINSN_SEPARABLE_P (vi));
948 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
950 /* See whether SET_DEST can be replaced with this register. */
951 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
952 res = verify_changes (0);
953 cancel_changes (0);
955 return res;
958 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
959 static rtx
960 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
962 rtx rhs_rtx;
963 rtx pattern;
964 rtx insn_rtx;
966 rhs_rtx = copy_rtx (VINSN_RHS (vi));
968 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
969 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
971 return insn_rtx;
974 /* Substitute lhs in the given expression EXPR for the register with number
975 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
976 static void
977 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
979 rtx insn_rtx;
980 vinsn_t vinsn;
982 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
983 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
985 change_vinsn_in_expr (expr, vinsn);
986 EXPR_WAS_RENAMED (expr) = 1;
987 EXPR_TARGET_AVAILABLE (expr) = 1;
990 /* Returns whether VI writes either one of the USED_REGS registers or,
991 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
992 static bool
993 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
994 HARD_REG_SET unavailable_hard_regs)
996 unsigned regno;
997 reg_set_iterator rsi;
999 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1001 if (REGNO_REG_SET_P (used_regs, regno))
1002 return true;
1003 if (HARD_REGISTER_NUM_P (regno)
1004 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1005 return true;
1008 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1010 if (REGNO_REG_SET_P (used_regs, regno))
1011 return true;
1012 if (HARD_REGISTER_NUM_P (regno)
1013 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1014 return true;
1017 return false;
1020 /* Returns register class of the output register in INSN.
1021 Returns NO_REGS for call insns because some targets have constraints on
1022 destination register of a call insn.
1024 Code adopted from regrename.c::build_def_use. */
1025 static enum reg_class
1026 get_reg_class (rtx insn)
1028 int alt, i, n_ops;
1030 extract_insn (insn);
1031 if (! constrain_operands (1))
1032 fatal_insn_not_found (insn);
1033 preprocess_constraints ();
1034 alt = which_alternative;
1035 n_ops = recog_data.n_operands;
1037 for (i = 0; i < n_ops; ++i)
1039 int matches = recog_op_alt[i][alt].matches;
1040 if (matches >= 0)
1041 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1044 if (asm_noperands (PATTERN (insn)) > 0)
1046 for (i = 0; i < n_ops; i++)
1047 if (recog_data.operand_type[i] == OP_OUT)
1049 rtx *loc = recog_data.operand_loc[i];
1050 rtx op = *loc;
1051 enum reg_class cl = recog_op_alt[i][alt].cl;
1053 if (REG_P (op)
1054 && REGNO (op) == ORIGINAL_REGNO (op))
1055 continue;
1057 return cl;
1060 else if (!CALL_P (insn))
1062 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1064 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1065 enum reg_class cl = recog_op_alt[opn][alt].cl;
1067 if (recog_data.operand_type[opn] == OP_OUT ||
1068 recog_data.operand_type[opn] == OP_INOUT)
1069 return cl;
1073 /* Insns like
1074 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1075 may result in returning NO_REGS, cause flags is written implicitly through
1076 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1077 return NO_REGS;
1080 #ifdef HARD_REGNO_RENAME_OK
1081 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1082 static void
1083 init_hard_regno_rename (int regno)
1085 int cur_reg;
1087 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1089 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1091 /* We are not interested in renaming in other regs. */
1092 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1093 continue;
1095 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1096 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1099 #endif
1101 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1102 data first. */
1103 static inline bool
1104 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1106 #ifdef HARD_REGNO_RENAME_OK
1107 /* Check whether this is all calculated. */
1108 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1109 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1111 init_hard_regno_rename (from);
1113 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1114 #else
1115 return true;
1116 #endif
1119 /* Calculate set of registers that are capable of holding MODE. */
1120 static void
1121 init_regs_for_mode (enum machine_mode mode)
1123 int cur_reg;
1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1128 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1130 int nregs = hard_regno_nregs[cur_reg][mode];
1131 int i;
1133 for (i = nregs - 1; i >= 0; --i)
1134 if (fixed_regs[cur_reg + i]
1135 || global_regs[cur_reg + i]
1136 /* Can't use regs which aren't saved by
1137 the prologue. */
1138 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1139 #ifdef LEAF_REGISTERS
1140 /* We can't use a non-leaf register if we're in a
1141 leaf function. */
1142 || (current_function_is_leaf
1143 && !LEAF_REGISTERS[cur_reg + i])
1144 #endif
1146 break;
1148 if (i >= 0)
1149 continue;
1151 /* See whether it accepts all modes that occur in
1152 original insns. */
1153 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1154 continue;
1156 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1157 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1158 cur_reg);
1160 /* If the CUR_REG passed all the checks above,
1161 then it's ok. */
1162 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1165 sel_hrd.regs_for_mode_ok[mode] = true;
1168 /* Init all register sets gathered in HRD. */
1169 static void
1170 init_hard_regs_data (void)
1172 int cur_reg = 0;
1173 int cur_mode = 0;
1175 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1176 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1177 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1178 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1180 /* Initialize registers that are valid based on mode when this is
1181 really needed. */
1182 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1183 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1185 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1186 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1187 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189 #ifdef STACK_REGS
1190 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1193 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1194 #endif
1197 /* Mark hardware regs in REG_RENAME_P that are not suitable
1198 for renaming rhs in INSN due to hardware restrictions (register class,
1199 modes compatibility etc). This doesn't affect original insn's dest reg,
1200 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1201 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1202 Registers that are in used_regs are always marked in
1203 unavailable_hard_regs as well. */
1205 static void
1206 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1207 regset used_regs ATTRIBUTE_UNUSED)
1209 enum machine_mode mode;
1210 enum reg_class cl = NO_REGS;
1211 rtx orig_dest;
1212 unsigned cur_reg, regno;
1213 hard_reg_set_iterator hrsi;
1215 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1216 gcc_assert (reg_rename_p);
1218 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1220 /* We have decided not to rename 'mem = something;' insns, as 'something'
1221 is usually a register. */
1222 if (!REG_P (orig_dest))
1223 return;
1225 regno = REGNO (orig_dest);
1227 /* If before reload, don't try to work with pseudos. */
1228 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1229 return;
1231 if (reload_completed)
1232 cl = get_reg_class (def->orig_insn);
1234 /* Stop if the original register is one of the fixed_regs, global_regs or
1235 frame pointer, or we could not discover its class. */
1236 if (fixed_regs[regno]
1237 || global_regs[regno]
1238 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1239 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1240 #else
1241 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1242 #endif
1243 || (reload_completed && cl == NO_REGS))
1245 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247 /* Give a chance for original register, if it isn't in used_regs. */
1248 if (!def->crosses_call)
1249 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251 return;
1254 /* If something allocated on stack in this function, mark frame pointer
1255 register unavailable, considering also modes.
1256 FIXME: it is enough to do this once per all original defs. */
1257 if (frame_pointer_needed)
1259 int i;
1261 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1262 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1263 FRAME_POINTER_REGNUM + i);
1265 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1266 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1267 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1268 HARD_FRAME_POINTER_REGNUM + i);
1269 #endif
1272 #ifdef STACK_REGS
1273 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1274 is equivalent to as if all stack regs were in this set.
1275 I.e. no stack register can be renamed, and even if it's an original
1276 register here we make sure it won't be lifted over it's previous def
1277 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1278 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1279 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1280 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1281 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1282 sel_hrd.stack_regs);
1283 #endif
1285 /* If there's a call on this path, make regs from call_used_reg_set
1286 unavailable. */
1287 if (def->crosses_call)
1288 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1289 call_used_reg_set);
1291 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1292 but not register classes. */
1293 if (!reload_completed)
1294 return;
1296 /* Leave regs as 'available' only from the current
1297 register class. */
1298 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1299 reg_class_contents[cl]);
1301 mode = GET_MODE (orig_dest);
1303 /* Leave only registers available for this mode. */
1304 if (!sel_hrd.regs_for_mode_ok[mode])
1305 init_regs_for_mode (mode);
1306 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1307 sel_hrd.regs_for_mode[mode]);
1309 /* Exclude registers that are partially call clobbered. */
1310 if (def->crosses_call
1311 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1312 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 sel_hrd.regs_for_call_clobbered[mode]);
1315 /* Leave only those that are ok to rename. */
1316 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1317 0, cur_reg, hrsi)
1319 int nregs;
1320 int i;
1322 nregs = hard_regno_nregs[cur_reg][mode];
1323 gcc_assert (nregs > 0);
1325 for (i = nregs - 1; i >= 0; --i)
1326 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1327 break;
1329 if (i >= 0)
1330 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1331 cur_reg);
1334 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1335 reg_rename_p->unavailable_hard_regs);
1337 /* Regno is always ok from the renaming part of view, but it really
1338 could be in *unavailable_hard_regs already, so set it here instead
1339 of there. */
1340 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1343 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1344 best register more recently than REG2. */
1345 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1347 /* Indicates the number of times renaming happened before the current one. */
1348 static int reg_rename_this_tick;
1350 /* Choose the register among free, that is suitable for storing
1351 the rhs value.
1353 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1354 originally appears. There could be multiple original operations
1355 for single rhs since we moving it up and merging along different
1356 paths.
1358 Some code is adapted from regrename.c (regrename_optimize).
1359 If original register is available, function returns it.
1360 Otherwise it performs the checks, so the new register should
1361 comply with the following:
1362 - it should not violate any live ranges (such registers are in
1363 REG_RENAME_P->available_for_renaming set);
1364 - it should not be in the HARD_REGS_USED regset;
1365 - it should be in the class compatible with original uses;
1366 - it should not be clobbered through reference with different mode;
1367 - if we're in the leaf function, then the new register should
1368 not be in the LEAF_REGISTERS;
1369 - etc.
1371 If several registers meet the conditions, the register with smallest
1372 tick is returned to achieve more even register allocation.
1374 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1376 If no register satisfies the above conditions, NULL_RTX is returned. */
1377 static rtx
1378 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1379 struct reg_rename *reg_rename_p,
1380 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1382 int best_new_reg;
1383 unsigned cur_reg;
1384 enum machine_mode mode = VOIDmode;
1385 unsigned regno, i, n;
1386 hard_reg_set_iterator hrsi;
1387 def_list_iterator di;
1388 def_t def;
1390 /* If original register is available, return it. */
1391 *is_orig_reg_p_ptr = true;
1393 FOR_EACH_DEF (def, di, original_insns)
1395 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1397 gcc_assert (REG_P (orig_dest));
1399 /* Check that all original operations have the same mode.
1400 This is done for the next loop; if we'd return from this
1401 loop, we'd check only part of them, but in this case
1402 it doesn't matter. */
1403 if (mode == VOIDmode)
1404 mode = GET_MODE (orig_dest);
1405 gcc_assert (mode == GET_MODE (orig_dest));
1407 regno = REGNO (orig_dest);
1408 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1409 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1410 break;
1412 /* All hard registers are available. */
1413 if (i == n)
1415 gcc_assert (mode != VOIDmode);
1417 /* Hard registers should not be shared. */
1418 return gen_rtx_REG (mode, regno);
1422 *is_orig_reg_p_ptr = false;
1423 best_new_reg = -1;
1425 /* Among all available regs choose the register that was
1426 allocated earliest. */
1427 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1428 0, cur_reg, hrsi)
1429 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1431 /* Check that all hard regs for mode are available. */
1432 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1433 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1434 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1435 cur_reg + i))
1436 break;
1438 if (i < n)
1439 continue;
1441 /* All hard registers are available. */
1442 if (best_new_reg < 0
1443 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1445 best_new_reg = cur_reg;
1447 /* Return immediately when we know there's no better reg. */
1448 if (! reg_rename_tick[best_new_reg])
1449 break;
1453 if (best_new_reg >= 0)
1455 /* Use the check from the above loop. */
1456 gcc_assert (mode != VOIDmode);
1457 return gen_rtx_REG (mode, best_new_reg);
1460 return NULL_RTX;
1463 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1464 assumptions about available registers in the function. */
1465 static rtx
1466 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1467 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1469 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1470 original_insns, is_orig_reg_p_ptr);
1472 /* FIXME loop over hard_regno_nregs here. */
1473 gcc_assert (best_reg == NULL_RTX
1474 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1476 return best_reg;
1479 /* Choose the pseudo register for storing rhs value. As this is supposed
1480 to work before reload, we return either the original register or make
1481 the new one. The parameters are the same that in choose_nest_reg_1
1482 functions, except that USED_REGS may contain pseudos.
1483 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1485 TODO: take into account register pressure while doing this. Up to this
1486 moment, this function would never return NULL for pseudos, but we should
1487 not rely on this. */
1488 static rtx
1489 choose_best_pseudo_reg (regset used_regs,
1490 struct reg_rename *reg_rename_p,
1491 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1493 def_list_iterator i;
1494 def_t def;
1495 enum machine_mode mode = VOIDmode;
1496 bool bad_hard_regs = false;
1498 /* We should not use this after reload. */
1499 gcc_assert (!reload_completed);
1501 /* If original register is available, return it. */
1502 *is_orig_reg_p_ptr = true;
1504 FOR_EACH_DEF (def, i, original_insns)
1506 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1507 int orig_regno;
1509 gcc_assert (REG_P (dest));
1511 /* Check that all original operations have the same mode. */
1512 if (mode == VOIDmode)
1513 mode = GET_MODE (dest);
1514 else
1515 gcc_assert (mode == GET_MODE (dest));
1516 orig_regno = REGNO (dest);
1518 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1520 if (orig_regno < FIRST_PSEUDO_REGISTER)
1522 gcc_assert (df_regs_ever_live_p (orig_regno));
1524 /* For hard registers, we have to check hardware imposed
1525 limitations (frame/stack registers, calls crossed). */
1526 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1527 orig_regno))
1529 /* Don't let register cross a call if it doesn't already
1530 cross one. This condition is written in accordance with
1531 that in sched-deps.c sched_analyze_reg(). */
1532 if (!reg_rename_p->crosses_call
1533 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1534 return gen_rtx_REG (mode, orig_regno);
1537 bad_hard_regs = true;
1539 else
1540 return dest;
1544 *is_orig_reg_p_ptr = false;
1546 /* We had some original hard registers that couldn't be used.
1547 Those were likely special. Don't try to create a pseudo. */
1548 if (bad_hard_regs)
1549 return NULL_RTX;
1551 /* We haven't found a register from original operations. Get a new one.
1552 FIXME: control register pressure somehow. */
1554 rtx new_reg = gen_reg_rtx (mode);
1556 gcc_assert (mode != VOIDmode);
1558 max_regno = max_reg_num ();
1559 maybe_extend_reg_info_p ();
1560 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1562 return new_reg;
1566 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1567 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1568 static void
1569 verify_target_availability (expr_t expr, regset used_regs,
1570 struct reg_rename *reg_rename_p)
1572 unsigned n, i, regno;
1573 enum machine_mode mode;
1574 bool target_available, live_available, hard_available;
1576 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1577 return;
1579 regno = expr_dest_regno (expr);
1580 mode = GET_MODE (EXPR_LHS (expr));
1581 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1582 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1584 live_available = hard_available = true;
1585 for (i = 0; i < n; i++)
1587 if (bitmap_bit_p (used_regs, regno + i))
1588 live_available = false;
1589 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1590 hard_available = false;
1593 /* When target is not available, it may be due to hard register
1594 restrictions, e.g. crosses calls, so we check hard_available too. */
1595 if (target_available)
1596 gcc_assert (live_available);
1597 else
1598 /* Check only if we haven't scheduled something on the previous fence,
1599 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1600 and having more than one fence, we may end having targ_un in a block
1601 in which successors target register is actually available.
1603 The last condition handles the case when a dependence from a call insn
1604 was created in sched-deps.c for insns with destination registers that
1605 never crossed a call before, but do cross one after our code motion.
1607 FIXME: in the latter case, we just uselessly called find_used_regs,
1608 because we can't move this expression with any other register
1609 as well. */
1610 gcc_assert (scheduled_something_on_previous_fence || !live_available
1611 || !hard_available
1612 || (!reload_completed && reg_rename_p->crosses_call
1613 && REG_N_CALLS_CROSSED (regno) == 0));
1616 /* Collect unavailable registers due to liveness for EXPR from BNDS
1617 into USED_REGS. Save additional information about available
1618 registers and unavailable due to hardware restriction registers
1619 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1620 list. */
1621 static void
1622 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1623 struct reg_rename *reg_rename_p,
1624 def_list_t *original_insns)
1626 for (; bnds; bnds = BLIST_NEXT (bnds))
1628 bool res;
1629 av_set_t orig_ops = NULL;
1630 bnd_t bnd = BLIST_BND (bnds);
1632 /* If the chosen best expr doesn't belong to current boundary,
1633 skip it. */
1634 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1635 continue;
1637 /* Put in ORIG_OPS all exprs from this boundary that became
1638 RES on top. */
1639 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1641 /* Compute used regs and OR it into the USED_REGS. */
1642 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1643 reg_rename_p, original_insns);
1645 /* FIXME: the assert is true until we'd have several boundaries. */
1646 gcc_assert (res);
1647 av_set_clear (&orig_ops);
1651 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1652 If BEST_REG is valid, replace LHS of EXPR with it. */
1653 static bool
1654 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1656 /* Try whether we'll be able to generate the insn
1657 'dest := best_reg' at the place of the original operation. */
1658 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1660 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1662 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1664 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1665 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1666 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1667 return false;
1670 /* Make sure that EXPR has the right destination
1671 register. */
1672 if (expr_dest_regno (expr) != REGNO (best_reg))
1673 replace_dest_with_reg_in_expr (expr, best_reg);
1674 else
1675 EXPR_TARGET_AVAILABLE (expr) = 1;
1677 return true;
1680 /* Select and assign best register to EXPR searching from BNDS.
1681 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1682 Return FALSE if no register can be chosen, which could happen when:
1683 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1684 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1685 that are used on the moving path. */
1686 static bool
1687 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1689 static struct reg_rename reg_rename_data;
1691 regset used_regs;
1692 def_list_t original_insns = NULL;
1693 bool reg_ok;
1695 *is_orig_reg_p = false;
1697 /* Don't bother to do anything if this insn doesn't set any registers. */
1698 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1699 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1700 return true;
1702 used_regs = get_clear_regset_from_pool ();
1703 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1705 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1706 &original_insns);
1708 #ifdef ENABLE_CHECKING
1709 /* If after reload, make sure we're working with hard regs here. */
1710 if (reload_completed)
1712 reg_set_iterator rsi;
1713 unsigned i;
1715 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1716 gcc_unreachable ();
1718 #endif
1720 if (EXPR_SEPARABLE_P (expr))
1722 rtx best_reg = NULL_RTX;
1723 /* Check that we have computed availability of a target register
1724 correctly. */
1725 verify_target_availability (expr, used_regs, &reg_rename_data);
1727 /* Turn everything in hard regs after reload. */
1728 if (reload_completed)
1730 HARD_REG_SET hard_regs_used;
1731 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1733 /* Join hard registers unavailable due to register class
1734 restrictions and live range intersection. */
1735 IOR_HARD_REG_SET (hard_regs_used,
1736 reg_rename_data.unavailable_hard_regs);
1738 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1739 original_insns, is_orig_reg_p);
1741 else
1742 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1743 original_insns, is_orig_reg_p);
1745 if (!best_reg)
1746 reg_ok = false;
1747 else if (*is_orig_reg_p)
1749 /* In case of unification BEST_REG may be different from EXPR's LHS
1750 when EXPR's LHS is unavailable, and there is another LHS among
1751 ORIGINAL_INSNS. */
1752 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1754 else
1756 /* Forbid renaming of low-cost insns. */
1757 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1758 reg_ok = false;
1759 else
1760 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1763 else
1765 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1766 any of the HARD_REGS_USED set. */
1767 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1768 reg_rename_data.unavailable_hard_regs))
1770 reg_ok = false;
1771 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1773 else
1775 reg_ok = true;
1776 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1780 ilist_clear (&original_insns);
1781 return_regset_to_pool (used_regs);
1783 return reg_ok;
1787 /* Return true if dependence described by DS can be overcomed. */
1788 static bool
1789 can_speculate_dep_p (ds_t ds)
1791 if (spec_info == NULL)
1792 return false;
1794 /* Leave only speculative data. */
1795 ds &= SPECULATIVE;
1797 if (ds == 0)
1798 return false;
1801 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1802 that we can overcome. */
1803 ds_t spec_mask = spec_info->mask;
1805 if ((ds & spec_mask) != ds)
1806 return false;
1809 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1810 return false;
1812 return true;
1815 /* Get a speculation check instruction.
1816 C_EXPR is a speculative expression,
1817 CHECK_DS describes speculations that should be checked,
1818 ORIG_INSN is the original non-speculative insn in the stream. */
1819 static insn_t
1820 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1822 rtx check_pattern;
1823 rtx insn_rtx;
1824 insn_t insn;
1825 basic_block recovery_block;
1826 rtx label;
1828 /* Create a recovery block if target is going to emit branchy check, or if
1829 ORIG_INSN was speculative already. */
1830 if (targetm.sched.needs_block_p (check_ds)
1831 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1833 recovery_block = sel_create_recovery_block (orig_insn);
1834 label = BB_HEAD (recovery_block);
1836 else
1838 recovery_block = NULL;
1839 label = NULL_RTX;
1842 /* Get pattern of the check. */
1843 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1844 check_ds);
1846 gcc_assert (check_pattern != NULL);
1848 /* Emit check. */
1849 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1851 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1852 INSN_SEQNO (orig_insn), orig_insn);
1854 /* Make check to be non-speculative. */
1855 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1856 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1858 /* Decrease priority of check by difference of load/check instruction
1859 latencies. */
1860 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1861 - sel_vinsn_cost (INSN_VINSN (insn)));
1863 /* Emit copy of original insn (though with replaced target register,
1864 if needed) to the recovery block. */
1865 if (recovery_block != NULL)
1867 rtx twin_rtx;
1869 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1870 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1871 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1872 INSN_EXPR (orig_insn),
1873 INSN_SEQNO (insn),
1874 bb_note (recovery_block));
1877 /* If we've generated a data speculation check, make sure
1878 that all the bookkeeping instruction we'll create during
1879 this move_op () will allocate an ALAT entry so that the
1880 check won't fail.
1881 In case of control speculation we must convert C_EXPR to control
1882 speculative mode, because failing to do so will bring us an exception
1883 thrown by the non-control-speculative load. */
1884 check_ds = ds_get_max_dep_weak (check_ds);
1885 speculate_expr (c_expr, check_ds);
1887 return insn;
1890 /* True when INSN is a "regN = regN" copy. */
1891 static bool
1892 identical_copy_p (rtx insn)
1894 rtx lhs, rhs, pat;
1896 pat = PATTERN (insn);
1898 if (GET_CODE (pat) != SET)
1899 return false;
1901 lhs = SET_DEST (pat);
1902 if (!REG_P (lhs))
1903 return false;
1905 rhs = SET_SRC (pat);
1906 if (!REG_P (rhs))
1907 return false;
1909 return REGNO (lhs) == REGNO (rhs);
1912 /* Undo all transformations on *AV_PTR that were done when
1913 moving through INSN. */
1914 static void
1915 undo_transformations (av_set_t *av_ptr, rtx insn)
1917 av_set_iterator av_iter;
1918 expr_t expr;
1919 av_set_t new_set = NULL;
1921 /* First, kill any EXPR that uses registers set by an insn. This is
1922 required for correctness. */
1923 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1924 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1925 && bitmap_intersect_p (INSN_REG_SETS (insn),
1926 VINSN_REG_USES (EXPR_VINSN (expr)))
1927 /* When an insn looks like 'r1 = r1', we could substitute through
1928 it, but the above condition will still hold. This happened with
1929 gcc.c-torture/execute/961125-1.c. */
1930 && !identical_copy_p (insn))
1932 if (sched_verbose >= 6)
1933 sel_print ("Expr %d removed due to use/set conflict\n",
1934 INSN_UID (EXPR_INSN_RTX (expr)));
1935 av_set_iter_remove (&av_iter);
1938 /* Undo transformations looking at the history vector. */
1939 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1941 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1942 insn, EXPR_VINSN (expr), true);
1944 if (index >= 0)
1946 expr_history_def *phist;
1948 phist = VEC_index (expr_history_def,
1949 EXPR_HISTORY_OF_CHANGES (expr),
1950 index);
1952 switch (phist->type)
1954 case TRANS_SPECULATION:
1956 ds_t old_ds, new_ds;
1958 /* Compute the difference between old and new speculative
1959 statuses: that's what we need to check.
1960 Earlier we used to assert that the status will really
1961 change. This no longer works because only the probability
1962 bits in the status may have changed during compute_av_set,
1963 and in the case of merging different probabilities of the
1964 same speculative status along different paths we do not
1965 record this in the history vector. */
1966 old_ds = phist->spec_ds;
1967 new_ds = EXPR_SPEC_DONE_DS (expr);
1969 old_ds &= SPECULATIVE;
1970 new_ds &= SPECULATIVE;
1971 new_ds &= ~old_ds;
1973 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1974 break;
1976 case TRANS_SUBSTITUTION:
1978 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1979 vinsn_t new_vi;
1980 bool add = true;
1982 new_vi = phist->old_expr_vinsn;
1984 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1985 == EXPR_SEPARABLE_P (expr));
1986 copy_expr (tmp_expr, expr);
1988 if (vinsn_equal_p (phist->new_expr_vinsn,
1989 EXPR_VINSN (tmp_expr)))
1990 change_vinsn_in_expr (tmp_expr, new_vi);
1991 else
1992 /* This happens when we're unsubstituting on a bookkeeping
1993 copy, which was in turn substituted. The history is wrong
1994 in this case. Do it the hard way. */
1995 add = substitute_reg_in_expr (tmp_expr, insn, true);
1996 if (add)
1997 av_set_add (&new_set, tmp_expr);
1998 clear_expr (tmp_expr);
1999 break;
2001 default:
2002 gcc_unreachable ();
2008 av_set_union_and_clear (av_ptr, &new_set, NULL);
2012 /* Moveup_* helpers for code motion and computing av sets. */
2014 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2015 The difference from the below function is that only substitution is
2016 performed. */
2017 static enum MOVEUP_EXPR_CODE
2018 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2020 vinsn_t vi = EXPR_VINSN (expr);
2021 ds_t *has_dep_p;
2022 ds_t full_ds;
2024 /* Do this only inside insn group. */
2025 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2027 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2028 if (full_ds == 0)
2029 return MOVEUP_EXPR_SAME;
2031 /* Substitution is the possible choice in this case. */
2032 if (has_dep_p[DEPS_IN_RHS])
2034 /* Can't substitute UNIQUE VINSNs. */
2035 gcc_assert (!VINSN_UNIQUE_P (vi));
2037 if (can_substitute_through_p (through_insn,
2038 has_dep_p[DEPS_IN_RHS])
2039 && substitute_reg_in_expr (expr, through_insn, false))
2041 EXPR_WAS_SUBSTITUTED (expr) = true;
2042 return MOVEUP_EXPR_CHANGED;
2045 /* Don't care about this, as even true dependencies may be allowed
2046 in an insn group. */
2047 return MOVEUP_EXPR_SAME;
2050 /* This can catch output dependencies in COND_EXECs. */
2051 if (has_dep_p[DEPS_IN_INSN])
2052 return MOVEUP_EXPR_NULL;
2054 /* This is either an output or an anti dependence, which usually have
2055 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2056 will fix this. */
2057 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2058 return MOVEUP_EXPR_AS_RHS;
2061 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2062 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2063 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2064 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2065 && !sel_insn_is_speculation_check (through_insn))
2067 /* True when a conflict on a target register was found during moveup_expr. */
2068 static bool was_target_conflict = false;
2070 /* Return true when moving a debug INSN across THROUGH_INSN will
2071 create a bookkeeping block. We don't want to create such blocks,
2072 for they would cause codegen differences between compilations with
2073 and without debug info. */
2075 static bool
2076 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2077 insn_t through_insn)
2079 basic_block bbi, bbt;
2080 edge e1, e2;
2081 edge_iterator ei1, ei2;
2083 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2085 if (sched_verbose >= 9)
2086 sel_print ("no bookkeeping required: ");
2087 return FALSE;
2090 bbi = BLOCK_FOR_INSN (insn);
2092 if (EDGE_COUNT (bbi->preds) == 1)
2094 if (sched_verbose >= 9)
2095 sel_print ("only one pred edge: ");
2096 return TRUE;
2099 bbt = BLOCK_FOR_INSN (through_insn);
2101 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2103 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2105 if (find_block_for_bookkeeping (e1, e2, TRUE))
2107 if (sched_verbose >= 9)
2108 sel_print ("found existing block: ");
2109 return FALSE;
2114 if (sched_verbose >= 9)
2115 sel_print ("would create bookkeeping block: ");
2117 return TRUE;
2120 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2121 performing necessary transformations. Record the type of transformation
2122 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2123 permit all dependencies except true ones, and try to remove those
2124 too via forward substitution. All cases when a non-eliminable
2125 non-zero cost dependency exists inside an insn group will be fixed
2126 in tick_check_p instead. */
2127 static enum MOVEUP_EXPR_CODE
2128 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2129 enum local_trans_type *ptrans_type)
2131 vinsn_t vi = EXPR_VINSN (expr);
2132 insn_t insn = VINSN_INSN_RTX (vi);
2133 bool was_changed = false;
2134 bool as_rhs = false;
2135 ds_t *has_dep_p;
2136 ds_t full_ds;
2138 /* When inside_insn_group, delegate to the helper. */
2139 if (inside_insn_group)
2140 return moveup_expr_inside_insn_group (expr, through_insn);
2142 /* Deal with unique insns and control dependencies. */
2143 if (VINSN_UNIQUE_P (vi))
2145 /* We can move jumps without side-effects or jumps that are
2146 mutually exclusive with instruction THROUGH_INSN (all in cases
2147 dependencies allow to do so and jump is not speculative). */
2148 if (control_flow_insn_p (insn))
2150 basic_block fallthru_bb;
2152 /* Do not move checks and do not move jumps through other
2153 jumps. */
2154 if (control_flow_insn_p (through_insn)
2155 || sel_insn_is_speculation_check (insn))
2156 return MOVEUP_EXPR_NULL;
2158 /* Don't move jumps through CFG joins. */
2159 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2160 return MOVEUP_EXPR_NULL;
2162 /* The jump should have a clear fallthru block, and
2163 this block should be in the current region. */
2164 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2165 || ! in_current_region_p (fallthru_bb))
2166 return MOVEUP_EXPR_NULL;
2168 /* And it should be mutually exclusive with through_insn, or
2169 be an unconditional jump. */
2170 if (! any_uncondjump_p (insn)
2171 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2172 && ! DEBUG_INSN_P (through_insn))
2173 return MOVEUP_EXPR_NULL;
2176 /* Don't move what we can't move. */
2177 if (EXPR_CANT_MOVE (expr)
2178 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2179 return MOVEUP_EXPR_NULL;
2181 /* Don't move SCHED_GROUP instruction through anything.
2182 If we don't force this, then it will be possible to start
2183 scheduling a sched_group before all its dependencies are
2184 resolved.
2185 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2186 as late as possible through rank_for_schedule. */
2187 if (SCHED_GROUP_P (insn))
2188 return MOVEUP_EXPR_NULL;
2190 else
2191 gcc_assert (!control_flow_insn_p (insn));
2193 /* Don't move debug insns if this would require bookkeeping. */
2194 if (DEBUG_INSN_P (insn)
2195 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2196 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2197 return MOVEUP_EXPR_NULL;
2199 /* Deal with data dependencies. */
2200 was_target_conflict = false;
2201 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2202 if (full_ds == 0)
2204 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2205 return MOVEUP_EXPR_SAME;
2207 else
2209 /* We can move UNIQUE insn up only as a whole and unchanged,
2210 so it shouldn't have any dependencies. */
2211 if (VINSN_UNIQUE_P (vi))
2212 return MOVEUP_EXPR_NULL;
2215 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2217 int res;
2219 res = speculate_expr (expr, full_ds);
2220 if (res >= 0)
2222 /* Speculation was successful. */
2223 full_ds = 0;
2224 was_changed = (res > 0);
2225 if (res == 2)
2226 was_target_conflict = true;
2227 if (ptrans_type)
2228 *ptrans_type = TRANS_SPECULATION;
2229 sel_clear_has_dependence ();
2233 if (has_dep_p[DEPS_IN_INSN])
2234 /* We have some dependency that cannot be discarded. */
2235 return MOVEUP_EXPR_NULL;
2237 if (has_dep_p[DEPS_IN_LHS])
2239 /* Only separable insns can be moved up with the new register.
2240 Anyways, we should mark that the original register is
2241 unavailable. */
2242 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2243 return MOVEUP_EXPR_NULL;
2245 EXPR_TARGET_AVAILABLE (expr) = false;
2246 was_target_conflict = true;
2247 as_rhs = true;
2250 /* At this point we have either separable insns, that will be lifted
2251 up only as RHSes, or non-separable insns with no dependency in lhs.
2252 If dependency is in RHS, then try to perform substitution and move up
2253 substituted RHS:
2255 Ex. 1: Ex.2
2256 y = x; y = x;
2257 z = y*2; y = y*2;
2259 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2260 moved above y=x assignment as z=x*2.
2262 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2263 side can be moved because of the output dependency. The operation was
2264 cropped to its rhs above. */
2265 if (has_dep_p[DEPS_IN_RHS])
2267 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2269 /* Can't substitute UNIQUE VINSNs. */
2270 gcc_assert (!VINSN_UNIQUE_P (vi));
2272 if (can_speculate_dep_p (*rhs_dsp))
2274 int res;
2276 res = speculate_expr (expr, *rhs_dsp);
2277 if (res >= 0)
2279 /* Speculation was successful. */
2280 *rhs_dsp = 0;
2281 was_changed = (res > 0);
2282 if (res == 2)
2283 was_target_conflict = true;
2284 if (ptrans_type)
2285 *ptrans_type = TRANS_SPECULATION;
2287 else
2288 return MOVEUP_EXPR_NULL;
2290 else if (can_substitute_through_p (through_insn,
2291 *rhs_dsp)
2292 && substitute_reg_in_expr (expr, through_insn, false))
2294 /* ??? We cannot perform substitution AND speculation on the same
2295 insn. */
2296 gcc_assert (!was_changed);
2297 was_changed = true;
2298 if (ptrans_type)
2299 *ptrans_type = TRANS_SUBSTITUTION;
2300 EXPR_WAS_SUBSTITUTED (expr) = true;
2302 else
2303 return MOVEUP_EXPR_NULL;
2306 /* Don't move trapping insns through jumps.
2307 This check should be at the end to give a chance to control speculation
2308 to perform its duties. */
2309 if (CANT_MOVE_TRAPPING (expr, through_insn))
2310 return MOVEUP_EXPR_NULL;
2312 return (was_changed
2313 ? MOVEUP_EXPR_CHANGED
2314 : (as_rhs
2315 ? MOVEUP_EXPR_AS_RHS
2316 : MOVEUP_EXPR_SAME));
2319 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2320 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2321 that can exist within a parallel group. Write to RES the resulting
2322 code for moveup_expr. */
2323 static bool
2324 try_bitmap_cache (expr_t expr, insn_t insn,
2325 bool inside_insn_group,
2326 enum MOVEUP_EXPR_CODE *res)
2328 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2330 /* First check whether we've analyzed this situation already. */
2331 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2333 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2335 if (sched_verbose >= 6)
2336 sel_print ("removed (cached)\n");
2337 *res = MOVEUP_EXPR_NULL;
2338 return true;
2340 else
2342 if (sched_verbose >= 6)
2343 sel_print ("unchanged (cached)\n");
2344 *res = MOVEUP_EXPR_SAME;
2345 return true;
2348 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2350 if (inside_insn_group)
2352 if (sched_verbose >= 6)
2353 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2354 *res = MOVEUP_EXPR_SAME;
2355 return true;
2358 else
2359 EXPR_TARGET_AVAILABLE (expr) = false;
2361 /* This is the only case when propagation result can change over time,
2362 as we can dynamically switch off scheduling as RHS. In this case,
2363 just check the flag to reach the correct decision. */
2364 if (enable_schedule_as_rhs_p)
2366 if (sched_verbose >= 6)
2367 sel_print ("unchanged (as RHS, cached)\n");
2368 *res = MOVEUP_EXPR_AS_RHS;
2369 return true;
2371 else
2373 if (sched_verbose >= 6)
2374 sel_print ("removed (cached as RHS, but renaming"
2375 " is now disabled)\n");
2376 *res = MOVEUP_EXPR_NULL;
2377 return true;
2381 return false;
2384 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2385 if successful. Write to RES the resulting code for moveup_expr. */
2386 static bool
2387 try_transformation_cache (expr_t expr, insn_t insn,
2388 enum MOVEUP_EXPR_CODE *res)
2390 struct transformed_insns *pti
2391 = (struct transformed_insns *)
2392 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2393 &EXPR_VINSN (expr),
2394 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2395 if (pti)
2397 /* This EXPR was already moved through this insn and was
2398 changed as a result. Fetch the proper data from
2399 the hashtable. */
2400 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2401 INSN_UID (insn), pti->type,
2402 pti->vinsn_old, pti->vinsn_new,
2403 EXPR_SPEC_DONE_DS (expr));
2405 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2406 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2407 change_vinsn_in_expr (expr, pti->vinsn_new);
2408 if (pti->was_target_conflict)
2409 EXPR_TARGET_AVAILABLE (expr) = false;
2410 if (pti->type == TRANS_SPECULATION)
2412 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2413 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2416 if (sched_verbose >= 6)
2418 sel_print ("changed (cached): ");
2419 dump_expr (expr);
2420 sel_print ("\n");
2423 *res = MOVEUP_EXPR_CHANGED;
2424 return true;
2427 return false;
2430 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2431 static void
2432 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2433 enum MOVEUP_EXPR_CODE res)
2435 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2437 /* Do not cache result of propagating jumps through an insn group,
2438 as it is always true, which is not useful outside the group. */
2439 if (inside_insn_group)
2440 return;
2442 if (res == MOVEUP_EXPR_NULL)
2444 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2445 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2447 else if (res == MOVEUP_EXPR_SAME)
2449 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2450 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2452 else if (res == MOVEUP_EXPR_AS_RHS)
2454 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2455 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2457 else
2458 gcc_unreachable ();
2461 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2462 and transformation type TRANS_TYPE. */
2463 static void
2464 update_transformation_cache (expr_t expr, insn_t insn,
2465 bool inside_insn_group,
2466 enum local_trans_type trans_type,
2467 vinsn_t expr_old_vinsn)
2469 struct transformed_insns *pti;
2471 if (inside_insn_group)
2472 return;
2474 pti = XNEW (struct transformed_insns);
2475 pti->vinsn_old = expr_old_vinsn;
2476 pti->vinsn_new = EXPR_VINSN (expr);
2477 pti->type = trans_type;
2478 pti->was_target_conflict = was_target_conflict;
2479 pti->ds = EXPR_SPEC_DONE_DS (expr);
2480 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2481 vinsn_attach (pti->vinsn_old);
2482 vinsn_attach (pti->vinsn_new);
2483 *((struct transformed_insns **)
2484 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2485 pti, VINSN_HASH_RTX (expr_old_vinsn),
2486 INSERT)) = pti;
2489 /* Same as moveup_expr, but first looks up the result of
2490 transformation in caches. */
2491 static enum MOVEUP_EXPR_CODE
2492 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2494 enum MOVEUP_EXPR_CODE res;
2495 bool got_answer = false;
2497 if (sched_verbose >= 6)
2499 sel_print ("Moving ");
2500 dump_expr (expr);
2501 sel_print (" through %d: ", INSN_UID (insn));
2504 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2505 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2506 == EXPR_INSN_RTX (expr)))
2507 /* Don't use cached information for debug insns that are heads of
2508 basic blocks. */;
2509 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2510 /* When inside insn group, we do not want remove stores conflicting
2511 with previosly issued loads. */
2512 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2513 else if (try_transformation_cache (expr, insn, &res))
2514 got_answer = true;
2516 if (! got_answer)
2518 /* Invoke moveup_expr and record the results. */
2519 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2520 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2521 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2522 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2523 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2525 /* ??? Invent something better than this. We can't allow old_vinsn
2526 to go, we need it for the history vector. */
2527 vinsn_attach (expr_old_vinsn);
2529 res = moveup_expr (expr, insn, inside_insn_group,
2530 &trans_type);
2531 switch (res)
2533 case MOVEUP_EXPR_NULL:
2534 update_bitmap_cache (expr, insn, inside_insn_group, res);
2535 if (sched_verbose >= 6)
2536 sel_print ("removed\n");
2537 break;
2539 case MOVEUP_EXPR_SAME:
2540 update_bitmap_cache (expr, insn, inside_insn_group, res);
2541 if (sched_verbose >= 6)
2542 sel_print ("unchanged\n");
2543 break;
2545 case MOVEUP_EXPR_AS_RHS:
2546 gcc_assert (!unique_p || inside_insn_group);
2547 update_bitmap_cache (expr, insn, inside_insn_group, res);
2548 if (sched_verbose >= 6)
2549 sel_print ("unchanged (as RHS)\n");
2550 break;
2552 case MOVEUP_EXPR_CHANGED:
2553 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2554 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2555 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2556 INSN_UID (insn), trans_type,
2557 expr_old_vinsn, EXPR_VINSN (expr),
2558 expr_old_spec_ds);
2559 update_transformation_cache (expr, insn, inside_insn_group,
2560 trans_type, expr_old_vinsn);
2561 if (sched_verbose >= 6)
2563 sel_print ("changed: ");
2564 dump_expr (expr);
2565 sel_print ("\n");
2567 break;
2568 default:
2569 gcc_unreachable ();
2572 vinsn_detach (expr_old_vinsn);
2575 return res;
2578 /* Moves an av set AVP up through INSN, performing necessary
2579 transformations. */
2580 static void
2581 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2583 av_set_iterator i;
2584 expr_t expr;
2586 FOR_EACH_EXPR_1 (expr, i, avp)
2589 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2591 case MOVEUP_EXPR_SAME:
2592 case MOVEUP_EXPR_AS_RHS:
2593 break;
2595 case MOVEUP_EXPR_NULL:
2596 av_set_iter_remove (&i);
2597 break;
2599 case MOVEUP_EXPR_CHANGED:
2600 expr = merge_with_other_exprs (avp, &i, expr);
2601 break;
2603 default:
2604 gcc_unreachable ();
2609 /* Moves AVP set along PATH. */
2610 static void
2611 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2613 int last_cycle;
2615 if (sched_verbose >= 6)
2616 sel_print ("Moving expressions up in the insn group...\n");
2617 if (! path)
2618 return;
2619 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2620 while (path
2621 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2623 moveup_set_expr (avp, ILIST_INSN (path), true);
2624 path = ILIST_NEXT (path);
2628 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2629 static bool
2630 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2632 expr_def _tmp, *tmp = &_tmp;
2633 int last_cycle;
2634 bool res = true;
2636 copy_expr_onside (tmp, expr);
2637 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2638 while (path
2639 && res
2640 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2642 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2643 != MOVEUP_EXPR_NULL);
2644 path = ILIST_NEXT (path);
2647 if (res)
2649 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2650 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2652 if (tmp_vinsn != expr_vliw_vinsn)
2653 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2656 clear_expr (tmp);
2657 return res;
2661 /* Functions that compute av and lv sets. */
2663 /* Returns true if INSN is not a downward continuation of the given path P in
2664 the current stage. */
2665 static bool
2666 is_ineligible_successor (insn_t insn, ilist_t p)
2668 insn_t prev_insn;
2670 /* Check if insn is not deleted. */
2671 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2672 gcc_unreachable ();
2673 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2674 gcc_unreachable ();
2676 /* If it's the first insn visited, then the successor is ok. */
2677 if (!p)
2678 return false;
2680 prev_insn = ILIST_INSN (p);
2682 if (/* a backward edge. */
2683 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2684 /* is already visited. */
2685 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2686 && (ilist_is_in_p (p, insn)
2687 /* We can reach another fence here and still seqno of insn
2688 would be equal to seqno of prev_insn. This is possible
2689 when prev_insn is a previously created bookkeeping copy.
2690 In that case it'd get a seqno of insn. Thus, check here
2691 whether insn is in current fence too. */
2692 || IN_CURRENT_FENCE_P (insn)))
2693 /* Was already scheduled on this round. */
2694 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2695 && IN_CURRENT_FENCE_P (insn))
2696 /* An insn from another fence could also be
2697 scheduled earlier even if this insn is not in
2698 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2699 || (!pipelining_p
2700 && INSN_SCHED_TIMES (insn) > 0))
2701 return true;
2702 else
2703 return false;
2706 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2707 of handling multiple successors and properly merging its av_sets. P is
2708 the current path traversed. WS is the size of lookahead window.
2709 Return the av set computed. */
2710 static av_set_t
2711 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2713 struct succs_info *sinfo;
2714 av_set_t expr_in_all_succ_branches = NULL;
2715 int is;
2716 insn_t succ, zero_succ = NULL;
2717 av_set_t av1 = NULL;
2719 gcc_assert (sel_bb_end_p (insn));
2721 /* Find different kind of successors needed for correct computing of
2722 SPEC and TARGET_AVAILABLE attributes. */
2723 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2725 /* Debug output. */
2726 if (sched_verbose >= 6)
2728 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2729 dump_insn_vector (sinfo->succs_ok);
2730 sel_print ("\n");
2731 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2732 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2735 /* Add insn to to the tail of current path. */
2736 ilist_add (&p, insn);
2738 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2740 av_set_t succ_set;
2742 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2743 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2745 av_set_split_usefulness (succ_set,
2746 VEC_index (int, sinfo->probs_ok, is),
2747 sinfo->all_prob);
2749 if (sinfo->all_succs_n > 1)
2751 /* Find EXPR'es that came from *all* successors and save them
2752 into expr_in_all_succ_branches. This set will be used later
2753 for calculating speculation attributes of EXPR'es. */
2754 if (is == 0)
2756 expr_in_all_succ_branches = av_set_copy (succ_set);
2758 /* Remember the first successor for later. */
2759 zero_succ = succ;
2761 else
2763 av_set_iterator i;
2764 expr_t expr;
2766 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2767 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2768 av_set_iter_remove (&i);
2772 /* Union the av_sets. Check liveness restrictions on target registers
2773 in special case of two successors. */
2774 if (sinfo->succs_ok_n == 2 && is == 1)
2776 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2777 basic_block bb1 = BLOCK_FOR_INSN (succ);
2779 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2780 av_set_union_and_live (&av1, &succ_set,
2781 BB_LV_SET (bb0),
2782 BB_LV_SET (bb1),
2783 insn);
2785 else
2786 av_set_union_and_clear (&av1, &succ_set, insn);
2789 /* Check liveness restrictions via hard way when there are more than
2790 two successors. */
2791 if (sinfo->succs_ok_n > 2)
2792 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2794 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2796 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2797 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2798 BB_LV_SET (succ_bb));
2801 /* Finally, check liveness restrictions on paths leaving the region. */
2802 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2803 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
2804 mark_unavailable_targets
2805 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2807 if (sinfo->all_succs_n > 1)
2809 av_set_iterator i;
2810 expr_t expr;
2812 /* Increase the spec attribute of all EXPR'es that didn't come
2813 from all successors. */
2814 FOR_EACH_EXPR (expr, i, av1)
2815 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2816 EXPR_SPEC (expr)++;
2818 av_set_clear (&expr_in_all_succ_branches);
2820 /* Do not move conditional branches through other
2821 conditional branches. So, remove all conditional
2822 branches from av_set if current operator is a conditional
2823 branch. */
2824 av_set_substract_cond_branches (&av1);
2827 ilist_remove (&p);
2828 free_succs_info (sinfo);
2830 if (sched_verbose >= 6)
2832 sel_print ("av_succs (%d): ", INSN_UID (insn));
2833 dump_av_set (av1);
2834 sel_print ("\n");
2837 return av1;
2840 /* This function computes av_set for the FIRST_INSN by dragging valid
2841 av_set through all basic block insns either from the end of basic block
2842 (computed using compute_av_set_at_bb_end) or from the insn on which
2843 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2844 below the basic block and handling conditional branches.
2845 FIRST_INSN - the basic block head, P - path consisting of the insns
2846 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2847 and bb ends are added to the path), WS - current window size,
2848 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2849 static av_set_t
2850 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2851 bool need_copy_p)
2853 insn_t cur_insn;
2854 int end_ws = ws;
2855 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2856 insn_t after_bb_end = NEXT_INSN (bb_end);
2857 insn_t last_insn;
2858 av_set_t av = NULL;
2859 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2861 /* Return NULL if insn is not on the legitimate downward path. */
2862 if (is_ineligible_successor (first_insn, p))
2864 if (sched_verbose >= 6)
2865 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2867 return NULL;
2870 /* If insn already has valid av(insn) computed, just return it. */
2871 if (AV_SET_VALID_P (first_insn))
2873 av_set_t av_set;
2875 if (sel_bb_head_p (first_insn))
2876 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2877 else
2878 av_set = NULL;
2880 if (sched_verbose >= 6)
2882 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2883 dump_av_set (av_set);
2884 sel_print ("\n");
2887 return need_copy_p ? av_set_copy (av_set) : av_set;
2890 ilist_add (&p, first_insn);
2892 /* As the result after this loop have completed, in LAST_INSN we'll
2893 have the insn which has valid av_set to start backward computation
2894 from: it either will be NULL because on it the window size was exceeded
2895 or other valid av_set as returned by compute_av_set for the last insn
2896 of the basic block. */
2897 for (last_insn = first_insn; last_insn != after_bb_end;
2898 last_insn = NEXT_INSN (last_insn))
2900 /* We may encounter valid av_set not only on bb_head, but also on
2901 those insns on which previously MAX_WS was exceeded. */
2902 if (AV_SET_VALID_P (last_insn))
2904 if (sched_verbose >= 6)
2905 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2906 break;
2909 /* The special case: the last insn of the BB may be an
2910 ineligible_successor due to its SEQ_NO that was set on
2911 it as a bookkeeping. */
2912 if (last_insn != first_insn
2913 && is_ineligible_successor (last_insn, p))
2915 if (sched_verbose >= 6)
2916 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2917 break;
2920 if (DEBUG_INSN_P (last_insn))
2921 continue;
2923 if (end_ws > max_ws)
2925 /* We can reach max lookahead size at bb_header, so clean av_set
2926 first. */
2927 INSN_WS_LEVEL (last_insn) = global_level;
2929 if (sched_verbose >= 6)
2930 sel_print ("Insn %d is beyond the software lookahead window size\n",
2931 INSN_UID (last_insn));
2932 break;
2935 end_ws++;
2938 /* Get the valid av_set into AV above the LAST_INSN to start backward
2939 computation from. It either will be empty av_set or av_set computed from
2940 the successors on the last insn of the current bb. */
2941 if (last_insn != after_bb_end)
2943 av = NULL;
2945 /* This is needed only to obtain av_sets that are identical to
2946 those computed by the old compute_av_set version. */
2947 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2948 av_set_add (&av, INSN_EXPR (last_insn));
2950 else
2951 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2952 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2954 /* Compute av_set in AV starting from below the LAST_INSN up to
2955 location above the FIRST_INSN. */
2956 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2957 cur_insn = PREV_INSN (cur_insn))
2958 if (!INSN_NOP_P (cur_insn))
2960 expr_t expr;
2962 moveup_set_expr (&av, cur_insn, false);
2964 /* If the expression for CUR_INSN is already in the set,
2965 replace it by the new one. */
2966 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2967 if (expr != NULL)
2969 clear_expr (expr);
2970 copy_expr (expr, INSN_EXPR (cur_insn));
2972 else
2973 av_set_add (&av, INSN_EXPR (cur_insn));
2976 /* Clear stale bb_av_set. */
2977 if (sel_bb_head_p (first_insn))
2979 av_set_clear (&BB_AV_SET (cur_bb));
2980 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2981 BB_AV_LEVEL (cur_bb) = global_level;
2984 if (sched_verbose >= 6)
2986 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2987 dump_av_set (av);
2988 sel_print ("\n");
2991 ilist_remove (&p);
2992 return av;
2995 /* Compute av set before INSN.
2996 INSN - the current operation (actual rtx INSN)
2997 P - the current path, which is list of insns visited so far
2998 WS - software lookahead window size.
2999 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3000 if we want to save computed av_set in s_i_d, we should make a copy of it.
3002 In the resulting set we will have only expressions that don't have delay
3003 stalls and nonsubstitutable dependences. */
3004 static av_set_t
3005 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3007 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3010 /* Propagate a liveness set LV through INSN. */
3011 static void
3012 propagate_lv_set (regset lv, insn_t insn)
3014 gcc_assert (INSN_P (insn));
3016 if (INSN_NOP_P (insn))
3017 return;
3019 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3022 /* Return livness set at the end of BB. */
3023 static regset
3024 compute_live_after_bb (basic_block bb)
3026 edge e;
3027 edge_iterator ei;
3028 regset lv = get_clear_regset_from_pool ();
3030 gcc_assert (!ignore_first);
3032 FOR_EACH_EDGE (e, ei, bb->succs)
3033 if (sel_bb_empty_p (e->dest))
3035 if (! BB_LV_SET_VALID_P (e->dest))
3037 gcc_unreachable ();
3038 gcc_assert (BB_LV_SET (e->dest) == NULL);
3039 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3040 BB_LV_SET_VALID_P (e->dest) = true;
3042 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3044 else
3045 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3047 return lv;
3050 /* Compute the set of all live registers at the point before INSN and save
3051 it at INSN if INSN is bb header. */
3052 regset
3053 compute_live (insn_t insn)
3055 basic_block bb = BLOCK_FOR_INSN (insn);
3056 insn_t final, temp;
3057 regset lv;
3059 /* Return the valid set if we're already on it. */
3060 if (!ignore_first)
3062 regset src = NULL;
3064 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3065 src = BB_LV_SET (bb);
3066 else
3068 gcc_assert (in_current_region_p (bb));
3069 if (INSN_LIVE_VALID_P (insn))
3070 src = INSN_LIVE (insn);
3073 if (src)
3075 lv = get_regset_from_pool ();
3076 COPY_REG_SET (lv, src);
3078 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3080 COPY_REG_SET (BB_LV_SET (bb), lv);
3081 BB_LV_SET_VALID_P (bb) = true;
3084 return_regset_to_pool (lv);
3085 return lv;
3089 /* We've skipped the wrong lv_set. Don't skip the right one. */
3090 ignore_first = false;
3091 gcc_assert (in_current_region_p (bb));
3093 /* Find a valid LV set in this block or below, if needed.
3094 Start searching from the next insn: either ignore_first is true, or
3095 INSN doesn't have a correct live set. */
3096 temp = NEXT_INSN (insn);
3097 final = NEXT_INSN (BB_END (bb));
3098 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3099 temp = NEXT_INSN (temp);
3100 if (temp == final)
3102 lv = compute_live_after_bb (bb);
3103 temp = PREV_INSN (temp);
3105 else
3107 lv = get_regset_from_pool ();
3108 COPY_REG_SET (lv, INSN_LIVE (temp));
3111 /* Put correct lv sets on the insns which have bad sets. */
3112 final = PREV_INSN (insn);
3113 while (temp != final)
3115 propagate_lv_set (lv, temp);
3116 COPY_REG_SET (INSN_LIVE (temp), lv);
3117 INSN_LIVE_VALID_P (temp) = true;
3118 temp = PREV_INSN (temp);
3121 /* Also put it in a BB. */
3122 if (sel_bb_head_p (insn))
3124 basic_block bb = BLOCK_FOR_INSN (insn);
3126 COPY_REG_SET (BB_LV_SET (bb), lv);
3127 BB_LV_SET_VALID_P (bb) = true;
3130 /* We return LV to the pool, but will not clear it there. Thus we can
3131 legimatelly use LV till the next use of regset_pool_get (). */
3132 return_regset_to_pool (lv);
3133 return lv;
3136 /* Update liveness sets for INSN. */
3137 static inline void
3138 update_liveness_on_insn (rtx insn)
3140 ignore_first = true;
3141 compute_live (insn);
3144 /* Compute liveness below INSN and write it into REGS. */
3145 static inline void
3146 compute_live_below_insn (rtx insn, regset regs)
3148 rtx succ;
3149 succ_iterator si;
3151 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3152 IOR_REG_SET (regs, compute_live (succ));
3155 /* Update the data gathered in av and lv sets starting from INSN. */
3156 static void
3157 update_data_sets (rtx insn)
3159 update_liveness_on_insn (insn);
3160 if (sel_bb_head_p (insn))
3162 gcc_assert (AV_LEVEL (insn) != 0);
3163 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3164 compute_av_set (insn, NULL, 0, 0);
3169 /* Helper for move_op () and find_used_regs ().
3170 Return speculation type for which a check should be created on the place
3171 of INSN. EXPR is one of the original ops we are searching for. */
3172 static ds_t
3173 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3175 ds_t to_check_ds;
3176 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3178 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3180 if (targetm.sched.get_insn_checked_ds)
3181 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3183 if (spec_info != NULL
3184 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3185 already_checked_ds |= BEGIN_CONTROL;
3187 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3189 to_check_ds &= ~already_checked_ds;
3191 return to_check_ds;
3194 /* Find the set of registers that are unavailable for storing expres
3195 while moving ORIG_OPS up on the path starting from INSN due to
3196 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3198 All the original operations found during the traversal are saved in the
3199 ORIGINAL_INSNS list.
3201 REG_RENAME_P denotes the set of hardware registers that
3202 can not be used with renaming due to the register class restrictions,
3203 mode restrictions and other (the register we'll choose should be
3204 compatible class with the original uses, shouldn't be in call_used_regs,
3205 should be HARD_REGNO_RENAME_OK etc).
3207 Returns TRUE if we've found all original insns, FALSE otherwise.
3209 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3210 to traverse the code motion paths. This helper function finds registers
3211 that are not available for storing expres while moving ORIG_OPS up on the
3212 path starting from INSN. A register considered as used on the moving path,
3213 if one of the following conditions is not satisfied:
3215 (1) a register not set or read on any path from xi to an instance of
3216 the original operation,
3217 (2) not among the live registers of the point immediately following the
3218 first original operation on a given downward path, except for the
3219 original target register of the operation,
3220 (3) not live on the other path of any conditional branch that is passed
3221 by the operation, in case original operations are not present on
3222 both paths of the conditional branch.
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3227 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3228 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3229 to unavailable hard regs at the point original operation is found. */
3231 static bool
3232 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3233 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3235 def_list_iterator i;
3236 def_t def;
3237 int res;
3238 bool needs_spec_check_p = false;
3239 expr_t expr;
3240 av_set_iterator expr_iter;
3241 struct fur_static_params sparams;
3242 struct cmpd_local_params lparams;
3244 /* We haven't visited any blocks yet. */
3245 bitmap_clear (code_motion_visited_blocks);
3247 /* Init parameters for code_motion_path_driver. */
3248 sparams.crosses_call = false;
3249 sparams.original_insns = original_insns;
3250 sparams.used_regs = used_regs;
3252 /* Set the appropriate hooks and data. */
3253 code_motion_path_driver_info = &fur_hooks;
3255 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3257 reg_rename_p->crosses_call |= sparams.crosses_call;
3259 gcc_assert (res == 1);
3260 gcc_assert (original_insns && *original_insns);
3262 /* ??? We calculate whether an expression needs a check when computing
3263 av sets. This information is not as precise as it could be due to
3264 merging this bit in merge_expr. We can do better in find_used_regs,
3265 but we want to avoid multiple traversals of the same code motion
3266 paths. */
3267 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3268 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3270 /* Mark hardware regs in REG_RENAME_P that are not suitable
3271 for renaming expr in INSN due to hardware restrictions (register class,
3272 modes compatibility etc). */
3273 FOR_EACH_DEF (def, i, *original_insns)
3275 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3277 if (VINSN_SEPARABLE_P (vinsn))
3278 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3280 /* Do not allow clobbering of ld.[sa] address in case some of the
3281 original operations need a check. */
3282 if (needs_spec_check_p)
3283 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3286 return true;
3290 /* Functions to choose the best insn from available ones. */
3292 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3293 static int
3294 sel_target_adjust_priority (expr_t expr)
3296 int priority = EXPR_PRIORITY (expr);
3297 int new_priority;
3299 if (targetm.sched.adjust_priority)
3300 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3301 else
3302 new_priority = priority;
3304 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3305 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3307 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3309 if (sched_verbose >= 4)
3310 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3311 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3312 EXPR_PRIORITY_ADJ (expr), new_priority);
3314 return new_priority;
3317 /* Rank two available exprs for schedule. Never return 0 here. */
3318 static int
3319 sel_rank_for_schedule (const void *x, const void *y)
3321 expr_t tmp = *(const expr_t *) y;
3322 expr_t tmp2 = *(const expr_t *) x;
3323 insn_t tmp_insn, tmp2_insn;
3324 vinsn_t tmp_vinsn, tmp2_vinsn;
3325 int val;
3327 tmp_vinsn = EXPR_VINSN (tmp);
3328 tmp2_vinsn = EXPR_VINSN (tmp2);
3329 tmp_insn = EXPR_INSN_RTX (tmp);
3330 tmp2_insn = EXPR_INSN_RTX (tmp2);
3332 /* Schedule debug insns as early as possible. */
3333 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3334 return -1;
3335 else if (DEBUG_INSN_P (tmp2_insn))
3336 return 1;
3338 /* Prefer SCHED_GROUP_P insns to any others. */
3339 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3341 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3342 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3344 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3345 cannot be cloned. */
3346 if (VINSN_UNIQUE_P (tmp2_vinsn))
3347 return 1;
3348 return -1;
3351 /* Discourage scheduling of speculative checks. */
3352 val = (sel_insn_is_speculation_check (tmp_insn)
3353 - sel_insn_is_speculation_check (tmp2_insn));
3354 if (val)
3355 return val;
3357 /* Prefer not scheduled insn over scheduled one. */
3358 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3360 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3361 if (val)
3362 return val;
3365 /* Prefer jump over non-jump instruction. */
3366 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3367 return -1;
3368 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3369 return 1;
3371 /* Prefer an expr with greater priority. */
3372 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3374 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3375 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3377 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3379 else
3380 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3381 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3382 if (val)
3383 return val;
3385 if (spec_info != NULL && spec_info->mask != 0)
3386 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3388 ds_t ds1, ds2;
3389 dw_t dw1, dw2;
3390 int dw;
3392 ds1 = EXPR_SPEC_DONE_DS (tmp);
3393 if (ds1)
3394 dw1 = ds_weak (ds1);
3395 else
3396 dw1 = NO_DEP_WEAK;
3398 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3399 if (ds2)
3400 dw2 = ds_weak (ds2);
3401 else
3402 dw2 = NO_DEP_WEAK;
3404 dw = dw2 - dw1;
3405 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3406 return dw;
3409 /* Prefer an old insn to a bookkeeping insn. */
3410 if (INSN_UID (tmp_insn) < first_emitted_uid
3411 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3412 return -1;
3413 if (INSN_UID (tmp_insn) >= first_emitted_uid
3414 && INSN_UID (tmp2_insn) < first_emitted_uid)
3415 return 1;
3417 /* Prefer an insn with smaller UID, as a last resort.
3418 We can't safely use INSN_LUID as it is defined only for those insns
3419 that are in the stream. */
3420 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3423 /* Filter out expressions from av set pointed to by AV_PTR
3424 that are pipelined too many times. */
3425 static void
3426 process_pipelined_exprs (av_set_t *av_ptr)
3428 expr_t expr;
3429 av_set_iterator si;
3431 /* Don't pipeline already pipelined code as that would increase
3432 number of unnecessary register moves. */
3433 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3435 if (EXPR_SCHED_TIMES (expr)
3436 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3437 av_set_iter_remove (&si);
3441 /* Filter speculative insns from AV_PTR if we don't want them. */
3442 static void
3443 process_spec_exprs (av_set_t *av_ptr)
3445 bool try_data_p = true;
3446 bool try_control_p = true;
3447 expr_t expr;
3448 av_set_iterator si;
3450 if (spec_info == NULL)
3451 return;
3453 /* Scan *AV_PTR to find out if we want to consider speculative
3454 instructions for scheduling. */
3455 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3457 ds_t ds;
3459 ds = EXPR_SPEC_DONE_DS (expr);
3461 /* The probability of a success is too low - don't speculate. */
3462 if ((ds & SPECULATIVE)
3463 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3464 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3465 || (pipelining_p && false
3466 && (ds & DATA_SPEC)
3467 && (ds & CONTROL_SPEC))))
3469 av_set_iter_remove (&si);
3470 continue;
3473 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3474 && !(ds & BEGIN_DATA))
3475 try_data_p = false;
3477 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3478 && !(ds & BEGIN_CONTROL))
3479 try_control_p = false;
3482 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3484 ds_t ds;
3486 ds = EXPR_SPEC_DONE_DS (expr);
3488 if (ds & SPECULATIVE)
3490 if ((ds & BEGIN_DATA) && !try_data_p)
3491 /* We don't want any data speculative instructions right
3492 now. */
3493 av_set_iter_remove (&si);
3495 if ((ds & BEGIN_CONTROL) && !try_control_p)
3496 /* We don't want any control speculative instructions right
3497 now. */
3498 av_set_iter_remove (&si);
3503 /* Search for any use-like insns in AV_PTR and decide on scheduling
3504 them. Return one when found, and NULL otherwise.
3505 Note that we check here whether a USE could be scheduled to avoid
3506 an infinite loop later. */
3507 static expr_t
3508 process_use_exprs (av_set_t *av_ptr)
3510 expr_t expr;
3511 av_set_iterator si;
3512 bool uses_present_p = false;
3513 bool try_uses_p = true;
3515 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 /* This will also initialize INSN_CODE for later use. */
3518 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3520 /* If we have a USE in *AV_PTR that was not scheduled yet,
3521 do so because it will do good only. */
3522 if (EXPR_SCHED_TIMES (expr) <= 0)
3524 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3525 return expr;
3527 av_set_iter_remove (&si);
3529 else
3531 gcc_assert (pipelining_p);
3533 uses_present_p = true;
3536 else
3537 try_uses_p = false;
3540 if (uses_present_p)
3542 /* If we don't want to schedule any USEs right now and we have some
3543 in *AV_PTR, remove them, else just return the first one found. */
3544 if (!try_uses_p)
3546 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3547 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3548 av_set_iter_remove (&si);
3550 else
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3554 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3556 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3557 return expr;
3559 av_set_iter_remove (&si);
3564 return NULL;
3567 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3568 static bool
3569 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3571 vinsn_t vinsn;
3572 int n;
3574 for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
3575 if (VINSN_SEPARABLE_P (vinsn))
3577 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3578 return true;
3580 else
3582 /* For non-separable instructions, the blocking insn can have
3583 another pattern due to substitution, and we can't choose
3584 different register as in the above case. Check all registers
3585 being written instead. */
3586 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3587 VINSN_REG_SETS (EXPR_VINSN (expr))))
3588 return true;
3591 return false;
3594 #ifdef ENABLE_CHECKING
3595 /* Return true if either of expressions from ORIG_OPS can be blocked
3596 by previously created bookkeeping code. STATIC_PARAMS points to static
3597 parameters of move_op. */
3598 static bool
3599 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3601 expr_t expr;
3602 av_set_iterator iter;
3603 moveop_static_params_p sparams;
3605 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3606 created while scheduling on another fence. */
3607 FOR_EACH_EXPR (expr, iter, orig_ops)
3608 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3609 return true;
3611 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3612 sparams = (moveop_static_params_p) static_params;
3614 /* Expressions can be also blocked by bookkeeping created during current
3615 move_op. */
3616 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3617 FOR_EACH_EXPR (expr, iter, orig_ops)
3618 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3619 return true;
3621 /* Expressions in ORIG_OPS may have wrong destination register due to
3622 renaming. Check with the right register instead. */
3623 if (sparams->dest && REG_P (sparams->dest))
3625 unsigned regno = REGNO (sparams->dest);
3626 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3628 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3629 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3630 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3631 return true;
3634 return false;
3636 #endif
3638 /* Clear VINSN_VEC and detach vinsns. */
3639 static void
3640 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3642 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3643 if (len > 0)
3645 vinsn_t vinsn;
3646 int n;
3648 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3649 vinsn_detach (vinsn);
3650 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654 /* Add the vinsn of EXPR to the VINSN_VEC. */
3655 static void
3656 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3658 vinsn_attach (EXPR_VINSN (expr));
3659 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3662 /* Free the vector representing blocked expressions. */
3663 static void
3664 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3666 if (*vinsn_vec)
3667 VEC_free (vinsn_t, heap, *vinsn_vec);
3670 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3672 void sel_add_to_insn_priority (rtx insn, int amount)
3674 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3676 if (sched_verbose >= 2)
3677 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3678 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3679 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3682 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3683 true if there is something to schedule. BNDS and FENCE are current
3684 boundaries and fence, respectively. If we need to stall for some cycles
3685 before an expr from AV would become available, write this number to
3686 *PNEED_STALL. */
3687 static bool
3688 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3689 int *pneed_stall)
3691 av_set_iterator si;
3692 expr_t expr;
3693 int sched_next_worked = 0, stalled, n;
3694 static int av_max_prio, est_ticks_till_branch;
3695 int min_need_stall = -1;
3696 deps_t dc = BND_DC (BLIST_BND (bnds));
3698 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3699 already scheduled. */
3700 if (av == NULL)
3701 return false;
3703 /* Empty vector from the previous stuff. */
3704 if (VEC_length (expr_t, vec_av_set) > 0)
3705 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3707 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3708 for each insn. */
3709 gcc_assert (VEC_empty (expr_t, vec_av_set));
3710 FOR_EACH_EXPR (expr, si, av)
3712 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3714 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3716 /* Adjust priority using target backend hook. */
3717 sel_target_adjust_priority (expr);
3720 /* Sort the vector. */
3721 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3722 sizeof (expr_t), sel_rank_for_schedule);
3724 /* We record maximal priority of insns in av set for current instruction
3725 group. */
3726 if (FENCE_STARTS_CYCLE_P (fence))
3727 av_max_prio = est_ticks_till_branch = INT_MIN;
3729 /* Filter out inappropriate expressions. Loop's direction is reversed to
3730 visit "best" instructions first. We assume that VEC_unordered_remove
3731 moves last element in place of one being deleted. */
3732 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3734 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3735 insn_t insn = EXPR_INSN_RTX (expr);
3736 char target_available;
3737 bool is_orig_reg_p = true;
3738 int need_cycles, new_prio;
3740 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3741 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3743 VEC_unordered_remove (expr_t, vec_av_set, n);
3744 continue;
3747 /* Set number of sched_next insns (just in case there
3748 could be several). */
3749 if (FENCE_SCHED_NEXT (fence))
3750 sched_next_worked++;
3752 /* Check all liveness requirements and try renaming.
3753 FIXME: try to minimize calls to this. */
3754 target_available = EXPR_TARGET_AVAILABLE (expr);
3756 /* If insn was already scheduled on the current fence,
3757 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3758 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3759 target_available = -1;
3761 /* If the availability of the EXPR is invalidated by the insertion of
3762 bookkeeping earlier, make sure that we won't choose this expr for
3763 scheduling if it's not separable, and if it is separable, then
3764 we have to recompute the set of available registers for it. */
3765 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3767 VEC_unordered_remove (expr_t, vec_av_set, n);
3768 if (sched_verbose >= 4)
3769 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3770 INSN_UID (insn));
3771 continue;
3774 if (target_available == true)
3776 /* Do nothing -- we can use an existing register. */
3777 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3779 else if (/* Non-separable instruction will never
3780 get another register. */
3781 (target_available == false
3782 && !EXPR_SEPARABLE_P (expr))
3783 /* Don't try to find a register for low-priority expression. */
3784 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3785 /* ??? FIXME: Don't try to rename data speculation. */
3786 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3787 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3789 VEC_unordered_remove (expr_t, vec_av_set, n);
3790 if (sched_verbose >= 4)
3791 sel_print ("Expr %d has no suitable target register\n",
3792 INSN_UID (insn));
3793 continue;
3796 /* Filter expressions that need to be renamed or speculated when
3797 pipelining, because compensating register copies or speculation
3798 checks are likely to be placed near the beginning of the loop,
3799 causing a stall. */
3800 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3801 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3803 /* Estimation of number of cycles until loop branch for
3804 renaming/speculation to be successful. */
3805 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3807 if ((int) current_loop_nest->ninsns < 9)
3809 VEC_unordered_remove (expr_t, vec_av_set, n);
3810 if (sched_verbose >= 4)
3811 sel_print ("Pipelining expr %d will likely cause stall\n",
3812 INSN_UID (insn));
3813 continue;
3816 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3817 < need_n_ticks_till_branch * issue_rate / 2
3818 && est_ticks_till_branch < need_n_ticks_till_branch)
3820 VEC_unordered_remove (expr_t, vec_av_set, n);
3821 if (sched_verbose >= 4)
3822 sel_print ("Pipelining expr %d will likely cause stall\n",
3823 INSN_UID (insn));
3824 continue;
3828 /* We want to schedule speculation checks as late as possible. Discard
3829 them from av set if there are instructions with higher priority. */
3830 if (sel_insn_is_speculation_check (insn)
3831 && EXPR_PRIORITY (expr) < av_max_prio)
3833 stalled++;
3834 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3835 VEC_unordered_remove (expr_t, vec_av_set, n);
3836 if (sched_verbose >= 4)
3837 sel_print ("Delaying speculation check %d until its first use\n",
3838 INSN_UID (insn));
3839 continue;
3842 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3843 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3844 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3846 /* Don't allow any insns whose data is not yet ready.
3847 Check first whether we've already tried them and failed. */
3848 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3850 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3851 - FENCE_CYCLE (fence));
3852 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3853 est_ticks_till_branch = MAX (est_ticks_till_branch,
3854 EXPR_PRIORITY (expr) + need_cycles);
3856 if (need_cycles > 0)
3858 stalled++;
3859 min_need_stall = (min_need_stall < 0
3860 ? need_cycles
3861 : MIN (min_need_stall, need_cycles));
3862 VEC_unordered_remove (expr_t, vec_av_set, n);
3864 if (sched_verbose >= 4)
3865 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3866 INSN_UID (insn),
3867 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3868 continue;
3872 /* Now resort to dependence analysis to find whether EXPR might be
3873 stalled due to dependencies from FENCE's context. */
3874 need_cycles = tick_check_p (expr, dc, fence);
3875 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3877 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3878 est_ticks_till_branch = MAX (est_ticks_till_branch,
3879 new_prio);
3881 if (need_cycles > 0)
3883 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3885 int new_size = INSN_UID (insn) * 3 / 2;
3887 FENCE_READY_TICKS (fence)
3888 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3889 new_size, FENCE_READY_TICKS_SIZE (fence),
3890 sizeof (int));
3892 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3893 = FENCE_CYCLE (fence) + need_cycles;
3895 stalled++;
3896 min_need_stall = (min_need_stall < 0
3897 ? need_cycles
3898 : MIN (min_need_stall, need_cycles));
3900 VEC_unordered_remove (expr_t, vec_av_set, n);
3902 if (sched_verbose >= 4)
3903 sel_print ("Expr %d is not ready yet until cycle %d\n",
3904 INSN_UID (insn),
3905 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3906 continue;
3909 if (sched_verbose >= 4)
3910 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3911 min_need_stall = 0;
3914 /* Clear SCHED_NEXT. */
3915 if (FENCE_SCHED_NEXT (fence))
3917 gcc_assert (sched_next_worked == 1);
3918 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3921 /* No need to stall if this variable was not initialized. */
3922 if (min_need_stall < 0)
3923 min_need_stall = 0;
3925 if (VEC_empty (expr_t, vec_av_set))
3927 /* We need to set *pneed_stall here, because later we skip this code
3928 when ready list is empty. */
3929 *pneed_stall = min_need_stall;
3930 return false;
3932 else
3933 gcc_assert (min_need_stall == 0);
3935 /* Sort the vector. */
3936 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3937 sizeof (expr_t), sel_rank_for_schedule);
3939 if (sched_verbose >= 4)
3941 sel_print ("Total ready exprs: %d, stalled: %d\n",
3942 VEC_length (expr_t, vec_av_set), stalled);
3943 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3944 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3945 dump_expr (expr);
3946 sel_print ("\n");
3949 *pneed_stall = 0;
3950 return true;
3953 /* Convert a vectored and sorted av set to the ready list that
3954 the rest of the backend wants to see. */
3955 static void
3956 convert_vec_av_set_to_ready (void)
3958 int n;
3959 expr_t expr;
3961 /* Allocate and fill the ready list from the sorted vector. */
3962 ready.n_ready = VEC_length (expr_t, vec_av_set);
3963 ready.first = ready.n_ready - 1;
3965 gcc_assert (ready.n_ready > 0);
3967 if (ready.n_ready > max_issue_size)
3969 max_issue_size = ready.n_ready;
3970 sched_extend_ready_list (ready.n_ready);
3973 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3975 vinsn_t vi = EXPR_VINSN (expr);
3976 insn_t insn = VINSN_INSN_RTX (vi);
3978 ready_try[n] = 0;
3979 ready.vec[n] = insn;
3983 /* Initialize ready list from *AV_PTR for the max_issue () call.
3984 If any unrecognizable insn found in *AV_PTR, return it (and skip
3985 max_issue). BND and FENCE are current boundary and fence,
3986 respectively. If we need to stall for some cycles before an expr
3987 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3988 static expr_t
3989 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3990 int *pneed_stall)
3992 expr_t expr;
3994 /* We do not support multiple boundaries per fence. */
3995 gcc_assert (BLIST_NEXT (bnds) == NULL);
3997 /* Process expressions required special handling, i.e. pipelined,
3998 speculative and recog() < 0 expressions first. */
3999 process_pipelined_exprs (av_ptr);
4000 process_spec_exprs (av_ptr);
4002 /* A USE could be scheduled immediately. */
4003 expr = process_use_exprs (av_ptr);
4004 if (expr)
4006 *pneed_stall = 0;
4007 return expr;
4010 /* Turn the av set to a vector for sorting. */
4011 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013 ready.n_ready = 0;
4014 return NULL;
4017 /* Build the final ready list. */
4018 convert_vec_av_set_to_ready ();
4019 return NULL;
4022 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4023 static bool
4024 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4027 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4028 : FENCE_CYCLE (fence) - 1;
4029 bool res = false;
4030 int sort_p = 0;
4032 if (!targetm.sched.dfa_new_cycle)
4033 return false;
4035 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4038 insn, last_scheduled_cycle,
4039 FENCE_CYCLE (fence), &sort_p))
4041 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4042 advance_one_cycle (fence);
4043 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4044 res = true;
4047 return res;
4050 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4051 we can issue. FENCE is the current fence. */
4052 static int
4053 invoke_reorder_hooks (fence_t fence)
4055 int issue_more;
4056 bool ran_hook = false;
4058 /* Call the reorder hook at the beginning of the cycle, and call
4059 the reorder2 hook in the middle of the cycle. */
4060 if (FENCE_ISSUED_INSNS (fence) == 0)
4062 if (targetm.sched.reorder
4063 && !SCHED_GROUP_P (ready_element (&ready, 0))
4064 && ready.n_ready > 1)
4066 /* Don't give reorder the most prioritized insn as it can break
4067 pipelining. */
4068 if (pipelining_p)
4069 --ready.n_ready;
4071 issue_more
4072 = targetm.sched.reorder (sched_dump, sched_verbose,
4073 ready_lastpos (&ready),
4074 &ready.n_ready, FENCE_CYCLE (fence));
4076 if (pipelining_p)
4077 ++ready.n_ready;
4079 ran_hook = true;
4081 else
4082 /* Initialize can_issue_more for variable_issue. */
4083 issue_more = issue_rate;
4085 else if (targetm.sched.reorder2
4086 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088 if (ready.n_ready == 1)
4089 issue_more =
4090 targetm.sched.reorder2 (sched_dump, sched_verbose,
4091 ready_lastpos (&ready),
4092 &ready.n_ready, FENCE_CYCLE (fence));
4093 else
4095 if (pipelining_p)
4096 --ready.n_ready;
4098 issue_more =
4099 targetm.sched.reorder2 (sched_dump, sched_verbose,
4100 ready.n_ready
4101 ? ready_lastpos (&ready) : NULL,
4102 &ready.n_ready, FENCE_CYCLE (fence));
4104 if (pipelining_p)
4105 ++ready.n_ready;
4108 ran_hook = true;
4110 else
4111 issue_more = FENCE_ISSUE_MORE (fence);
4113 /* Ensure that ready list and vec_av_set are in line with each other,
4114 i.e. vec_av_set[i] == ready_element (&ready, i). */
4115 if (issue_more && ran_hook)
4117 int i, j, n;
4118 rtx *arr = ready.vec;
4119 expr_t *vec = VEC_address (expr_t, vec_av_set);
4121 for (i = 0, n = ready.n_ready; i < n; i++)
4122 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124 expr_t tmp;
4126 for (j = i; j < n; j++)
4127 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4128 break;
4129 gcc_assert (j < n);
4131 tmp = vec[i];
4132 vec[i] = vec[j];
4133 vec[j] = tmp;
4137 return issue_more;
4140 /* Return an EXPR correponding to INDEX element of ready list, if
4141 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4142 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4143 ready.vec otherwise. */
4144 static inline expr_t
4145 find_expr_for_ready (int index, bool follow_ready_element)
4147 expr_t expr;
4148 int real_index;
4150 real_index = follow_ready_element ? ready.first - index : index;
4152 expr = VEC_index (expr_t, vec_av_set, real_index);
4153 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155 return expr;
4158 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4159 of such insns found. */
4160 static int
4161 invoke_dfa_lookahead_guard (void)
4163 int i, n;
4164 bool have_hook
4165 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167 if (sched_verbose >= 2)
4168 sel_print ("ready after reorder: ");
4170 for (i = 0, n = 0; i < ready.n_ready; i++)
4172 expr_t expr;
4173 insn_t insn;
4174 int r;
4176 /* In this loop insn is Ith element of the ready list given by
4177 ready_element, not Ith element of ready.vec. */
4178 insn = ready_element (&ready, i);
4180 if (! have_hook || i == 0)
4181 r = 0;
4182 else
4183 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4185 gcc_assert (INSN_CODE (insn) >= 0);
4187 /* Only insns with ready_try = 0 can get here
4188 from fill_ready_list. */
4189 gcc_assert (ready_try [i] == 0);
4190 ready_try[i] = r;
4191 if (!r)
4192 n++;
4194 expr = find_expr_for_ready (i, true);
4196 if (sched_verbose >= 2)
4198 dump_vinsn (EXPR_VINSN (expr));
4199 sel_print (":%d; ", ready_try[i]);
4203 if (sched_verbose >= 2)
4204 sel_print ("\n");
4205 return n;
4208 /* Calculate the number of privileged insns and return it. */
4209 static int
4210 calculate_privileged_insns (void)
4212 expr_t cur_expr, min_spec_expr = NULL;
4213 int privileged_n = 0, i;
4215 for (i = 0; i < ready.n_ready; i++)
4217 if (ready_try[i])
4218 continue;
4220 if (! min_spec_expr)
4221 min_spec_expr = find_expr_for_ready (i, true);
4223 cur_expr = find_expr_for_ready (i, true);
4225 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4226 break;
4228 ++privileged_n;
4231 if (i == ready.n_ready)
4232 privileged_n = 0;
4234 if (sched_verbose >= 2)
4235 sel_print ("privileged_n: %d insns with SPEC %d\n",
4236 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4237 return privileged_n;
4240 /* Call the rest of the hooks after the choice was made. Return
4241 the number of insns that still can be issued given that the current
4242 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4243 and the insn chosen for scheduling, respectively. */
4244 static int
4245 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247 gcc_assert (INSN_P (best_insn));
4249 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4250 sel_dfa_new_cycle (best_insn, fence);
4252 if (targetm.sched.variable_issue)
4254 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4255 issue_more =
4256 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4257 issue_more);
4258 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 else if (GET_CODE (PATTERN (best_insn)) != USE
4261 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4262 issue_more--;
4264 return issue_more;
4267 /* Estimate the cost of issuing INSN on DFA state STATE. */
4268 static int
4269 estimate_insn_cost (rtx insn, state_t state)
4271 static state_t temp = NULL;
4272 int cost;
4274 if (!temp)
4275 temp = xmalloc (dfa_state_size);
4277 memcpy (temp, state, dfa_state_size);
4278 cost = state_transition (temp, insn);
4280 if (cost < 0)
4281 return 0;
4282 else if (cost == 0)
4283 return 1;
4284 return cost;
4287 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4288 This function properly handles ASMs, USEs etc. */
4289 static int
4290 get_expr_cost (expr_t expr, fence_t fence)
4292 rtx insn = EXPR_INSN_RTX (expr);
4294 if (recog_memoized (insn) < 0)
4296 if (!FENCE_STARTS_CYCLE_P (fence)
4297 && INSN_ASM_P (insn))
4298 /* This is asm insn which is tryed to be issued on the
4299 cycle not first. Issue it on the next cycle. */
4300 return 1;
4301 else
4302 /* A USE insn, or something else we don't need to
4303 understand. We can't pass these directly to
4304 state_transition because it will trigger a
4305 fatal error for unrecognizable insns. */
4306 return 0;
4308 else
4309 return estimate_insn_cost (insn, FENCE_STATE (fence));
4312 /* Find the best insn for scheduling, either via max_issue or just take
4313 the most prioritized available. */
4314 static int
4315 choose_best_insn (fence_t fence, int privileged_n, int *index)
4317 int can_issue = 0;
4319 if (dfa_lookahead > 0)
4321 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4322 can_issue = max_issue (&ready, privileged_n,
4323 FENCE_STATE (fence), index);
4324 if (sched_verbose >= 2)
4325 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4326 can_issue, FENCE_ISSUED_INSNS (fence));
4328 else
4330 /* We can't use max_issue; just return the first available element. */
4331 int i;
4333 for (i = 0; i < ready.n_ready; i++)
4335 expr_t expr = find_expr_for_ready (i, true);
4337 if (get_expr_cost (expr, fence) < 1)
4339 can_issue = can_issue_more;
4340 *index = i;
4342 if (sched_verbose >= 2)
4343 sel_print ("using %dth insn from the ready list\n", i + 1);
4345 break;
4349 if (i == ready.n_ready)
4351 can_issue = 0;
4352 *index = -1;
4356 return can_issue;
4359 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4360 BNDS and FENCE are current boundaries and scheduling fence respectively.
4361 Return the expr found and NULL if nothing can be issued atm.
4362 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4363 static expr_t
4364 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4365 int *pneed_stall)
4367 expr_t best;
4369 /* Choose the best insn for scheduling via:
4370 1) sorting the ready list based on priority;
4371 2) calling the reorder hook;
4372 3) calling max_issue. */
4373 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4374 if (best == NULL && ready.n_ready > 0)
4376 int privileged_n, index;
4378 can_issue_more = invoke_reorder_hooks (fence);
4379 if (can_issue_more > 0)
4381 /* Try choosing the best insn until we find one that is could be
4382 scheduled due to liveness restrictions on its destination register.
4383 In the future, we'd like to choose once and then just probe insns
4384 in the order of their priority. */
4385 invoke_dfa_lookahead_guard ();
4386 privileged_n = calculate_privileged_insns ();
4387 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4388 if (can_issue_more)
4389 best = find_expr_for_ready (index, true);
4391 /* We had some available insns, so if we can't issue them,
4392 we have a stall. */
4393 if (can_issue_more == 0)
4395 best = NULL;
4396 *pneed_stall = 1;
4400 if (best != NULL)
4402 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4403 can_issue_more);
4404 if (can_issue_more == 0)
4405 *pneed_stall = 1;
4408 if (sched_verbose >= 2)
4410 if (best != NULL)
4412 sel_print ("Best expression (vliw form): ");
4413 dump_expr (best);
4414 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4416 else
4417 sel_print ("No best expr found!\n");
4420 return best;
4424 /* Functions that implement the core of the scheduler. */
4427 /* Emit an instruction from EXPR with SEQNO and VINSN after
4428 PLACE_TO_INSERT. */
4429 static insn_t
4430 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4431 insn_t place_to_insert)
4433 /* This assert fails when we have identical instructions
4434 one of which dominates the other. In this case move_op ()
4435 finds the first instruction and doesn't search for second one.
4436 The solution would be to compute av_set after the first found
4437 insn and, if insn present in that set, continue searching.
4438 For now we workaround this issue in move_op. */
4439 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4441 if (EXPR_WAS_RENAMED (expr))
4443 unsigned regno = expr_dest_regno (expr);
4445 if (HARD_REGISTER_NUM_P (regno))
4447 df_set_regs_ever_live (regno, true);
4448 reg_rename_tick[regno] = ++reg_rename_this_tick;
4452 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4453 place_to_insert);
4456 /* Return TRUE if BB can hold bookkeeping code. */
4457 static bool
4458 block_valid_for_bookkeeping_p (basic_block bb)
4460 insn_t bb_end = BB_END (bb);
4462 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4463 return false;
4465 if (INSN_P (bb_end))
4467 if (INSN_SCHED_TIMES (bb_end) > 0)
4468 return false;
4470 else
4471 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4473 return true;
4476 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4477 into E2->dest, except from E1->src (there may be a sequence of empty basic
4478 blocks between E1->src and E2->dest). Return found block, or NULL if new
4479 one must be created. If LAX holds, don't assume there is a simple path
4480 from E1->src to E2->dest. */
4481 static basic_block
4482 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4484 basic_block candidate_block = NULL;
4485 edge e;
4487 /* Loop over edges from E1 to E2, inclusive. */
4488 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4490 if (EDGE_COUNT (e->dest->preds) == 2)
4492 if (candidate_block == NULL)
4493 candidate_block = (EDGE_PRED (e->dest, 0) == e
4494 ? EDGE_PRED (e->dest, 1)->src
4495 : EDGE_PRED (e->dest, 0)->src);
4496 else
4497 /* Found additional edge leading to path from e1 to e2
4498 from aside. */
4499 return NULL;
4501 else if (EDGE_COUNT (e->dest->preds) > 2)
4502 /* Several edges leading to path from e1 to e2 from aside. */
4503 return NULL;
4505 if (e == e2)
4506 return ((!lax || candidate_block)
4507 && block_valid_for_bookkeeping_p (candidate_block)
4508 ? candidate_block
4509 : NULL);
4511 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4512 return NULL;
4515 if (lax)
4516 return NULL;
4518 gcc_unreachable ();
4521 /* Create new basic block for bookkeeping code for path(s) incoming into
4522 E2->dest, except from E1->src. Return created block. */
4523 static basic_block
4524 create_block_for_bookkeeping (edge e1, edge e2)
4526 basic_block new_bb, bb = e2->dest;
4528 /* Check that we don't spoil the loop structure. */
4529 if (current_loop_nest)
4531 basic_block latch = current_loop_nest->latch;
4533 /* We do not split header. */
4534 gcc_assert (e2->dest != current_loop_nest->header);
4536 /* We do not redirect the only edge to the latch block. */
4537 gcc_assert (e1->dest != latch
4538 || !single_pred_p (latch)
4539 || e1 != single_pred_edge (latch));
4542 /* Split BB to insert BOOK_INSN there. */
4543 new_bb = sched_split_block (bb, NULL);
4545 /* Move note_list from the upper bb. */
4546 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4547 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4548 BB_NOTE_LIST (bb) = NULL_RTX;
4550 gcc_assert (e2->dest == bb);
4552 /* Skip block for bookkeeping copy when leaving E1->src. */
4553 if (e1->flags & EDGE_FALLTHRU)
4554 sel_redirect_edge_and_branch_force (e1, new_bb);
4555 else
4556 sel_redirect_edge_and_branch (e1, new_bb);
4558 gcc_assert (e1->dest == new_bb);
4559 gcc_assert (sel_bb_empty_p (bb));
4561 /* To keep basic block numbers in sync between debug and non-debug
4562 compilations, we have to rotate blocks here. Consider that we
4563 started from (a,b)->d, (c,d)->e, and d contained only debug
4564 insns. It would have been removed before if the debug insns
4565 weren't there, so we'd have split e rather than d. So what we do
4566 now is to swap the block numbers of new_bb and
4567 single_succ(new_bb) == e, so that the insns that were in e before
4568 get the new block number. */
4570 if (MAY_HAVE_DEBUG_INSNS)
4572 basic_block succ;
4573 insn_t insn = sel_bb_head (new_bb);
4574 insn_t last;
4576 if (DEBUG_INSN_P (insn)
4577 && single_succ_p (new_bb)
4578 && (succ = single_succ (new_bb))
4579 && succ != EXIT_BLOCK_PTR
4580 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4582 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4583 insn = NEXT_INSN (insn);
4585 if (insn == last)
4587 sel_global_bb_info_def gbi;
4588 sel_region_bb_info_def rbi;
4589 int i;
4591 if (sched_verbose >= 2)
4592 sel_print ("Swapping block ids %i and %i\n",
4593 new_bb->index, succ->index);
4595 i = new_bb->index;
4596 new_bb->index = succ->index;
4597 succ->index = i;
4599 SET_BASIC_BLOCK (new_bb->index, new_bb);
4600 SET_BASIC_BLOCK (succ->index, succ);
4602 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4603 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4604 sizeof (gbi));
4605 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4608 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4609 sizeof (rbi));
4610 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612 i = BLOCK_TO_BB (new_bb->index);
4613 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4614 BLOCK_TO_BB (succ->index) = i;
4616 i = CONTAINING_RGN (new_bb->index);
4617 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4618 CONTAINING_RGN (succ->index) = i;
4620 for (i = 0; i < current_nr_blocks; i++)
4621 if (BB_TO_BLOCK (i) == succ->index)
4622 BB_TO_BLOCK (i) = new_bb->index;
4623 else if (BB_TO_BLOCK (i) == new_bb->index)
4624 BB_TO_BLOCK (i) = succ->index;
4626 FOR_BB_INSNS (new_bb, insn)
4627 if (INSN_P (insn))
4628 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4630 FOR_BB_INSNS (succ, insn)
4631 if (INSN_P (insn))
4632 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4634 if (bitmap_bit_p (code_motion_visited_blocks, new_bb->index))
4636 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4637 bitmap_clear_bit (code_motion_visited_blocks, new_bb->index);
4640 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4641 && LABEL_P (BB_HEAD (succ)));
4643 if (sched_verbose >= 4)
4644 sel_print ("Swapping code labels %i and %i\n",
4645 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4646 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4648 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4649 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4650 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4651 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4656 return bb;
4659 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4660 into E2->dest, except from E1->src. */
4661 static insn_t
4662 find_place_for_bookkeeping (edge e1, edge e2)
4664 insn_t place_to_insert;
4665 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4666 create new basic block, but insert bookkeeping there. */
4667 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4669 if (book_block)
4671 place_to_insert = BB_END (book_block);
4673 /* Don't use a block containing only debug insns for
4674 bookkeeping, this causes scheduling differences between debug
4675 and non-debug compilations, for the block would have been
4676 removed already. */
4677 if (DEBUG_INSN_P (place_to_insert))
4679 rtx insn = sel_bb_head (book_block);
4681 while (insn != place_to_insert &&
4682 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4683 insn = NEXT_INSN (insn);
4685 if (insn == place_to_insert)
4686 book_block = NULL;
4690 if (!book_block)
4692 book_block = create_block_for_bookkeeping (e1, e2);
4693 place_to_insert = BB_END (book_block);
4694 if (sched_verbose >= 9)
4695 sel_print ("New block is %i, split from bookkeeping block %i\n",
4696 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698 else
4700 if (sched_verbose >= 9)
4701 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4704 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4705 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4706 place_to_insert = PREV_INSN (place_to_insert);
4708 return place_to_insert;
4711 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4712 for JOIN_POINT. */
4713 static int
4714 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4716 int seqno;
4717 rtx next;
4719 /* Check if we are about to insert bookkeeping copy before a jump, and use
4720 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4721 next = NEXT_INSN (place_to_insert);
4722 if (INSN_P (next)
4723 && JUMP_P (next)
4724 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4726 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4727 seqno = INSN_SEQNO (next);
4729 else if (INSN_SEQNO (join_point) > 0)
4730 seqno = INSN_SEQNO (join_point);
4731 else
4733 seqno = get_seqno_by_preds (place_to_insert);
4735 /* Sometimes the fences can move in such a way that there will be
4736 no instructions with positive seqno around this bookkeeping.
4737 This means that there will be no way to get to it by a regular
4738 fence movement. Never mind because we pick up such pieces for
4739 rescheduling anyways, so any positive value will do for now. */
4740 if (seqno < 0)
4742 gcc_assert (pipelining_p);
4743 seqno = 1;
4747 gcc_assert (seqno > 0);
4748 return seqno;
4751 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4752 NEW_SEQNO to it. Return created insn. */
4753 static insn_t
4754 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4756 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4758 vinsn_t new_vinsn
4759 = create_vinsn_from_insn_rtx (new_insn_rtx,
4760 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4762 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4763 place_to_insert);
4765 INSN_SCHED_TIMES (new_insn) = 0;
4766 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4768 return new_insn;
4771 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4772 E2->dest, except from E1->src (there may be a sequence of empty blocks
4773 between E1->src and E2->dest). Return block containing the copy.
4774 All scheduler data is initialized for the newly created insn. */
4775 static basic_block
4776 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4778 insn_t join_point, place_to_insert, new_insn;
4779 int new_seqno;
4780 bool need_to_exchange_data_sets;
4782 if (sched_verbose >= 4)
4783 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4784 e2->dest->index);
4786 join_point = sel_bb_head (e2->dest);
4787 place_to_insert = find_place_for_bookkeeping (e1, e2);
4788 if (!place_to_insert)
4789 return NULL;
4790 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4791 need_to_exchange_data_sets
4792 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4794 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4796 /* When inserting bookkeeping insn in new block, av sets should be
4797 following: old basic block (that now holds bookkeeping) data sets are
4798 the same as was before generation of bookkeeping, and new basic block
4799 (that now hold all other insns of old basic block) data sets are
4800 invalid. So exchange data sets for these basic blocks as sel_split_block
4801 mistakenly exchanges them in this case. Cannot do it earlier because
4802 when single instruction is added to new basic block it should hold NULL
4803 lv_set. */
4804 if (need_to_exchange_data_sets)
4805 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4806 BLOCK_FOR_INSN (join_point));
4808 stat_bookkeeping_copies++;
4809 return BLOCK_FOR_INSN (new_insn);
4812 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4813 on FENCE, but we are unable to copy them. */
4814 static void
4815 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4817 expr_t expr;
4818 av_set_iterator i;
4820 /* An expression does not need bookkeeping if it is available on all paths
4821 from current block to original block and current block dominates
4822 original block. We check availability on all paths by examining
4823 EXPR_SPEC; this is not equivalent, because it may be positive even
4824 if expr is available on all paths (but if expr is not available on
4825 any path, EXPR_SPEC will be positive). */
4827 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4829 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4830 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4831 && (EXPR_SPEC (expr)
4832 || !EXPR_ORIG_BB_INDEX (expr)
4833 || !dominated_by_p (CDI_DOMINATORS,
4834 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4835 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4837 if (sched_verbose >= 4)
4838 sel_print ("Expr %d removed because it would need bookkeeping, which "
4839 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4840 av_set_iter_remove (&i);
4845 /* Moving conditional jump through some instructions.
4847 Consider example:
4849 ... <- current scheduling point
4850 NOTE BASIC BLOCK: <- bb header
4851 (p8) add r14=r14+0x9;;
4852 (p8) mov [r14]=r23
4853 (!p8) jump L1;;
4854 NOTE BASIC BLOCK:
4857 We can schedule jump one cycle earlier, than mov, because they cannot be
4858 executed together as their predicates are mutually exclusive.
4860 This is done in this way: first, new fallthrough basic block is created
4861 after jump (it is always can be done, because there already should be a
4862 fallthrough block, where control flow goes in case of predicate being true -
4863 in our example; otherwise there should be a dependence between those
4864 instructions and jump and we cannot schedule jump right now);
4865 next, all instructions between jump and current scheduling point are moved
4866 to this new block. And the result is this:
4868 NOTE BASIC BLOCK:
4869 (!p8) jump L1 <- current scheduling point
4870 NOTE BASIC BLOCK: <- bb header
4871 (p8) add r14=r14+0x9;;
4872 (p8) mov [r14]=r23
4873 NOTE BASIC BLOCK:
4876 static void
4877 move_cond_jump (rtx insn, bnd_t bnd)
4879 edge ft_edge;
4880 basic_block block_from, block_next, block_new;
4881 rtx next, prev, link;
4883 /* BLOCK_FROM holds basic block of the jump. */
4884 block_from = BLOCK_FOR_INSN (insn);
4886 /* Moving of jump should not cross any other jumps or
4887 beginnings of new basic blocks. */
4888 gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
4890 /* Jump is moved to the boundary. */
4891 prev = BND_TO (bnd);
4892 next = PREV_INSN (insn);
4893 BND_TO (bnd) = insn;
4895 ft_edge = find_fallthru_edge (block_from);
4896 block_next = ft_edge->dest;
4897 /* There must be a fallthrough block (or where should go
4898 control flow in case of false jump predicate otherwise?). */
4899 gcc_assert (block_next);
4901 /* Create new empty basic block after source block. */
4902 block_new = sel_split_edge (ft_edge);
4903 gcc_assert (block_new->next_bb == block_next
4904 && block_from->next_bb == block_new);
4906 gcc_assert (BB_END (block_from) == insn);
4908 /* Move all instructions except INSN from BLOCK_FROM to
4909 BLOCK_NEW. */
4910 for (link = prev; link != insn; link = NEXT_INSN (link))
4912 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4913 df_insn_change_bb (link, block_new);
4916 /* Set correct basic block and instructions properties. */
4917 BB_END (block_new) = PREV_INSN (insn);
4919 NEXT_INSN (PREV_INSN (prev)) = insn;
4920 PREV_INSN (insn) = PREV_INSN (prev);
4922 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4923 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4924 PREV_INSN (prev) = BB_HEAD (block_new);
4925 NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
4926 NEXT_INSN (BB_HEAD (block_new)) = prev;
4927 PREV_INSN (NEXT_INSN (next)) = next;
4929 gcc_assert (!sel_bb_empty_p (block_from)
4930 && !sel_bb_empty_p (block_new));
4932 /* Update data sets for BLOCK_NEW to represent that INSN and
4933 instructions from the other branch of INSN is no longer
4934 available at BLOCK_NEW. */
4935 BB_AV_LEVEL (block_new) = global_level;
4936 gcc_assert (BB_LV_SET (block_new) == NULL);
4937 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4938 update_data_sets (sel_bb_head (block_new));
4940 /* INSN is a new basic block header - so prepare its data
4941 structures and update availability and liveness sets. */
4942 update_data_sets (insn);
4944 if (sched_verbose >= 4)
4945 sel_print ("Moving jump %d\n", INSN_UID (insn));
4948 /* Remove nops generated during move_op for preventing removal of empty
4949 basic blocks. */
4950 static void
4951 remove_temp_moveop_nops (bool full_tidying)
4953 int i;
4954 insn_t insn;
4956 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4958 gcc_assert (INSN_NOP_P (insn));
4959 return_nop_to_pool (insn, full_tidying);
4962 /* Empty the vector. */
4963 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4964 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4965 VEC_length (insn_t, vec_temp_moveop_nops));
4968 /* Records the maximal UID before moving up an instruction. Used for
4969 distinguishing between bookkeeping copies and original insns. */
4970 static int max_uid_before_move_op = 0;
4972 /* Remove from AV_VLIW_P all instructions but next when debug counter
4973 tells us so. Next instruction is fetched from BNDS. */
4974 static void
4975 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4977 if (! dbg_cnt (sel_sched_insn_cnt))
4978 /* Leave only the next insn in av_vliw. */
4980 av_set_iterator av_it;
4981 expr_t expr;
4982 bnd_t bnd = BLIST_BND (bnds);
4983 insn_t next = BND_TO (bnd);
4985 gcc_assert (BLIST_NEXT (bnds) == NULL);
4987 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
4988 if (EXPR_INSN_RTX (expr) != next)
4989 av_set_iter_remove (&av_it);
4993 /* Compute available instructions on BNDS. FENCE is the current fence. Write
4994 the computed set to *AV_VLIW_P. */
4995 static void
4996 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
4998 if (sched_verbose >= 2)
5000 sel_print ("Boundaries: ");
5001 dump_blist (bnds);
5002 sel_print ("\n");
5005 for (; bnds; bnds = BLIST_NEXT (bnds))
5007 bnd_t bnd = BLIST_BND (bnds);
5008 av_set_t av1_copy;
5009 insn_t bnd_to = BND_TO (bnd);
5011 /* Rewind BND->TO to the basic block header in case some bookkeeping
5012 instructions were inserted before BND->TO and it needs to be
5013 adjusted. */
5014 if (sel_bb_head_p (bnd_to))
5015 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5016 else
5017 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5019 bnd_to = PREV_INSN (bnd_to);
5020 if (sel_bb_head_p (bnd_to))
5021 break;
5024 if (BND_TO (bnd) != bnd_to)
5026 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5027 FENCE_INSN (fence) = bnd_to;
5028 BND_TO (bnd) = bnd_to;
5031 av_set_clear (&BND_AV (bnd));
5032 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5034 av_set_clear (&BND_AV1 (bnd));
5035 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5037 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5039 av1_copy = av_set_copy (BND_AV1 (bnd));
5040 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5043 if (sched_verbose >= 2)
5045 sel_print ("Available exprs (vliw form): ");
5046 dump_av_set (*av_vliw_p);
5047 sel_print ("\n");
5051 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5052 expression. When FOR_MOVEOP is true, also replace the register of
5053 expressions found with the register from EXPR_VLIW. */
5054 static av_set_t
5055 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5057 av_set_t expr_seq = NULL;
5058 expr_t expr;
5059 av_set_iterator i;
5061 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5063 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5065 if (for_moveop)
5067 /* The sequential expression has the right form to pass
5068 to move_op except when renaming happened. Put the
5069 correct register in EXPR then. */
5070 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5072 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5074 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5075 stat_renamed_scheduled++;
5077 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5078 This is needed when renaming came up with original
5079 register. */
5080 else if (EXPR_TARGET_AVAILABLE (expr)
5081 != EXPR_TARGET_AVAILABLE (expr_vliw))
5083 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5084 EXPR_TARGET_AVAILABLE (expr) = 1;
5087 if (EXPR_WAS_SUBSTITUTED (expr))
5088 stat_substitutions_total++;
5091 av_set_add (&expr_seq, expr);
5093 /* With substitution inside insn group, it is possible
5094 that more than one expression in expr_seq will correspond
5095 to expr_vliw. In this case, choose one as the attempt to
5096 move both leads to miscompiles. */
5097 break;
5101 if (for_moveop && sched_verbose >= 2)
5103 sel_print ("Best expression(s) (sequential form): ");
5104 dump_av_set (expr_seq);
5105 sel_print ("\n");
5108 return expr_seq;
5112 /* Move nop to previous block. */
5113 static void ATTRIBUTE_UNUSED
5114 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5116 insn_t prev_insn, next_insn, note;
5118 gcc_assert (sel_bb_head_p (nop)
5119 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5120 note = bb_note (BLOCK_FOR_INSN (nop));
5121 prev_insn = sel_bb_end (prev_bb);
5122 next_insn = NEXT_INSN (nop);
5123 gcc_assert (prev_insn != NULL_RTX
5124 && PREV_INSN (note) == prev_insn);
5126 NEXT_INSN (prev_insn) = nop;
5127 PREV_INSN (nop) = prev_insn;
5129 PREV_INSN (note) = nop;
5130 NEXT_INSN (note) = next_insn;
5132 NEXT_INSN (nop) = note;
5133 PREV_INSN (next_insn) = note;
5135 BB_END (prev_bb) = nop;
5136 BLOCK_FOR_INSN (nop) = prev_bb;
5139 /* Prepare a place to insert the chosen expression on BND. */
5140 static insn_t
5141 prepare_place_to_insert (bnd_t bnd)
5143 insn_t place_to_insert;
5145 /* Init place_to_insert before calling move_op, as the later
5146 can possibly remove BND_TO (bnd). */
5147 if (/* If this is not the first insn scheduled. */
5148 BND_PTR (bnd))
5150 /* Add it after last scheduled. */
5151 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5152 if (DEBUG_INSN_P (place_to_insert))
5154 ilist_t l = BND_PTR (bnd);
5155 while ((l = ILIST_NEXT (l)) &&
5156 DEBUG_INSN_P (ILIST_INSN (l)))
5158 if (!l)
5159 place_to_insert = NULL;
5162 else
5163 place_to_insert = NULL;
5165 if (!place_to_insert)
5167 /* Add it before BND_TO. The difference is in the
5168 basic block, where INSN will be added. */
5169 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5170 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5171 == BLOCK_FOR_INSN (BND_TO (bnd)));
5174 return place_to_insert;
5177 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5178 Return the expression to emit in C_EXPR. */
5179 static bool
5180 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5181 av_set_t expr_seq, expr_t c_expr)
5183 bool b, should_move;
5184 unsigned book_uid;
5185 bitmap_iterator bi;
5186 int n_bookkeeping_copies_before_moveop;
5188 /* Make a move. This call will remove the original operation,
5189 insert all necessary bookkeeping instructions and update the
5190 data sets. After that all we have to do is add the operation
5191 at before BND_TO (BND). */
5192 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5193 max_uid_before_move_op = get_max_uid ();
5194 bitmap_clear (current_copies);
5195 bitmap_clear (current_originators);
5197 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5198 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5200 /* We should be able to find the expression we've chosen for
5201 scheduling. */
5202 gcc_assert (b);
5204 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5205 stat_insns_needed_bookkeeping++;
5207 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5209 unsigned uid;
5210 bitmap_iterator bi;
5212 /* We allocate these bitmaps lazily. */
5213 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5214 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5216 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5217 current_originators);
5219 /* Transitively add all originators' originators. */
5220 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5221 if (INSN_ORIGINATORS_BY_UID (uid))
5222 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5223 INSN_ORIGINATORS_BY_UID (uid));
5226 return should_move;
5230 /* Debug a DFA state as an array of bytes. */
5231 static void
5232 debug_state (state_t state)
5234 unsigned char *p;
5235 unsigned int i, size = dfa_state_size;
5237 sel_print ("state (%u):", size);
5238 for (i = 0, p = (unsigned char *) state; i < size; i++)
5239 sel_print (" %d", p[i]);
5240 sel_print ("\n");
5243 /* Advance state on FENCE with INSN. Return true if INSN is
5244 an ASM, and we should advance state once more. */
5245 static bool
5246 advance_state_on_fence (fence_t fence, insn_t insn)
5248 bool asm_p;
5250 if (recog_memoized (insn) >= 0)
5252 int res;
5253 state_t temp_state = alloca (dfa_state_size);
5255 gcc_assert (!INSN_ASM_P (insn));
5256 asm_p = false;
5258 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5259 res = state_transition (FENCE_STATE (fence), insn);
5260 gcc_assert (res < 0);
5262 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5264 FENCE_ISSUED_INSNS (fence)++;
5266 /* We should never issue more than issue_rate insns. */
5267 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5268 gcc_unreachable ();
5271 else
5273 /* This could be an ASM insn which we'd like to schedule
5274 on the next cycle. */
5275 asm_p = INSN_ASM_P (insn);
5276 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5277 advance_one_cycle (fence);
5280 if (sched_verbose >= 2)
5281 debug_state (FENCE_STATE (fence));
5282 if (!DEBUG_INSN_P (insn))
5283 FENCE_STARTS_CYCLE_P (fence) = 0;
5284 FENCE_ISSUE_MORE (fence) = can_issue_more;
5285 return asm_p;
5288 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5289 is nonzero if we need to stall after issuing INSN. */
5290 static void
5291 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5293 bool asm_p;
5295 /* First, reflect that something is scheduled on this fence. */
5296 asm_p = advance_state_on_fence (fence, insn);
5297 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5298 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5299 if (SCHED_GROUP_P (insn))
5301 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5302 SCHED_GROUP_P (insn) = 0;
5304 else
5305 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5306 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5307 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5309 /* Set instruction scheduling info. This will be used in bundling,
5310 pipelining, tick computations etc. */
5311 ++INSN_SCHED_TIMES (insn);
5312 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5313 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5314 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5315 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5317 /* This does not account for adjust_cost hooks, just add the biggest
5318 constant the hook may add to the latency. TODO: make this
5319 a target dependent constant. */
5320 INSN_READY_CYCLE (insn)
5321 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5323 : maximal_insn_latency (insn) + 1);
5325 /* Change these fields last, as they're used above. */
5326 FENCE_AFTER_STALL_P (fence) = 0;
5327 if (asm_p || need_stall)
5328 advance_one_cycle (fence);
5330 /* Indicate that we've scheduled something on this fence. */
5331 FENCE_SCHEDULED_P (fence) = true;
5332 scheduled_something_on_previous_fence = true;
5334 /* Print debug information when insn's fields are updated. */
5335 if (sched_verbose >= 2)
5337 sel_print ("Scheduling insn: ");
5338 dump_insn_1 (insn, 1);
5339 sel_print ("\n");
5343 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5344 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5345 return it. */
5346 static blist_t *
5347 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5348 blist_t *bnds_tailp)
5350 succ_iterator si;
5351 insn_t succ;
5353 advance_deps_context (BND_DC (bnd), insn);
5354 FOR_EACH_SUCC_1 (succ, si, insn,
5355 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5357 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5359 ilist_add (&ptr, insn);
5361 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5362 && is_ineligible_successor (succ, ptr))
5364 ilist_clear (&ptr);
5365 continue;
5368 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5370 if (sched_verbose >= 9)
5371 sel_print ("Updating fence insn from %i to %i\n",
5372 INSN_UID (insn), INSN_UID (succ));
5373 FENCE_INSN (fence) = succ;
5375 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5376 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5379 blist_remove (bndsp);
5380 return bnds_tailp;
5383 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5384 static insn_t
5385 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5387 av_set_t expr_seq;
5388 expr_t c_expr = XALLOCA (expr_def);
5389 insn_t place_to_insert;
5390 insn_t insn;
5391 bool should_move;
5393 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5395 /* In case of scheduling a jump skipping some other instructions,
5396 prepare CFG. After this, jump is at the boundary and can be
5397 scheduled as usual insn by MOVE_OP. */
5398 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5400 insn = EXPR_INSN_RTX (expr_vliw);
5402 /* Speculative jumps are not handled. */
5403 if (insn != BND_TO (bnd)
5404 && !sel_insn_is_speculation_check (insn))
5405 move_cond_jump (insn, bnd);
5408 /* Find a place for C_EXPR to schedule. */
5409 place_to_insert = prepare_place_to_insert (bnd);
5410 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5411 clear_expr (c_expr);
5413 /* Add the instruction. The corner case to care about is when
5414 the expr_seq set has more than one expr, and we chose the one that
5415 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5416 we can't use it. Generate the new vinsn. */
5417 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5419 vinsn_t vinsn_new;
5421 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5422 change_vinsn_in_expr (expr_vliw, vinsn_new);
5423 should_move = false;
5425 if (should_move)
5426 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5427 else
5428 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5429 place_to_insert);
5431 /* Return the nops generated for preserving of data sets back
5432 into pool. */
5433 if (INSN_NOP_P (place_to_insert))
5434 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5435 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5437 av_set_clear (&expr_seq);
5439 /* Save the expression scheduled so to reset target availability if we'll
5440 meet it later on the same fence. */
5441 if (EXPR_WAS_RENAMED (expr_vliw))
5442 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5444 /* Check that the recent movement didn't destroyed loop
5445 structure. */
5446 gcc_assert (!pipelining_p
5447 || current_loop_nest == NULL
5448 || loop_latch_edge (current_loop_nest));
5449 return insn;
5452 /* Stall for N cycles on FENCE. */
5453 static void
5454 stall_for_cycles (fence_t fence, int n)
5456 int could_more;
5458 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5459 while (n--)
5460 advance_one_cycle (fence);
5461 if (could_more)
5462 FENCE_AFTER_STALL_P (fence) = 1;
5465 /* Gather a parallel group of insns at FENCE and assign their seqno
5466 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5467 list for later recalculation of seqnos. */
5468 static void
5469 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5471 blist_t bnds = NULL, *bnds_tailp;
5472 av_set_t av_vliw = NULL;
5473 insn_t insn = FENCE_INSN (fence);
5475 if (sched_verbose >= 2)
5476 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5477 INSN_UID (insn), FENCE_CYCLE (fence));
5479 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5480 bnds_tailp = &BLIST_NEXT (bnds);
5481 set_target_context (FENCE_TC (fence));
5482 can_issue_more = FENCE_ISSUE_MORE (fence);
5483 target_bb = INSN_BB (insn);
5485 /* Do while we can add any operation to the current group. */
5488 blist_t *bnds_tailp1, *bndsp;
5489 expr_t expr_vliw;
5490 int need_stall;
5491 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5492 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5493 int max_stall = pipelining_p ? 1 : 3;
5494 bool last_insn_was_debug = false;
5495 bool was_debug_bb_end_p = false;
5497 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5498 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5499 remove_insns_for_debug (bnds, &av_vliw);
5501 /* Return early if we have nothing to schedule. */
5502 if (av_vliw == NULL)
5503 break;
5505 /* Choose the best expression and, if needed, destination register
5506 for it. */
5509 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5510 if (!expr_vliw && need_stall)
5512 /* All expressions required a stall. Do not recompute av sets
5513 as we'll get the same answer (modulo the insns between
5514 the fence and its boundary, which will not be available for
5515 pipelining). */
5516 gcc_assert (! expr_vliw && stall_iterations < 2);
5517 was_stall++;
5518 /* If we are going to stall for too long, break to recompute av
5519 sets and bring more insns for pipelining. */
5520 if (need_stall <= 3)
5521 stall_for_cycles (fence, need_stall);
5522 else
5524 stall_for_cycles (fence, 1);
5525 break;
5529 while (! expr_vliw && need_stall);
5531 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5532 if (!expr_vliw)
5534 av_set_clear (&av_vliw);
5535 break;
5538 bndsp = &bnds;
5539 bnds_tailp1 = bnds_tailp;
5542 /* This code will be executed only once until we'd have several
5543 boundaries per fence. */
5545 bnd_t bnd = BLIST_BND (*bndsp);
5547 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5549 bndsp = &BLIST_NEXT (*bndsp);
5550 continue;
5553 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5554 last_insn_was_debug = DEBUG_INSN_P (insn);
5555 if (last_insn_was_debug)
5556 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5557 update_fence_and_insn (fence, insn, need_stall);
5558 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5560 /* Add insn to the list of scheduled on this cycle instructions. */
5561 ilist_add (*scheduled_insns_tailpp, insn);
5562 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5564 while (*bndsp != *bnds_tailp1);
5566 av_set_clear (&av_vliw);
5567 if (!last_insn_was_debug)
5568 scheduled_insns++;
5570 /* We currently support information about candidate blocks only for
5571 one 'target_bb' block. Hence we can't schedule after jump insn,
5572 as this will bring two boundaries and, hence, necessity to handle
5573 information for two or more blocks concurrently. */
5574 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5575 || (was_stall
5576 && (was_stall >= max_stall
5577 || scheduled_insns >= max_insns)))
5578 break;
5580 while (bnds);
5582 gcc_assert (!FENCE_BNDS (fence));
5584 /* Update boundaries of the FENCE. */
5585 while (bnds)
5587 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5589 if (ptr)
5591 insn = ILIST_INSN (ptr);
5593 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5594 ilist_add (&FENCE_BNDS (fence), insn);
5597 blist_remove (&bnds);
5600 /* Update target context on the fence. */
5601 reset_target_context (FENCE_TC (fence), false);
5604 /* All exprs in ORIG_OPS must have the same destination register or memory.
5605 Return that destination. */
5606 static rtx
5607 get_dest_from_orig_ops (av_set_t orig_ops)
5609 rtx dest = NULL_RTX;
5610 av_set_iterator av_it;
5611 expr_t expr;
5612 bool first_p = true;
5614 FOR_EACH_EXPR (expr, av_it, orig_ops)
5616 rtx x = EXPR_LHS (expr);
5618 if (first_p)
5620 first_p = false;
5621 dest = x;
5623 else
5624 gcc_assert (dest == x
5625 || (dest != NULL_RTX && x != NULL_RTX
5626 && rtx_equal_p (dest, x)));
5629 return dest;
5632 /* Update data sets for the bookkeeping block and record those expressions
5633 which become no longer available after inserting this bookkeeping. */
5634 static void
5635 update_and_record_unavailable_insns (basic_block book_block)
5637 av_set_iterator i;
5638 av_set_t old_av_set = NULL;
5639 expr_t cur_expr;
5640 rtx bb_end = sel_bb_end (book_block);
5642 /* First, get correct liveness in the bookkeeping block. The problem is
5643 the range between the bookeeping insn and the end of block. */
5644 update_liveness_on_insn (bb_end);
5645 if (control_flow_insn_p (bb_end))
5646 update_liveness_on_insn (PREV_INSN (bb_end));
5648 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5649 fence above, where we may choose to schedule an insn which is
5650 actually blocked from moving up with the bookkeeping we create here. */
5651 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5653 old_av_set = av_set_copy (BB_AV_SET (book_block));
5654 update_data_sets (sel_bb_head (book_block));
5656 /* Traverse all the expressions in the old av_set and check whether
5657 CUR_EXPR is in new AV_SET. */
5658 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5660 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5661 EXPR_VINSN (cur_expr));
5663 if (! new_expr
5664 /* In this case, we can just turn off the E_T_A bit, but we can't
5665 represent this information with the current vector. */
5666 || EXPR_TARGET_AVAILABLE (new_expr)
5667 != EXPR_TARGET_AVAILABLE (cur_expr))
5668 /* Unfortunately, the below code could be also fired up on
5669 separable insns.
5670 FIXME: add an example of how this could happen. */
5671 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5674 av_set_clear (&old_av_set);
5678 /* The main effect of this function is that sparams->c_expr is merged
5679 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5680 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5681 lparams->c_expr_merged is copied back to sparams->c_expr after all
5682 successors has been traversed. lparams->c_expr_local is an expr allocated
5683 on stack in the caller function, and is used if there is more than one
5684 successor.
5686 SUCC is one of the SUCCS_NORMAL successors of INSN,
5687 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5688 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5689 static void
5690 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5691 insn_t succ ATTRIBUTE_UNUSED,
5692 int moveop_drv_call_res,
5693 cmpd_local_params_p lparams, void *static_params)
5695 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5697 /* Nothing to do, if original expr wasn't found below. */
5698 if (moveop_drv_call_res != 1)
5699 return;
5701 /* If this is a first successor. */
5702 if (!lparams->c_expr_merged)
5704 lparams->c_expr_merged = sparams->c_expr;
5705 sparams->c_expr = lparams->c_expr_local;
5707 else
5709 /* We must merge all found expressions to get reasonable
5710 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5711 do so then we can first find the expr with epsilon
5712 speculation success probability and only then with the
5713 good probability. As a result the insn will get epsilon
5714 probability and will never be scheduled because of
5715 weakness_cutoff in find_best_expr.
5717 We call merge_expr_data here instead of merge_expr
5718 because due to speculation C_EXPR and X may have the
5719 same insns with different speculation types. And as of
5720 now such insns are considered non-equal.
5722 However, EXPR_SCHED_TIMES is different -- we must get
5723 SCHED_TIMES from a real insn, not a bookkeeping copy.
5724 We force this here. Instead, we may consider merging
5725 SCHED_TIMES to the maximum instead of minimum in the
5726 below function. */
5727 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5729 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5730 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5731 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5733 clear_expr (sparams->c_expr);
5737 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5739 SUCC is one of the SUCCS_NORMAL successors of INSN,
5740 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5741 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5742 STATIC_PARAMS contain USED_REGS set. */
5743 static void
5744 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5745 int moveop_drv_call_res,
5746 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5747 void *static_params)
5749 regset succ_live;
5750 fur_static_params_p sparams = (fur_static_params_p) static_params;
5752 /* Here we compute live regsets only for branches that do not lie
5753 on the code motion paths. These branches correspond to value
5754 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5755 for such branches code_motion_path_driver is not called. */
5756 if (moveop_drv_call_res != 0)
5757 return;
5759 /* Mark all registers that do not meet the following condition:
5760 (3) not live on the other path of any conditional branch
5761 that is passed by the operation, in case original
5762 operations are not present on both paths of the
5763 conditional branch. */
5764 succ_live = compute_live (succ);
5765 IOR_REG_SET (sparams->used_regs, succ_live);
5768 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5769 into SP->CEXPR. */
5770 static void
5771 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5773 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5775 sp->c_expr = lp->c_expr_merged;
5778 /* Track bookkeeping copies created, insns scheduled, and blocks for
5779 rescheduling when INSN is found by move_op. */
5780 static void
5781 track_scheduled_insns_and_blocks (rtx insn)
5783 /* Even if this insn can be a copy that will be removed during current move_op,
5784 we still need to count it as an originator. */
5785 bitmap_set_bit (current_originators, INSN_UID (insn));
5787 if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
5789 /* Note that original block needs to be rescheduled, as we pulled an
5790 instruction out of it. */
5791 if (INSN_SCHED_TIMES (insn) > 0)
5792 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5793 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5794 num_insns_scheduled++;
5796 else
5797 bitmap_clear_bit (current_copies, INSN_UID (insn));
5799 /* For instructions we must immediately remove insn from the
5800 stream, so subsequent update_data_sets () won't include this
5801 insn into av_set.
5802 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5803 if (INSN_UID (insn) > max_uid_before_move_op)
5804 stat_bookkeeping_copies--;
5807 /* Emit a register-register copy for INSN if needed. Return true if
5808 emitted one. PARAMS is the move_op static parameters. */
5809 static bool
5810 maybe_emit_renaming_copy (rtx insn,
5811 moveop_static_params_p params)
5813 bool insn_emitted = false;
5814 rtx cur_reg;
5816 /* Bail out early when expression can not be renamed at all. */
5817 if (!EXPR_SEPARABLE_P (params->c_expr))
5818 return false;
5820 cur_reg = expr_dest_reg (params->c_expr);
5821 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5823 /* If original operation has expr and the register chosen for
5824 that expr is not original operation's dest reg, substitute
5825 operation's right hand side with the register chosen. */
5826 if (REGNO (params->dest) != REGNO (cur_reg))
5828 insn_t reg_move_insn, reg_move_insn_rtx;
5830 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5831 params->dest);
5832 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5833 INSN_EXPR (insn),
5834 INSN_SEQNO (insn),
5835 insn);
5836 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5837 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5839 insn_emitted = true;
5840 params->was_renamed = true;
5843 return insn_emitted;
5846 /* Emit a speculative check for INSN speculated as EXPR if needed.
5847 Return true if we've emitted one. PARAMS is the move_op static
5848 parameters. */
5849 static bool
5850 maybe_emit_speculative_check (rtx insn, expr_t expr,
5851 moveop_static_params_p params)
5853 bool insn_emitted = false;
5854 insn_t x;
5855 ds_t check_ds;
5857 check_ds = get_spec_check_type_for_insn (insn, expr);
5858 if (check_ds != 0)
5860 /* A speculation check should be inserted. */
5861 x = create_speculation_check (params->c_expr, check_ds, insn);
5862 insn_emitted = true;
5864 else
5866 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5867 x = insn;
5870 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5871 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5872 return insn_emitted;
5875 /* Handle transformations that leave an insn in place of original
5876 insn such as renaming/speculation. Return true if one of such
5877 transformations actually happened, and we have emitted this insn. */
5878 static bool
5879 handle_emitting_transformations (rtx insn, expr_t expr,
5880 moveop_static_params_p params)
5882 bool insn_emitted = false;
5884 insn_emitted = maybe_emit_renaming_copy (insn, params);
5885 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5887 return insn_emitted;
5890 /* If INSN is the only insn in the basic block (not counting JUMP,
5891 which may be a jump to next insn, and DEBUG_INSNs), we want to
5892 leave a NOP there till the return to fill_insns. */
5894 static bool
5895 need_nop_to_preserve_insn_bb (rtx insn)
5897 insn_t bb_head, bb_end, bb_next, in_next;
5898 basic_block bb = BLOCK_FOR_INSN (insn);
5900 bb_head = sel_bb_head (bb);
5901 bb_end = sel_bb_end (bb);
5903 if (bb_head == bb_end)
5904 return true;
5906 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5907 bb_head = NEXT_INSN (bb_head);
5909 if (bb_head == bb_end)
5910 return true;
5912 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5913 bb_end = PREV_INSN (bb_end);
5915 if (bb_head == bb_end)
5916 return true;
5918 bb_next = NEXT_INSN (bb_head);
5919 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5920 bb_next = NEXT_INSN (bb_next);
5922 if (bb_next == bb_end && JUMP_P (bb_end))
5923 return true;
5925 in_next = NEXT_INSN (insn);
5926 while (DEBUG_INSN_P (in_next))
5927 in_next = NEXT_INSN (in_next);
5929 if (IN_CURRENT_FENCE_P (in_next))
5930 return true;
5932 return false;
5935 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5936 is not removed but reused when INSN is re-emitted. */
5937 static void
5938 remove_insn_from_stream (rtx insn, bool only_disconnect)
5940 /* If there's only one insn in the BB, make sure that a nop is
5941 inserted into it, so the basic block won't disappear when we'll
5942 delete INSN below with sel_remove_insn. It should also survive
5943 till the return to fill_insns. */
5944 if (need_nop_to_preserve_insn_bb (insn))
5946 insn_t nop = get_nop_from_pool (insn);
5947 gcc_assert (INSN_NOP_P (nop));
5948 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5951 sel_remove_insn (insn, only_disconnect, false);
5954 /* This function is called when original expr is found.
5955 INSN - current insn traversed, EXPR - the corresponding expr found.
5956 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5957 is static parameters of move_op. */
5958 static void
5959 move_op_orig_expr_found (insn_t insn, expr_t expr,
5960 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5961 void *static_params)
5963 bool only_disconnect, insn_emitted;
5964 moveop_static_params_p params = (moveop_static_params_p) static_params;
5966 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5967 track_scheduled_insns_and_blocks (insn);
5968 insn_emitted = handle_emitting_transformations (insn, expr, params);
5969 only_disconnect = (params->uid == INSN_UID (insn)
5970 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5972 /* Mark that we've disconnected an insn. */
5973 if (only_disconnect)
5974 params->uid = -1;
5975 remove_insn_from_stream (insn, only_disconnect);
5978 /* The function is called when original expr is found.
5979 INSN - current insn traversed, EXPR - the corresponding expr found,
5980 crosses_call and original_insns in STATIC_PARAMS are updated. */
5981 static void
5982 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5983 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5984 void *static_params)
5986 fur_static_params_p params = (fur_static_params_p) static_params;
5987 regset tmp;
5989 if (CALL_P (insn))
5990 params->crosses_call = true;
5992 def_list_add (params->original_insns, insn, params->crosses_call);
5994 /* Mark the registers that do not meet the following condition:
5995 (2) not among the live registers of the point
5996 immediately following the first original operation on
5997 a given downward path, except for the original target
5998 register of the operation. */
5999 tmp = get_clear_regset_from_pool ();
6000 compute_live_below_insn (insn, tmp);
6001 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6002 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6003 IOR_REG_SET (params->used_regs, tmp);
6004 return_regset_to_pool (tmp);
6006 /* (*1) We need to add to USED_REGS registers that are read by
6007 INSN's lhs. This may lead to choosing wrong src register.
6008 E.g. (scheduling const expr enabled):
6010 429: ax=0x0 <- Can't use AX for this expr (0x0)
6011 433: dx=[bp-0x18]
6012 427: [ax+dx+0x1]=ax
6013 REG_DEAD: ax
6014 168: di=dx
6015 REG_DEAD: dx
6017 /* FIXME: see comment above and enable MEM_P
6018 in vinsn_separable_p. */
6019 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6020 || !MEM_P (INSN_LHS (insn)));
6023 /* This function is called on the ascending pass, before returning from
6024 current basic block. */
6025 static void
6026 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6027 void *static_params)
6029 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6030 basic_block book_block = NULL;
6032 /* When we have removed the boundary insn for scheduling, which also
6033 happened to be the end insn in its bb, we don't need to update sets. */
6034 if (!lparams->removed_last_insn
6035 && lparams->e1
6036 && sel_bb_head_p (insn))
6038 /* We should generate bookkeeping code only if we are not at the
6039 top level of the move_op. */
6040 if (sel_num_cfg_preds_gt_1 (insn))
6041 book_block = generate_bookkeeping_insn (sparams->c_expr,
6042 lparams->e1, lparams->e2);
6043 /* Update data sets for the current insn. */
6044 update_data_sets (insn);
6047 /* If bookkeeping code was inserted, we need to update av sets of basic
6048 block that received bookkeeping. After generation of bookkeeping insn,
6049 bookkeeping block does not contain valid av set because we are not following
6050 the original algorithm in every detail with regards to e.g. renaming
6051 simple reg-reg copies. Consider example:
6053 bookkeeping block scheduling fence
6055 \ join /
6056 ----------
6058 ----------
6061 r1 := r2 r1 := r3
6063 We try to schedule insn "r1 := r3" on the current
6064 scheduling fence. Also, note that av set of bookkeeping block
6065 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6066 been scheduled, the CFG is as follows:
6068 r1 := r3 r1 := r3
6069 bookkeeping block scheduling fence
6071 \ join /
6072 ----------
6074 ----------
6077 r1 := r2
6079 Here, insn "r1 := r3" was scheduled at the current scheduling point
6080 and bookkeeping code was generated at the bookeeping block. This
6081 way insn "r1 := r2" is no longer available as a whole instruction
6082 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6083 This situation is handled by calling update_data_sets.
6085 Since update_data_sets is called only on the bookkeeping block, and
6086 it also may have predecessors with av_sets, containing instructions that
6087 are no longer available, we save all such expressions that become
6088 unavailable during data sets update on the bookkeeping block in
6089 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6090 expressions for scheduling. This allows us to avoid recomputation of
6091 av_sets outside the code motion path. */
6093 if (book_block)
6094 update_and_record_unavailable_insns (book_block);
6096 /* If INSN was previously marked for deletion, it's time to do it. */
6097 if (lparams->removed_last_insn)
6098 insn = PREV_INSN (insn);
6100 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6101 kill a block with a single nop in which the insn should be emitted. */
6102 if (lparams->e1)
6103 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6106 /* This function is called on the ascending pass, before returning from the
6107 current basic block. */
6108 static void
6109 fur_at_first_insn (insn_t insn,
6110 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6111 void *static_params ATTRIBUTE_UNUSED)
6113 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6114 || AV_LEVEL (insn) == -1);
6117 /* Called on the backward stage of recursion to call moveup_expr for insn
6118 and sparams->c_expr. */
6119 static void
6120 move_op_ascend (insn_t insn, void *static_params)
6122 enum MOVEUP_EXPR_CODE res;
6123 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6125 if (! INSN_NOP_P (insn))
6127 res = moveup_expr_cached (sparams->c_expr, insn, false);
6128 gcc_assert (res != MOVEUP_EXPR_NULL);
6131 /* Update liveness for this insn as it was invalidated. */
6132 update_liveness_on_insn (insn);
6135 /* This function is called on enter to the basic block.
6136 Returns TRUE if this block already have been visited and
6137 code_motion_path_driver should return 1, FALSE otherwise. */
6138 static int
6139 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6140 void *static_params, bool visited_p)
6142 fur_static_params_p sparams = (fur_static_params_p) static_params;
6144 if (visited_p)
6146 /* If we have found something below this block, there should be at
6147 least one insn in ORIGINAL_INSNS. */
6148 gcc_assert (*sparams->original_insns);
6150 /* Adjust CROSSES_CALL, since we may have come to this block along
6151 different path. */
6152 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6153 |= sparams->crosses_call;
6155 else
6156 local_params->old_original_insns = *sparams->original_insns;
6158 return 1;
6161 /* Same as above but for move_op. */
6162 static int
6163 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6164 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6165 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6167 if (visited_p)
6168 return -1;
6169 return 1;
6172 /* This function is called while descending current basic block if current
6173 insn is not the original EXPR we're searching for.
6175 Return value: FALSE, if code_motion_path_driver should perform a local
6176 cleanup and return 0 itself;
6177 TRUE, if code_motion_path_driver should continue. */
6178 static bool
6179 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6180 void *static_params)
6182 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6184 #ifdef ENABLE_CHECKING
6185 sparams->failed_insn = insn;
6186 #endif
6188 /* If we're scheduling separate expr, in order to generate correct code
6189 we need to stop the search at bookkeeping code generated with the
6190 same destination register or memory. */
6191 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6192 return false;
6193 return true;
6196 /* This function is called while descending current basic block if current
6197 insn is not the original EXPR we're searching for.
6199 Return value: TRUE (code_motion_path_driver should continue). */
6200 static bool
6201 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6203 bool mutexed;
6204 expr_t r;
6205 av_set_iterator avi;
6206 fur_static_params_p sparams = (fur_static_params_p) static_params;
6208 if (CALL_P (insn))
6209 sparams->crosses_call = true;
6210 else if (DEBUG_INSN_P (insn))
6211 return true;
6213 /* If current insn we are looking at cannot be executed together
6214 with original insn, then we can skip it safely.
6216 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6217 INSN = (!p6) r14 = r14 + 1;
6219 Here we can schedule ORIG_OP with lhs = r14, though only
6220 looking at the set of used and set registers of INSN we must
6221 forbid it. So, add set/used in INSN registers to the
6222 untouchable set only if there is an insn in ORIG_OPS that can
6223 affect INSN. */
6224 mutexed = true;
6225 FOR_EACH_EXPR (r, avi, orig_ops)
6226 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6228 mutexed = false;
6229 break;
6232 /* Mark all registers that do not meet the following condition:
6233 (1) Not set or read on any path from xi to an instance of the
6234 original operation. */
6235 if (!mutexed)
6237 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6238 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6239 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6242 return true;
6245 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6246 struct code_motion_path_driver_info_def move_op_hooks = {
6247 move_op_on_enter,
6248 move_op_orig_expr_found,
6249 move_op_orig_expr_not_found,
6250 move_op_merge_succs,
6251 move_op_after_merge_succs,
6252 move_op_ascend,
6253 move_op_at_first_insn,
6254 SUCCS_NORMAL,
6255 "move_op"
6258 /* Hooks and data to perform find_used_regs operations
6259 with code_motion_path_driver. */
6260 struct code_motion_path_driver_info_def fur_hooks = {
6261 fur_on_enter,
6262 fur_orig_expr_found,
6263 fur_orig_expr_not_found,
6264 fur_merge_succs,
6265 NULL, /* fur_after_merge_succs */
6266 NULL, /* fur_ascend */
6267 fur_at_first_insn,
6268 SUCCS_ALL,
6269 "find_used_regs"
6272 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6273 code_motion_path_driver is called recursively. Original operation
6274 was found at least on one path that is starting with one of INSN's
6275 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6276 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6277 of either move_op or find_used_regs depending on the caller.
6279 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6280 know for sure at this point. */
6281 static int
6282 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6283 ilist_t path, void *static_params)
6285 int res = 0;
6286 succ_iterator succ_i;
6287 rtx succ;
6288 basic_block bb;
6289 int old_index;
6290 unsigned old_succs;
6292 struct cmpd_local_params lparams;
6293 expr_def _x;
6295 lparams.c_expr_local = &_x;
6296 lparams.c_expr_merged = NULL;
6298 /* We need to process only NORMAL succs for move_op, and collect live
6299 registers from ALL branches (including those leading out of the
6300 region) for find_used_regs.
6302 In move_op, there can be a case when insn's bb number has changed
6303 due to created bookkeeping. This happens very rare, as we need to
6304 move expression from the beginning to the end of the same block.
6305 Rescan successors in this case. */
6307 rescan:
6308 bb = BLOCK_FOR_INSN (insn);
6309 old_index = bb->index;
6310 old_succs = EDGE_COUNT (bb->succs);
6312 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6314 int b;
6316 lparams.e1 = succ_i.e1;
6317 lparams.e2 = succ_i.e2;
6319 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6320 current region). */
6321 if (succ_i.current_flags == SUCCS_NORMAL)
6322 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6323 static_params);
6324 else
6325 b = 0;
6327 /* Merge c_expres found or unify live register sets from different
6328 successors. */
6329 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6330 static_params);
6331 if (b == 1)
6332 res = b;
6333 else if (b == -1 && res != 1)
6334 res = b;
6336 /* We have simplified the control flow below this point. In this case,
6337 the iterator becomes invalid. We need to try again. */
6338 if (BLOCK_FOR_INSN (insn)->index != old_index
6339 || EDGE_COUNT (bb->succs) != old_succs)
6340 goto rescan;
6343 #ifdef ENABLE_CHECKING
6344 /* Here, RES==1 if original expr was found at least for one of the
6345 successors. After the loop, RES may happen to have zero value
6346 only if at some point the expr searched is present in av_set, but is
6347 not found below. In most cases, this situation is an error.
6348 The exception is when the original operation is blocked by
6349 bookkeeping generated for another fence or for another path in current
6350 move_op. */
6351 gcc_assert (res == 1
6352 || (res == 0
6353 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6354 static_params))
6355 || res == -1);
6356 #endif
6358 /* Merge data, clean up, etc. */
6359 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6360 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6362 return res;
6366 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6367 is the pointer to the av set with expressions we were looking for,
6368 PATH_P is the pointer to the traversed path. */
6369 static inline void
6370 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6372 ilist_remove (path_p);
6373 av_set_clear (orig_ops_p);
6376 /* The driver function that implements move_op or find_used_regs
6377 functionality dependent whether code_motion_path_driver_INFO is set to
6378 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6379 of code (CFG traversal etc) that are shared among both functions. INSN
6380 is the insn we're starting the search from, ORIG_OPS are the expressions
6381 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6382 parameters of the driver, and STATIC_PARAMS are static parameters of
6383 the caller.
6385 Returns whether original instructions were found. Note that top-level
6386 code_motion_path_driver always returns true. */
6387 static int
6388 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6389 cmpd_local_params_p local_params_in,
6390 void *static_params)
6392 expr_t expr = NULL;
6393 basic_block bb = BLOCK_FOR_INSN (insn);
6394 insn_t first_insn, bb_tail, before_first;
6395 bool removed_last_insn = false;
6397 if (sched_verbose >= 6)
6399 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6400 dump_insn (insn);
6401 sel_print (",");
6402 dump_av_set (orig_ops);
6403 sel_print (")\n");
6406 gcc_assert (orig_ops);
6408 /* If no original operations exist below this insn, return immediately. */
6409 if (is_ineligible_successor (insn, path))
6411 if (sched_verbose >= 6)
6412 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6413 return false;
6416 /* The block can have invalid av set, in which case it was created earlier
6417 during move_op. Return immediately. */
6418 if (sel_bb_head_p (insn))
6420 if (! AV_SET_VALID_P (insn))
6422 if (sched_verbose >= 6)
6423 sel_print ("Returned from block %d as it had invalid av set\n",
6424 bb->index);
6425 return false;
6428 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6430 /* We have already found an original operation on this branch, do not
6431 go any further and just return TRUE here. If we don't stop here,
6432 function can have exponential behaviour even on the small code
6433 with many different paths (e.g. with data speculation and
6434 recovery blocks). */
6435 if (sched_verbose >= 6)
6436 sel_print ("Block %d already visited in this traversal\n", bb->index);
6437 if (code_motion_path_driver_info->on_enter)
6438 return code_motion_path_driver_info->on_enter (insn,
6439 local_params_in,
6440 static_params,
6441 true);
6445 if (code_motion_path_driver_info->on_enter)
6446 code_motion_path_driver_info->on_enter (insn, local_params_in,
6447 static_params, false);
6448 orig_ops = av_set_copy (orig_ops);
6450 /* Filter the orig_ops set. */
6451 if (AV_SET_VALID_P (insn))
6452 av_set_intersect (&orig_ops, AV_SET (insn));
6454 /* If no more original ops, return immediately. */
6455 if (!orig_ops)
6457 if (sched_verbose >= 6)
6458 sel_print ("No intersection with av set of block %d\n", bb->index);
6459 return false;
6462 /* For non-speculative insns we have to leave only one form of the
6463 original operation, because if we don't, we may end up with
6464 different C_EXPRes and, consequently, with bookkeepings for different
6465 expression forms along the same code motion path. That may lead to
6466 generation of incorrect code. So for each code motion we stick to
6467 the single form of the instruction, except for speculative insns
6468 which we need to keep in different forms with all speculation
6469 types. */
6470 av_set_leave_one_nonspec (&orig_ops);
6472 /* It is not possible that all ORIG_OPS are filtered out. */
6473 gcc_assert (orig_ops);
6475 /* It is enough to place only heads and tails of visited basic blocks into
6476 the PATH. */
6477 ilist_add (&path, insn);
6478 first_insn = insn;
6479 bb_tail = sel_bb_end (bb);
6481 /* Descend the basic block in search of the original expr; this part
6482 corresponds to the part of the original move_op procedure executed
6483 before the recursive call. */
6484 for (;;)
6486 /* Look at the insn and decide if it could be an ancestor of currently
6487 scheduling operation. If it is so, then the insn "dest = op" could
6488 either be replaced with "dest = reg", because REG now holds the result
6489 of OP, or just removed, if we've scheduled the insn as a whole.
6491 If this insn doesn't contain currently scheduling OP, then proceed
6492 with searching and look at its successors. Operations we're searching
6493 for could have changed when moving up through this insn via
6494 substituting. In this case, perform unsubstitution on them first.
6496 When traversing the DAG below this insn is finished, insert
6497 bookkeeping code, if the insn is a joint point, and remove
6498 leftovers. */
6500 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6501 if (expr)
6503 insn_t last_insn = PREV_INSN (insn);
6505 /* We have found the original operation. */
6506 if (sched_verbose >= 6)
6507 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6509 code_motion_path_driver_info->orig_expr_found
6510 (insn, expr, local_params_in, static_params);
6512 /* Step back, so on the way back we'll start traversing from the
6513 previous insn (or we'll see that it's bb_note and skip that
6514 loop). */
6515 if (insn == first_insn)
6517 first_insn = NEXT_INSN (last_insn);
6518 removed_last_insn = sel_bb_end_p (last_insn);
6520 insn = last_insn;
6521 break;
6523 else
6525 /* We haven't found the original expr, continue descending the basic
6526 block. */
6527 if (code_motion_path_driver_info->orig_expr_not_found
6528 (insn, orig_ops, static_params))
6530 /* Av set ops could have been changed when moving through this
6531 insn. To find them below it, we have to un-substitute them. */
6532 undo_transformations (&orig_ops, insn);
6534 else
6536 /* Clean up and return, if the hook tells us to do so. It may
6537 happen if we've encountered the previously created
6538 bookkeeping. */
6539 code_motion_path_driver_cleanup (&orig_ops, &path);
6540 return -1;
6543 gcc_assert (orig_ops);
6546 /* Stop at insn if we got to the end of BB. */
6547 if (insn == bb_tail)
6548 break;
6550 insn = NEXT_INSN (insn);
6553 /* Here INSN either points to the insn before the original insn (may be
6554 bb_note, if original insn was a bb_head) or to the bb_end. */
6555 if (!expr)
6557 int res;
6559 gcc_assert (insn == sel_bb_end (bb));
6561 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6562 it's already in PATH then). */
6563 if (insn != first_insn)
6564 ilist_add (&path, insn);
6566 /* Process_successors should be able to find at least one
6567 successor for which code_motion_path_driver returns TRUE. */
6568 res = code_motion_process_successors (insn, orig_ops,
6569 path, static_params);
6571 /* Remove bb tail from path. */
6572 if (insn != first_insn)
6573 ilist_remove (&path);
6575 if (res != 1)
6577 /* This is the case when one of the original expr is no longer available
6578 due to bookkeeping created on this branch with the same register.
6579 In the original algorithm, which doesn't have update_data_sets call
6580 on a bookkeeping block, it would simply result in returning
6581 FALSE when we've encountered a previously generated bookkeeping
6582 insn in moveop_orig_expr_not_found. */
6583 code_motion_path_driver_cleanup (&orig_ops, &path);
6584 return res;
6588 /* Don't need it any more. */
6589 av_set_clear (&orig_ops);
6591 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6592 the beginning of the basic block. */
6593 before_first = PREV_INSN (first_insn);
6594 while (insn != before_first)
6596 if (code_motion_path_driver_info->ascend)
6597 code_motion_path_driver_info->ascend (insn, static_params);
6599 insn = PREV_INSN (insn);
6602 /* Now we're at the bb head. */
6603 insn = first_insn;
6604 ilist_remove (&path);
6605 local_params_in->removed_last_insn = removed_last_insn;
6606 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6608 /* This should be the very last operation as at bb head we could change
6609 the numbering by creating bookkeeping blocks. */
6610 if (removed_last_insn)
6611 insn = PREV_INSN (insn);
6612 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6613 return true;
6616 /* Move up the operations from ORIG_OPS set traversing the dag starting
6617 from INSN. PATH represents the edges traversed so far.
6618 DEST is the register chosen for scheduling the current expr. Insert
6619 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6620 C_EXPR is how it looks like at the given cfg point.
6621 Set *SHOULD_MOVE to indicate whether we have only disconnected
6622 one of the insns found.
6624 Returns whether original instructions were found, which is asserted
6625 to be true in the caller. */
6626 static bool
6627 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6628 rtx dest, expr_t c_expr, bool *should_move)
6630 struct moveop_static_params sparams;
6631 struct cmpd_local_params lparams;
6632 bool res;
6634 /* Init params for code_motion_path_driver. */
6635 sparams.dest = dest;
6636 sparams.c_expr = c_expr;
6637 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6638 #ifdef ENABLE_CHECKING
6639 sparams.failed_insn = NULL;
6640 #endif
6641 sparams.was_renamed = false;
6642 lparams.e1 = NULL;
6644 /* We haven't visited any blocks yet. */
6645 bitmap_clear (code_motion_visited_blocks);
6647 /* Set appropriate hooks and data. */
6648 code_motion_path_driver_info = &move_op_hooks;
6649 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6651 if (sparams.was_renamed)
6652 EXPR_WAS_RENAMED (expr_vliw) = true;
6654 *should_move = (sparams.uid == -1);
6656 return res;
6660 /* Functions that work with regions. */
6662 /* Current number of seqno used in init_seqno and init_seqno_1. */
6663 static int cur_seqno;
6665 /* A helper for init_seqno. Traverse the region starting from BB and
6666 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6667 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6668 static void
6669 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6671 int bbi = BLOCK_TO_BB (bb->index);
6672 insn_t insn, note = bb_note (bb);
6673 insn_t succ_insn;
6674 succ_iterator si;
6676 SET_BIT (visited_bbs, bbi);
6677 if (blocks_to_reschedule)
6678 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6680 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6681 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6683 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6684 int succ_bbi = BLOCK_TO_BB (succ->index);
6686 gcc_assert (in_current_region_p (succ));
6688 if (!TEST_BIT (visited_bbs, succ_bbi))
6690 gcc_assert (succ_bbi > bbi);
6692 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6696 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6697 INSN_SEQNO (insn) = cur_seqno--;
6700 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6701 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6702 which we're rescheduling when pipelining, FROM is the block where
6703 traversing region begins (it may not be the head of the region when
6704 pipelining, but the head of the loop instead).
6706 Returns the maximal seqno found. */
6707 static int
6708 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6710 sbitmap visited_bbs;
6711 bitmap_iterator bi;
6712 unsigned bbi;
6714 visited_bbs = sbitmap_alloc (current_nr_blocks);
6716 if (blocks_to_reschedule)
6718 sbitmap_ones (visited_bbs);
6719 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6721 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6722 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6725 else
6727 sbitmap_zero (visited_bbs);
6728 from = EBB_FIRST_BB (0);
6731 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6732 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6733 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6735 sbitmap_free (visited_bbs);
6736 return sched_max_luid - 1;
6739 /* Initialize scheduling parameters for current region. */
6740 static void
6741 sel_setup_region_sched_flags (void)
6743 enable_schedule_as_rhs_p = 1;
6744 bookkeeping_p = 1;
6745 pipelining_p = (bookkeeping_p
6746 && (flag_sel_sched_pipelining != 0)
6747 && current_loop_nest != NULL);
6748 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6749 max_ws = MAX_WS;
6752 /* Return true if all basic blocks of current region are empty. */
6753 static bool
6754 current_region_empty_p (void)
6756 int i;
6757 for (i = 0; i < current_nr_blocks; i++)
6758 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6759 return false;
6761 return true;
6764 /* Prepare and verify loop nest for pipelining. */
6765 static void
6766 setup_current_loop_nest (int rgn)
6768 current_loop_nest = get_loop_nest_for_rgn (rgn);
6770 if (!current_loop_nest)
6771 return;
6773 /* If this loop has any saved loop preheaders from nested loops,
6774 add these basic blocks to the current region. */
6775 sel_add_loop_preheaders ();
6777 /* Check that we're starting with a valid information. */
6778 gcc_assert (loop_latch_edge (current_loop_nest));
6779 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6782 /* Compute instruction priorities for current region. */
6783 static void
6784 sel_compute_priorities (int rgn)
6786 sched_rgn_compute_dependencies (rgn);
6788 /* Compute insn priorities in haifa style. Then free haifa style
6789 dependencies that we've calculated for this. */
6790 compute_priorities ();
6792 if (sched_verbose >= 5)
6793 debug_rgn_dependencies (0);
6795 free_rgn_deps ();
6798 /* Init scheduling data for RGN. Returns true when this region should not
6799 be scheduled. */
6800 static bool
6801 sel_region_init (int rgn)
6803 int i;
6804 bb_vec_t bbs;
6806 rgn_setup_region (rgn);
6808 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6809 do region initialization here so the region can be bundled correctly,
6810 but we'll skip the scheduling in sel_sched_region (). */
6811 if (current_region_empty_p ())
6812 return true;
6814 if (flag_sel_sched_pipelining)
6815 setup_current_loop_nest (rgn);
6817 sel_setup_region_sched_flags ();
6819 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6821 for (i = 0; i < current_nr_blocks; i++)
6822 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6824 sel_init_bbs (bbs, NULL);
6826 /* Initialize luids and dependence analysis which both sel-sched and haifa
6827 need. */
6828 sched_init_luids (bbs, NULL, NULL, NULL);
6829 sched_deps_init (false);
6831 /* Initialize haifa data. */
6832 rgn_setup_sched_infos ();
6833 sel_set_sched_flags ();
6834 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6836 sel_compute_priorities (rgn);
6837 init_deps_global ();
6839 /* Main initialization. */
6840 sel_setup_sched_infos ();
6841 sel_init_global_and_expr (bbs);
6843 VEC_free (basic_block, heap, bbs);
6845 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6847 /* Init correct liveness sets on each instruction of a single-block loop.
6848 This is the only situation when we can't update liveness when calling
6849 compute_live for the first insn of the loop. */
6850 if (current_loop_nest)
6852 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6854 : 0);
6856 if (current_nr_blocks == header + 1)
6857 update_liveness_on_insn
6858 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6861 /* Set hooks so that no newly generated insn will go out unnoticed. */
6862 sel_register_cfg_hooks ();
6864 /* !!! We call target.sched.init () for the whole region, but we invoke
6865 targetm.sched.finish () for every ebb. */
6866 if (targetm.sched.init)
6867 /* None of the arguments are actually used in any target. */
6868 targetm.sched.init (sched_dump, sched_verbose, -1);
6870 first_emitted_uid = get_max_uid () + 1;
6871 preheader_removed = false;
6873 /* Reset register allocation ticks array. */
6874 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6875 reg_rename_this_tick = 0;
6877 bitmap_initialize (forced_ebb_heads, 0);
6878 bitmap_clear (forced_ebb_heads);
6880 setup_nop_vinsn ();
6881 current_copies = BITMAP_ALLOC (NULL);
6882 current_originators = BITMAP_ALLOC (NULL);
6883 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6885 return false;
6888 /* Simplify insns after the scheduling. */
6889 static void
6890 simplify_changed_insns (void)
6892 int i;
6894 for (i = 0; i < current_nr_blocks; i++)
6896 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6897 rtx insn;
6899 FOR_BB_INSNS (bb, insn)
6900 if (INSN_P (insn))
6902 expr_t expr = INSN_EXPR (insn);
6904 if (EXPR_WAS_SUBSTITUTED (expr))
6905 validate_simplify_insn (insn);
6910 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6911 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6912 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6913 static void
6914 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6916 insn_t head, tail;
6917 basic_block bb1 = bb;
6918 if (sched_verbose >= 2)
6919 sel_print ("Finishing schedule in bbs: ");
6923 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6925 if (sched_verbose >= 2)
6926 sel_print ("%d; ", bb1->index);
6928 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6930 if (sched_verbose >= 2)
6931 sel_print ("\n");
6933 get_ebb_head_tail (bb, bb1, &head, &tail);
6935 current_sched_info->head = head;
6936 current_sched_info->tail = tail;
6937 current_sched_info->prev_head = PREV_INSN (head);
6938 current_sched_info->next_tail = NEXT_INSN (tail);
6941 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6942 static void
6943 reset_sched_cycles_in_current_ebb (void)
6945 int last_clock = 0;
6946 int haifa_last_clock = -1;
6947 int haifa_clock = 0;
6948 insn_t insn;
6950 if (targetm.sched.init)
6952 /* None of the arguments are actually used in any target.
6953 NB: We should have md_reset () hook for cases like this. */
6954 targetm.sched.init (sched_dump, sched_verbose, -1);
6957 state_reset (curr_state);
6958 advance_state (curr_state);
6960 for (insn = current_sched_info->head;
6961 insn != current_sched_info->next_tail;
6962 insn = NEXT_INSN (insn))
6964 int cost, haifa_cost;
6965 int sort_p;
6966 bool asm_p, real_insn, after_stall;
6967 int clock;
6969 if (!INSN_P (insn))
6970 continue;
6972 asm_p = false;
6973 real_insn = recog_memoized (insn) >= 0;
6974 clock = INSN_SCHED_CYCLE (insn);
6976 cost = clock - last_clock;
6978 /* Initialize HAIFA_COST. */
6979 if (! real_insn)
6981 asm_p = INSN_ASM_P (insn);
6983 if (asm_p)
6984 /* This is asm insn which *had* to be scheduled first
6985 on the cycle. */
6986 haifa_cost = 1;
6987 else
6988 /* This is a use/clobber insn. It should not change
6989 cost. */
6990 haifa_cost = 0;
6992 else
6993 haifa_cost = estimate_insn_cost (insn, curr_state);
6995 /* Stall for whatever cycles we've stalled before. */
6996 after_stall = 0;
6997 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
6999 haifa_cost = cost;
7000 after_stall = 1;
7003 if (haifa_cost > 0)
7005 int i = 0;
7007 while (haifa_cost--)
7009 advance_state (curr_state);
7010 i++;
7012 if (sched_verbose >= 2)
7014 sel_print ("advance_state (state_transition)\n");
7015 debug_state (curr_state);
7018 /* The DFA may report that e.g. insn requires 2 cycles to be
7019 issued, but on the next cycle it says that insn is ready
7020 to go. Check this here. */
7021 if (!after_stall
7022 && real_insn
7023 && haifa_cost > 0
7024 && estimate_insn_cost (insn, curr_state) == 0)
7025 break;
7028 haifa_clock += i;
7030 else
7031 gcc_assert (haifa_cost == 0);
7033 if (sched_verbose >= 2)
7034 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7036 if (targetm.sched.dfa_new_cycle)
7037 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7038 haifa_last_clock, haifa_clock,
7039 &sort_p))
7041 advance_state (curr_state);
7042 haifa_clock++;
7043 if (sched_verbose >= 2)
7045 sel_print ("advance_state (dfa_new_cycle)\n");
7046 debug_state (curr_state);
7050 if (real_insn)
7052 cost = state_transition (curr_state, insn);
7054 if (sched_verbose >= 2)
7055 debug_state (curr_state);
7057 gcc_assert (cost < 0);
7060 if (targetm.sched.variable_issue)
7061 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7063 INSN_SCHED_CYCLE (insn) = haifa_clock;
7065 last_clock = clock;
7066 haifa_last_clock = haifa_clock;
7070 /* Put TImode markers on insns starting a new issue group. */
7071 static void
7072 put_TImodes (void)
7074 int last_clock = -1;
7075 insn_t insn;
7077 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7078 insn = NEXT_INSN (insn))
7080 int cost, clock;
7082 if (!INSN_P (insn))
7083 continue;
7085 clock = INSN_SCHED_CYCLE (insn);
7086 cost = (last_clock == -1) ? 1 : clock - last_clock;
7088 gcc_assert (cost >= 0);
7090 if (issue_rate > 1
7091 && GET_CODE (PATTERN (insn)) != USE
7092 && GET_CODE (PATTERN (insn)) != CLOBBER)
7094 if (reload_completed && cost > 0)
7095 PUT_MODE (insn, TImode);
7097 last_clock = clock;
7100 if (sched_verbose >= 2)
7101 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7105 /* Perform MD_FINISH on EBBs comprising current region. When
7106 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7107 to produce correct sched cycles on insns. */
7108 static void
7109 sel_region_target_finish (bool reset_sched_cycles_p)
7111 int i;
7112 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7114 for (i = 0; i < current_nr_blocks; i++)
7116 if (bitmap_bit_p (scheduled_blocks, i))
7117 continue;
7119 /* While pipelining outer loops, skip bundling for loop
7120 preheaders. Those will be rescheduled in the outer loop. */
7121 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7122 continue;
7124 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7126 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7127 continue;
7129 if (reset_sched_cycles_p)
7130 reset_sched_cycles_in_current_ebb ();
7132 if (targetm.sched.init)
7133 targetm.sched.init (sched_dump, sched_verbose, -1);
7135 put_TImodes ();
7137 if (targetm.sched.finish)
7139 targetm.sched.finish (sched_dump, sched_verbose);
7141 /* Extend luids so that insns generated by the target will
7142 get zero luid. */
7143 sched_init_luids (NULL, NULL, NULL, NULL);
7147 BITMAP_FREE (scheduled_blocks);
7150 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7151 is true, make an additional pass emulating scheduler to get correct insn
7152 cycles for md_finish calls. */
7153 static void
7154 sel_region_finish (bool reset_sched_cycles_p)
7156 simplify_changed_insns ();
7157 sched_finish_ready_list ();
7158 free_nop_pool ();
7160 /* Free the vectors. */
7161 if (vec_av_set)
7162 VEC_free (expr_t, heap, vec_av_set);
7163 BITMAP_FREE (current_copies);
7164 BITMAP_FREE (current_originators);
7165 BITMAP_FREE (code_motion_visited_blocks);
7166 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7167 vinsn_vec_free (&vec_target_unavailable_vinsns);
7169 /* If LV_SET of the region head should be updated, do it now because
7170 there will be no other chance. */
7172 succ_iterator si;
7173 insn_t insn;
7175 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7176 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7178 basic_block bb = BLOCK_FOR_INSN (insn);
7180 if (!BB_LV_SET_VALID_P (bb))
7181 compute_live (insn);
7185 /* Emulate the Haifa scheduler for bundling. */
7186 if (reload_completed)
7187 sel_region_target_finish (reset_sched_cycles_p);
7189 sel_finish_global_and_expr ();
7191 bitmap_clear (forced_ebb_heads);
7193 free_nop_vinsn ();
7195 finish_deps_global ();
7196 sched_finish_luids ();
7198 sel_finish_bbs ();
7199 BITMAP_FREE (blocks_to_reschedule);
7201 sel_unregister_cfg_hooks ();
7203 max_issue_size = 0;
7207 /* Functions that implement the scheduler driver. */
7209 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7210 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7211 of insns scheduled -- these would be postprocessed later. */
7212 static void
7213 schedule_on_fences (flist_t fences, int max_seqno,
7214 ilist_t **scheduled_insns_tailpp)
7216 flist_t old_fences = fences;
7218 if (sched_verbose >= 1)
7220 sel_print ("\nScheduling on fences: ");
7221 dump_flist (fences);
7222 sel_print ("\n");
7225 scheduled_something_on_previous_fence = false;
7226 for (; fences; fences = FLIST_NEXT (fences))
7228 fence_t fence = NULL;
7229 int seqno = 0;
7230 flist_t fences2;
7231 bool first_p = true;
7233 /* Choose the next fence group to schedule.
7234 The fact that insn can be scheduled only once
7235 on the cycle is guaranteed by two properties:
7236 1. seqnos of parallel groups decrease with each iteration.
7237 2. If is_ineligible_successor () sees the larger seqno, it
7238 checks if candidate insn is_in_current_fence_p (). */
7239 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7241 fence_t f = FLIST_FENCE (fences2);
7243 if (!FENCE_PROCESSED_P (f))
7245 int i = INSN_SEQNO (FENCE_INSN (f));
7247 if (first_p || i > seqno)
7249 seqno = i;
7250 fence = f;
7251 first_p = false;
7253 else
7254 /* ??? Seqnos of different groups should be different. */
7255 gcc_assert (1 || i != seqno);
7259 gcc_assert (fence);
7261 /* As FENCE is nonnull, SEQNO is initialized. */
7262 seqno -= max_seqno + 1;
7263 fill_insns (fence, seqno, scheduled_insns_tailpp);
7264 FENCE_PROCESSED_P (fence) = true;
7267 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7268 don't need to keep bookkeeping-invalidated and target-unavailable
7269 vinsns any more. */
7270 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7271 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7274 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7275 static void
7276 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7278 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7280 /* The first element is already processed. */
7281 while ((fences = FLIST_NEXT (fences)))
7283 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7285 if (*min_seqno > seqno)
7286 *min_seqno = seqno;
7287 else if (*max_seqno < seqno)
7288 *max_seqno = seqno;
7292 /* Calculate new fences from FENCES. */
7293 static flist_t
7294 calculate_new_fences (flist_t fences, int orig_max_seqno)
7296 flist_t old_fences = fences;
7297 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7299 flist_tail_init (new_fences);
7300 for (; fences; fences = FLIST_NEXT (fences))
7302 fence_t fence = FLIST_FENCE (fences);
7303 insn_t insn;
7305 if (!FENCE_BNDS (fence))
7307 /* This fence doesn't have any successors. */
7308 if (!FENCE_SCHEDULED_P (fence))
7310 /* Nothing was scheduled on this fence. */
7311 int seqno;
7313 insn = FENCE_INSN (fence);
7314 seqno = INSN_SEQNO (insn);
7315 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7317 if (sched_verbose >= 1)
7318 sel_print ("Fence %d[%d] has not changed\n",
7319 INSN_UID (insn),
7320 BLOCK_NUM (insn));
7321 move_fence_to_fences (fences, new_fences);
7324 else
7325 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7328 flist_clear (&old_fences);
7329 return FLIST_TAIL_HEAD (new_fences);
7332 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7333 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7334 the highest seqno used in a region. Return the updated highest seqno. */
7335 static int
7336 update_seqnos_and_stage (int min_seqno, int max_seqno,
7337 int highest_seqno_in_use,
7338 ilist_t *pscheduled_insns)
7340 int new_hs;
7341 ilist_iterator ii;
7342 insn_t insn;
7344 /* Actually, new_hs is the seqno of the instruction, that was
7345 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7346 if (*pscheduled_insns)
7348 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7349 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7350 gcc_assert (new_hs > highest_seqno_in_use);
7352 else
7353 new_hs = highest_seqno_in_use;
7355 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7357 gcc_assert (INSN_SEQNO (insn) < 0);
7358 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7359 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7361 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7362 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7363 require > 1GB of memory e.g. on limit-fnargs.c. */
7364 if (! pipelining_p)
7365 free_data_for_scheduled_insn (insn);
7368 ilist_clear (pscheduled_insns);
7369 global_level++;
7371 return new_hs;
7374 /* The main driver for scheduling a region. This function is responsible
7375 for correct propagation of fences (i.e. scheduling points) and creating
7376 a group of parallel insns at each of them. It also supports
7377 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7378 of scheduling. */
7379 static void
7380 sel_sched_region_2 (int orig_max_seqno)
7382 int highest_seqno_in_use = orig_max_seqno;
7384 stat_bookkeeping_copies = 0;
7385 stat_insns_needed_bookkeeping = 0;
7386 stat_renamed_scheduled = 0;
7387 stat_substitutions_total = 0;
7388 num_insns_scheduled = 0;
7390 while (fences)
7392 int min_seqno, max_seqno;
7393 ilist_t scheduled_insns = NULL;
7394 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7396 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7397 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7398 fences = calculate_new_fences (fences, orig_max_seqno);
7399 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7400 highest_seqno_in_use,
7401 &scheduled_insns);
7404 if (sched_verbose >= 1)
7405 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7406 "bookkeeping, %d insns renamed, %d insns substituted\n",
7407 stat_bookkeeping_copies,
7408 stat_insns_needed_bookkeeping,
7409 stat_renamed_scheduled,
7410 stat_substitutions_total);
7413 /* Schedule a region. When pipelining, search for possibly never scheduled
7414 bookkeeping code and schedule it. Reschedule pipelined code without
7415 pipelining after. */
7416 static void
7417 sel_sched_region_1 (void)
7419 int number_of_insns;
7420 int orig_max_seqno;
7422 /* Remove empty blocks that might be in the region from the beginning.
7423 We need to do save sched_max_luid before that, as it actually shows
7424 the number of insns in the region, and purge_empty_blocks can
7425 alter it. */
7426 number_of_insns = sched_max_luid - 1;
7427 purge_empty_blocks ();
7429 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7430 gcc_assert (orig_max_seqno >= 1);
7432 /* When pipelining outer loops, create fences on the loop header,
7433 not preheader. */
7434 fences = NULL;
7435 if (current_loop_nest)
7436 init_fences (BB_END (EBB_FIRST_BB (0)));
7437 else
7438 init_fences (bb_note (EBB_FIRST_BB (0)));
7439 global_level = 1;
7441 sel_sched_region_2 (orig_max_seqno);
7443 gcc_assert (fences == NULL);
7445 if (pipelining_p)
7447 int i;
7448 basic_block bb;
7449 struct flist_tail_def _new_fences;
7450 flist_tail_t new_fences = &_new_fences;
7451 bool do_p = true;
7453 pipelining_p = false;
7454 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7455 bookkeeping_p = false;
7456 enable_schedule_as_rhs_p = false;
7458 /* Schedule newly created code, that has not been scheduled yet. */
7459 do_p = true;
7461 while (do_p)
7463 do_p = false;
7465 for (i = 0; i < current_nr_blocks; i++)
7467 basic_block bb = EBB_FIRST_BB (i);
7469 if (sel_bb_empty_p (bb))
7471 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7472 continue;
7475 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7477 clear_outdated_rtx_info (bb);
7478 if (sel_insn_is_speculation_check (BB_END (bb))
7479 && JUMP_P (BB_END (bb)))
7480 bitmap_set_bit (blocks_to_reschedule,
7481 BRANCH_EDGE (bb)->dest->index);
7483 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7484 bitmap_set_bit (blocks_to_reschedule, bb->index);
7487 for (i = 0; i < current_nr_blocks; i++)
7489 bb = EBB_FIRST_BB (i);
7491 /* While pipelining outer loops, skip bundling for loop
7492 preheaders. Those will be rescheduled in the outer
7493 loop. */
7494 if (sel_is_loop_preheader_p (bb))
7496 clear_outdated_rtx_info (bb);
7497 continue;
7500 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7502 flist_tail_init (new_fences);
7504 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7506 /* Mark BB as head of the new ebb. */
7507 bitmap_set_bit (forced_ebb_heads, bb->index);
7509 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7511 gcc_assert (fences == NULL);
7513 init_fences (bb_note (bb));
7515 sel_sched_region_2 (orig_max_seqno);
7517 do_p = true;
7518 break;
7525 /* Schedule the RGN region. */
7526 void
7527 sel_sched_region (int rgn)
7529 bool schedule_p;
7530 bool reset_sched_cycles_p;
7532 if (sel_region_init (rgn))
7533 return;
7535 if (sched_verbose >= 1)
7536 sel_print ("Scheduling region %d\n", rgn);
7538 schedule_p = (!sched_is_disabled_for_current_region_p ()
7539 && dbg_cnt (sel_sched_region_cnt));
7540 reset_sched_cycles_p = pipelining_p;
7541 if (schedule_p)
7542 sel_sched_region_1 ();
7543 else
7544 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7545 reset_sched_cycles_p = true;
7547 sel_region_finish (reset_sched_cycles_p);
7550 /* Perform global init for the scheduler. */
7551 static void
7552 sel_global_init (void)
7554 calculate_dominance_info (CDI_DOMINATORS);
7555 alloc_sched_pools ();
7557 /* Setup the infos for sched_init. */
7558 sel_setup_sched_infos ();
7559 setup_sched_dump ();
7561 sched_rgn_init (false);
7562 sched_init ();
7564 sched_init_bbs ();
7565 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7566 after_recovery = 0;
7567 can_issue_more = issue_rate;
7569 sched_extend_target ();
7570 sched_deps_init (true);
7571 setup_nop_and_exit_insns ();
7572 sel_extend_global_bb_info ();
7573 init_lv_sets ();
7574 init_hard_regs_data ();
7577 /* Free the global data of the scheduler. */
7578 static void
7579 sel_global_finish (void)
7581 free_bb_note_pool ();
7582 free_lv_sets ();
7583 sel_finish_global_bb_info ();
7585 free_regset_pool ();
7586 free_nop_and_exit_insns ();
7588 sched_rgn_finish ();
7589 sched_deps_finish ();
7590 sched_finish ();
7592 if (current_loops)
7593 sel_finish_pipelining ();
7595 free_sched_pools ();
7596 free_dominance_info (CDI_DOMINATORS);
7599 /* Return true when we need to skip selective scheduling. Used for debugging. */
7600 bool
7601 maybe_skip_selective_scheduling (void)
7603 return ! dbg_cnt (sel_sched_cnt);
7606 /* The entry point. */
7607 void
7608 run_selective_scheduling (void)
7610 int rgn;
7612 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7613 return;
7615 sel_global_init ();
7617 for (rgn = 0; rgn < nr_regions; rgn++)
7618 sel_sched_region (rgn);
7620 sel_global_finish ();
7623 #endif