2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / reload.c
blob98aaa236200530583095c4013bbc246fd79de0cf
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "output.h"
110 #include "function.h"
111 #include "params.h"
112 #include "target.h"
113 #include "ira.h"
114 #include "toplev.h" /* exact_log2 may be used by targets */
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124 #define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
129 /* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
131 int n_reloads;
132 struct reload rld[MAX_RELOADS];
134 /* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136 int n_earlyclobbers;
137 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 int reload_n_operands;
141 /* Replacing reloads.
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
148 /* Nonzero means record the places to replace. */
149 static int replace_reloads;
151 /* Each replacement is recorded with a structure like this. */
152 struct replacement
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
161 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 /* Number of replacements currently recorded. */
164 static int n_replacements;
166 /* Used to track what is modified by an operand. */
167 struct decomposition
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
173 HOST_WIDE_INT end; /* Ending offset or register number. */
176 #ifdef SECONDARY_MEMORY_NEEDED
178 /* Save MEMs needed to copy from one class of registers to another. One MEM
179 is used per mode, but normally only one or two modes are ever used.
181 We keep two versions, before and after register elimination. The one
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
186 static rtx secondary_memlocs[NUM_MACHINE_MODES];
187 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
188 static int secondary_memlocs_elim_used = 0;
189 #endif
191 /* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193 static rtx this_insn;
195 /* Nonzero if this instruction is a user-specified asm with operands. */
196 static int this_insn_is_asm;
198 /* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201 static int hard_regs_live_known;
203 /* Indexed by hard reg number,
204 element is nonnegative if hard reg has been spilled.
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207 static short *static_reload_reg_p;
209 /* Set to 1 in subst_reg_equivs if it changes anything. */
210 static int subst_reg_equivs_changed;
212 /* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214 static int output_reloadnum;
216 /* Compare two RTX's. */
217 #define MATCHES(x, y) \
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243 #define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
250 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
252 enum insn_code *, secondary_reload_info *);
253 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
255 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
271 addr_space_t, rtx *);
272 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
273 int, enum reload_type, int, rtx);
274 static rtx subst_reg_equivs (rtx, rtx);
275 static rtx subst_indexed_address (rtx);
276 static void update_auto_inc_notes (rtx, int, int);
277 static int find_reloads_address_1 (enum machine_mode, rtx, int,
278 enum rtx_code, enum rtx_code, rtx *,
279 int, enum reload_type,int, rtx);
280 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
281 enum machine_mode, int,
282 enum reload_type, int);
283 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
284 int, rtx);
285 static void copy_replacements_1 (rtx *, rtx *, int);
286 static int find_inc_amount (rtx, rtx);
287 static int refers_to_mem_for_reload_p (rtx);
288 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
289 rtx, rtx *);
291 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
292 list yet. */
294 static void
295 push_reg_equiv_alt_mem (int regno, rtx mem)
297 rtx it;
299 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
300 if (rtx_equal_p (XEXP (it, 0), mem))
301 return;
303 reg_equiv_alt_mem_list [regno]
304 = alloc_EXPR_LIST (REG_EQUIV, mem,
305 reg_equiv_alt_mem_list [regno]);
308 /* Determine if any secondary reloads are needed for loading (if IN_P is
309 nonzero) or storing (if IN_P is zero) X to or from a reload register of
310 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
311 are needed, push them.
313 Return the reload number of the secondary reload we made, or -1 if
314 we didn't need one. *PICODE is set to the insn_code to use if we do
315 need a secondary reload. */
317 static int
318 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
319 enum reg_class reload_class,
320 enum machine_mode reload_mode, enum reload_type type,
321 enum insn_code *picode, secondary_reload_info *prev_sri)
323 enum reg_class rclass = NO_REGS;
324 enum reg_class scratch_class;
325 enum machine_mode mode = reload_mode;
326 enum insn_code icode = CODE_FOR_nothing;
327 enum insn_code t_icode = CODE_FOR_nothing;
328 enum reload_type secondary_type;
329 int s_reload, t_reload = -1;
330 const char *scratch_constraint;
331 char letter;
332 secondary_reload_info sri;
334 if (type == RELOAD_FOR_INPUT_ADDRESS
335 || type == RELOAD_FOR_OUTPUT_ADDRESS
336 || type == RELOAD_FOR_INPADDR_ADDRESS
337 || type == RELOAD_FOR_OUTADDR_ADDRESS)
338 secondary_type = type;
339 else
340 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
342 *picode = CODE_FOR_nothing;
344 /* If X is a paradoxical SUBREG, use the inner value to determine both the
345 mode and object being reloaded. */
346 if (GET_CODE (x) == SUBREG
347 && (GET_MODE_SIZE (GET_MODE (x))
348 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
350 x = SUBREG_REG (x);
351 reload_mode = GET_MODE (x);
354 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
355 is still a pseudo-register by now, it *must* have an equivalent MEM
356 but we don't want to assume that), use that equivalent when seeing if
357 a secondary reload is needed since whether or not a reload is needed
358 might be sensitive to the form of the MEM. */
360 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
361 && reg_equiv_mem[REGNO (x)] != 0)
362 x = reg_equiv_mem[REGNO (x)];
364 sri.icode = CODE_FOR_nothing;
365 sri.prev_sri = prev_sri;
366 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
367 reload_mode, &sri);
368 icode = (enum insn_code) sri.icode;
370 /* If we don't need any secondary registers, done. */
371 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
372 return -1;
374 if (rclass != NO_REGS)
375 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
376 reload_mode, type, &t_icode, &sri);
378 /* If we will be using an insn, the secondary reload is for a
379 scratch register. */
381 if (icode != CODE_FOR_nothing)
383 /* If IN_P is nonzero, the reload register will be the output in
384 operand 0. If IN_P is zero, the reload register will be the input
385 in operand 1. Outputs should have an initial "=", which we must
386 skip. */
388 /* ??? It would be useful to be able to handle only two, or more than
389 three, operands, but for now we can only handle the case of having
390 exactly three: output, input and one temp/scratch. */
391 gcc_assert (insn_data[(int) icode].n_operands == 3);
393 /* ??? We currently have no way to represent a reload that needs
394 an icode to reload from an intermediate tertiary reload register.
395 We should probably have a new field in struct reload to tag a
396 chain of scratch operand reloads onto. */
397 gcc_assert (rclass == NO_REGS);
399 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
400 gcc_assert (*scratch_constraint == '=');
401 scratch_constraint++;
402 if (*scratch_constraint == '&')
403 scratch_constraint++;
404 letter = *scratch_constraint;
405 scratch_class = (letter == 'r' ? GENERAL_REGS
406 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
407 scratch_constraint));
409 rclass = scratch_class;
410 mode = insn_data[(int) icode].operand[2].mode;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
428 || t_icode != CODE_FOR_nothing);
430 /* See if we can reuse an existing secondary reload. */
431 for (s_reload = 0; s_reload < n_reloads; s_reload++)
432 if (rld[s_reload].secondary_p
433 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
434 || reg_class_subset_p (rld[s_reload].rclass, rclass))
435 && ((in_p && rld[s_reload].inmode == mode)
436 || (! in_p && rld[s_reload].outmode == mode))
437 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
438 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
439 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
440 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
441 && (SMALL_REGISTER_CLASS_P (rclass)
442 || targetm.small_register_classes_for_mode_p (VOIDmode))
443 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
444 opnum, rld[s_reload].opnum))
446 if (in_p)
447 rld[s_reload].inmode = mode;
448 if (! in_p)
449 rld[s_reload].outmode = mode;
451 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
452 rld[s_reload].rclass = rclass;
454 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
455 rld[s_reload].optional &= optional;
456 rld[s_reload].secondary_p = 1;
457 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
458 opnum, rld[s_reload].opnum))
459 rld[s_reload].when_needed = RELOAD_OTHER;
461 break;
464 if (s_reload == n_reloads)
466 #ifdef SECONDARY_MEMORY_NEEDED
467 /* If we need a memory location to copy between the two reload regs,
468 set it up now. Note that we do the input case before making
469 the reload and the output case after. This is due to the
470 way reloads are output. */
472 if (in_p && icode == CODE_FOR_nothing
473 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
475 get_secondary_mem (x, reload_mode, opnum, type);
477 /* We may have just added new reloads. Make sure we add
478 the new reload at the end. */
479 s_reload = n_reloads;
481 #endif
483 /* We need to make a new secondary reload for this register class. */
484 rld[s_reload].in = rld[s_reload].out = 0;
485 rld[s_reload].rclass = rclass;
487 rld[s_reload].inmode = in_p ? mode : VOIDmode;
488 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
489 rld[s_reload].reg_rtx = 0;
490 rld[s_reload].optional = optional;
491 rld[s_reload].inc = 0;
492 /* Maybe we could combine these, but it seems too tricky. */
493 rld[s_reload].nocombine = 1;
494 rld[s_reload].in_reg = 0;
495 rld[s_reload].out_reg = 0;
496 rld[s_reload].opnum = opnum;
497 rld[s_reload].when_needed = secondary_type;
498 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
499 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
500 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_out_icode
502 = ! in_p ? t_icode : CODE_FOR_nothing;
503 rld[s_reload].secondary_p = 1;
505 n_reloads++;
507 #ifdef SECONDARY_MEMORY_NEEDED
508 if (! in_p && icode == CODE_FOR_nothing
509 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
510 get_secondary_mem (x, mode, opnum, type);
511 #endif
514 *picode = icode;
515 return s_reload;
518 /* If a secondary reload is needed, return its class. If both an intermediate
519 register and a scratch register is needed, we return the class of the
520 intermediate register. */
521 enum reg_class
522 secondary_reload_class (bool in_p, enum reg_class rclass,
523 enum machine_mode mode, rtx x)
525 enum insn_code icode;
526 secondary_reload_info sri;
528 sri.icode = CODE_FOR_nothing;
529 sri.prev_sri = NULL;
530 rclass
531 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
532 icode = (enum insn_code) sri.icode;
534 /* If there are no secondary reloads at all, we return NO_REGS.
535 If an intermediate register is needed, we return its class. */
536 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
537 return rclass;
539 /* No intermediate register is needed, but we have a special reload
540 pattern, which we assume for now needs a scratch register. */
541 return scratch_reload_class (icode);
544 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
545 three operands, verify that operand 2 is an output operand, and return
546 its register class.
547 ??? We'd like to be able to handle any pattern with at least 2 operands,
548 for zero or more scratch registers, but that needs more infrastructure. */
549 enum reg_class
550 scratch_reload_class (enum insn_code icode)
552 const char *scratch_constraint;
553 char scratch_letter;
554 enum reg_class rclass;
556 gcc_assert (insn_data[(int) icode].n_operands == 3);
557 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
558 gcc_assert (*scratch_constraint == '=');
559 scratch_constraint++;
560 if (*scratch_constraint == '&')
561 scratch_constraint++;
562 scratch_letter = *scratch_constraint;
563 if (scratch_letter == 'r')
564 return GENERAL_REGS;
565 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
566 scratch_constraint);
567 gcc_assert (rclass != NO_REGS);
568 return rclass;
571 #ifdef SECONDARY_MEMORY_NEEDED
573 /* Return a memory location that will be used to copy X in mode MODE.
574 If we haven't already made a location for this mode in this insn,
575 call find_reloads_address on the location being returned. */
578 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
579 int opnum, enum reload_type type)
581 rtx loc;
582 int mem_valid;
584 /* By default, if MODE is narrower than a word, widen it to a word.
585 This is required because most machines that require these memory
586 locations do not support short load and stores from all registers
587 (e.g., FP registers). */
589 #ifdef SECONDARY_MEMORY_NEEDED_MODE
590 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
591 #else
592 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
593 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
594 #endif
596 /* If we already have made a MEM for this operand in MODE, return it. */
597 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
598 return secondary_memlocs_elim[(int) mode][opnum];
600 /* If this is the first time we've tried to get a MEM for this mode,
601 allocate a new one. `something_changed' in reload will get set
602 by noticing that the frame size has changed. */
604 if (secondary_memlocs[(int) mode] == 0)
606 #ifdef SECONDARY_MEMORY_NEEDED_RTX
607 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
608 #else
609 secondary_memlocs[(int) mode]
610 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
611 #endif
614 /* Get a version of the address doing any eliminations needed. If that
615 didn't give us a new MEM, make a new one if it isn't valid. */
617 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
618 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
619 MEM_ADDR_SPACE (loc));
621 if (! mem_valid && loc == secondary_memlocs[(int) mode])
622 loc = copy_rtx (loc);
624 /* The only time the call below will do anything is if the stack
625 offset is too large. In that case IND_LEVELS doesn't matter, so we
626 can just pass a zero. Adjust the type to be the address of the
627 corresponding object. If the address was valid, save the eliminated
628 address. If it wasn't valid, we need to make a reload each time, so
629 don't save it. */
631 if (! mem_valid)
633 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
634 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
635 : RELOAD_OTHER);
637 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
638 opnum, type, 0, 0);
641 secondary_memlocs_elim[(int) mode][opnum] = loc;
642 if (secondary_memlocs_elim_used <= (int)mode)
643 secondary_memlocs_elim_used = (int)mode + 1;
644 return loc;
647 /* Clear any secondary memory locations we've made. */
649 void
650 clear_secondary_mem (void)
652 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
654 #endif /* SECONDARY_MEMORY_NEEDED */
657 /* Find the largest class which has at least one register valid in
658 mode INNER, and which for every such register, that register number
659 plus N is also valid in OUTER (if in range) and is cheap to move
660 into REGNO. Such a class must exist. */
662 static enum reg_class
663 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
664 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
665 unsigned int dest_regno ATTRIBUTE_UNUSED)
667 int best_cost = -1;
668 int rclass;
669 int regno;
670 enum reg_class best_class = NO_REGS;
671 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
672 unsigned int best_size = 0;
673 int cost;
675 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
677 int bad = 0;
678 int good = 0;
679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
680 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
682 if (HARD_REGNO_MODE_OK (regno, inner))
684 good = 1;
685 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
686 || ! HARD_REGNO_MODE_OK (regno + n, outer))
687 bad = 1;
691 if (bad || !good)
692 continue;
693 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
695 if ((reg_class_size[rclass] > best_size
696 && (best_cost < 0 || best_cost >= cost))
697 || best_cost > cost)
699 best_class = (enum reg_class) rclass;
700 best_size = reg_class_size[rclass];
701 best_cost = register_move_cost (outer, (enum reg_class) rclass,
702 dest_class);
706 gcc_assert (best_size != 0);
708 return best_class;
711 /* Return the number of a previously made reload that can be combined with
712 a new one, or n_reloads if none of the existing reloads can be used.
713 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
714 push_reload, they determine the kind of the new reload that we try to
715 combine. P_IN points to the corresponding value of IN, which can be
716 modified by this function.
717 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
719 static int
720 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
721 enum reload_type type, int opnum, int dont_share)
723 rtx in = *p_in;
724 int i;
725 /* We can't merge two reloads if the output of either one is
726 earlyclobbered. */
728 if (earlyclobber_operand_p (out))
729 return n_reloads;
731 /* We can use an existing reload if the class is right
732 and at least one of IN and OUT is a match
733 and the other is at worst neutral.
734 (A zero compared against anything is neutral.)
736 For targets with small register classes, don't use existing reloads
737 unless they are for the same thing since that can cause us to need
738 more reload registers than we otherwise would. */
740 for (i = 0; i < n_reloads; i++)
741 if ((reg_class_subset_p (rclass, rld[i].rclass)
742 || reg_class_subset_p (rld[i].rclass, rclass))
743 /* If the existing reload has a register, it must fit our class. */
744 && (rld[i].reg_rtx == 0
745 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
746 true_regnum (rld[i].reg_rtx)))
747 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
748 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
749 || (out != 0 && MATCHES (rld[i].out, out)
750 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
751 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
752 && (SMALL_REGISTER_CLASS_P (rclass)
753 || targetm.small_register_classes_for_mode_p (VOIDmode))
754 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
755 return i;
757 /* Reloading a plain reg for input can match a reload to postincrement
758 that reg, since the postincrement's value is the right value.
759 Likewise, it can match a preincrement reload, since we regard
760 the preincrementation as happening before any ref in this insn
761 to that register. */
762 for (i = 0; i < n_reloads; i++)
763 if ((reg_class_subset_p (rclass, rld[i].rclass)
764 || reg_class_subset_p (rld[i].rclass, rclass))
765 /* If the existing reload has a register, it must fit our
766 class. */
767 && (rld[i].reg_rtx == 0
768 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
769 true_regnum (rld[i].reg_rtx)))
770 && out == 0 && rld[i].out == 0 && rld[i].in != 0
771 && ((REG_P (in)
772 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
773 && MATCHES (XEXP (rld[i].in, 0), in))
774 || (REG_P (rld[i].in)
775 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
776 && MATCHES (XEXP (in, 0), rld[i].in)))
777 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
778 && (SMALL_REGISTER_CLASS_P (rclass)
779 || targetm.small_register_classes_for_mode_p (VOIDmode))
780 && MERGABLE_RELOADS (type, rld[i].when_needed,
781 opnum, rld[i].opnum))
783 /* Make sure reload_in ultimately has the increment,
784 not the plain register. */
785 if (REG_P (in))
786 *p_in = rld[i].in;
787 return i;
789 return n_reloads;
792 /* Return nonzero if X is a SUBREG which will require reloading of its
793 SUBREG_REG expression. */
795 static int
796 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
798 rtx inner;
800 /* Only SUBREGs are problematical. */
801 if (GET_CODE (x) != SUBREG)
802 return 0;
804 inner = SUBREG_REG (x);
806 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
807 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
808 return 1;
810 /* If INNER is not a hard register, then INNER will not need to
811 be reloaded. */
812 if (!REG_P (inner)
813 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
814 return 0;
816 /* If INNER is not ok for MODE, then INNER will need reloading. */
817 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
818 return 1;
820 /* If the outer part is a word or smaller, INNER larger than a
821 word and the number of regs for INNER is not the same as the
822 number of words in INNER, then INNER will need reloading. */
823 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
824 && output
825 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
826 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
827 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
830 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
831 requiring an extra reload register. The caller has already found that
832 IN contains some reference to REGNO, so check that we can produce the
833 new value in a single step. E.g. if we have
834 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
835 instruction that adds one to a register, this should succeed.
836 However, if we have something like
837 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
838 needs to be loaded into a register first, we need a separate reload
839 register.
840 Such PLUS reloads are generated by find_reload_address_part.
841 The out-of-range PLUS expressions are usually introduced in the instruction
842 patterns by register elimination and substituting pseudos without a home
843 by their function-invariant equivalences. */
844 static int
845 can_reload_into (rtx in, int regno, enum machine_mode mode)
847 rtx dst, test_insn;
848 int r = 0;
849 struct recog_data save_recog_data;
851 /* For matching constraints, we often get notional input reloads where
852 we want to use the original register as the reload register. I.e.
853 technically this is a non-optional input-output reload, but IN is
854 already a valid register, and has been chosen as the reload register.
855 Speed this up, since it trivially works. */
856 if (REG_P (in))
857 return 1;
859 /* To test MEMs properly, we'd have to take into account all the reloads
860 that are already scheduled, which can become quite complicated.
861 And since we've already handled address reloads for this MEM, it
862 should always succeed anyway. */
863 if (MEM_P (in))
864 return 1;
866 /* If we can make a simple SET insn that does the job, everything should
867 be fine. */
868 dst = gen_rtx_REG (mode, regno);
869 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
870 save_recog_data = recog_data;
871 if (recog_memoized (test_insn) >= 0)
873 extract_insn (test_insn);
874 r = constrain_operands (1);
876 recog_data = save_recog_data;
877 return r;
880 /* Record one reload that needs to be performed.
881 IN is an rtx saying where the data are to be found before this instruction.
882 OUT says where they must be stored after the instruction.
883 (IN is zero for data not read, and OUT is zero for data not written.)
884 INLOC and OUTLOC point to the places in the instructions where
885 IN and OUT were found.
886 If IN and OUT are both nonzero, it means the same register must be used
887 to reload both IN and OUT.
889 RCLASS is a register class required for the reloaded data.
890 INMODE is the machine mode that the instruction requires
891 for the reg that replaces IN and OUTMODE is likewise for OUT.
893 If IN is zero, then OUT's location and mode should be passed as
894 INLOC and INMODE.
896 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
898 OPTIONAL nonzero means this reload does not need to be performed:
899 it can be discarded if that is more convenient.
901 OPNUM and TYPE say what the purpose of this reload is.
903 The return value is the reload-number for this reload.
905 If both IN and OUT are nonzero, in some rare cases we might
906 want to make two separate reloads. (Actually we never do this now.)
907 Therefore, the reload-number for OUT is stored in
908 output_reloadnum when we return; the return value applies to IN.
909 Usually (presently always), when IN and OUT are nonzero,
910 the two reload-numbers are equal, but the caller should be careful to
911 distinguish them. */
914 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
915 enum reg_class rclass, enum machine_mode inmode,
916 enum machine_mode outmode, int strict_low, int optional,
917 int opnum, enum reload_type type)
919 int i;
920 int dont_share = 0;
921 int dont_remove_subreg = 0;
922 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
923 int secondary_in_reload = -1, secondary_out_reload = -1;
924 enum insn_code secondary_in_icode = CODE_FOR_nothing;
925 enum insn_code secondary_out_icode = CODE_FOR_nothing;
927 /* INMODE and/or OUTMODE could be VOIDmode if no mode
928 has been specified for the operand. In that case,
929 use the operand's mode as the mode to reload. */
930 if (inmode == VOIDmode && in != 0)
931 inmode = GET_MODE (in);
932 if (outmode == VOIDmode && out != 0)
933 outmode = GET_MODE (out);
935 /* If find_reloads and friends until now missed to replace a pseudo
936 with a constant of reg_equiv_constant something went wrong
937 beforehand.
938 Note that it can't simply be done here if we missed it earlier
939 since the constant might need to be pushed into the literal pool
940 and the resulting memref would probably need further
941 reloading. */
942 if (in != 0 && REG_P (in))
944 int regno = REGNO (in);
946 gcc_assert (regno < FIRST_PSEUDO_REGISTER
947 || reg_renumber[regno] >= 0
948 || reg_equiv_constant[regno] == NULL_RTX);
951 /* reg_equiv_constant only contains constants which are obviously
952 not appropriate as destination. So if we would need to replace
953 the destination pseudo with a constant we are in real
954 trouble. */
955 if (out != 0 && REG_P (out))
957 int regno = REGNO (out);
959 gcc_assert (regno < FIRST_PSEUDO_REGISTER
960 || reg_renumber[regno] >= 0
961 || reg_equiv_constant[regno] == NULL_RTX);
964 /* If we have a read-write operand with an address side-effect,
965 change either IN or OUT so the side-effect happens only once. */
966 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
967 switch (GET_CODE (XEXP (in, 0)))
969 case POST_INC: case POST_DEC: case POST_MODIFY:
970 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
971 break;
973 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
974 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
975 break;
977 default:
978 break;
981 /* If we are reloading a (SUBREG constant ...), really reload just the
982 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
983 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
984 a pseudo and hence will become a MEM) with M1 wider than M2 and the
985 register is a pseudo, also reload the inside expression.
986 For machines that extend byte loads, do this for any SUBREG of a pseudo
987 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
988 M2 is an integral mode that gets extended when loaded.
989 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
990 either M1 is not valid for R or M2 is wider than a word but we only
991 need one word to store an M2-sized quantity in R.
992 (However, if OUT is nonzero, we need to reload the reg *and*
993 the subreg, so do nothing here, and let following statement handle it.)
995 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
996 we can't handle it here because CONST_INT does not indicate a mode.
998 Similarly, we must reload the inside expression if we have a
999 STRICT_LOW_PART (presumably, in == out in this case).
1001 Also reload the inner expression if it does not require a secondary
1002 reload but the SUBREG does.
1004 Finally, reload the inner expression if it is a register that is in
1005 the class whose registers cannot be referenced in a different size
1006 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1007 cannot reload just the inside since we might end up with the wrong
1008 register class. But if it is inside a STRICT_LOW_PART, we have
1009 no choice, so we hope we do get the right register class there. */
1011 if (in != 0 && GET_CODE (in) == SUBREG
1012 && (subreg_lowpart_p (in) || strict_low)
1013 #ifdef CANNOT_CHANGE_MODE_CLASS
1014 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1015 #endif
1016 && (CONSTANT_P (SUBREG_REG (in))
1017 || GET_CODE (SUBREG_REG (in)) == PLUS
1018 || strict_low
1019 || (((REG_P (SUBREG_REG (in))
1020 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1021 || MEM_P (SUBREG_REG (in)))
1022 && ((GET_MODE_SIZE (inmode)
1023 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1024 #ifdef LOAD_EXTEND_OP
1025 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1026 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1027 <= UNITS_PER_WORD)
1028 && (GET_MODE_SIZE (inmode)
1029 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1030 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1031 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1032 #endif
1033 #ifdef WORD_REGISTER_OPERATIONS
1034 || ((GET_MODE_SIZE (inmode)
1035 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1036 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1037 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1038 / UNITS_PER_WORD)))
1039 #endif
1041 || (REG_P (SUBREG_REG (in))
1042 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1043 /* The case where out is nonzero
1044 is handled differently in the following statement. */
1045 && (out == 0 || subreg_lowpart_p (in))
1046 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1047 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1048 > UNITS_PER_WORD)
1049 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1050 / UNITS_PER_WORD)
1051 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1052 [GET_MODE (SUBREG_REG (in))]))
1053 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1054 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1055 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1056 SUBREG_REG (in))
1057 == NO_REGS))
1058 #ifdef CANNOT_CHANGE_MODE_CLASS
1059 || (REG_P (SUBREG_REG (in))
1060 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1061 && REG_CANNOT_CHANGE_MODE_P
1062 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1063 #endif
1066 in_subreg_loc = inloc;
1067 inloc = &SUBREG_REG (in);
1068 in = *inloc;
1069 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1070 if (MEM_P (in))
1071 /* This is supposed to happen only for paradoxical subregs made by
1072 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1073 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1074 #endif
1075 inmode = GET_MODE (in);
1078 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1079 either M1 is not valid for R or M2 is wider than a word but we only
1080 need one word to store an M2-sized quantity in R.
1082 However, we must reload the inner reg *as well as* the subreg in
1083 that case. */
1085 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1086 code above. This can happen if SUBREG_BYTE != 0. */
1088 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1090 enum reg_class in_class = rclass;
1092 if (REG_P (SUBREG_REG (in)))
1093 in_class
1094 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1095 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1096 GET_MODE (SUBREG_REG (in)),
1097 SUBREG_BYTE (in),
1098 GET_MODE (in)),
1099 REGNO (SUBREG_REG (in)));
1101 /* This relies on the fact that emit_reload_insns outputs the
1102 instructions for input reloads of type RELOAD_OTHER in the same
1103 order as the reloads. Thus if the outer reload is also of type
1104 RELOAD_OTHER, we are guaranteed that this inner reload will be
1105 output before the outer reload. */
1106 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1107 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1108 dont_remove_subreg = 1;
1111 /* Similarly for paradoxical and problematical SUBREGs on the output.
1112 Note that there is no reason we need worry about the previous value
1113 of SUBREG_REG (out); even if wider than out,
1114 storing in a subreg is entitled to clobber it all
1115 (except in the case of STRICT_LOW_PART,
1116 and in that case the constraint should label it input-output.) */
1117 if (out != 0 && GET_CODE (out) == SUBREG
1118 && (subreg_lowpart_p (out) || strict_low)
1119 #ifdef CANNOT_CHANGE_MODE_CLASS
1120 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1121 #endif
1122 && (CONSTANT_P (SUBREG_REG (out))
1123 || strict_low
1124 || (((REG_P (SUBREG_REG (out))
1125 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1126 || MEM_P (SUBREG_REG (out)))
1127 && ((GET_MODE_SIZE (outmode)
1128 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1129 #ifdef WORD_REGISTER_OPERATIONS
1130 || ((GET_MODE_SIZE (outmode)
1131 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1132 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1133 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1134 / UNITS_PER_WORD)))
1135 #endif
1137 || (REG_P (SUBREG_REG (out))
1138 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1139 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1140 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1141 > UNITS_PER_WORD)
1142 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1143 / UNITS_PER_WORD)
1144 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1145 [GET_MODE (SUBREG_REG (out))]))
1146 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1147 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1148 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1149 SUBREG_REG (out))
1150 == NO_REGS))
1151 #ifdef CANNOT_CHANGE_MODE_CLASS
1152 || (REG_P (SUBREG_REG (out))
1153 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1154 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1155 GET_MODE (SUBREG_REG (out)),
1156 outmode))
1157 #endif
1160 out_subreg_loc = outloc;
1161 outloc = &SUBREG_REG (out);
1162 out = *outloc;
1163 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1164 gcc_assert (!MEM_P (out)
1165 || GET_MODE_SIZE (GET_MODE (out))
1166 <= GET_MODE_SIZE (outmode));
1167 #endif
1168 outmode = GET_MODE (out);
1171 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1172 either M1 is not valid for R or M2 is wider than a word but we only
1173 need one word to store an M2-sized quantity in R.
1175 However, we must reload the inner reg *as well as* the subreg in
1176 that case. In this case, the inner reg is an in-out reload. */
1178 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1180 /* This relies on the fact that emit_reload_insns outputs the
1181 instructions for output reloads of type RELOAD_OTHER in reverse
1182 order of the reloads. Thus if the outer reload is also of type
1183 RELOAD_OTHER, we are guaranteed that this inner reload will be
1184 output after the outer reload. */
1185 dont_remove_subreg = 1;
1186 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1187 &SUBREG_REG (out),
1188 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1189 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1190 GET_MODE (SUBREG_REG (out)),
1191 SUBREG_BYTE (out),
1192 GET_MODE (out)),
1193 REGNO (SUBREG_REG (out))),
1194 VOIDmode, VOIDmode, 0, 0,
1195 opnum, RELOAD_OTHER);
1198 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1199 if (in != 0 && out != 0 && MEM_P (out)
1200 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1201 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1202 dont_share = 1;
1204 /* If IN is a SUBREG of a hard register, make a new REG. This
1205 simplifies some of the cases below. */
1207 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1208 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
1210 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1212 /* Similarly for OUT. */
1213 if (out != 0 && GET_CODE (out) == SUBREG
1214 && REG_P (SUBREG_REG (out))
1215 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1216 && ! dont_remove_subreg)
1217 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1219 /* Narrow down the class of register wanted if that is
1220 desirable on this machine for efficiency. */
1222 enum reg_class preferred_class = rclass;
1224 if (in != 0)
1225 preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1227 /* Output reloads may need analogous treatment, different in detail. */
1228 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1229 if (out != 0)
1230 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1231 #endif
1233 /* Discard what the target said if we cannot do it. */
1234 if (preferred_class != NO_REGS
1235 || (optional && type == RELOAD_FOR_OUTPUT))
1236 rclass = preferred_class;
1239 /* Make sure we use a class that can handle the actual pseudo
1240 inside any subreg. For example, on the 386, QImode regs
1241 can appear within SImode subregs. Although GENERAL_REGS
1242 can handle SImode, QImode needs a smaller class. */
1243 #ifdef LIMIT_RELOAD_CLASS
1244 if (in_subreg_loc)
1245 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1246 else if (in != 0 && GET_CODE (in) == SUBREG)
1247 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1249 if (out_subreg_loc)
1250 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1251 if (out != 0 && GET_CODE (out) == SUBREG)
1252 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1253 #endif
1255 /* Verify that this class is at least possible for the mode that
1256 is specified. */
1257 if (this_insn_is_asm)
1259 enum machine_mode mode;
1260 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1261 mode = inmode;
1262 else
1263 mode = outmode;
1264 if (mode == VOIDmode)
1266 error_for_asm (this_insn, "cannot reload integer constant "
1267 "operand in %<asm%>");
1268 mode = word_mode;
1269 if (in != 0)
1270 inmode = word_mode;
1271 if (out != 0)
1272 outmode = word_mode;
1274 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1275 if (HARD_REGNO_MODE_OK (i, mode)
1276 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1277 break;
1278 if (i == FIRST_PSEUDO_REGISTER)
1280 error_for_asm (this_insn, "impossible register constraint "
1281 "in %<asm%>");
1282 /* Avoid further trouble with this insn. */
1283 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1284 /* We used to continue here setting class to ALL_REGS, but it triggers
1285 sanity check on i386 for:
1286 void foo(long double d)
1288 asm("" :: "a" (d));
1290 Returning zero here ought to be safe as we take care in
1291 find_reloads to not process the reloads when instruction was
1292 replaced by USE. */
1294 return 0;
1298 /* Optional output reloads are always OK even if we have no register class,
1299 since the function of these reloads is only to have spill_reg_store etc.
1300 set, so that the storing insn can be deleted later. */
1301 gcc_assert (rclass != NO_REGS
1302 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1304 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1306 if (i == n_reloads)
1308 /* See if we need a secondary reload register to move between CLASS
1309 and IN or CLASS and OUT. Get the icode and push any required reloads
1310 needed for each of them if so. */
1312 if (in != 0)
1313 secondary_in_reload
1314 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1315 &secondary_in_icode, NULL);
1316 if (out != 0 && GET_CODE (out) != SCRATCH)
1317 secondary_out_reload
1318 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1319 type, &secondary_out_icode, NULL);
1321 /* We found no existing reload suitable for re-use.
1322 So add an additional reload. */
1324 #ifdef SECONDARY_MEMORY_NEEDED
1325 /* If a memory location is needed for the copy, make one. */
1326 if (in != 0
1327 && (REG_P (in)
1328 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1329 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1330 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1331 rclass, inmode))
1332 get_secondary_mem (in, inmode, opnum, type);
1333 #endif
1335 i = n_reloads;
1336 rld[i].in = in;
1337 rld[i].out = out;
1338 rld[i].rclass = rclass;
1339 rld[i].inmode = inmode;
1340 rld[i].outmode = outmode;
1341 rld[i].reg_rtx = 0;
1342 rld[i].optional = optional;
1343 rld[i].inc = 0;
1344 rld[i].nocombine = 0;
1345 rld[i].in_reg = inloc ? *inloc : 0;
1346 rld[i].out_reg = outloc ? *outloc : 0;
1347 rld[i].opnum = opnum;
1348 rld[i].when_needed = type;
1349 rld[i].secondary_in_reload = secondary_in_reload;
1350 rld[i].secondary_out_reload = secondary_out_reload;
1351 rld[i].secondary_in_icode = secondary_in_icode;
1352 rld[i].secondary_out_icode = secondary_out_icode;
1353 rld[i].secondary_p = 0;
1355 n_reloads++;
1357 #ifdef SECONDARY_MEMORY_NEEDED
1358 if (out != 0
1359 && (REG_P (out)
1360 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1361 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1362 && SECONDARY_MEMORY_NEEDED (rclass,
1363 REGNO_REG_CLASS (reg_or_subregno (out)),
1364 outmode))
1365 get_secondary_mem (out, outmode, opnum, type);
1366 #endif
1368 else
1370 /* We are reusing an existing reload,
1371 but we may have additional information for it.
1372 For example, we may now have both IN and OUT
1373 while the old one may have just one of them. */
1375 /* The modes can be different. If they are, we want to reload in
1376 the larger mode, so that the value is valid for both modes. */
1377 if (inmode != VOIDmode
1378 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1379 rld[i].inmode = inmode;
1380 if (outmode != VOIDmode
1381 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1382 rld[i].outmode = outmode;
1383 if (in != 0)
1385 rtx in_reg = inloc ? *inloc : 0;
1386 /* If we merge reloads for two distinct rtl expressions that
1387 are identical in content, there might be duplicate address
1388 reloads. Remove the extra set now, so that if we later find
1389 that we can inherit this reload, we can get rid of the
1390 address reloads altogether.
1392 Do not do this if both reloads are optional since the result
1393 would be an optional reload which could potentially leave
1394 unresolved address replacements.
1396 It is not sufficient to call transfer_replacements since
1397 choose_reload_regs will remove the replacements for address
1398 reloads of inherited reloads which results in the same
1399 problem. */
1400 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1401 && ! (rld[i].optional && optional))
1403 /* We must keep the address reload with the lower operand
1404 number alive. */
1405 if (opnum > rld[i].opnum)
1407 remove_address_replacements (in);
1408 in = rld[i].in;
1409 in_reg = rld[i].in_reg;
1411 else
1412 remove_address_replacements (rld[i].in);
1414 /* When emitting reloads we don't necessarily look at the in-
1415 and outmode, but also directly at the operands (in and out).
1416 So we can't simply overwrite them with whatever we have found
1417 for this (to-be-merged) reload, we have to "merge" that too.
1418 Reusing another reload already verified that we deal with the
1419 same operands, just possibly in different modes. So we
1420 overwrite the operands only when the new mode is larger.
1421 See also PR33613. */
1422 if (!rld[i].in
1423 || GET_MODE_SIZE (GET_MODE (in))
1424 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1425 rld[i].in = in;
1426 if (!rld[i].in_reg
1427 || (in_reg
1428 && GET_MODE_SIZE (GET_MODE (in_reg))
1429 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1430 rld[i].in_reg = in_reg;
1432 if (out != 0)
1434 if (!rld[i].out
1435 || (out
1436 && GET_MODE_SIZE (GET_MODE (out))
1437 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1438 rld[i].out = out;
1439 if (outloc
1440 && (!rld[i].out_reg
1441 || GET_MODE_SIZE (GET_MODE (*outloc))
1442 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1443 rld[i].out_reg = *outloc;
1445 if (reg_class_subset_p (rclass, rld[i].rclass))
1446 rld[i].rclass = rclass;
1447 rld[i].optional &= optional;
1448 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1449 opnum, rld[i].opnum))
1450 rld[i].when_needed = RELOAD_OTHER;
1451 rld[i].opnum = MIN (rld[i].opnum, opnum);
1454 /* If the ostensible rtx being reloaded differs from the rtx found
1455 in the location to substitute, this reload is not safe to combine
1456 because we cannot reliably tell whether it appears in the insn. */
1458 if (in != 0 && in != *inloc)
1459 rld[i].nocombine = 1;
1461 #if 0
1462 /* This was replaced by changes in find_reloads_address_1 and the new
1463 function inc_for_reload, which go with a new meaning of reload_inc. */
1465 /* If this is an IN/OUT reload in an insn that sets the CC,
1466 it must be for an autoincrement. It doesn't work to store
1467 the incremented value after the insn because that would clobber the CC.
1468 So we must do the increment of the value reloaded from,
1469 increment it, store it back, then decrement again. */
1470 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1472 out = 0;
1473 rld[i].out = 0;
1474 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1475 /* If we did not find a nonzero amount-to-increment-by,
1476 that contradicts the belief that IN is being incremented
1477 in an address in this insn. */
1478 gcc_assert (rld[i].inc != 0);
1480 #endif
1482 /* If we will replace IN and OUT with the reload-reg,
1483 record where they are located so that substitution need
1484 not do a tree walk. */
1486 if (replace_reloads)
1488 if (inloc != 0)
1490 struct replacement *r = &replacements[n_replacements++];
1491 r->what = i;
1492 r->subreg_loc = in_subreg_loc;
1493 r->where = inloc;
1494 r->mode = inmode;
1496 if (outloc != 0 && outloc != inloc)
1498 struct replacement *r = &replacements[n_replacements++];
1499 r->what = i;
1500 r->where = outloc;
1501 r->subreg_loc = out_subreg_loc;
1502 r->mode = outmode;
1506 /* If this reload is just being introduced and it has both
1507 an incoming quantity and an outgoing quantity that are
1508 supposed to be made to match, see if either one of the two
1509 can serve as the place to reload into.
1511 If one of them is acceptable, set rld[i].reg_rtx
1512 to that one. */
1514 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1516 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1517 inmode, outmode,
1518 rld[i].rclass, i,
1519 earlyclobber_operand_p (out));
1521 /* If the outgoing register already contains the same value
1522 as the incoming one, we can dispense with loading it.
1523 The easiest way to tell the caller that is to give a phony
1524 value for the incoming operand (same as outgoing one). */
1525 if (rld[i].reg_rtx == out
1526 && (REG_P (in) || CONSTANT_P (in))
1527 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1528 static_reload_reg_p, i, inmode))
1529 rld[i].in = out;
1532 /* If this is an input reload and the operand contains a register that
1533 dies in this insn and is used nowhere else, see if it is the right class
1534 to be used for this reload. Use it if so. (This occurs most commonly
1535 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1536 this if it is also an output reload that mentions the register unless
1537 the output is a SUBREG that clobbers an entire register.
1539 Note that the operand might be one of the spill regs, if it is a
1540 pseudo reg and we are in a block where spilling has not taken place.
1541 But if there is no spilling in this block, that is OK.
1542 An explicitly used hard reg cannot be a spill reg. */
1544 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1546 rtx note;
1547 int regno;
1548 enum machine_mode rel_mode = inmode;
1550 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1551 rel_mode = outmode;
1553 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1554 if (REG_NOTE_KIND (note) == REG_DEAD
1555 && REG_P (XEXP (note, 0))
1556 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1557 && reg_mentioned_p (XEXP (note, 0), in)
1558 /* Check that a former pseudo is valid; see find_dummy_reload. */
1559 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1560 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1561 ORIGINAL_REGNO (XEXP (note, 0)))
1562 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1563 && ! refers_to_regno_for_reload_p (regno,
1564 end_hard_regno (rel_mode,
1565 regno),
1566 PATTERN (this_insn), inloc)
1567 /* If this is also an output reload, IN cannot be used as
1568 the reload register if it is set in this insn unless IN
1569 is also OUT. */
1570 && (out == 0 || in == out
1571 || ! hard_reg_set_here_p (regno,
1572 end_hard_regno (rel_mode, regno),
1573 PATTERN (this_insn)))
1574 /* ??? Why is this code so different from the previous?
1575 Is there any simple coherent way to describe the two together?
1576 What's going on here. */
1577 && (in != out
1578 || (GET_CODE (in) == SUBREG
1579 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1580 / UNITS_PER_WORD)
1581 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1582 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1583 /* Make sure the operand fits in the reg that dies. */
1584 && (GET_MODE_SIZE (rel_mode)
1585 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1586 && HARD_REGNO_MODE_OK (regno, inmode)
1587 && HARD_REGNO_MODE_OK (regno, outmode))
1589 unsigned int offs;
1590 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1591 hard_regno_nregs[regno][outmode]);
1593 for (offs = 0; offs < nregs; offs++)
1594 if (fixed_regs[regno + offs]
1595 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1596 regno + offs))
1597 break;
1599 if (offs == nregs
1600 && (! (refers_to_regno_for_reload_p
1601 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1602 || can_reload_into (in, regno, inmode)))
1604 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1605 break;
1610 if (out)
1611 output_reloadnum = i;
1613 return i;
1616 /* Record an additional place we must replace a value
1617 for which we have already recorded a reload.
1618 RELOADNUM is the value returned by push_reload
1619 when the reload was recorded.
1620 This is used in insn patterns that use match_dup. */
1622 static void
1623 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1625 if (replace_reloads)
1627 struct replacement *r = &replacements[n_replacements++];
1628 r->what = reloadnum;
1629 r->where = loc;
1630 r->subreg_loc = 0;
1631 r->mode = mode;
1635 /* Duplicate any replacement we have recorded to apply at
1636 location ORIG_LOC to also be performed at DUP_LOC.
1637 This is used in insn patterns that use match_dup. */
1639 static void
1640 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1642 int i, n = n_replacements;
1644 for (i = 0; i < n; i++)
1646 struct replacement *r = &replacements[i];
1647 if (r->where == orig_loc)
1648 push_replacement (dup_loc, r->what, r->mode);
1652 /* Transfer all replacements that used to be in reload FROM to be in
1653 reload TO. */
1655 void
1656 transfer_replacements (int to, int from)
1658 int i;
1660 for (i = 0; i < n_replacements; i++)
1661 if (replacements[i].what == from)
1662 replacements[i].what = to;
1665 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1666 or a subpart of it. If we have any replacements registered for IN_RTX,
1667 cancel the reloads that were supposed to load them.
1668 Return nonzero if we canceled any reloads. */
1670 remove_address_replacements (rtx in_rtx)
1672 int i, j;
1673 char reload_flags[MAX_RELOADS];
1674 int something_changed = 0;
1676 memset (reload_flags, 0, sizeof reload_flags);
1677 for (i = 0, j = 0; i < n_replacements; i++)
1679 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1680 reload_flags[replacements[i].what] |= 1;
1681 else
1683 replacements[j++] = replacements[i];
1684 reload_flags[replacements[i].what] |= 2;
1687 /* Note that the following store must be done before the recursive calls. */
1688 n_replacements = j;
1690 for (i = n_reloads - 1; i >= 0; i--)
1692 if (reload_flags[i] == 1)
1694 deallocate_reload_reg (i);
1695 remove_address_replacements (rld[i].in);
1696 rld[i].in = 0;
1697 something_changed = 1;
1700 return something_changed;
1703 /* If there is only one output reload, and it is not for an earlyclobber
1704 operand, try to combine it with a (logically unrelated) input reload
1705 to reduce the number of reload registers needed.
1707 This is safe if the input reload does not appear in
1708 the value being output-reloaded, because this implies
1709 it is not needed any more once the original insn completes.
1711 If that doesn't work, see we can use any of the registers that
1712 die in this insn as a reload register. We can if it is of the right
1713 class and does not appear in the value being output-reloaded. */
1715 static void
1716 combine_reloads (void)
1718 int i, regno;
1719 int output_reload = -1;
1720 int secondary_out = -1;
1721 rtx note;
1723 /* Find the output reload; return unless there is exactly one
1724 and that one is mandatory. */
1726 for (i = 0; i < n_reloads; i++)
1727 if (rld[i].out != 0)
1729 if (output_reload >= 0)
1730 return;
1731 output_reload = i;
1734 if (output_reload < 0 || rld[output_reload].optional)
1735 return;
1737 /* An input-output reload isn't combinable. */
1739 if (rld[output_reload].in != 0)
1740 return;
1742 /* If this reload is for an earlyclobber operand, we can't do anything. */
1743 if (earlyclobber_operand_p (rld[output_reload].out))
1744 return;
1746 /* If there is a reload for part of the address of this operand, we would
1747 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1748 its life to the point where doing this combine would not lower the
1749 number of spill registers needed. */
1750 for (i = 0; i < n_reloads; i++)
1751 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1752 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1753 && rld[i].opnum == rld[output_reload].opnum)
1754 return;
1756 /* Check each input reload; can we combine it? */
1758 for (i = 0; i < n_reloads; i++)
1759 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1760 /* Life span of this reload must not extend past main insn. */
1761 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1762 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1763 && rld[i].when_needed != RELOAD_OTHER
1764 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1765 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1766 rld[output_reload].outmode))
1767 && rld[i].inc == 0
1768 && rld[i].reg_rtx == 0
1769 #ifdef SECONDARY_MEMORY_NEEDED
1770 /* Don't combine two reloads with different secondary
1771 memory locations. */
1772 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1773 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1774 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1775 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1776 #endif
1777 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1778 ? (rld[i].rclass == rld[output_reload].rclass)
1779 : (reg_class_subset_p (rld[i].rclass,
1780 rld[output_reload].rclass)
1781 || reg_class_subset_p (rld[output_reload].rclass,
1782 rld[i].rclass)))
1783 && (MATCHES (rld[i].in, rld[output_reload].out)
1784 /* Args reversed because the first arg seems to be
1785 the one that we imagine being modified
1786 while the second is the one that might be affected. */
1787 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1788 rld[i].in)
1789 /* However, if the input is a register that appears inside
1790 the output, then we also can't share.
1791 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1792 If the same reload reg is used for both reg 69 and the
1793 result to be stored in memory, then that result
1794 will clobber the address of the memory ref. */
1795 && ! (REG_P (rld[i].in)
1796 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1797 rld[output_reload].out))))
1798 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1799 rld[i].when_needed != RELOAD_FOR_INPUT)
1800 && (reg_class_size[(int) rld[i].rclass]
1801 || targetm.small_register_classes_for_mode_p (VOIDmode))
1802 /* We will allow making things slightly worse by combining an
1803 input and an output, but no worse than that. */
1804 && (rld[i].when_needed == RELOAD_FOR_INPUT
1805 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1807 int j;
1809 /* We have found a reload to combine with! */
1810 rld[i].out = rld[output_reload].out;
1811 rld[i].out_reg = rld[output_reload].out_reg;
1812 rld[i].outmode = rld[output_reload].outmode;
1813 /* Mark the old output reload as inoperative. */
1814 rld[output_reload].out = 0;
1815 /* The combined reload is needed for the entire insn. */
1816 rld[i].when_needed = RELOAD_OTHER;
1817 /* If the output reload had a secondary reload, copy it. */
1818 if (rld[output_reload].secondary_out_reload != -1)
1820 rld[i].secondary_out_reload
1821 = rld[output_reload].secondary_out_reload;
1822 rld[i].secondary_out_icode
1823 = rld[output_reload].secondary_out_icode;
1826 #ifdef SECONDARY_MEMORY_NEEDED
1827 /* Copy any secondary MEM. */
1828 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1829 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1830 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1831 #endif
1832 /* If required, minimize the register class. */
1833 if (reg_class_subset_p (rld[output_reload].rclass,
1834 rld[i].rclass))
1835 rld[i].rclass = rld[output_reload].rclass;
1837 /* Transfer all replacements from the old reload to the combined. */
1838 for (j = 0; j < n_replacements; j++)
1839 if (replacements[j].what == output_reload)
1840 replacements[j].what = i;
1842 return;
1845 /* If this insn has only one operand that is modified or written (assumed
1846 to be the first), it must be the one corresponding to this reload. It
1847 is safe to use anything that dies in this insn for that output provided
1848 that it does not occur in the output (we already know it isn't an
1849 earlyclobber. If this is an asm insn, give up. */
1851 if (INSN_CODE (this_insn) == -1)
1852 return;
1854 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1855 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1856 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1857 return;
1859 /* See if some hard register that dies in this insn and is not used in
1860 the output is the right class. Only works if the register we pick
1861 up can fully hold our output reload. */
1862 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1863 if (REG_NOTE_KIND (note) == REG_DEAD
1864 && REG_P (XEXP (note, 0))
1865 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1866 rld[output_reload].out)
1867 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1868 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1869 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1870 regno)
1871 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1872 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1873 /* Ensure that a secondary or tertiary reload for this output
1874 won't want this register. */
1875 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1876 || (!(TEST_HARD_REG_BIT
1877 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1878 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1879 || !(TEST_HARD_REG_BIT
1880 (reg_class_contents[(int) rld[secondary_out].rclass],
1881 regno)))))
1882 && !fixed_regs[regno]
1883 /* Check that a former pseudo is valid; see find_dummy_reload. */
1884 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1885 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1886 ORIGINAL_REGNO (XEXP (note, 0)))
1887 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1889 rld[output_reload].reg_rtx
1890 = gen_rtx_REG (rld[output_reload].outmode, regno);
1891 return;
1895 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1896 See if one of IN and OUT is a register that may be used;
1897 this is desirable since a spill-register won't be needed.
1898 If so, return the register rtx that proves acceptable.
1900 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1901 RCLASS is the register class required for the reload.
1903 If FOR_REAL is >= 0, it is the number of the reload,
1904 and in some cases when it can be discovered that OUT doesn't need
1905 to be computed, clear out rld[FOR_REAL].out.
1907 If FOR_REAL is -1, this should not be done, because this call
1908 is just to see if a register can be found, not to find and install it.
1910 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1911 puts an additional constraint on being able to use IN for OUT since
1912 IN must not appear elsewhere in the insn (it is assumed that IN itself
1913 is safe from the earlyclobber). */
1915 static rtx
1916 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1917 enum machine_mode inmode, enum machine_mode outmode,
1918 enum reg_class rclass, int for_real, int earlyclobber)
1920 rtx in = real_in;
1921 rtx out = real_out;
1922 int in_offset = 0;
1923 int out_offset = 0;
1924 rtx value = 0;
1926 /* If operands exceed a word, we can't use either of them
1927 unless they have the same size. */
1928 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1929 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1930 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1931 return 0;
1933 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1934 respectively refers to a hard register. */
1936 /* Find the inside of any subregs. */
1937 while (GET_CODE (out) == SUBREG)
1939 if (REG_P (SUBREG_REG (out))
1940 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1941 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1942 GET_MODE (SUBREG_REG (out)),
1943 SUBREG_BYTE (out),
1944 GET_MODE (out));
1945 out = SUBREG_REG (out);
1947 while (GET_CODE (in) == SUBREG)
1949 if (REG_P (SUBREG_REG (in))
1950 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1951 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1952 GET_MODE (SUBREG_REG (in)),
1953 SUBREG_BYTE (in),
1954 GET_MODE (in));
1955 in = SUBREG_REG (in);
1958 /* Narrow down the reg class, the same way push_reload will;
1959 otherwise we might find a dummy now, but push_reload won't. */
1961 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1962 if (preferred_class != NO_REGS)
1963 rclass = preferred_class;
1966 /* See if OUT will do. */
1967 if (REG_P (out)
1968 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1970 unsigned int regno = REGNO (out) + out_offset;
1971 unsigned int nwords = hard_regno_nregs[regno][outmode];
1972 rtx saved_rtx;
1974 /* When we consider whether the insn uses OUT,
1975 ignore references within IN. They don't prevent us
1976 from copying IN into OUT, because those refs would
1977 move into the insn that reloads IN.
1979 However, we only ignore IN in its role as this reload.
1980 If the insn uses IN elsewhere and it contains OUT,
1981 that counts. We can't be sure it's the "same" operand
1982 so it might not go through this reload. */
1983 saved_rtx = *inloc;
1984 *inloc = const0_rtx;
1986 if (regno < FIRST_PSEUDO_REGISTER
1987 && HARD_REGNO_MODE_OK (regno, outmode)
1988 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1989 PATTERN (this_insn), outloc))
1991 unsigned int i;
1993 for (i = 0; i < nwords; i++)
1994 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1995 regno + i))
1996 break;
1998 if (i == nwords)
2000 if (REG_P (real_out))
2001 value = real_out;
2002 else
2003 value = gen_rtx_REG (outmode, regno);
2007 *inloc = saved_rtx;
2010 /* Consider using IN if OUT was not acceptable
2011 or if OUT dies in this insn (like the quotient in a divmod insn).
2012 We can't use IN unless it is dies in this insn,
2013 which means we must know accurately which hard regs are live.
2014 Also, the result can't go in IN if IN is used within OUT,
2015 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2016 if (hard_regs_live_known
2017 && REG_P (in)
2018 && REGNO (in) < FIRST_PSEUDO_REGISTER
2019 && (value == 0
2020 || find_reg_note (this_insn, REG_UNUSED, real_out))
2021 && find_reg_note (this_insn, REG_DEAD, real_in)
2022 && !fixed_regs[REGNO (in)]
2023 && HARD_REGNO_MODE_OK (REGNO (in),
2024 /* The only case where out and real_out might
2025 have different modes is where real_out
2026 is a subreg, and in that case, out
2027 has a real mode. */
2028 (GET_MODE (out) != VOIDmode
2029 ? GET_MODE (out) : outmode))
2030 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2031 /* However only do this if we can be sure that this input
2032 operand doesn't correspond with an uninitialized pseudo.
2033 global can assign some hardreg to it that is the same as
2034 the one assigned to a different, also live pseudo (as it
2035 can ignore the conflict). We must never introduce writes
2036 to such hardregs, as they would clobber the other live
2037 pseudo. See PR 20973. */
2038 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2039 ORIGINAL_REGNO (in))
2040 /* Similarly, only do this if we can be sure that the death
2041 note is still valid. global can assign some hardreg to
2042 the pseudo referenced in the note and simultaneously a
2043 subword of this hardreg to a different, also live pseudo,
2044 because only another subword of the hardreg is actually
2045 used in the insn. This cannot happen if the pseudo has
2046 been assigned exactly one hardreg. See PR 33732. */
2047 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2049 unsigned int regno = REGNO (in) + in_offset;
2050 unsigned int nwords = hard_regno_nregs[regno][inmode];
2052 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2053 && ! hard_reg_set_here_p (regno, regno + nwords,
2054 PATTERN (this_insn))
2055 && (! earlyclobber
2056 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2057 PATTERN (this_insn), inloc)))
2059 unsigned int i;
2061 for (i = 0; i < nwords; i++)
2062 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2063 regno + i))
2064 break;
2066 if (i == nwords)
2068 /* If we were going to use OUT as the reload reg
2069 and changed our mind, it means OUT is a dummy that
2070 dies here. So don't bother copying value to it. */
2071 if (for_real >= 0 && value == real_out)
2072 rld[for_real].out = 0;
2073 if (REG_P (real_in))
2074 value = real_in;
2075 else
2076 value = gen_rtx_REG (inmode, regno);
2081 return value;
2084 /* This page contains subroutines used mainly for determining
2085 whether the IN or an OUT of a reload can serve as the
2086 reload register. */
2088 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2091 earlyclobber_operand_p (rtx x)
2093 int i;
2095 for (i = 0; i < n_earlyclobbers; i++)
2096 if (reload_earlyclobbers[i] == x)
2097 return 1;
2099 return 0;
2102 /* Return 1 if expression X alters a hard reg in the range
2103 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2104 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2105 X should be the body of an instruction. */
2107 static int
2108 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2110 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2112 rtx op0 = SET_DEST (x);
2114 while (GET_CODE (op0) == SUBREG)
2115 op0 = SUBREG_REG (op0);
2116 if (REG_P (op0))
2118 unsigned int r = REGNO (op0);
2120 /* See if this reg overlaps range under consideration. */
2121 if (r < end_regno
2122 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2123 return 1;
2126 else if (GET_CODE (x) == PARALLEL)
2128 int i = XVECLEN (x, 0) - 1;
2130 for (; i >= 0; i--)
2131 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2132 return 1;
2135 return 0;
2138 /* Return 1 if ADDR is a valid memory address for mode MODE
2139 in address space AS, and check that each pseudo reg has the
2140 proper kind of hard reg. */
2143 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2144 rtx addr, addr_space_t as)
2146 #ifdef GO_IF_LEGITIMATE_ADDRESS
2147 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2148 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2149 return 0;
2151 win:
2152 return 1;
2153 #else
2154 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2155 #endif
2158 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2159 if they are the same hard reg, and has special hacks for
2160 autoincrement and autodecrement.
2161 This is specifically intended for find_reloads to use
2162 in determining whether two operands match.
2163 X is the operand whose number is the lower of the two.
2165 The value is 2 if Y contains a pre-increment that matches
2166 a non-incrementing address in X. */
2168 /* ??? To be completely correct, we should arrange to pass
2169 for X the output operand and for Y the input operand.
2170 For now, we assume that the output operand has the lower number
2171 because that is natural in (SET output (... input ...)). */
2174 operands_match_p (rtx x, rtx y)
2176 int i;
2177 RTX_CODE code = GET_CODE (x);
2178 const char *fmt;
2179 int success_2;
2181 if (x == y)
2182 return 1;
2183 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2184 && (REG_P (y) || (GET_CODE (y) == SUBREG
2185 && REG_P (SUBREG_REG (y)))))
2187 int j;
2189 if (code == SUBREG)
2191 i = REGNO (SUBREG_REG (x));
2192 if (i >= FIRST_PSEUDO_REGISTER)
2193 goto slow;
2194 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2195 GET_MODE (SUBREG_REG (x)),
2196 SUBREG_BYTE (x),
2197 GET_MODE (x));
2199 else
2200 i = REGNO (x);
2202 if (GET_CODE (y) == SUBREG)
2204 j = REGNO (SUBREG_REG (y));
2205 if (j >= FIRST_PSEUDO_REGISTER)
2206 goto slow;
2207 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2208 GET_MODE (SUBREG_REG (y)),
2209 SUBREG_BYTE (y),
2210 GET_MODE (y));
2212 else
2213 j = REGNO (y);
2215 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2216 multiple hard register group of scalar integer registers, so that
2217 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2218 register. */
2219 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2220 && SCALAR_INT_MODE_P (GET_MODE (x))
2221 && i < FIRST_PSEUDO_REGISTER)
2222 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2223 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2224 && SCALAR_INT_MODE_P (GET_MODE (y))
2225 && j < FIRST_PSEUDO_REGISTER)
2226 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2228 return i == j;
2230 /* If two operands must match, because they are really a single
2231 operand of an assembler insn, then two postincrements are invalid
2232 because the assembler insn would increment only once.
2233 On the other hand, a postincrement matches ordinary indexing
2234 if the postincrement is the output operand. */
2235 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2236 return operands_match_p (XEXP (x, 0), y);
2237 /* Two preincrements are invalid
2238 because the assembler insn would increment only once.
2239 On the other hand, a preincrement matches ordinary indexing
2240 if the preincrement is the input operand.
2241 In this case, return 2, since some callers need to do special
2242 things when this happens. */
2243 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2244 || GET_CODE (y) == PRE_MODIFY)
2245 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2247 slow:
2249 /* Now we have disposed of all the cases in which different rtx codes
2250 can match. */
2251 if (code != GET_CODE (y))
2252 return 0;
2254 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2255 if (GET_MODE (x) != GET_MODE (y))
2256 return 0;
2258 /* MEMs refering to different address space are not equivalent. */
2259 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2260 return 0;
2262 switch (code)
2264 case CONST_INT:
2265 case CONST_DOUBLE:
2266 case CONST_FIXED:
2267 return 0;
2269 case LABEL_REF:
2270 return XEXP (x, 0) == XEXP (y, 0);
2271 case SYMBOL_REF:
2272 return XSTR (x, 0) == XSTR (y, 0);
2274 default:
2275 break;
2278 /* Compare the elements. If any pair of corresponding elements
2279 fail to match, return 0 for the whole things. */
2281 success_2 = 0;
2282 fmt = GET_RTX_FORMAT (code);
2283 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2285 int val, j;
2286 switch (fmt[i])
2288 case 'w':
2289 if (XWINT (x, i) != XWINT (y, i))
2290 return 0;
2291 break;
2293 case 'i':
2294 if (XINT (x, i) != XINT (y, i))
2295 return 0;
2296 break;
2298 case 'e':
2299 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2300 if (val == 0)
2301 return 0;
2302 /* If any subexpression returns 2,
2303 we should return 2 if we are successful. */
2304 if (val == 2)
2305 success_2 = 1;
2306 break;
2308 case '0':
2309 break;
2311 case 'E':
2312 if (XVECLEN (x, i) != XVECLEN (y, i))
2313 return 0;
2314 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2316 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2317 if (val == 0)
2318 return 0;
2319 if (val == 2)
2320 success_2 = 1;
2322 break;
2324 /* It is believed that rtx's at this level will never
2325 contain anything but integers and other rtx's,
2326 except for within LABEL_REFs and SYMBOL_REFs. */
2327 default:
2328 gcc_unreachable ();
2331 return 1 + success_2;
2334 /* Describe the range of registers or memory referenced by X.
2335 If X is a register, set REG_FLAG and put the first register
2336 number into START and the last plus one into END.
2337 If X is a memory reference, put a base address into BASE
2338 and a range of integer offsets into START and END.
2339 If X is pushing on the stack, we can assume it causes no trouble,
2340 so we set the SAFE field. */
2342 static struct decomposition
2343 decompose (rtx x)
2345 struct decomposition val;
2346 int all_const = 0;
2348 memset (&val, 0, sizeof (val));
2350 switch (GET_CODE (x))
2352 case MEM:
2354 rtx base = NULL_RTX, offset = 0;
2355 rtx addr = XEXP (x, 0);
2357 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2358 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2360 val.base = XEXP (addr, 0);
2361 val.start = -GET_MODE_SIZE (GET_MODE (x));
2362 val.end = GET_MODE_SIZE (GET_MODE (x));
2363 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2364 return val;
2367 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2369 if (GET_CODE (XEXP (addr, 1)) == PLUS
2370 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2371 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2373 val.base = XEXP (addr, 0);
2374 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2375 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2376 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2377 return val;
2381 if (GET_CODE (addr) == CONST)
2383 addr = XEXP (addr, 0);
2384 all_const = 1;
2386 if (GET_CODE (addr) == PLUS)
2388 if (CONSTANT_P (XEXP (addr, 0)))
2390 base = XEXP (addr, 1);
2391 offset = XEXP (addr, 0);
2393 else if (CONSTANT_P (XEXP (addr, 1)))
2395 base = XEXP (addr, 0);
2396 offset = XEXP (addr, 1);
2400 if (offset == 0)
2402 base = addr;
2403 offset = const0_rtx;
2405 if (GET_CODE (offset) == CONST)
2406 offset = XEXP (offset, 0);
2407 if (GET_CODE (offset) == PLUS)
2409 if (CONST_INT_P (XEXP (offset, 0)))
2411 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2412 offset = XEXP (offset, 0);
2414 else if (CONST_INT_P (XEXP (offset, 1)))
2416 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2417 offset = XEXP (offset, 1);
2419 else
2421 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2422 offset = const0_rtx;
2425 else if (!CONST_INT_P (offset))
2427 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2428 offset = const0_rtx;
2431 if (all_const && GET_CODE (base) == PLUS)
2432 base = gen_rtx_CONST (GET_MODE (base), base);
2434 gcc_assert (CONST_INT_P (offset));
2436 val.start = INTVAL (offset);
2437 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2438 val.base = base;
2440 break;
2442 case REG:
2443 val.reg_flag = 1;
2444 val.start = true_regnum (x);
2445 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2447 /* A pseudo with no hard reg. */
2448 val.start = REGNO (x);
2449 val.end = val.start + 1;
2451 else
2452 /* A hard reg. */
2453 val.end = end_hard_regno (GET_MODE (x), val.start);
2454 break;
2456 case SUBREG:
2457 if (!REG_P (SUBREG_REG (x)))
2458 /* This could be more precise, but it's good enough. */
2459 return decompose (SUBREG_REG (x));
2460 val.reg_flag = 1;
2461 val.start = true_regnum (x);
2462 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2463 return decompose (SUBREG_REG (x));
2464 else
2465 /* A hard reg. */
2466 val.end = val.start + subreg_nregs (x);
2467 break;
2469 case SCRATCH:
2470 /* This hasn't been assigned yet, so it can't conflict yet. */
2471 val.safe = 1;
2472 break;
2474 default:
2475 gcc_assert (CONSTANT_P (x));
2476 val.safe = 1;
2477 break;
2479 return val;
2482 /* Return 1 if altering Y will not modify the value of X.
2483 Y is also described by YDATA, which should be decompose (Y). */
2485 static int
2486 immune_p (rtx x, rtx y, struct decomposition ydata)
2488 struct decomposition xdata;
2490 if (ydata.reg_flag)
2491 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2492 if (ydata.safe)
2493 return 1;
2495 gcc_assert (MEM_P (y));
2496 /* If Y is memory and X is not, Y can't affect X. */
2497 if (!MEM_P (x))
2498 return 1;
2500 xdata = decompose (x);
2502 if (! rtx_equal_p (xdata.base, ydata.base))
2504 /* If bases are distinct symbolic constants, there is no overlap. */
2505 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2506 return 1;
2507 /* Constants and stack slots never overlap. */
2508 if (CONSTANT_P (xdata.base)
2509 && (ydata.base == frame_pointer_rtx
2510 || ydata.base == hard_frame_pointer_rtx
2511 || ydata.base == stack_pointer_rtx))
2512 return 1;
2513 if (CONSTANT_P (ydata.base)
2514 && (xdata.base == frame_pointer_rtx
2515 || xdata.base == hard_frame_pointer_rtx
2516 || xdata.base == stack_pointer_rtx))
2517 return 1;
2518 /* If either base is variable, we don't know anything. */
2519 return 0;
2522 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2525 /* Similar, but calls decompose. */
2528 safe_from_earlyclobber (rtx op, rtx clobber)
2530 struct decomposition early_data;
2532 early_data = decompose (clobber);
2533 return immune_p (op, clobber, early_data);
2536 /* Main entry point of this file: search the body of INSN
2537 for values that need reloading and record them with push_reload.
2538 REPLACE nonzero means record also where the values occur
2539 so that subst_reloads can be used.
2541 IND_LEVELS says how many levels of indirection are supported by this
2542 machine; a value of zero means that a memory reference is not a valid
2543 memory address.
2545 LIVE_KNOWN says we have valid information about which hard
2546 regs are live at each point in the program; this is true when
2547 we are called from global_alloc but false when stupid register
2548 allocation has been done.
2550 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2551 which is nonnegative if the reg has been commandeered for reloading into.
2552 It is copied into STATIC_RELOAD_REG_P and referenced from there
2553 by various subroutines.
2555 Return TRUE if some operands need to be changed, because of swapping
2556 commutative operands, reg_equiv_address substitution, or whatever. */
2559 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2560 short *reload_reg_p)
2562 int insn_code_number;
2563 int i, j;
2564 int noperands;
2565 /* These start out as the constraints for the insn
2566 and they are chewed up as we consider alternatives. */
2567 const char *constraints[MAX_RECOG_OPERANDS];
2568 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2569 a register. */
2570 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2571 char pref_or_nothing[MAX_RECOG_OPERANDS];
2572 /* Nonzero for a MEM operand whose entire address needs a reload.
2573 May be -1 to indicate the entire address may or may not need a reload. */
2574 int address_reloaded[MAX_RECOG_OPERANDS];
2575 /* Nonzero for an address operand that needs to be completely reloaded.
2576 May be -1 to indicate the entire operand may or may not need a reload. */
2577 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2578 /* Value of enum reload_type to use for operand. */
2579 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2580 /* Value of enum reload_type to use within address of operand. */
2581 enum reload_type address_type[MAX_RECOG_OPERANDS];
2582 /* Save the usage of each operand. */
2583 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2584 int no_input_reloads = 0, no_output_reloads = 0;
2585 int n_alternatives;
2586 enum reg_class this_alternative[MAX_RECOG_OPERANDS];
2587 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2588 char this_alternative_win[MAX_RECOG_OPERANDS];
2589 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2590 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2591 int this_alternative_matches[MAX_RECOG_OPERANDS];
2592 int swapped;
2593 int goal_alternative[MAX_RECOG_OPERANDS];
2594 int this_alternative_number;
2595 int goal_alternative_number = 0;
2596 int operand_reloadnum[MAX_RECOG_OPERANDS];
2597 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2598 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2599 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2600 char goal_alternative_win[MAX_RECOG_OPERANDS];
2601 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2602 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2603 int goal_alternative_swapped;
2604 int best;
2605 int commutative;
2606 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2607 rtx substed_operand[MAX_RECOG_OPERANDS];
2608 rtx body = PATTERN (insn);
2609 rtx set = single_set (insn);
2610 int goal_earlyclobber = 0, this_earlyclobber;
2611 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2612 int retval = 0;
2614 this_insn = insn;
2615 n_reloads = 0;
2616 n_replacements = 0;
2617 n_earlyclobbers = 0;
2618 replace_reloads = replace;
2619 hard_regs_live_known = live_known;
2620 static_reload_reg_p = reload_reg_p;
2622 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2623 neither are insns that SET cc0. Insns that use CC0 are not allowed
2624 to have any input reloads. */
2625 if (JUMP_P (insn) || CALL_P (insn))
2626 no_output_reloads = 1;
2628 #ifdef HAVE_cc0
2629 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2630 no_input_reloads = 1;
2631 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2632 no_output_reloads = 1;
2633 #endif
2635 #ifdef SECONDARY_MEMORY_NEEDED
2636 /* The eliminated forms of any secondary memory locations are per-insn, so
2637 clear them out here. */
2639 if (secondary_memlocs_elim_used)
2641 memset (secondary_memlocs_elim, 0,
2642 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2643 secondary_memlocs_elim_used = 0;
2645 #endif
2647 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2648 is cheap to move between them. If it is not, there may not be an insn
2649 to do the copy, so we may need a reload. */
2650 if (GET_CODE (body) == SET
2651 && REG_P (SET_DEST (body))
2652 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2653 && REG_P (SET_SRC (body))
2654 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2655 && register_move_cost (GET_MODE (SET_SRC (body)),
2656 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2657 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2658 return 0;
2660 extract_insn (insn);
2662 noperands = reload_n_operands = recog_data.n_operands;
2663 n_alternatives = recog_data.n_alternatives;
2665 /* Just return "no reloads" if insn has no operands with constraints. */
2666 if (noperands == 0 || n_alternatives == 0)
2667 return 0;
2669 insn_code_number = INSN_CODE (insn);
2670 this_insn_is_asm = insn_code_number < 0;
2672 memcpy (operand_mode, recog_data.operand_mode,
2673 noperands * sizeof (enum machine_mode));
2674 memcpy (constraints, recog_data.constraints,
2675 noperands * sizeof (const char *));
2677 commutative = -1;
2679 /* If we will need to know, later, whether some pair of operands
2680 are the same, we must compare them now and save the result.
2681 Reloading the base and index registers will clobber them
2682 and afterward they will fail to match. */
2684 for (i = 0; i < noperands; i++)
2686 const char *p;
2687 int c;
2688 char *end;
2690 substed_operand[i] = recog_data.operand[i];
2691 p = constraints[i];
2693 modified[i] = RELOAD_READ;
2695 /* Scan this operand's constraint to see if it is an output operand,
2696 an in-out operand, is commutative, or should match another. */
2698 while ((c = *p))
2700 p += CONSTRAINT_LEN (c, p);
2701 switch (c)
2703 case '=':
2704 modified[i] = RELOAD_WRITE;
2705 break;
2706 case '+':
2707 modified[i] = RELOAD_READ_WRITE;
2708 break;
2709 case '%':
2711 /* The last operand should not be marked commutative. */
2712 gcc_assert (i != noperands - 1);
2714 /* We currently only support one commutative pair of
2715 operands. Some existing asm code currently uses more
2716 than one pair. Previously, that would usually work,
2717 but sometimes it would crash the compiler. We
2718 continue supporting that case as well as we can by
2719 silently ignoring all but the first pair. In the
2720 future we may handle it correctly. */
2721 if (commutative < 0)
2722 commutative = i;
2723 else
2724 gcc_assert (this_insn_is_asm);
2726 break;
2727 /* Use of ISDIGIT is tempting here, but it may get expensive because
2728 of locale support we don't want. */
2729 case '0': case '1': case '2': case '3': case '4':
2730 case '5': case '6': case '7': case '8': case '9':
2732 c = strtoul (p - 1, &end, 10);
2733 p = end;
2735 operands_match[c][i]
2736 = operands_match_p (recog_data.operand[c],
2737 recog_data.operand[i]);
2739 /* An operand may not match itself. */
2740 gcc_assert (c != i);
2742 /* If C can be commuted with C+1, and C might need to match I,
2743 then C+1 might also need to match I. */
2744 if (commutative >= 0)
2746 if (c == commutative || c == commutative + 1)
2748 int other = c + (c == commutative ? 1 : -1);
2749 operands_match[other][i]
2750 = operands_match_p (recog_data.operand[other],
2751 recog_data.operand[i]);
2753 if (i == commutative || i == commutative + 1)
2755 int other = i + (i == commutative ? 1 : -1);
2756 operands_match[c][other]
2757 = operands_match_p (recog_data.operand[c],
2758 recog_data.operand[other]);
2760 /* Note that C is supposed to be less than I.
2761 No need to consider altering both C and I because in
2762 that case we would alter one into the other. */
2769 /* Examine each operand that is a memory reference or memory address
2770 and reload parts of the addresses into index registers.
2771 Also here any references to pseudo regs that didn't get hard regs
2772 but are equivalent to constants get replaced in the insn itself
2773 with those constants. Nobody will ever see them again.
2775 Finally, set up the preferred classes of each operand. */
2777 for (i = 0; i < noperands; i++)
2779 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2781 address_reloaded[i] = 0;
2782 address_operand_reloaded[i] = 0;
2783 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2784 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2785 : RELOAD_OTHER);
2786 address_type[i]
2787 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2788 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2789 : RELOAD_OTHER);
2791 if (*constraints[i] == 0)
2792 /* Ignore things like match_operator operands. */
2794 else if (constraints[i][0] == 'p'
2795 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2797 address_operand_reloaded[i]
2798 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2799 recog_data.operand[i],
2800 recog_data.operand_loc[i],
2801 i, operand_type[i], ind_levels, insn);
2803 /* If we now have a simple operand where we used to have a
2804 PLUS or MULT, re-recognize and try again. */
2805 if ((OBJECT_P (*recog_data.operand_loc[i])
2806 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2807 && (GET_CODE (recog_data.operand[i]) == MULT
2808 || GET_CODE (recog_data.operand[i]) == PLUS))
2810 INSN_CODE (insn) = -1;
2811 retval = find_reloads (insn, replace, ind_levels, live_known,
2812 reload_reg_p);
2813 return retval;
2816 recog_data.operand[i] = *recog_data.operand_loc[i];
2817 substed_operand[i] = recog_data.operand[i];
2819 /* Address operands are reloaded in their existing mode,
2820 no matter what is specified in the machine description. */
2821 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2823 else if (code == MEM)
2825 address_reloaded[i]
2826 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2827 recog_data.operand_loc[i],
2828 XEXP (recog_data.operand[i], 0),
2829 &XEXP (recog_data.operand[i], 0),
2830 i, address_type[i], ind_levels, insn);
2831 recog_data.operand[i] = *recog_data.operand_loc[i];
2832 substed_operand[i] = recog_data.operand[i];
2834 else if (code == SUBREG)
2836 rtx reg = SUBREG_REG (recog_data.operand[i]);
2837 rtx op
2838 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2839 ind_levels,
2840 set != 0
2841 && &SET_DEST (set) == recog_data.operand_loc[i],
2842 insn,
2843 &address_reloaded[i]);
2845 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2846 that didn't get a hard register, emit a USE with a REG_EQUAL
2847 note in front so that we might inherit a previous, possibly
2848 wider reload. */
2850 if (replace
2851 && MEM_P (op)
2852 && REG_P (reg)
2853 && (GET_MODE_SIZE (GET_MODE (reg))
2854 >= GET_MODE_SIZE (GET_MODE (op)))
2855 && reg_equiv_constant[REGNO (reg)] == 0)
2856 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2857 insn),
2858 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2860 substed_operand[i] = recog_data.operand[i] = op;
2862 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2863 /* We can get a PLUS as an "operand" as a result of register
2864 elimination. See eliminate_regs and gen_reload. We handle
2865 a unary operator by reloading the operand. */
2866 substed_operand[i] = recog_data.operand[i]
2867 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2868 ind_levels, 0, insn,
2869 &address_reloaded[i]);
2870 else if (code == REG)
2872 /* This is equivalent to calling find_reloads_toplev.
2873 The code is duplicated for speed.
2874 When we find a pseudo always equivalent to a constant,
2875 we replace it by the constant. We must be sure, however,
2876 that we don't try to replace it in the insn in which it
2877 is being set. */
2878 int regno = REGNO (recog_data.operand[i]);
2879 if (reg_equiv_constant[regno] != 0
2880 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2882 /* Record the existing mode so that the check if constants are
2883 allowed will work when operand_mode isn't specified. */
2885 if (operand_mode[i] == VOIDmode)
2886 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2888 substed_operand[i] = recog_data.operand[i]
2889 = reg_equiv_constant[regno];
2891 if (reg_equiv_memory_loc[regno] != 0
2892 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2893 /* We need not give a valid is_set_dest argument since the case
2894 of a constant equivalence was checked above. */
2895 substed_operand[i] = recog_data.operand[i]
2896 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2897 ind_levels, 0, insn,
2898 &address_reloaded[i]);
2900 /* If the operand is still a register (we didn't replace it with an
2901 equivalent), get the preferred class to reload it into. */
2902 code = GET_CODE (recog_data.operand[i]);
2903 preferred_class[i]
2904 = ((code == REG && REGNO (recog_data.operand[i])
2905 >= FIRST_PSEUDO_REGISTER)
2906 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2907 : NO_REGS);
2908 pref_or_nothing[i]
2909 = (code == REG
2910 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2911 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2914 /* If this is simply a copy from operand 1 to operand 0, merge the
2915 preferred classes for the operands. */
2916 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2917 && recog_data.operand[1] == SET_SRC (set))
2919 preferred_class[0] = preferred_class[1]
2920 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2921 pref_or_nothing[0] |= pref_or_nothing[1];
2922 pref_or_nothing[1] |= pref_or_nothing[0];
2925 /* Now see what we need for pseudo-regs that didn't get hard regs
2926 or got the wrong kind of hard reg. For this, we must consider
2927 all the operands together against the register constraints. */
2929 best = MAX_RECOG_OPERANDS * 2 + 600;
2931 swapped = 0;
2932 goal_alternative_swapped = 0;
2933 try_swapped:
2935 /* The constraints are made of several alternatives.
2936 Each operand's constraint looks like foo,bar,... with commas
2937 separating the alternatives. The first alternatives for all
2938 operands go together, the second alternatives go together, etc.
2940 First loop over alternatives. */
2942 for (this_alternative_number = 0;
2943 this_alternative_number < n_alternatives;
2944 this_alternative_number++)
2946 /* Loop over operands for one constraint alternative. */
2947 /* LOSERS counts those that don't fit this alternative
2948 and would require loading. */
2949 int losers = 0;
2950 /* BAD is set to 1 if it some operand can't fit this alternative
2951 even after reloading. */
2952 int bad = 0;
2953 /* REJECT is a count of how undesirable this alternative says it is
2954 if any reloading is required. If the alternative matches exactly
2955 then REJECT is ignored, but otherwise it gets this much
2956 counted against it in addition to the reloading needed. Each
2957 ? counts three times here since we want the disparaging caused by
2958 a bad register class to only count 1/3 as much. */
2959 int reject = 0;
2961 if (!recog_data.alternative_enabled_p[this_alternative_number])
2963 int i;
2965 for (i = 0; i < recog_data.n_operands; i++)
2966 constraints[i] = skip_alternative (constraints[i]);
2968 continue;
2971 this_earlyclobber = 0;
2973 for (i = 0; i < noperands; i++)
2975 const char *p = constraints[i];
2976 char *end;
2977 int len;
2978 int win = 0;
2979 int did_match = 0;
2980 /* 0 => this operand can be reloaded somehow for this alternative. */
2981 int badop = 1;
2982 /* 0 => this operand can be reloaded if the alternative allows regs. */
2983 int winreg = 0;
2984 int c;
2985 int m;
2986 rtx operand = recog_data.operand[i];
2987 int offset = 0;
2988 /* Nonzero means this is a MEM that must be reloaded into a reg
2989 regardless of what the constraint says. */
2990 int force_reload = 0;
2991 int offmemok = 0;
2992 /* Nonzero if a constant forced into memory would be OK for this
2993 operand. */
2994 int constmemok = 0;
2995 int earlyclobber = 0;
2997 /* If the predicate accepts a unary operator, it means that
2998 we need to reload the operand, but do not do this for
2999 match_operator and friends. */
3000 if (UNARY_P (operand) && *p != 0)
3001 operand = XEXP (operand, 0);
3003 /* If the operand is a SUBREG, extract
3004 the REG or MEM (or maybe even a constant) within.
3005 (Constants can occur as a result of reg_equiv_constant.) */
3007 while (GET_CODE (operand) == SUBREG)
3009 /* Offset only matters when operand is a REG and
3010 it is a hard reg. This is because it is passed
3011 to reg_fits_class_p if it is a REG and all pseudos
3012 return 0 from that function. */
3013 if (REG_P (SUBREG_REG (operand))
3014 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3016 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3017 GET_MODE (SUBREG_REG (operand)),
3018 SUBREG_BYTE (operand),
3019 GET_MODE (operand)) < 0)
3020 force_reload = 1;
3021 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3022 GET_MODE (SUBREG_REG (operand)),
3023 SUBREG_BYTE (operand),
3024 GET_MODE (operand));
3026 operand = SUBREG_REG (operand);
3027 /* Force reload if this is a constant or PLUS or if there may
3028 be a problem accessing OPERAND in the outer mode. */
3029 if (CONSTANT_P (operand)
3030 || GET_CODE (operand) == PLUS
3031 /* We must force a reload of paradoxical SUBREGs
3032 of a MEM because the alignment of the inner value
3033 may not be enough to do the outer reference. On
3034 big-endian machines, it may also reference outside
3035 the object.
3037 On machines that extend byte operations and we have a
3038 SUBREG where both the inner and outer modes are no wider
3039 than a word and the inner mode is narrower, is integral,
3040 and gets extended when loaded from memory, combine.c has
3041 made assumptions about the behavior of the machine in such
3042 register access. If the data is, in fact, in memory we
3043 must always load using the size assumed to be in the
3044 register and let the insn do the different-sized
3045 accesses.
3047 This is doubly true if WORD_REGISTER_OPERATIONS. In
3048 this case eliminate_regs has left non-paradoxical
3049 subregs for push_reload to see. Make sure it does
3050 by forcing the reload.
3052 ??? When is it right at this stage to have a subreg
3053 of a mem that is _not_ to be handled specially? IMO
3054 those should have been reduced to just a mem. */
3055 || ((MEM_P (operand)
3056 || (REG_P (operand)
3057 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3058 #ifndef WORD_REGISTER_OPERATIONS
3059 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3060 < BIGGEST_ALIGNMENT)
3061 && (GET_MODE_SIZE (operand_mode[i])
3062 > GET_MODE_SIZE (GET_MODE (operand))))
3063 || BYTES_BIG_ENDIAN
3064 #ifdef LOAD_EXTEND_OP
3065 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3066 && (GET_MODE_SIZE (GET_MODE (operand))
3067 <= UNITS_PER_WORD)
3068 && (GET_MODE_SIZE (operand_mode[i])
3069 > GET_MODE_SIZE (GET_MODE (operand)))
3070 && INTEGRAL_MODE_P (GET_MODE (operand))
3071 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3072 #endif
3074 #endif
3077 force_reload = 1;
3080 this_alternative[i] = NO_REGS;
3081 this_alternative_win[i] = 0;
3082 this_alternative_match_win[i] = 0;
3083 this_alternative_offmemok[i] = 0;
3084 this_alternative_earlyclobber[i] = 0;
3085 this_alternative_matches[i] = -1;
3087 /* An empty constraint or empty alternative
3088 allows anything which matched the pattern. */
3089 if (*p == 0 || *p == ',')
3090 win = 1, badop = 0;
3092 /* Scan this alternative's specs for this operand;
3093 set WIN if the operand fits any letter in this alternative.
3094 Otherwise, clear BADOP if this operand could
3095 fit some letter after reloads,
3096 or set WINREG if this operand could fit after reloads
3097 provided the constraint allows some registers. */
3100 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3102 case '\0':
3103 len = 0;
3104 break;
3105 case ',':
3106 c = '\0';
3107 break;
3109 case '=': case '+': case '*':
3110 break;
3112 case '%':
3113 /* We only support one commutative marker, the first
3114 one. We already set commutative above. */
3115 break;
3117 case '?':
3118 reject += 6;
3119 break;
3121 case '!':
3122 reject = 600;
3123 break;
3125 case '#':
3126 /* Ignore rest of this alternative as far as
3127 reloading is concerned. */
3129 p++;
3130 while (*p && *p != ',');
3131 len = 0;
3132 break;
3134 case '0': case '1': case '2': case '3': case '4':
3135 case '5': case '6': case '7': case '8': case '9':
3136 m = strtoul (p, &end, 10);
3137 p = end;
3138 len = 0;
3140 this_alternative_matches[i] = m;
3141 /* We are supposed to match a previous operand.
3142 If we do, we win if that one did.
3143 If we do not, count both of the operands as losers.
3144 (This is too conservative, since most of the time
3145 only a single reload insn will be needed to make
3146 the two operands win. As a result, this alternative
3147 may be rejected when it is actually desirable.) */
3148 if ((swapped && (m != commutative || i != commutative + 1))
3149 /* If we are matching as if two operands were swapped,
3150 also pretend that operands_match had been computed
3151 with swapped.
3152 But if I is the second of those and C is the first,
3153 don't exchange them, because operands_match is valid
3154 only on one side of its diagonal. */
3155 ? (operands_match
3156 [(m == commutative || m == commutative + 1)
3157 ? 2 * commutative + 1 - m : m]
3158 [(i == commutative || i == commutative + 1)
3159 ? 2 * commutative + 1 - i : i])
3160 : operands_match[m][i])
3162 /* If we are matching a non-offsettable address where an
3163 offsettable address was expected, then we must reject
3164 this combination, because we can't reload it. */
3165 if (this_alternative_offmemok[m]
3166 && MEM_P (recog_data.operand[m])
3167 && this_alternative[m] == NO_REGS
3168 && ! this_alternative_win[m])
3169 bad = 1;
3171 did_match = this_alternative_win[m];
3173 else
3175 /* Operands don't match. */
3176 rtx value;
3177 int loc1, loc2;
3178 /* Retroactively mark the operand we had to match
3179 as a loser, if it wasn't already. */
3180 if (this_alternative_win[m])
3181 losers++;
3182 this_alternative_win[m] = 0;
3183 if (this_alternative[m] == NO_REGS)
3184 bad = 1;
3185 /* But count the pair only once in the total badness of
3186 this alternative, if the pair can be a dummy reload.
3187 The pointers in operand_loc are not swapped; swap
3188 them by hand if necessary. */
3189 if (swapped && i == commutative)
3190 loc1 = commutative + 1;
3191 else if (swapped && i == commutative + 1)
3192 loc1 = commutative;
3193 else
3194 loc1 = i;
3195 if (swapped && m == commutative)
3196 loc2 = commutative + 1;
3197 else if (swapped && m == commutative + 1)
3198 loc2 = commutative;
3199 else
3200 loc2 = m;
3201 value
3202 = find_dummy_reload (recog_data.operand[i],
3203 recog_data.operand[m],
3204 recog_data.operand_loc[loc1],
3205 recog_data.operand_loc[loc2],
3206 operand_mode[i], operand_mode[m],
3207 this_alternative[m], -1,
3208 this_alternative_earlyclobber[m]);
3210 if (value != 0)
3211 losers--;
3213 /* This can be fixed with reloads if the operand
3214 we are supposed to match can be fixed with reloads. */
3215 badop = 0;
3216 this_alternative[i] = this_alternative[m];
3218 /* If we have to reload this operand and some previous
3219 operand also had to match the same thing as this
3220 operand, we don't know how to do that. So reject this
3221 alternative. */
3222 if (! did_match || force_reload)
3223 for (j = 0; j < i; j++)
3224 if (this_alternative_matches[j]
3225 == this_alternative_matches[i])
3226 badop = 1;
3227 break;
3229 case 'p':
3230 /* All necessary reloads for an address_operand
3231 were handled in find_reloads_address. */
3232 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3233 SCRATCH);
3234 win = 1;
3235 badop = 0;
3236 break;
3238 case TARGET_MEM_CONSTRAINT:
3239 if (force_reload)
3240 break;
3241 if (MEM_P (operand)
3242 || (REG_P (operand)
3243 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3244 && reg_renumber[REGNO (operand)] < 0))
3245 win = 1;
3246 if (CONST_POOL_OK_P (operand))
3247 badop = 0;
3248 constmemok = 1;
3249 break;
3251 case '<':
3252 if (MEM_P (operand)
3253 && ! address_reloaded[i]
3254 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3255 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3256 win = 1;
3257 break;
3259 case '>':
3260 if (MEM_P (operand)
3261 && ! address_reloaded[i]
3262 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3263 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3264 win = 1;
3265 break;
3267 /* Memory operand whose address is not offsettable. */
3268 case 'V':
3269 if (force_reload)
3270 break;
3271 if (MEM_P (operand)
3272 && ! (ind_levels ? offsettable_memref_p (operand)
3273 : offsettable_nonstrict_memref_p (operand))
3274 /* Certain mem addresses will become offsettable
3275 after they themselves are reloaded. This is important;
3276 we don't want our own handling of unoffsettables
3277 to override the handling of reg_equiv_address. */
3278 && !(REG_P (XEXP (operand, 0))
3279 && (ind_levels == 0
3280 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3281 win = 1;
3282 break;
3284 /* Memory operand whose address is offsettable. */
3285 case 'o':
3286 if (force_reload)
3287 break;
3288 if ((MEM_P (operand)
3289 /* If IND_LEVELS, find_reloads_address won't reload a
3290 pseudo that didn't get a hard reg, so we have to
3291 reject that case. */
3292 && ((ind_levels ? offsettable_memref_p (operand)
3293 : offsettable_nonstrict_memref_p (operand))
3294 /* A reloaded address is offsettable because it is now
3295 just a simple register indirect. */
3296 || address_reloaded[i] == 1))
3297 || (REG_P (operand)
3298 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3299 && reg_renumber[REGNO (operand)] < 0
3300 /* If reg_equiv_address is nonzero, we will be
3301 loading it into a register; hence it will be
3302 offsettable, but we cannot say that reg_equiv_mem
3303 is offsettable without checking. */
3304 && ((reg_equiv_mem[REGNO (operand)] != 0
3305 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3306 || (reg_equiv_address[REGNO (operand)] != 0))))
3307 win = 1;
3308 if (CONST_POOL_OK_P (operand)
3309 || MEM_P (operand))
3310 badop = 0;
3311 constmemok = 1;
3312 offmemok = 1;
3313 break;
3315 case '&':
3316 /* Output operand that is stored before the need for the
3317 input operands (and their index registers) is over. */
3318 earlyclobber = 1, this_earlyclobber = 1;
3319 break;
3321 case 'E':
3322 case 'F':
3323 if (GET_CODE (operand) == CONST_DOUBLE
3324 || (GET_CODE (operand) == CONST_VECTOR
3325 && (GET_MODE_CLASS (GET_MODE (operand))
3326 == MODE_VECTOR_FLOAT)))
3327 win = 1;
3328 break;
3330 case 'G':
3331 case 'H':
3332 if (GET_CODE (operand) == CONST_DOUBLE
3333 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3334 win = 1;
3335 break;
3337 case 's':
3338 if (CONST_INT_P (operand)
3339 || (GET_CODE (operand) == CONST_DOUBLE
3340 && GET_MODE (operand) == VOIDmode))
3341 break;
3342 case 'i':
3343 if (CONSTANT_P (operand)
3344 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3345 win = 1;
3346 break;
3348 case 'n':
3349 if (CONST_INT_P (operand)
3350 || (GET_CODE (operand) == CONST_DOUBLE
3351 && GET_MODE (operand) == VOIDmode))
3352 win = 1;
3353 break;
3355 case 'I':
3356 case 'J':
3357 case 'K':
3358 case 'L':
3359 case 'M':
3360 case 'N':
3361 case 'O':
3362 case 'P':
3363 if (CONST_INT_P (operand)
3364 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3365 win = 1;
3366 break;
3368 case 'X':
3369 force_reload = 0;
3370 win = 1;
3371 break;
3373 case 'g':
3374 if (! force_reload
3375 /* A PLUS is never a valid operand, but reload can make
3376 it from a register when eliminating registers. */
3377 && GET_CODE (operand) != PLUS
3378 /* A SCRATCH is not a valid operand. */
3379 && GET_CODE (operand) != SCRATCH
3380 && (! CONSTANT_P (operand)
3381 || ! flag_pic
3382 || LEGITIMATE_PIC_OPERAND_P (operand))
3383 && (GENERAL_REGS == ALL_REGS
3384 || !REG_P (operand)
3385 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3386 && reg_renumber[REGNO (operand)] < 0)))
3387 win = 1;
3388 /* Drop through into 'r' case. */
3390 case 'r':
3391 this_alternative[i]
3392 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3393 goto reg;
3395 default:
3396 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3398 #ifdef EXTRA_CONSTRAINT_STR
3399 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3401 if (force_reload)
3402 break;
3403 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3404 win = 1;
3405 /* If the address was already reloaded,
3406 we win as well. */
3407 else if (MEM_P (operand)
3408 && address_reloaded[i] == 1)
3409 win = 1;
3410 /* Likewise if the address will be reloaded because
3411 reg_equiv_address is nonzero. For reg_equiv_mem
3412 we have to check. */
3413 else if (REG_P (operand)
3414 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3415 && reg_renumber[REGNO (operand)] < 0
3416 && ((reg_equiv_mem[REGNO (operand)] != 0
3417 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3418 || (reg_equiv_address[REGNO (operand)] != 0)))
3419 win = 1;
3421 /* If we didn't already win, we can reload
3422 constants via force_const_mem, and other
3423 MEMs by reloading the address like for 'o'. */
3424 if (CONST_POOL_OK_P (operand)
3425 || MEM_P (operand))
3426 badop = 0;
3427 constmemok = 1;
3428 offmemok = 1;
3429 break;
3431 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3433 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3434 win = 1;
3436 /* If we didn't already win, we can reload
3437 the address into a base register. */
3438 this_alternative[i] = base_reg_class (VOIDmode,
3439 ADDRESS,
3440 SCRATCH);
3441 badop = 0;
3442 break;
3445 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3446 win = 1;
3447 #endif
3448 break;
3451 this_alternative[i]
3452 = (reg_class_subunion
3453 [this_alternative[i]]
3454 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3455 reg:
3456 if (GET_MODE (operand) == BLKmode)
3457 break;
3458 winreg = 1;
3459 if (REG_P (operand)
3460 && reg_fits_class_p (operand, this_alternative[i],
3461 offset, GET_MODE (recog_data.operand[i])))
3462 win = 1;
3463 break;
3465 while ((p += len), c);
3467 constraints[i] = p;
3469 /* If this operand could be handled with a reg,
3470 and some reg is allowed, then this operand can be handled. */
3471 if (winreg && this_alternative[i] != NO_REGS
3472 && (win || !class_only_fixed_regs[this_alternative[i]]))
3473 badop = 0;
3475 /* Record which operands fit this alternative. */
3476 this_alternative_earlyclobber[i] = earlyclobber;
3477 if (win && ! force_reload)
3478 this_alternative_win[i] = 1;
3479 else if (did_match && ! force_reload)
3480 this_alternative_match_win[i] = 1;
3481 else
3483 int const_to_mem = 0;
3485 this_alternative_offmemok[i] = offmemok;
3486 losers++;
3487 if (badop)
3488 bad = 1;
3489 /* Alternative loses if it has no regs for a reg operand. */
3490 if (REG_P (operand)
3491 && this_alternative[i] == NO_REGS
3492 && this_alternative_matches[i] < 0)
3493 bad = 1;
3495 /* If this is a constant that is reloaded into the desired
3496 class by copying it to memory first, count that as another
3497 reload. This is consistent with other code and is
3498 required to avoid choosing another alternative when
3499 the constant is moved into memory by this function on
3500 an early reload pass. Note that the test here is
3501 precisely the same as in the code below that calls
3502 force_const_mem. */
3503 if (CONST_POOL_OK_P (operand)
3504 && ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3505 == NO_REGS)
3506 || no_input_reloads)
3507 && operand_mode[i] != VOIDmode)
3509 const_to_mem = 1;
3510 if (this_alternative[i] != NO_REGS)
3511 losers++;
3514 /* Alternative loses if it requires a type of reload not
3515 permitted for this insn. We can always reload SCRATCH
3516 and objects with a REG_UNUSED note. */
3517 if (GET_CODE (operand) != SCRATCH
3518 && modified[i] != RELOAD_READ && no_output_reloads
3519 && ! find_reg_note (insn, REG_UNUSED, operand))
3520 bad = 1;
3521 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3522 && ! const_to_mem)
3523 bad = 1;
3525 /* If we can't reload this value at all, reject this
3526 alternative. Note that we could also lose due to
3527 LIMIT_RELOAD_CLASS, but we don't check that
3528 here. */
3530 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3532 if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3533 == NO_REGS)
3534 reject = 600;
3536 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3537 if (operand_type[i] == RELOAD_FOR_OUTPUT
3538 && (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
3539 this_alternative[i])
3540 == NO_REGS))
3541 reject = 600;
3542 #endif
3545 /* We prefer to reload pseudos over reloading other things,
3546 since such reloads may be able to be eliminated later.
3547 If we are reloading a SCRATCH, we won't be generating any
3548 insns, just using a register, so it is also preferred.
3549 So bump REJECT in other cases. Don't do this in the
3550 case where we are forcing a constant into memory and
3551 it will then win since we don't want to have a different
3552 alternative match then. */
3553 if (! (REG_P (operand)
3554 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3555 && GET_CODE (operand) != SCRATCH
3556 && ! (const_to_mem && constmemok))
3557 reject += 2;
3559 /* Input reloads can be inherited more often than output
3560 reloads can be removed, so penalize output reloads. */
3561 if (operand_type[i] != RELOAD_FOR_INPUT
3562 && GET_CODE (operand) != SCRATCH)
3563 reject++;
3566 /* If this operand is a pseudo register that didn't get a hard
3567 reg and this alternative accepts some register, see if the
3568 class that we want is a subset of the preferred class for this
3569 register. If not, but it intersects that class, use the
3570 preferred class instead. If it does not intersect the preferred
3571 class, show that usage of this alternative should be discouraged;
3572 it will be discouraged more still if the register is `preferred
3573 or nothing'. We do this because it increases the chance of
3574 reusing our spill register in a later insn and avoiding a pair
3575 of memory stores and loads.
3577 Don't bother with this if this alternative will accept this
3578 operand.
3580 Don't do this for a multiword operand, since it is only a
3581 small win and has the risk of requiring more spill registers,
3582 which could cause a large loss.
3584 Don't do this if the preferred class has only one register
3585 because we might otherwise exhaust the class. */
3587 if (! win && ! did_match
3588 && this_alternative[i] != NO_REGS
3589 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3590 && reg_class_size [(int) preferred_class[i]] > 0
3591 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3593 if (! reg_class_subset_p (this_alternative[i],
3594 preferred_class[i]))
3596 /* Since we don't have a way of forming the intersection,
3597 we just do something special if the preferred class
3598 is a subset of the class we have; that's the most
3599 common case anyway. */
3600 if (reg_class_subset_p (preferred_class[i],
3601 this_alternative[i]))
3602 this_alternative[i] = preferred_class[i];
3603 else
3604 reject += (2 + 2 * pref_or_nothing[i]);
3609 /* Now see if any output operands that are marked "earlyclobber"
3610 in this alternative conflict with any input operands
3611 or any memory addresses. */
3613 for (i = 0; i < noperands; i++)
3614 if (this_alternative_earlyclobber[i]
3615 && (this_alternative_win[i] || this_alternative_match_win[i]))
3617 struct decomposition early_data;
3619 early_data = decompose (recog_data.operand[i]);
3621 gcc_assert (modified[i] != RELOAD_READ);
3623 if (this_alternative[i] == NO_REGS)
3625 this_alternative_earlyclobber[i] = 0;
3626 gcc_assert (this_insn_is_asm);
3627 error_for_asm (this_insn,
3628 "%<&%> constraint used with no register class");
3631 for (j = 0; j < noperands; j++)
3632 /* Is this an input operand or a memory ref? */
3633 if ((MEM_P (recog_data.operand[j])
3634 || modified[j] != RELOAD_WRITE)
3635 && j != i
3636 /* Ignore things like match_operator operands. */
3637 && !recog_data.is_operator[j]
3638 /* Don't count an input operand that is constrained to match
3639 the early clobber operand. */
3640 && ! (this_alternative_matches[j] == i
3641 && rtx_equal_p (recog_data.operand[i],
3642 recog_data.operand[j]))
3643 /* Is it altered by storing the earlyclobber operand? */
3644 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3645 early_data))
3647 /* If the output is in a non-empty few-regs class,
3648 it's costly to reload it, so reload the input instead. */
3649 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3650 && (REG_P (recog_data.operand[j])
3651 || GET_CODE (recog_data.operand[j]) == SUBREG))
3653 losers++;
3654 this_alternative_win[j] = 0;
3655 this_alternative_match_win[j] = 0;
3657 else
3658 break;
3660 /* If an earlyclobber operand conflicts with something,
3661 it must be reloaded, so request this and count the cost. */
3662 if (j != noperands)
3664 losers++;
3665 this_alternative_win[i] = 0;
3666 this_alternative_match_win[j] = 0;
3667 for (j = 0; j < noperands; j++)
3668 if (this_alternative_matches[j] == i
3669 && this_alternative_match_win[j])
3671 this_alternative_win[j] = 0;
3672 this_alternative_match_win[j] = 0;
3673 losers++;
3678 /* If one alternative accepts all the operands, no reload required,
3679 choose that alternative; don't consider the remaining ones. */
3680 if (losers == 0)
3682 /* Unswap these so that they are never swapped at `finish'. */
3683 if (commutative >= 0)
3685 recog_data.operand[commutative] = substed_operand[commutative];
3686 recog_data.operand[commutative + 1]
3687 = substed_operand[commutative + 1];
3689 for (i = 0; i < noperands; i++)
3691 goal_alternative_win[i] = this_alternative_win[i];
3692 goal_alternative_match_win[i] = this_alternative_match_win[i];
3693 goal_alternative[i] = this_alternative[i];
3694 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3695 goal_alternative_matches[i] = this_alternative_matches[i];
3696 goal_alternative_earlyclobber[i]
3697 = this_alternative_earlyclobber[i];
3699 goal_alternative_number = this_alternative_number;
3700 goal_alternative_swapped = swapped;
3701 goal_earlyclobber = this_earlyclobber;
3702 goto finish;
3705 /* REJECT, set by the ! and ? constraint characters and when a register
3706 would be reloaded into a non-preferred class, discourages the use of
3707 this alternative for a reload goal. REJECT is incremented by six
3708 for each ? and two for each non-preferred class. */
3709 losers = losers * 6 + reject;
3711 /* If this alternative can be made to work by reloading,
3712 and it needs less reloading than the others checked so far,
3713 record it as the chosen goal for reloading. */
3714 if (! bad)
3716 if (best > losers)
3718 for (i = 0; i < noperands; i++)
3720 goal_alternative[i] = this_alternative[i];
3721 goal_alternative_win[i] = this_alternative_win[i];
3722 goal_alternative_match_win[i]
3723 = this_alternative_match_win[i];
3724 goal_alternative_offmemok[i]
3725 = this_alternative_offmemok[i];
3726 goal_alternative_matches[i] = this_alternative_matches[i];
3727 goal_alternative_earlyclobber[i]
3728 = this_alternative_earlyclobber[i];
3730 goal_alternative_swapped = swapped;
3731 best = losers;
3732 goal_alternative_number = this_alternative_number;
3733 goal_earlyclobber = this_earlyclobber;
3738 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3739 then we need to try each alternative twice,
3740 the second time matching those two operands
3741 as if we had exchanged them.
3742 To do this, really exchange them in operands.
3744 If we have just tried the alternatives the second time,
3745 return operands to normal and drop through. */
3747 if (commutative >= 0)
3749 swapped = !swapped;
3750 if (swapped)
3752 enum reg_class tclass;
3753 int t;
3755 recog_data.operand[commutative] = substed_operand[commutative + 1];
3756 recog_data.operand[commutative + 1] = substed_operand[commutative];
3757 /* Swap the duplicates too. */
3758 for (i = 0; i < recog_data.n_dups; i++)
3759 if (recog_data.dup_num[i] == commutative
3760 || recog_data.dup_num[i] == commutative + 1)
3761 *recog_data.dup_loc[i]
3762 = recog_data.operand[(int) recog_data.dup_num[i]];
3764 tclass = preferred_class[commutative];
3765 preferred_class[commutative] = preferred_class[commutative + 1];
3766 preferred_class[commutative + 1] = tclass;
3768 t = pref_or_nothing[commutative];
3769 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3770 pref_or_nothing[commutative + 1] = t;
3772 t = address_reloaded[commutative];
3773 address_reloaded[commutative] = address_reloaded[commutative + 1];
3774 address_reloaded[commutative + 1] = t;
3776 memcpy (constraints, recog_data.constraints,
3777 noperands * sizeof (const char *));
3778 goto try_swapped;
3780 else
3782 recog_data.operand[commutative] = substed_operand[commutative];
3783 recog_data.operand[commutative + 1]
3784 = substed_operand[commutative + 1];
3785 /* Unswap the duplicates too. */
3786 for (i = 0; i < recog_data.n_dups; i++)
3787 if (recog_data.dup_num[i] == commutative
3788 || recog_data.dup_num[i] == commutative + 1)
3789 *recog_data.dup_loc[i]
3790 = recog_data.operand[(int) recog_data.dup_num[i]];
3794 /* The operands don't meet the constraints.
3795 goal_alternative describes the alternative
3796 that we could reach by reloading the fewest operands.
3797 Reload so as to fit it. */
3799 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3801 /* No alternative works with reloads?? */
3802 if (insn_code_number >= 0)
3803 fatal_insn ("unable to generate reloads for:", insn);
3804 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3805 /* Avoid further trouble with this insn. */
3806 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3807 n_reloads = 0;
3808 return 0;
3811 /* Jump to `finish' from above if all operands are valid already.
3812 In that case, goal_alternative_win is all 1. */
3813 finish:
3815 /* Right now, for any pair of operands I and J that are required to match,
3816 with I < J,
3817 goal_alternative_matches[J] is I.
3818 Set up goal_alternative_matched as the inverse function:
3819 goal_alternative_matched[I] = J. */
3821 for (i = 0; i < noperands; i++)
3822 goal_alternative_matched[i] = -1;
3824 for (i = 0; i < noperands; i++)
3825 if (! goal_alternative_win[i]
3826 && goal_alternative_matches[i] >= 0)
3827 goal_alternative_matched[goal_alternative_matches[i]] = i;
3829 for (i = 0; i < noperands; i++)
3830 goal_alternative_win[i] |= goal_alternative_match_win[i];
3832 /* If the best alternative is with operands 1 and 2 swapped,
3833 consider them swapped before reporting the reloads. Update the
3834 operand numbers of any reloads already pushed. */
3836 if (goal_alternative_swapped)
3838 rtx tem;
3840 tem = substed_operand[commutative];
3841 substed_operand[commutative] = substed_operand[commutative + 1];
3842 substed_operand[commutative + 1] = tem;
3843 tem = recog_data.operand[commutative];
3844 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3845 recog_data.operand[commutative + 1] = tem;
3846 tem = *recog_data.operand_loc[commutative];
3847 *recog_data.operand_loc[commutative]
3848 = *recog_data.operand_loc[commutative + 1];
3849 *recog_data.operand_loc[commutative + 1] = tem;
3851 for (i = 0; i < n_reloads; i++)
3853 if (rld[i].opnum == commutative)
3854 rld[i].opnum = commutative + 1;
3855 else if (rld[i].opnum == commutative + 1)
3856 rld[i].opnum = commutative;
3860 for (i = 0; i < noperands; i++)
3862 operand_reloadnum[i] = -1;
3864 /* If this is an earlyclobber operand, we need to widen the scope.
3865 The reload must remain valid from the start of the insn being
3866 reloaded until after the operand is stored into its destination.
3867 We approximate this with RELOAD_OTHER even though we know that we
3868 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3870 One special case that is worth checking is when we have an
3871 output that is earlyclobber but isn't used past the insn (typically
3872 a SCRATCH). In this case, we only need have the reload live
3873 through the insn itself, but not for any of our input or output
3874 reloads.
3875 But we must not accidentally narrow the scope of an existing
3876 RELOAD_OTHER reload - leave these alone.
3878 In any case, anything needed to address this operand can remain
3879 however they were previously categorized. */
3881 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3882 operand_type[i]
3883 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3884 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3887 /* Any constants that aren't allowed and can't be reloaded
3888 into registers are here changed into memory references. */
3889 for (i = 0; i < noperands; i++)
3890 if (! goal_alternative_win[i])
3892 rtx op = recog_data.operand[i];
3893 rtx subreg = NULL_RTX;
3894 rtx plus = NULL_RTX;
3895 enum machine_mode mode = operand_mode[i];
3897 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3898 push_reload so we have to let them pass here. */
3899 if (GET_CODE (op) == SUBREG)
3901 subreg = op;
3902 op = SUBREG_REG (op);
3903 mode = GET_MODE (op);
3906 if (GET_CODE (op) == PLUS)
3908 plus = op;
3909 op = XEXP (op, 1);
3912 if (CONST_POOL_OK_P (op)
3913 && ((PREFERRED_RELOAD_CLASS (op,
3914 (enum reg_class) goal_alternative[i])
3915 == NO_REGS)
3916 || no_input_reloads)
3917 && mode != VOIDmode)
3919 int this_address_reloaded;
3920 rtx tem = force_const_mem (mode, op);
3922 /* If we stripped a SUBREG or a PLUS above add it back. */
3923 if (plus != NULL_RTX)
3924 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3926 if (subreg != NULL_RTX)
3927 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3929 this_address_reloaded = 0;
3930 substed_operand[i] = recog_data.operand[i]
3931 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3932 0, insn, &this_address_reloaded);
3934 /* If the alternative accepts constant pool refs directly
3935 there will be no reload needed at all. */
3936 if (plus == NULL_RTX
3937 && subreg == NULL_RTX
3938 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3939 ? substed_operand[i]
3940 : NULL,
3941 recog_data.constraints[i],
3942 goal_alternative_number))
3943 goal_alternative_win[i] = 1;
3947 /* Record the values of the earlyclobber operands for the caller. */
3948 if (goal_earlyclobber)
3949 for (i = 0; i < noperands; i++)
3950 if (goal_alternative_earlyclobber[i])
3951 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3953 /* Now record reloads for all the operands that need them. */
3954 for (i = 0; i < noperands; i++)
3955 if (! goal_alternative_win[i])
3957 /* Operands that match previous ones have already been handled. */
3958 if (goal_alternative_matches[i] >= 0)
3960 /* Handle an operand with a nonoffsettable address
3961 appearing where an offsettable address will do
3962 by reloading the address into a base register.
3964 ??? We can also do this when the operand is a register and
3965 reg_equiv_mem is not offsettable, but this is a bit tricky,
3966 so we don't bother with it. It may not be worth doing. */
3967 else if (goal_alternative_matched[i] == -1
3968 && goal_alternative_offmemok[i]
3969 && MEM_P (recog_data.operand[i]))
3971 /* If the address to be reloaded is a VOIDmode constant,
3972 use the default address mode as mode of the reload register,
3973 as would have been done by find_reloads_address. */
3974 enum machine_mode address_mode;
3975 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3976 if (address_mode == VOIDmode)
3978 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3979 address_mode = targetm.addr_space.address_mode (as);
3982 operand_reloadnum[i]
3983 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3984 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3985 base_reg_class (VOIDmode, MEM, SCRATCH),
3986 address_mode,
3987 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3988 rld[operand_reloadnum[i]].inc
3989 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3991 /* If this operand is an output, we will have made any
3992 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3993 now we are treating part of the operand as an input, so
3994 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3996 if (modified[i] == RELOAD_WRITE)
3998 for (j = 0; j < n_reloads; j++)
4000 if (rld[j].opnum == i)
4002 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4003 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4004 else if (rld[j].when_needed
4005 == RELOAD_FOR_OUTADDR_ADDRESS)
4006 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4011 else if (goal_alternative_matched[i] == -1)
4013 operand_reloadnum[i]
4014 = push_reload ((modified[i] != RELOAD_WRITE
4015 ? recog_data.operand[i] : 0),
4016 (modified[i] != RELOAD_READ
4017 ? recog_data.operand[i] : 0),
4018 (modified[i] != RELOAD_WRITE
4019 ? recog_data.operand_loc[i] : 0),
4020 (modified[i] != RELOAD_READ
4021 ? recog_data.operand_loc[i] : 0),
4022 (enum reg_class) goal_alternative[i],
4023 (modified[i] == RELOAD_WRITE
4024 ? VOIDmode : operand_mode[i]),
4025 (modified[i] == RELOAD_READ
4026 ? VOIDmode : operand_mode[i]),
4027 (insn_code_number < 0 ? 0
4028 : insn_data[insn_code_number].operand[i].strict_low),
4029 0, i, operand_type[i]);
4031 /* In a matching pair of operands, one must be input only
4032 and the other must be output only.
4033 Pass the input operand as IN and the other as OUT. */
4034 else if (modified[i] == RELOAD_READ
4035 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4037 operand_reloadnum[i]
4038 = push_reload (recog_data.operand[i],
4039 recog_data.operand[goal_alternative_matched[i]],
4040 recog_data.operand_loc[i],
4041 recog_data.operand_loc[goal_alternative_matched[i]],
4042 (enum reg_class) goal_alternative[i],
4043 operand_mode[i],
4044 operand_mode[goal_alternative_matched[i]],
4045 0, 0, i, RELOAD_OTHER);
4046 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4048 else if (modified[i] == RELOAD_WRITE
4049 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4051 operand_reloadnum[goal_alternative_matched[i]]
4052 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4053 recog_data.operand[i],
4054 recog_data.operand_loc[goal_alternative_matched[i]],
4055 recog_data.operand_loc[i],
4056 (enum reg_class) goal_alternative[i],
4057 operand_mode[goal_alternative_matched[i]],
4058 operand_mode[i],
4059 0, 0, i, RELOAD_OTHER);
4060 operand_reloadnum[i] = output_reloadnum;
4062 else
4064 gcc_assert (insn_code_number < 0);
4065 error_for_asm (insn, "inconsistent operand constraints "
4066 "in an %<asm%>");
4067 /* Avoid further trouble with this insn. */
4068 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4069 n_reloads = 0;
4070 return 0;
4073 else if (goal_alternative_matched[i] < 0
4074 && goal_alternative_matches[i] < 0
4075 && address_operand_reloaded[i] != 1
4076 && optimize)
4078 /* For each non-matching operand that's a MEM or a pseudo-register
4079 that didn't get a hard register, make an optional reload.
4080 This may get done even if the insn needs no reloads otherwise. */
4082 rtx operand = recog_data.operand[i];
4084 while (GET_CODE (operand) == SUBREG)
4085 operand = SUBREG_REG (operand);
4086 if ((MEM_P (operand)
4087 || (REG_P (operand)
4088 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4089 /* If this is only for an output, the optional reload would not
4090 actually cause us to use a register now, just note that
4091 something is stored here. */
4092 && ((enum reg_class) goal_alternative[i] != NO_REGS
4093 || modified[i] == RELOAD_WRITE)
4094 && ! no_input_reloads
4095 /* An optional output reload might allow to delete INSN later.
4096 We mustn't make in-out reloads on insns that are not permitted
4097 output reloads.
4098 If this is an asm, we can't delete it; we must not even call
4099 push_reload for an optional output reload in this case,
4100 because we can't be sure that the constraint allows a register,
4101 and push_reload verifies the constraints for asms. */
4102 && (modified[i] == RELOAD_READ
4103 || (! no_output_reloads && ! this_insn_is_asm)))
4104 operand_reloadnum[i]
4105 = push_reload ((modified[i] != RELOAD_WRITE
4106 ? recog_data.operand[i] : 0),
4107 (modified[i] != RELOAD_READ
4108 ? recog_data.operand[i] : 0),
4109 (modified[i] != RELOAD_WRITE
4110 ? recog_data.operand_loc[i] : 0),
4111 (modified[i] != RELOAD_READ
4112 ? recog_data.operand_loc[i] : 0),
4113 (enum reg_class) goal_alternative[i],
4114 (modified[i] == RELOAD_WRITE
4115 ? VOIDmode : operand_mode[i]),
4116 (modified[i] == RELOAD_READ
4117 ? VOIDmode : operand_mode[i]),
4118 (insn_code_number < 0 ? 0
4119 : insn_data[insn_code_number].operand[i].strict_low),
4120 1, i, operand_type[i]);
4121 /* If a memory reference remains (either as a MEM or a pseudo that
4122 did not get a hard register), yet we can't make an optional
4123 reload, check if this is actually a pseudo register reference;
4124 we then need to emit a USE and/or a CLOBBER so that reload
4125 inheritance will do the right thing. */
4126 else if (replace
4127 && (MEM_P (operand)
4128 || (REG_P (operand)
4129 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4130 && reg_renumber [REGNO (operand)] < 0)))
4132 operand = *recog_data.operand_loc[i];
4134 while (GET_CODE (operand) == SUBREG)
4135 operand = SUBREG_REG (operand);
4136 if (REG_P (operand))
4138 if (modified[i] != RELOAD_WRITE)
4139 /* We mark the USE with QImode so that we recognize
4140 it as one that can be safely deleted at the end
4141 of reload. */
4142 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4143 insn), QImode);
4144 if (modified[i] != RELOAD_READ)
4145 emit_insn_after (gen_clobber (operand), insn);
4149 else if (goal_alternative_matches[i] >= 0
4150 && goal_alternative_win[goal_alternative_matches[i]]
4151 && modified[i] == RELOAD_READ
4152 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4153 && ! no_input_reloads && ! no_output_reloads
4154 && optimize)
4156 /* Similarly, make an optional reload for a pair of matching
4157 objects that are in MEM or a pseudo that didn't get a hard reg. */
4159 rtx operand = recog_data.operand[i];
4161 while (GET_CODE (operand) == SUBREG)
4162 operand = SUBREG_REG (operand);
4163 if ((MEM_P (operand)
4164 || (REG_P (operand)
4165 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4166 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4167 != NO_REGS))
4168 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4169 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4170 recog_data.operand[i],
4171 recog_data.operand_loc[goal_alternative_matches[i]],
4172 recog_data.operand_loc[i],
4173 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4174 operand_mode[goal_alternative_matches[i]],
4175 operand_mode[i],
4176 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4179 /* Perform whatever substitutions on the operands we are supposed
4180 to make due to commutativity or replacement of registers
4181 with equivalent constants or memory slots. */
4183 for (i = 0; i < noperands; i++)
4185 /* We only do this on the last pass through reload, because it is
4186 possible for some data (like reg_equiv_address) to be changed during
4187 later passes. Moreover, we lose the opportunity to get a useful
4188 reload_{in,out}_reg when we do these replacements. */
4190 if (replace)
4192 rtx substitution = substed_operand[i];
4194 *recog_data.operand_loc[i] = substitution;
4196 /* If we're replacing an operand with a LABEL_REF, we need to
4197 make sure that there's a REG_LABEL_OPERAND note attached to
4198 this instruction. */
4199 if (GET_CODE (substitution) == LABEL_REF
4200 && !find_reg_note (insn, REG_LABEL_OPERAND,
4201 XEXP (substitution, 0))
4202 /* For a JUMP_P, if it was a branch target it must have
4203 already been recorded as such. */
4204 && (!JUMP_P (insn)
4205 || !label_is_jump_target_p (XEXP (substitution, 0),
4206 insn)))
4207 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4209 else
4210 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4213 /* If this insn pattern contains any MATCH_DUP's, make sure that
4214 they will be substituted if the operands they match are substituted.
4215 Also do now any substitutions we already did on the operands.
4217 Don't do this if we aren't making replacements because we might be
4218 propagating things allocated by frame pointer elimination into places
4219 it doesn't expect. */
4221 if (insn_code_number >= 0 && replace)
4222 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4224 int opno = recog_data.dup_num[i];
4225 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4226 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4229 #if 0
4230 /* This loses because reloading of prior insns can invalidate the equivalence
4231 (or at least find_equiv_reg isn't smart enough to find it any more),
4232 causing this insn to need more reload regs than it needed before.
4233 It may be too late to make the reload regs available.
4234 Now this optimization is done safely in choose_reload_regs. */
4236 /* For each reload of a reg into some other class of reg,
4237 search for an existing equivalent reg (same value now) in the right class.
4238 We can use it as long as we don't need to change its contents. */
4239 for (i = 0; i < n_reloads; i++)
4240 if (rld[i].reg_rtx == 0
4241 && rld[i].in != 0
4242 && REG_P (rld[i].in)
4243 && rld[i].out == 0)
4245 rld[i].reg_rtx
4246 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4247 static_reload_reg_p, 0, rld[i].inmode);
4248 /* Prevent generation of insn to load the value
4249 because the one we found already has the value. */
4250 if (rld[i].reg_rtx)
4251 rld[i].in = rld[i].reg_rtx;
4253 #endif
4255 /* If we detected error and replaced asm instruction by USE, forget about the
4256 reloads. */
4257 if (GET_CODE (PATTERN (insn)) == USE
4258 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4259 n_reloads = 0;
4261 /* Perhaps an output reload can be combined with another
4262 to reduce needs by one. */
4263 if (!goal_earlyclobber)
4264 combine_reloads ();
4266 /* If we have a pair of reloads for parts of an address, they are reloading
4267 the same object, the operands themselves were not reloaded, and they
4268 are for two operands that are supposed to match, merge the reloads and
4269 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4271 for (i = 0; i < n_reloads; i++)
4273 int k;
4275 for (j = i + 1; j < n_reloads; j++)
4276 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4277 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4278 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4279 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4280 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4281 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4282 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4283 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4284 && rtx_equal_p (rld[i].in, rld[j].in)
4285 && (operand_reloadnum[rld[i].opnum] < 0
4286 || rld[operand_reloadnum[rld[i].opnum]].optional)
4287 && (operand_reloadnum[rld[j].opnum] < 0
4288 || rld[operand_reloadnum[rld[j].opnum]].optional)
4289 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4290 || (goal_alternative_matches[rld[j].opnum]
4291 == rld[i].opnum)))
4293 for (k = 0; k < n_replacements; k++)
4294 if (replacements[k].what == j)
4295 replacements[k].what = i;
4297 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4298 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4299 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4300 else
4301 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4302 rld[j].in = 0;
4306 /* Scan all the reloads and update their type.
4307 If a reload is for the address of an operand and we didn't reload
4308 that operand, change the type. Similarly, change the operand number
4309 of a reload when two operands match. If a reload is optional, treat it
4310 as though the operand isn't reloaded.
4312 ??? This latter case is somewhat odd because if we do the optional
4313 reload, it means the object is hanging around. Thus we need only
4314 do the address reload if the optional reload was NOT done.
4316 Change secondary reloads to be the address type of their operand, not
4317 the normal type.
4319 If an operand's reload is now RELOAD_OTHER, change any
4320 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4321 RELOAD_FOR_OTHER_ADDRESS. */
4323 for (i = 0; i < n_reloads; i++)
4325 if (rld[i].secondary_p
4326 && rld[i].when_needed == operand_type[rld[i].opnum])
4327 rld[i].when_needed = address_type[rld[i].opnum];
4329 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4330 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4331 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4332 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4333 && (operand_reloadnum[rld[i].opnum] < 0
4334 || rld[operand_reloadnum[rld[i].opnum]].optional))
4336 /* If we have a secondary reload to go along with this reload,
4337 change its type to RELOAD_FOR_OPADDR_ADDR. */
4339 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4340 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4341 && rld[i].secondary_in_reload != -1)
4343 int secondary_in_reload = rld[i].secondary_in_reload;
4345 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4347 /* If there's a tertiary reload we have to change it also. */
4348 if (secondary_in_reload > 0
4349 && rld[secondary_in_reload].secondary_in_reload != -1)
4350 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4351 = RELOAD_FOR_OPADDR_ADDR;
4354 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4355 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4356 && rld[i].secondary_out_reload != -1)
4358 int secondary_out_reload = rld[i].secondary_out_reload;
4360 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4362 /* If there's a tertiary reload we have to change it also. */
4363 if (secondary_out_reload
4364 && rld[secondary_out_reload].secondary_out_reload != -1)
4365 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4366 = RELOAD_FOR_OPADDR_ADDR;
4369 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4370 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4371 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4372 else
4373 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4376 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4377 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4378 && operand_reloadnum[rld[i].opnum] >= 0
4379 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4380 == RELOAD_OTHER))
4381 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4383 if (goal_alternative_matches[rld[i].opnum] >= 0)
4384 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4387 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4388 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4389 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4391 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4392 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4393 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4394 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4395 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4396 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4397 This is complicated by the fact that a single operand can have more
4398 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4399 choose_reload_regs without affecting code quality, and cases that
4400 actually fail are extremely rare, so it turns out to be better to fix
4401 the problem here by not generating cases that choose_reload_regs will
4402 fail for. */
4403 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4404 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4405 a single operand.
4406 We can reduce the register pressure by exploiting that a
4407 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4408 does not conflict with any of them, if it is only used for the first of
4409 the RELOAD_FOR_X_ADDRESS reloads. */
4411 int first_op_addr_num = -2;
4412 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4413 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4414 int need_change = 0;
4415 /* We use last_op_addr_reload and the contents of the above arrays
4416 first as flags - -2 means no instance encountered, -1 means exactly
4417 one instance encountered.
4418 If more than one instance has been encountered, we store the reload
4419 number of the first reload of the kind in question; reload numbers
4420 are known to be non-negative. */
4421 for (i = 0; i < noperands; i++)
4422 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4423 for (i = n_reloads - 1; i >= 0; i--)
4425 switch (rld[i].when_needed)
4427 case RELOAD_FOR_OPERAND_ADDRESS:
4428 if (++first_op_addr_num >= 0)
4430 first_op_addr_num = i;
4431 need_change = 1;
4433 break;
4434 case RELOAD_FOR_INPUT_ADDRESS:
4435 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4437 first_inpaddr_num[rld[i].opnum] = i;
4438 need_change = 1;
4440 break;
4441 case RELOAD_FOR_OUTPUT_ADDRESS:
4442 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4444 first_outpaddr_num[rld[i].opnum] = i;
4445 need_change = 1;
4447 break;
4448 default:
4449 break;
4453 if (need_change)
4455 for (i = 0; i < n_reloads; i++)
4457 int first_num;
4458 enum reload_type type;
4460 switch (rld[i].when_needed)
4462 case RELOAD_FOR_OPADDR_ADDR:
4463 first_num = first_op_addr_num;
4464 type = RELOAD_FOR_OPERAND_ADDRESS;
4465 break;
4466 case RELOAD_FOR_INPADDR_ADDRESS:
4467 first_num = first_inpaddr_num[rld[i].opnum];
4468 type = RELOAD_FOR_INPUT_ADDRESS;
4469 break;
4470 case RELOAD_FOR_OUTADDR_ADDRESS:
4471 first_num = first_outpaddr_num[rld[i].opnum];
4472 type = RELOAD_FOR_OUTPUT_ADDRESS;
4473 break;
4474 default:
4475 continue;
4477 if (first_num < 0)
4478 continue;
4479 else if (i > first_num)
4480 rld[i].when_needed = type;
4481 else
4483 /* Check if the only TYPE reload that uses reload I is
4484 reload FIRST_NUM. */
4485 for (j = n_reloads - 1; j > first_num; j--)
4487 if (rld[j].when_needed == type
4488 && (rld[i].secondary_p
4489 ? rld[j].secondary_in_reload == i
4490 : reg_mentioned_p (rld[i].in, rld[j].in)))
4492 rld[i].when_needed = type;
4493 break;
4501 /* See if we have any reloads that are now allowed to be merged
4502 because we've changed when the reload is needed to
4503 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4504 check for the most common cases. */
4506 for (i = 0; i < n_reloads; i++)
4507 if (rld[i].in != 0 && rld[i].out == 0
4508 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4509 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4510 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4511 for (j = 0; j < n_reloads; j++)
4512 if (i != j && rld[j].in != 0 && rld[j].out == 0
4513 && rld[j].when_needed == rld[i].when_needed
4514 && MATCHES (rld[i].in, rld[j].in)
4515 && rld[i].rclass == rld[j].rclass
4516 && !rld[i].nocombine && !rld[j].nocombine
4517 && rld[i].reg_rtx == rld[j].reg_rtx)
4519 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4520 transfer_replacements (i, j);
4521 rld[j].in = 0;
4524 #ifdef HAVE_cc0
4525 /* If we made any reloads for addresses, see if they violate a
4526 "no input reloads" requirement for this insn. But loads that we
4527 do after the insn (such as for output addresses) are fine. */
4528 if (no_input_reloads)
4529 for (i = 0; i < n_reloads; i++)
4530 gcc_assert (rld[i].in == 0
4531 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4532 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4533 #endif
4535 /* Compute reload_mode and reload_nregs. */
4536 for (i = 0; i < n_reloads; i++)
4538 rld[i].mode
4539 = (rld[i].inmode == VOIDmode
4540 || (GET_MODE_SIZE (rld[i].outmode)
4541 > GET_MODE_SIZE (rld[i].inmode)))
4542 ? rld[i].outmode : rld[i].inmode;
4544 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4547 /* Special case a simple move with an input reload and a
4548 destination of a hard reg, if the hard reg is ok, use it. */
4549 for (i = 0; i < n_reloads; i++)
4550 if (rld[i].when_needed == RELOAD_FOR_INPUT
4551 && GET_CODE (PATTERN (insn)) == SET
4552 && REG_P (SET_DEST (PATTERN (insn)))
4553 && (SET_SRC (PATTERN (insn)) == rld[i].in
4554 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4555 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4557 rtx dest = SET_DEST (PATTERN (insn));
4558 unsigned int regno = REGNO (dest);
4560 if (regno < FIRST_PSEUDO_REGISTER
4561 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4562 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4564 int nr = hard_regno_nregs[regno][rld[i].mode];
4565 int ok = 1, nri;
4567 for (nri = 1; nri < nr; nri ++)
4568 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4569 ok = 0;
4571 if (ok)
4572 rld[i].reg_rtx = dest;
4576 return retval;
4579 /* Return true if alternative number ALTNUM in constraint-string
4580 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4581 MEM gives the reference if it didn't need any reloads, otherwise it
4582 is null. */
4584 static bool
4585 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4586 const char *constraint, int altnum)
4588 int c;
4590 /* Skip alternatives before the one requested. */
4591 while (altnum > 0)
4593 while (*constraint++ != ',');
4594 altnum--;
4596 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4597 If one of them is present, this alternative accepts the result of
4598 passing a constant-pool reference through find_reloads_toplev.
4600 The same is true of extra memory constraints if the address
4601 was reloaded into a register. However, the target may elect
4602 to disallow the original constant address, forcing it to be
4603 reloaded into a register instead. */
4604 for (; (c = *constraint) && c != ',' && c != '#';
4605 constraint += CONSTRAINT_LEN (c, constraint))
4607 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4608 return true;
4609 #ifdef EXTRA_CONSTRAINT_STR
4610 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4611 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4612 return true;
4613 #endif
4615 return false;
4618 /* Scan X for memory references and scan the addresses for reloading.
4619 Also checks for references to "constant" regs that we want to eliminate
4620 and replaces them with the values they stand for.
4621 We may alter X destructively if it contains a reference to such.
4622 If X is just a constant reg, we return the equivalent value
4623 instead of X.
4625 IND_LEVELS says how many levels of indirect addressing this machine
4626 supports.
4628 OPNUM and TYPE identify the purpose of the reload.
4630 IS_SET_DEST is true if X is the destination of a SET, which is not
4631 appropriate to be replaced by a constant.
4633 INSN, if nonzero, is the insn in which we do the reload. It is used
4634 to determine if we may generate output reloads, and where to put USEs
4635 for pseudos that we have to replace with stack slots.
4637 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4638 result of find_reloads_address. */
4640 static rtx
4641 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4642 int ind_levels, int is_set_dest, rtx insn,
4643 int *address_reloaded)
4645 RTX_CODE code = GET_CODE (x);
4647 const char *fmt = GET_RTX_FORMAT (code);
4648 int i;
4649 int copied;
4651 if (code == REG)
4653 /* This code is duplicated for speed in find_reloads. */
4654 int regno = REGNO (x);
4655 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4656 x = reg_equiv_constant[regno];
4657 #if 0
4658 /* This creates (subreg (mem...)) which would cause an unnecessary
4659 reload of the mem. */
4660 else if (reg_equiv_mem[regno] != 0)
4661 x = reg_equiv_mem[regno];
4662 #endif
4663 else if (reg_equiv_memory_loc[regno]
4664 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4666 rtx mem = make_memloc (x, regno);
4667 if (reg_equiv_address[regno]
4668 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4670 /* If this is not a toplevel operand, find_reloads doesn't see
4671 this substitution. We have to emit a USE of the pseudo so
4672 that delete_output_reload can see it. */
4673 if (replace_reloads && recog_data.operand[opnum] != x)
4674 /* We mark the USE with QImode so that we recognize it
4675 as one that can be safely deleted at the end of
4676 reload. */
4677 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4678 QImode);
4679 x = mem;
4680 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4681 opnum, type, ind_levels, insn);
4682 if (!rtx_equal_p (x, mem))
4683 push_reg_equiv_alt_mem (regno, x);
4684 if (address_reloaded)
4685 *address_reloaded = i;
4688 return x;
4690 if (code == MEM)
4692 rtx tem = x;
4694 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4695 opnum, type, ind_levels, insn);
4696 if (address_reloaded)
4697 *address_reloaded = i;
4699 return tem;
4702 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4704 /* Check for SUBREG containing a REG that's equivalent to a
4705 constant. If the constant has a known value, truncate it
4706 right now. Similarly if we are extracting a single-word of a
4707 multi-word constant. If the constant is symbolic, allow it
4708 to be substituted normally. push_reload will strip the
4709 subreg later. The constant must not be VOIDmode, because we
4710 will lose the mode of the register (this should never happen
4711 because one of the cases above should handle it). */
4713 int regno = REGNO (SUBREG_REG (x));
4714 rtx tem;
4716 if (regno >= FIRST_PSEUDO_REGISTER
4717 && reg_renumber[regno] < 0
4718 && reg_equiv_constant[regno] != 0)
4720 tem =
4721 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4722 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4723 gcc_assert (tem);
4724 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4726 tem = force_const_mem (GET_MODE (x), tem);
4727 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4728 &XEXP (tem, 0), opnum, type,
4729 ind_levels, insn);
4730 if (address_reloaded)
4731 *address_reloaded = i;
4733 return tem;
4736 /* If the subreg contains a reg that will be converted to a mem,
4737 convert the subreg to a narrower memref now.
4738 Otherwise, we would get (subreg (mem ...) ...),
4739 which would force reload of the mem.
4741 We also need to do this if there is an equivalent MEM that is
4742 not offsettable. In that case, alter_subreg would produce an
4743 invalid address on big-endian machines.
4745 For machines that extend byte loads, we must not reload using
4746 a wider mode if we have a paradoxical SUBREG. find_reloads will
4747 force a reload in that case. So we should not do anything here. */
4749 if (regno >= FIRST_PSEUDO_REGISTER
4750 #ifdef LOAD_EXTEND_OP
4751 && (GET_MODE_SIZE (GET_MODE (x))
4752 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4753 #endif
4754 && (reg_equiv_address[regno] != 0
4755 || (reg_equiv_mem[regno] != 0
4756 && (! strict_memory_address_addr_space_p
4757 (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
4758 MEM_ADDR_SPACE (reg_equiv_mem[regno]))
4759 || ! offsettable_memref_p (reg_equiv_mem[regno])
4760 || num_not_at_initial_offset))))
4761 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4762 insn);
4765 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4767 if (fmt[i] == 'e')
4769 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4770 ind_levels, is_set_dest, insn,
4771 address_reloaded);
4772 /* If we have replaced a reg with it's equivalent memory loc -
4773 that can still be handled here e.g. if it's in a paradoxical
4774 subreg - we must make the change in a copy, rather than using
4775 a destructive change. This way, find_reloads can still elect
4776 not to do the change. */
4777 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4779 x = shallow_copy_rtx (x);
4780 copied = 1;
4782 XEXP (x, i) = new_part;
4785 return x;
4788 /* Return a mem ref for the memory equivalent of reg REGNO.
4789 This mem ref is not shared with anything. */
4791 static rtx
4792 make_memloc (rtx ad, int regno)
4794 /* We must rerun eliminate_regs, in case the elimination
4795 offsets have changed. */
4796 rtx tem
4797 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4800 /* If TEM might contain a pseudo, we must copy it to avoid
4801 modifying it when we do the substitution for the reload. */
4802 if (rtx_varies_p (tem, 0))
4803 tem = copy_rtx (tem);
4805 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4806 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4808 /* Copy the result if it's still the same as the equivalence, to avoid
4809 modifying it when we do the substitution for the reload. */
4810 if (tem == reg_equiv_memory_loc[regno])
4811 tem = copy_rtx (tem);
4812 return tem;
4815 /* Returns true if AD could be turned into a valid memory reference
4816 to mode MODE in address space AS by reloading the part pointed to
4817 by PART into a register. */
4819 static int
4820 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4821 addr_space_t as, rtx *part)
4823 int retv;
4824 rtx tem = *part;
4825 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4827 *part = reg;
4828 retv = memory_address_addr_space_p (mode, ad, as);
4829 *part = tem;
4831 return retv;
4834 /* Record all reloads needed for handling memory address AD
4835 which appears in *LOC in a memory reference to mode MODE
4836 which itself is found in location *MEMREFLOC.
4837 Note that we take shortcuts assuming that no multi-reg machine mode
4838 occurs as part of an address.
4840 OPNUM and TYPE specify the purpose of this reload.
4842 IND_LEVELS says how many levels of indirect addressing this machine
4843 supports.
4845 INSN, if nonzero, is the insn in which we do the reload. It is used
4846 to determine if we may generate output reloads, and where to put USEs
4847 for pseudos that we have to replace with stack slots.
4849 Value is one if this address is reloaded or replaced as a whole; it is
4850 zero if the top level of this address was not reloaded or replaced, and
4851 it is -1 if it may or may not have been reloaded or replaced.
4853 Note that there is no verification that the address will be valid after
4854 this routine does its work. Instead, we rely on the fact that the address
4855 was valid when reload started. So we need only undo things that reload
4856 could have broken. These are wrong register types, pseudos not allocated
4857 to a hard register, and frame pointer elimination. */
4859 static int
4860 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4861 rtx *loc, int opnum, enum reload_type type,
4862 int ind_levels, rtx insn)
4864 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4865 : ADDR_SPACE_GENERIC;
4866 int regno;
4867 int removed_and = 0;
4868 int op_index;
4869 rtx tem;
4871 /* If the address is a register, see if it is a legitimate address and
4872 reload if not. We first handle the cases where we need not reload
4873 or where we must reload in a non-standard way. */
4875 if (REG_P (ad))
4877 regno = REGNO (ad);
4879 if (reg_equiv_constant[regno] != 0)
4881 find_reloads_address_part (reg_equiv_constant[regno], loc,
4882 base_reg_class (mode, MEM, SCRATCH),
4883 GET_MODE (ad), opnum, type, ind_levels);
4884 return 1;
4887 tem = reg_equiv_memory_loc[regno];
4888 if (tem != 0)
4890 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4892 tem = make_memloc (ad, regno);
4893 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4894 XEXP (tem, 0),
4895 MEM_ADDR_SPACE (tem)))
4897 rtx orig = tem;
4899 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4900 &XEXP (tem, 0), opnum,
4901 ADDR_TYPE (type), ind_levels, insn);
4902 if (!rtx_equal_p (tem, orig))
4903 push_reg_equiv_alt_mem (regno, tem);
4905 /* We can avoid a reload if the register's equivalent memory
4906 expression is valid as an indirect memory address.
4907 But not all addresses are valid in a mem used as an indirect
4908 address: only reg or reg+constant. */
4910 if (ind_levels > 0
4911 && strict_memory_address_addr_space_p (mode, tem, as)
4912 && (REG_P (XEXP (tem, 0))
4913 || (GET_CODE (XEXP (tem, 0)) == PLUS
4914 && REG_P (XEXP (XEXP (tem, 0), 0))
4915 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4917 /* TEM is not the same as what we'll be replacing the
4918 pseudo with after reload, put a USE in front of INSN
4919 in the final reload pass. */
4920 if (replace_reloads
4921 && num_not_at_initial_offset
4922 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4924 *loc = tem;
4925 /* We mark the USE with QImode so that we
4926 recognize it as one that can be safely
4927 deleted at the end of reload. */
4928 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4929 insn), QImode);
4931 /* This doesn't really count as replacing the address
4932 as a whole, since it is still a memory access. */
4934 return 0;
4936 ad = tem;
4940 /* The only remaining case where we can avoid a reload is if this is a
4941 hard register that is valid as a base register and which is not the
4942 subject of a CLOBBER in this insn. */
4944 else if (regno < FIRST_PSEUDO_REGISTER
4945 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4946 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4947 return 0;
4949 /* If we do not have one of the cases above, we must do the reload. */
4950 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4951 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4952 return 1;
4955 if (strict_memory_address_addr_space_p (mode, ad, as))
4957 /* The address appears valid, so reloads are not needed.
4958 But the address may contain an eliminable register.
4959 This can happen because a machine with indirect addressing
4960 may consider a pseudo register by itself a valid address even when
4961 it has failed to get a hard reg.
4962 So do a tree-walk to find and eliminate all such regs. */
4964 /* But first quickly dispose of a common case. */
4965 if (GET_CODE (ad) == PLUS
4966 && CONST_INT_P (XEXP (ad, 1))
4967 && REG_P (XEXP (ad, 0))
4968 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4969 return 0;
4971 subst_reg_equivs_changed = 0;
4972 *loc = subst_reg_equivs (ad, insn);
4974 if (! subst_reg_equivs_changed)
4975 return 0;
4977 /* Check result for validity after substitution. */
4978 if (strict_memory_address_addr_space_p (mode, ad, as))
4979 return 0;
4982 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4985 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4987 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4988 ind_levels, win);
4990 break;
4991 win:
4992 *memrefloc = copy_rtx (*memrefloc);
4993 XEXP (*memrefloc, 0) = ad;
4994 move_replacements (&ad, &XEXP (*memrefloc, 0));
4995 return -1;
4997 while (0);
4998 #endif
5000 /* The address is not valid. We have to figure out why. First see if
5001 we have an outer AND and remove it if so. Then analyze what's inside. */
5003 if (GET_CODE (ad) == AND)
5005 removed_and = 1;
5006 loc = &XEXP (ad, 0);
5007 ad = *loc;
5010 /* One possibility for why the address is invalid is that it is itself
5011 a MEM. This can happen when the frame pointer is being eliminated, a
5012 pseudo is not allocated to a hard register, and the offset between the
5013 frame and stack pointers is not its initial value. In that case the
5014 pseudo will have been replaced by a MEM referring to the
5015 stack pointer. */
5016 if (MEM_P (ad))
5018 /* First ensure that the address in this MEM is valid. Then, unless
5019 indirect addresses are valid, reload the MEM into a register. */
5020 tem = ad;
5021 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5022 opnum, ADDR_TYPE (type),
5023 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5025 /* If tem was changed, then we must create a new memory reference to
5026 hold it and store it back into memrefloc. */
5027 if (tem != ad && memrefloc)
5029 *memrefloc = copy_rtx (*memrefloc);
5030 copy_replacements (tem, XEXP (*memrefloc, 0));
5031 loc = &XEXP (*memrefloc, 0);
5032 if (removed_and)
5033 loc = &XEXP (*loc, 0);
5036 /* Check similar cases as for indirect addresses as above except
5037 that we can allow pseudos and a MEM since they should have been
5038 taken care of above. */
5040 if (ind_levels == 0
5041 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5042 || MEM_P (XEXP (tem, 0))
5043 || ! (REG_P (XEXP (tem, 0))
5044 || (GET_CODE (XEXP (tem, 0)) == PLUS
5045 && REG_P (XEXP (XEXP (tem, 0), 0))
5046 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5048 /* Must use TEM here, not AD, since it is the one that will
5049 have any subexpressions reloaded, if needed. */
5050 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5051 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5052 VOIDmode, 0,
5053 0, opnum, type);
5054 return ! removed_and;
5056 else
5057 return 0;
5060 /* If we have address of a stack slot but it's not valid because the
5061 displacement is too large, compute the sum in a register.
5062 Handle all base registers here, not just fp/ap/sp, because on some
5063 targets (namely SH) we can also get too large displacements from
5064 big-endian corrections. */
5065 else if (GET_CODE (ad) == PLUS
5066 && REG_P (XEXP (ad, 0))
5067 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5068 && CONST_INT_P (XEXP (ad, 1))
5069 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5070 CONST_INT))
5073 /* Unshare the MEM rtx so we can safely alter it. */
5074 if (memrefloc)
5076 *memrefloc = copy_rtx (*memrefloc);
5077 loc = &XEXP (*memrefloc, 0);
5078 if (removed_and)
5079 loc = &XEXP (*loc, 0);
5082 if (double_reg_address_ok)
5084 /* Unshare the sum as well. */
5085 *loc = ad = copy_rtx (ad);
5087 /* Reload the displacement into an index reg.
5088 We assume the frame pointer or arg pointer is a base reg. */
5089 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5090 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5091 type, ind_levels);
5092 return 0;
5094 else
5096 /* If the sum of two regs is not necessarily valid,
5097 reload the sum into a base reg.
5098 That will at least work. */
5099 find_reloads_address_part (ad, loc,
5100 base_reg_class (mode, MEM, SCRATCH),
5101 GET_MODE (ad), opnum, type, ind_levels);
5103 return ! removed_and;
5106 /* If we have an indexed stack slot, there are three possible reasons why
5107 it might be invalid: The index might need to be reloaded, the address
5108 might have been made by frame pointer elimination and hence have a
5109 constant out of range, or both reasons might apply.
5111 We can easily check for an index needing reload, but even if that is the
5112 case, we might also have an invalid constant. To avoid making the
5113 conservative assumption and requiring two reloads, we see if this address
5114 is valid when not interpreted strictly. If it is, the only problem is
5115 that the index needs a reload and find_reloads_address_1 will take care
5116 of it.
5118 Handle all base registers here, not just fp/ap/sp, because on some
5119 targets (namely SPARC) we can also get invalid addresses from preventive
5120 subreg big-endian corrections made by find_reloads_toplev. We
5121 can also get expressions involving LO_SUM (rather than PLUS) from
5122 find_reloads_subreg_address.
5124 If we decide to do something, it must be that `double_reg_address_ok'
5125 is true. We generate a reload of the base register + constant and
5126 rework the sum so that the reload register will be added to the index.
5127 This is safe because we know the address isn't shared.
5129 We check for the base register as both the first and second operand of
5130 the innermost PLUS and/or LO_SUM. */
5132 for (op_index = 0; op_index < 2; ++op_index)
5134 rtx operand, addend;
5135 enum rtx_code inner_code;
5137 if (GET_CODE (ad) != PLUS)
5138 continue;
5140 inner_code = GET_CODE (XEXP (ad, 0));
5141 if (!(GET_CODE (ad) == PLUS
5142 && CONST_INT_P (XEXP (ad, 1))
5143 && (inner_code == PLUS || inner_code == LO_SUM)))
5144 continue;
5146 operand = XEXP (XEXP (ad, 0), op_index);
5147 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5148 continue;
5150 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5152 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5153 GET_CODE (addend))
5154 || operand == frame_pointer_rtx
5155 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5156 || operand == hard_frame_pointer_rtx
5157 #endif
5158 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5159 || operand == arg_pointer_rtx
5160 #endif
5161 || operand == stack_pointer_rtx)
5162 && ! maybe_memory_address_addr_space_p
5163 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5165 rtx offset_reg;
5166 enum reg_class cls;
5168 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5170 /* Form the adjusted address. */
5171 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5172 ad = gen_rtx_PLUS (GET_MODE (ad),
5173 op_index == 0 ? offset_reg : addend,
5174 op_index == 0 ? addend : offset_reg);
5175 else
5176 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5177 op_index == 0 ? offset_reg : addend,
5178 op_index == 0 ? addend : offset_reg);
5179 *loc = ad;
5181 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5182 find_reloads_address_part (XEXP (ad, op_index),
5183 &XEXP (ad, op_index), cls,
5184 GET_MODE (ad), opnum, type, ind_levels);
5185 find_reloads_address_1 (mode,
5186 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5187 GET_CODE (XEXP (ad, op_index)),
5188 &XEXP (ad, 1 - op_index), opnum,
5189 type, 0, insn);
5191 return 0;
5195 /* See if address becomes valid when an eliminable register
5196 in a sum is replaced. */
5198 tem = ad;
5199 if (GET_CODE (ad) == PLUS)
5200 tem = subst_indexed_address (ad);
5201 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5203 /* Ok, we win that way. Replace any additional eliminable
5204 registers. */
5206 subst_reg_equivs_changed = 0;
5207 tem = subst_reg_equivs (tem, insn);
5209 /* Make sure that didn't make the address invalid again. */
5211 if (! subst_reg_equivs_changed
5212 || strict_memory_address_addr_space_p (mode, tem, as))
5214 *loc = tem;
5215 return 0;
5219 /* If constants aren't valid addresses, reload the constant address
5220 into a register. */
5221 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5223 enum machine_mode address_mode = GET_MODE (ad);
5224 if (address_mode == VOIDmode)
5225 address_mode = targetm.addr_space.address_mode (as);
5227 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5228 Unshare it so we can safely alter it. */
5229 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5230 && CONSTANT_POOL_ADDRESS_P (ad))
5232 *memrefloc = copy_rtx (*memrefloc);
5233 loc = &XEXP (*memrefloc, 0);
5234 if (removed_and)
5235 loc = &XEXP (*loc, 0);
5238 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5239 address_mode, opnum, type, ind_levels);
5240 return ! removed_and;
5243 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5244 ind_levels, insn);
5247 /* Find all pseudo regs appearing in AD
5248 that are eliminable in favor of equivalent values
5249 and do not have hard regs; replace them by their equivalents.
5250 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5251 front of it for pseudos that we have to replace with stack slots. */
5253 static rtx
5254 subst_reg_equivs (rtx ad, rtx insn)
5256 RTX_CODE code = GET_CODE (ad);
5257 int i;
5258 const char *fmt;
5260 switch (code)
5262 case HIGH:
5263 case CONST_INT:
5264 case CONST:
5265 case CONST_DOUBLE:
5266 case CONST_FIXED:
5267 case CONST_VECTOR:
5268 case SYMBOL_REF:
5269 case LABEL_REF:
5270 case PC:
5271 case CC0:
5272 return ad;
5274 case REG:
5276 int regno = REGNO (ad);
5278 if (reg_equiv_constant[regno] != 0)
5280 subst_reg_equivs_changed = 1;
5281 return reg_equiv_constant[regno];
5283 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5285 rtx mem = make_memloc (ad, regno);
5286 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5288 subst_reg_equivs_changed = 1;
5289 /* We mark the USE with QImode so that we recognize it
5290 as one that can be safely deleted at the end of
5291 reload. */
5292 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5293 QImode);
5294 return mem;
5298 return ad;
5300 case PLUS:
5301 /* Quickly dispose of a common case. */
5302 if (XEXP (ad, 0) == frame_pointer_rtx
5303 && CONST_INT_P (XEXP (ad, 1)))
5304 return ad;
5305 break;
5307 default:
5308 break;
5311 fmt = GET_RTX_FORMAT (code);
5312 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5313 if (fmt[i] == 'e')
5314 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5315 return ad;
5318 /* Compute the sum of X and Y, making canonicalizations assumed in an
5319 address, namely: sum constant integers, surround the sum of two
5320 constants with a CONST, put the constant as the second operand, and
5321 group the constant on the outermost sum.
5323 This routine assumes both inputs are already in canonical form. */
5326 form_sum (enum machine_mode mode, rtx x, rtx y)
5328 rtx tem;
5330 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5331 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5333 if (CONST_INT_P (x))
5334 return plus_constant (y, INTVAL (x));
5335 else if (CONST_INT_P (y))
5336 return plus_constant (x, INTVAL (y));
5337 else if (CONSTANT_P (x))
5338 tem = x, x = y, y = tem;
5340 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5341 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5343 /* Note that if the operands of Y are specified in the opposite
5344 order in the recursive calls below, infinite recursion will occur. */
5345 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5346 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5348 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5349 constant will have been placed second. */
5350 if (CONSTANT_P (x) && CONSTANT_P (y))
5352 if (GET_CODE (x) == CONST)
5353 x = XEXP (x, 0);
5354 if (GET_CODE (y) == CONST)
5355 y = XEXP (y, 0);
5357 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5360 return gen_rtx_PLUS (mode, x, y);
5363 /* If ADDR is a sum containing a pseudo register that should be
5364 replaced with a constant (from reg_equiv_constant),
5365 return the result of doing so, and also apply the associative
5366 law so that the result is more likely to be a valid address.
5367 (But it is not guaranteed to be one.)
5369 Note that at most one register is replaced, even if more are
5370 replaceable. Also, we try to put the result into a canonical form
5371 so it is more likely to be a valid address.
5373 In all other cases, return ADDR. */
5375 static rtx
5376 subst_indexed_address (rtx addr)
5378 rtx op0 = 0, op1 = 0, op2 = 0;
5379 rtx tem;
5380 int regno;
5382 if (GET_CODE (addr) == PLUS)
5384 /* Try to find a register to replace. */
5385 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5386 if (REG_P (op0)
5387 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5388 && reg_renumber[regno] < 0
5389 && reg_equiv_constant[regno] != 0)
5390 op0 = reg_equiv_constant[regno];
5391 else if (REG_P (op1)
5392 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5393 && reg_renumber[regno] < 0
5394 && reg_equiv_constant[regno] != 0)
5395 op1 = reg_equiv_constant[regno];
5396 else if (GET_CODE (op0) == PLUS
5397 && (tem = subst_indexed_address (op0)) != op0)
5398 op0 = tem;
5399 else if (GET_CODE (op1) == PLUS
5400 && (tem = subst_indexed_address (op1)) != op1)
5401 op1 = tem;
5402 else
5403 return addr;
5405 /* Pick out up to three things to add. */
5406 if (GET_CODE (op1) == PLUS)
5407 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5408 else if (GET_CODE (op0) == PLUS)
5409 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5411 /* Compute the sum. */
5412 if (op2 != 0)
5413 op1 = form_sum (GET_MODE (addr), op1, op2);
5414 if (op1 != 0)
5415 op0 = form_sum (GET_MODE (addr), op0, op1);
5417 return op0;
5419 return addr;
5422 /* Update the REG_INC notes for an insn. It updates all REG_INC
5423 notes for the instruction which refer to REGNO the to refer
5424 to the reload number.
5426 INSN is the insn for which any REG_INC notes need updating.
5428 REGNO is the register number which has been reloaded.
5430 RELOADNUM is the reload number. */
5432 static void
5433 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5434 int reloadnum ATTRIBUTE_UNUSED)
5436 #ifdef AUTO_INC_DEC
5437 rtx link;
5439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5440 if (REG_NOTE_KIND (link) == REG_INC
5441 && (int) REGNO (XEXP (link, 0)) == regno)
5442 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5443 #endif
5446 /* Record the pseudo registers we must reload into hard registers in a
5447 subexpression of a would-be memory address, X referring to a value
5448 in mode MODE. (This function is not called if the address we find
5449 is strictly valid.)
5451 CONTEXT = 1 means we are considering regs as index regs,
5452 = 0 means we are considering them as base regs.
5453 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5454 or an autoinc code.
5455 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5456 is the code of the index part of the address. Otherwise, pass SCRATCH
5457 for this argument.
5458 OPNUM and TYPE specify the purpose of any reloads made.
5460 IND_LEVELS says how many levels of indirect addressing are
5461 supported at this point in the address.
5463 INSN, if nonzero, is the insn in which we do the reload. It is used
5464 to determine if we may generate output reloads.
5466 We return nonzero if X, as a whole, is reloaded or replaced. */
5468 /* Note that we take shortcuts assuming that no multi-reg machine mode
5469 occurs as part of an address.
5470 Also, this is not fully machine-customizable; it works for machines
5471 such as VAXen and 68000's and 32000's, but other possible machines
5472 could have addressing modes that this does not handle right.
5473 If you add push_reload calls here, you need to make sure gen_reload
5474 handles those cases gracefully. */
5476 static int
5477 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5478 enum rtx_code outer_code, enum rtx_code index_code,
5479 rtx *loc, int opnum, enum reload_type type,
5480 int ind_levels, rtx insn)
5482 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5483 ((CONTEXT) == 0 \
5484 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5485 : REGNO_OK_FOR_INDEX_P (REGNO))
5487 enum reg_class context_reg_class;
5488 RTX_CODE code = GET_CODE (x);
5490 if (context == 1)
5491 context_reg_class = INDEX_REG_CLASS;
5492 else
5493 context_reg_class = base_reg_class (mode, outer_code, index_code);
5495 switch (code)
5497 case PLUS:
5499 rtx orig_op0 = XEXP (x, 0);
5500 rtx orig_op1 = XEXP (x, 1);
5501 RTX_CODE code0 = GET_CODE (orig_op0);
5502 RTX_CODE code1 = GET_CODE (orig_op1);
5503 rtx op0 = orig_op0;
5504 rtx op1 = orig_op1;
5506 if (GET_CODE (op0) == SUBREG)
5508 op0 = SUBREG_REG (op0);
5509 code0 = GET_CODE (op0);
5510 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5511 op0 = gen_rtx_REG (word_mode,
5512 (REGNO (op0) +
5513 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5514 GET_MODE (SUBREG_REG (orig_op0)),
5515 SUBREG_BYTE (orig_op0),
5516 GET_MODE (orig_op0))));
5519 if (GET_CODE (op1) == SUBREG)
5521 op1 = SUBREG_REG (op1);
5522 code1 = GET_CODE (op1);
5523 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5524 /* ??? Why is this given op1's mode and above for
5525 ??? op0 SUBREGs we use word_mode? */
5526 op1 = gen_rtx_REG (GET_MODE (op1),
5527 (REGNO (op1) +
5528 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5529 GET_MODE (SUBREG_REG (orig_op1)),
5530 SUBREG_BYTE (orig_op1),
5531 GET_MODE (orig_op1))));
5533 /* Plus in the index register may be created only as a result of
5534 register rematerialization for expression like &localvar*4. Reload it.
5535 It may be possible to combine the displacement on the outer level,
5536 but it is probably not worthwhile to do so. */
5537 if (context == 1)
5539 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5540 opnum, ADDR_TYPE (type), ind_levels, insn);
5541 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5542 context_reg_class,
5543 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5544 return 1;
5547 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5548 || code0 == ZERO_EXTEND || code1 == MEM)
5550 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5551 &XEXP (x, 0), opnum, type, ind_levels,
5552 insn);
5553 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5554 &XEXP (x, 1), opnum, type, ind_levels,
5555 insn);
5558 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5559 || code1 == ZERO_EXTEND || code0 == MEM)
5561 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5562 &XEXP (x, 0), opnum, type, ind_levels,
5563 insn);
5564 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5565 &XEXP (x, 1), opnum, type, ind_levels,
5566 insn);
5569 else if (code0 == CONST_INT || code0 == CONST
5570 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5571 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5572 &XEXP (x, 1), opnum, type, ind_levels,
5573 insn);
5575 else if (code1 == CONST_INT || code1 == CONST
5576 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5577 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5578 &XEXP (x, 0), opnum, type, ind_levels,
5579 insn);
5581 else if (code0 == REG && code1 == REG)
5583 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5584 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5585 return 0;
5586 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5587 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5588 return 0;
5589 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5590 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5591 &XEXP (x, 1), opnum, type, ind_levels,
5592 insn);
5593 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5594 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5595 &XEXP (x, 0), opnum, type, ind_levels,
5596 insn);
5597 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5598 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5599 &XEXP (x, 0), opnum, type, ind_levels,
5600 insn);
5601 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5602 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5603 &XEXP (x, 1), opnum, type, ind_levels,
5604 insn);
5605 else
5607 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5608 &XEXP (x, 0), opnum, type, ind_levels,
5609 insn);
5610 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5611 &XEXP (x, 1), opnum, type, ind_levels,
5612 insn);
5616 else if (code0 == REG)
5618 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5619 &XEXP (x, 0), opnum, type, ind_levels,
5620 insn);
5621 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5622 &XEXP (x, 1), opnum, type, ind_levels,
5623 insn);
5626 else if (code1 == REG)
5628 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5629 &XEXP (x, 1), opnum, type, ind_levels,
5630 insn);
5631 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5632 &XEXP (x, 0), opnum, type, ind_levels,
5633 insn);
5637 return 0;
5639 case POST_MODIFY:
5640 case PRE_MODIFY:
5642 rtx op0 = XEXP (x, 0);
5643 rtx op1 = XEXP (x, 1);
5644 enum rtx_code index_code;
5645 int regno;
5646 int reloadnum;
5648 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5649 return 0;
5651 /* Currently, we only support {PRE,POST}_MODIFY constructs
5652 where a base register is {inc,dec}remented by the contents
5653 of another register or by a constant value. Thus, these
5654 operands must match. */
5655 gcc_assert (op0 == XEXP (op1, 0));
5657 /* Require index register (or constant). Let's just handle the
5658 register case in the meantime... If the target allows
5659 auto-modify by a constant then we could try replacing a pseudo
5660 register with its equivalent constant where applicable.
5662 We also handle the case where the register was eliminated
5663 resulting in a PLUS subexpression.
5665 If we later decide to reload the whole PRE_MODIFY or
5666 POST_MODIFY, inc_for_reload might clobber the reload register
5667 before reading the index. The index register might therefore
5668 need to live longer than a TYPE reload normally would, so be
5669 conservative and class it as RELOAD_OTHER. */
5670 if ((REG_P (XEXP (op1, 1))
5671 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5672 || GET_CODE (XEXP (op1, 1)) == PLUS)
5673 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5674 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5675 ind_levels, insn);
5677 gcc_assert (REG_P (XEXP (op1, 0)));
5679 regno = REGNO (XEXP (op1, 0));
5680 index_code = GET_CODE (XEXP (op1, 1));
5682 /* A register that is incremented cannot be constant! */
5683 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5684 || reg_equiv_constant[regno] == 0);
5686 /* Handle a register that is equivalent to a memory location
5687 which cannot be addressed directly. */
5688 if (reg_equiv_memory_loc[regno] != 0
5689 && (reg_equiv_address[regno] != 0
5690 || num_not_at_initial_offset))
5692 rtx tem = make_memloc (XEXP (x, 0), regno);
5694 if (reg_equiv_address[regno]
5695 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5697 rtx orig = tem;
5699 /* First reload the memory location's address.
5700 We can't use ADDR_TYPE (type) here, because we need to
5701 write back the value after reading it, hence we actually
5702 need two registers. */
5703 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5704 &XEXP (tem, 0), opnum,
5705 RELOAD_OTHER,
5706 ind_levels, insn);
5708 if (!rtx_equal_p (tem, orig))
5709 push_reg_equiv_alt_mem (regno, tem);
5711 /* Then reload the memory location into a base
5712 register. */
5713 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5714 &XEXP (op1, 0),
5715 base_reg_class (mode, code,
5716 index_code),
5717 GET_MODE (x), GET_MODE (x), 0,
5718 0, opnum, RELOAD_OTHER);
5720 update_auto_inc_notes (this_insn, regno, reloadnum);
5721 return 0;
5725 if (reg_renumber[regno] >= 0)
5726 regno = reg_renumber[regno];
5728 /* We require a base register here... */
5729 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5731 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5732 &XEXP (op1, 0), &XEXP (x, 0),
5733 base_reg_class (mode, code, index_code),
5734 GET_MODE (x), GET_MODE (x), 0, 0,
5735 opnum, RELOAD_OTHER);
5737 update_auto_inc_notes (this_insn, regno, reloadnum);
5738 return 0;
5741 return 0;
5743 case POST_INC:
5744 case POST_DEC:
5745 case PRE_INC:
5746 case PRE_DEC:
5747 if (REG_P (XEXP (x, 0)))
5749 int regno = REGNO (XEXP (x, 0));
5750 int value = 0;
5751 rtx x_orig = x;
5753 /* A register that is incremented cannot be constant! */
5754 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5755 || reg_equiv_constant[regno] == 0);
5757 /* Handle a register that is equivalent to a memory location
5758 which cannot be addressed directly. */
5759 if (reg_equiv_memory_loc[regno] != 0
5760 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5762 rtx tem = make_memloc (XEXP (x, 0), regno);
5763 if (reg_equiv_address[regno]
5764 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5766 rtx orig = tem;
5768 /* First reload the memory location's address.
5769 We can't use ADDR_TYPE (type) here, because we need to
5770 write back the value after reading it, hence we actually
5771 need two registers. */
5772 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5773 &XEXP (tem, 0), opnum, type,
5774 ind_levels, insn);
5775 if (!rtx_equal_p (tem, orig))
5776 push_reg_equiv_alt_mem (regno, tem);
5777 /* Put this inside a new increment-expression. */
5778 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5779 /* Proceed to reload that, as if it contained a register. */
5783 /* If we have a hard register that is ok in this incdec context,
5784 don't make a reload. If the register isn't nice enough for
5785 autoincdec, we can reload it. But, if an autoincrement of a
5786 register that we here verified as playing nice, still outside
5787 isn't "valid", it must be that no autoincrement is "valid".
5788 If that is true and something made an autoincrement anyway,
5789 this must be a special context where one is allowed.
5790 (For example, a "push" instruction.)
5791 We can't improve this address, so leave it alone. */
5793 /* Otherwise, reload the autoincrement into a suitable hard reg
5794 and record how much to increment by. */
5796 if (reg_renumber[regno] >= 0)
5797 regno = reg_renumber[regno];
5798 if (regno >= FIRST_PSEUDO_REGISTER
5799 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5800 index_code))
5802 int reloadnum;
5804 /* If we can output the register afterwards, do so, this
5805 saves the extra update.
5806 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5807 CALL_INSN - and it does not set CC0.
5808 But don't do this if we cannot directly address the
5809 memory location, since this will make it harder to
5810 reuse address reloads, and increases register pressure.
5811 Also don't do this if we can probably update x directly. */
5812 rtx equiv = (MEM_P (XEXP (x, 0))
5813 ? XEXP (x, 0)
5814 : reg_equiv_mem[regno]);
5815 int icode = (int) optab_handler (add_optab, GET_MODE (x));
5816 if (insn && NONJUMP_INSN_P (insn) && equiv
5817 && memory_operand (equiv, GET_MODE (equiv))
5818 #ifdef HAVE_cc0
5819 && ! sets_cc0_p (PATTERN (insn))
5820 #endif
5821 && ! (icode != CODE_FOR_nothing
5822 && ((*insn_data[icode].operand[0].predicate)
5823 (equiv, GET_MODE (x)))
5824 && ((*insn_data[icode].operand[1].predicate)
5825 (equiv, GET_MODE (x)))))
5827 /* We use the original pseudo for loc, so that
5828 emit_reload_insns() knows which pseudo this
5829 reload refers to and updates the pseudo rtx, not
5830 its equivalent memory location, as well as the
5831 corresponding entry in reg_last_reload_reg. */
5832 loc = &XEXP (x_orig, 0);
5833 x = XEXP (x, 0);
5834 reloadnum
5835 = push_reload (x, x, loc, loc,
5836 context_reg_class,
5837 GET_MODE (x), GET_MODE (x), 0, 0,
5838 opnum, RELOAD_OTHER);
5840 else
5842 reloadnum
5843 = push_reload (x, x, loc, (rtx*) 0,
5844 context_reg_class,
5845 GET_MODE (x), GET_MODE (x), 0, 0,
5846 opnum, type);
5847 rld[reloadnum].inc
5848 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5850 value = 1;
5853 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5854 reloadnum);
5856 return value;
5858 return 0;
5860 case TRUNCATE:
5861 case SIGN_EXTEND:
5862 case ZERO_EXTEND:
5863 /* Look for parts to reload in the inner expression and reload them
5864 too, in addition to this operation. Reloading all inner parts in
5865 addition to this one shouldn't be necessary, but at this point,
5866 we don't know if we can possibly omit any part that *can* be
5867 reloaded. Targets that are better off reloading just either part
5868 (or perhaps even a different part of an outer expression), should
5869 define LEGITIMIZE_RELOAD_ADDRESS. */
5870 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5871 context, code, SCRATCH, &XEXP (x, 0), opnum,
5872 type, ind_levels, insn);
5873 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5874 context_reg_class,
5875 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5876 return 1;
5878 case MEM:
5879 /* This is probably the result of a substitution, by eliminate_regs, of
5880 an equivalent address for a pseudo that was not allocated to a hard
5881 register. Verify that the specified address is valid and reload it
5882 into a register.
5884 Since we know we are going to reload this item, don't decrement for
5885 the indirection level.
5887 Note that this is actually conservative: it would be slightly more
5888 efficient to use the value of SPILL_INDIRECT_LEVELS from
5889 reload1.c here. */
5891 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5892 opnum, ADDR_TYPE (type), ind_levels, insn);
5893 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5894 context_reg_class,
5895 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5896 return 1;
5898 case REG:
5900 int regno = REGNO (x);
5902 if (reg_equiv_constant[regno] != 0)
5904 find_reloads_address_part (reg_equiv_constant[regno], loc,
5905 context_reg_class,
5906 GET_MODE (x), opnum, type, ind_levels);
5907 return 1;
5910 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5911 that feeds this insn. */
5912 if (reg_equiv_mem[regno] != 0)
5914 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5915 context_reg_class,
5916 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5917 return 1;
5919 #endif
5921 if (reg_equiv_memory_loc[regno]
5922 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5924 rtx tem = make_memloc (x, regno);
5925 if (reg_equiv_address[regno] != 0
5926 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5928 x = tem;
5929 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5930 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5931 ind_levels, insn);
5932 if (!rtx_equal_p (x, tem))
5933 push_reg_equiv_alt_mem (regno, x);
5937 if (reg_renumber[regno] >= 0)
5938 regno = reg_renumber[regno];
5940 if (regno >= FIRST_PSEUDO_REGISTER
5941 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5942 index_code))
5944 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5945 context_reg_class,
5946 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5947 return 1;
5950 /* If a register appearing in an address is the subject of a CLOBBER
5951 in this insn, reload it into some other register to be safe.
5952 The CLOBBER is supposed to make the register unavailable
5953 from before this insn to after it. */
5954 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5956 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5957 context_reg_class,
5958 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5959 return 1;
5962 return 0;
5964 case SUBREG:
5965 if (REG_P (SUBREG_REG (x)))
5967 /* If this is a SUBREG of a hard register and the resulting register
5968 is of the wrong class, reload the whole SUBREG. This avoids
5969 needless copies if SUBREG_REG is multi-word. */
5970 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5972 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5974 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5975 index_code))
5977 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5978 context_reg_class,
5979 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5980 return 1;
5983 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5984 is larger than the class size, then reload the whole SUBREG. */
5985 else
5987 enum reg_class rclass = context_reg_class;
5988 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5989 > reg_class_size[rclass])
5991 x = find_reloads_subreg_address (x, 0, opnum,
5992 ADDR_TYPE (type),
5993 ind_levels, insn);
5994 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
5995 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5996 return 1;
6000 break;
6002 default:
6003 break;
6007 const char *fmt = GET_RTX_FORMAT (code);
6008 int i;
6010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6012 if (fmt[i] == 'e')
6013 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6014 we get here. */
6015 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
6016 &XEXP (x, i), opnum, type, ind_levels, insn);
6020 #undef REG_OK_FOR_CONTEXT
6021 return 0;
6024 /* X, which is found at *LOC, is a part of an address that needs to be
6025 reloaded into a register of class RCLASS. If X is a constant, or if
6026 X is a PLUS that contains a constant, check that the constant is a
6027 legitimate operand and that we are supposed to be able to load
6028 it into the register.
6030 If not, force the constant into memory and reload the MEM instead.
6032 MODE is the mode to use, in case X is an integer constant.
6034 OPNUM and TYPE describe the purpose of any reloads made.
6036 IND_LEVELS says how many levels of indirect addressing this machine
6037 supports. */
6039 static void
6040 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6041 enum machine_mode mode, int opnum,
6042 enum reload_type type, int ind_levels)
6044 if (CONSTANT_P (x)
6045 && (! LEGITIMATE_CONSTANT_P (x)
6046 || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
6048 x = force_const_mem (mode, x);
6049 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6050 opnum, type, ind_levels, 0);
6053 else if (GET_CODE (x) == PLUS
6054 && CONSTANT_P (XEXP (x, 1))
6055 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
6056 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
6058 rtx tem;
6060 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6061 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6062 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6063 opnum, type, ind_levels, 0);
6066 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6067 mode, VOIDmode, 0, 0, opnum, type);
6070 /* X, a subreg of a pseudo, is a part of an address that needs to be
6071 reloaded.
6073 If the pseudo is equivalent to a memory location that cannot be directly
6074 addressed, make the necessary address reloads.
6076 If address reloads have been necessary, or if the address is changed
6077 by register elimination, return the rtx of the memory location;
6078 otherwise, return X.
6080 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6081 memory location.
6083 OPNUM and TYPE identify the purpose of the reload.
6085 IND_LEVELS says how many levels of indirect addressing are
6086 supported at this point in the address.
6088 INSN, if nonzero, is the insn in which we do the reload. It is used
6089 to determine where to put USEs for pseudos that we have to replace with
6090 stack slots. */
6092 static rtx
6093 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6094 enum reload_type type, int ind_levels, rtx insn)
6096 int regno = REGNO (SUBREG_REG (x));
6098 if (reg_equiv_memory_loc[regno])
6100 /* If the address is not directly addressable, or if the address is not
6101 offsettable, then it must be replaced. */
6102 if (! force_replace
6103 && (reg_equiv_address[regno]
6104 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6105 force_replace = 1;
6107 if (force_replace || num_not_at_initial_offset)
6109 rtx tem = make_memloc (SUBREG_REG (x), regno);
6111 /* If the address changes because of register elimination, then
6112 it must be replaced. */
6113 if (force_replace
6114 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6116 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6117 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6118 int offset;
6119 rtx orig = tem;
6120 int reloaded;
6122 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6123 hold the correct (negative) byte offset. */
6124 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6125 offset = inner_size - outer_size;
6126 else
6127 offset = SUBREG_BYTE (x);
6129 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6130 PUT_MODE (tem, GET_MODE (x));
6131 if (MEM_OFFSET (tem))
6132 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6133 if (MEM_SIZE (tem)
6134 && INTVAL (MEM_SIZE (tem)) != (HOST_WIDE_INT) outer_size)
6135 set_mem_size (tem, GEN_INT (outer_size));
6137 /* If this was a paradoxical subreg that we replaced, the
6138 resulting memory must be sufficiently aligned to allow
6139 us to widen the mode of the memory. */
6140 if (outer_size > inner_size)
6142 rtx base;
6144 base = XEXP (tem, 0);
6145 if (GET_CODE (base) == PLUS)
6147 if (CONST_INT_P (XEXP (base, 1))
6148 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6149 return x;
6150 base = XEXP (base, 0);
6152 if (!REG_P (base)
6153 || (REGNO_POINTER_ALIGN (REGNO (base))
6154 < outer_size * BITS_PER_UNIT))
6155 return x;
6158 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6159 XEXP (tem, 0), &XEXP (tem, 0),
6160 opnum, type, ind_levels, insn);
6161 /* ??? Do we need to handle nonzero offsets somehow? */
6162 if (!offset && !rtx_equal_p (tem, orig))
6163 push_reg_equiv_alt_mem (regno, tem);
6165 /* For some processors an address may be valid in the
6166 original mode but not in a smaller mode. For
6167 example, ARM accepts a scaled index register in
6168 SImode but not in HImode. Note that this is only
6169 a problem if the address in reg_equiv_mem is already
6170 invalid in the new mode; other cases would be fixed
6171 by find_reloads_address as usual.
6173 ??? We attempt to handle such cases here by doing an
6174 additional reload of the full address after the
6175 usual processing by find_reloads_address. Note that
6176 this may not work in the general case, but it seems
6177 to cover the cases where this situation currently
6178 occurs. A more general fix might be to reload the
6179 *value* instead of the address, but this would not
6180 be expected by the callers of this routine as-is.
6182 If find_reloads_address already completed replaced
6183 the address, there is nothing further to do. */
6184 if (reloaded == 0
6185 && reg_equiv_mem[regno] != 0
6186 && !strict_memory_address_addr_space_p
6187 (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
6188 MEM_ADDR_SPACE (reg_equiv_mem[regno])))
6189 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6190 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6191 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6192 opnum, type);
6194 /* If this is not a toplevel operand, find_reloads doesn't see
6195 this substitution. We have to emit a USE of the pseudo so
6196 that delete_output_reload can see it. */
6197 if (replace_reloads && recog_data.operand[opnum] != x)
6198 /* We mark the USE with QImode so that we recognize it
6199 as one that can be safely deleted at the end of
6200 reload. */
6201 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6202 SUBREG_REG (x)),
6203 insn), QImode);
6204 x = tem;
6208 return x;
6211 /* Substitute into the current INSN the registers into which we have reloaded
6212 the things that need reloading. The array `replacements'
6213 contains the locations of all pointers that must be changed
6214 and says what to replace them with.
6216 Return the rtx that X translates into; usually X, but modified. */
6218 void
6219 subst_reloads (rtx insn)
6221 int i;
6223 for (i = 0; i < n_replacements; i++)
6225 struct replacement *r = &replacements[i];
6226 rtx reloadreg = rld[r->what].reg_rtx;
6227 if (reloadreg)
6229 #ifdef DEBUG_RELOAD
6230 /* This checking takes a very long time on some platforms
6231 causing the gcc.c-torture/compile/limits-fnargs.c test
6232 to time out during testing. See PR 31850.
6234 Internal consistency test. Check that we don't modify
6235 anything in the equivalence arrays. Whenever something from
6236 those arrays needs to be reloaded, it must be unshared before
6237 being substituted into; the equivalence must not be modified.
6238 Otherwise, if the equivalence is used after that, it will
6239 have been modified, and the thing substituted (probably a
6240 register) is likely overwritten and not a usable equivalence. */
6241 int check_regno;
6243 for (check_regno = 0; check_regno < max_regno; check_regno++)
6245 #define CHECK_MODF(ARRAY) \
6246 gcc_assert (!ARRAY[check_regno] \
6247 || !loc_mentioned_in_p (r->where, \
6248 ARRAY[check_regno]))
6250 CHECK_MODF (reg_equiv_constant);
6251 CHECK_MODF (reg_equiv_memory_loc);
6252 CHECK_MODF (reg_equiv_address);
6253 CHECK_MODF (reg_equiv_mem);
6254 #undef CHECK_MODF
6256 #endif /* DEBUG_RELOAD */
6258 /* If we're replacing a LABEL_REF with a register, there must
6259 already be an indication (to e.g. flow) which label this
6260 register refers to. */
6261 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6262 || !JUMP_P (insn)
6263 || find_reg_note (insn,
6264 REG_LABEL_OPERAND,
6265 XEXP (*r->where, 0))
6266 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6268 /* Encapsulate RELOADREG so its machine mode matches what
6269 used to be there. Note that gen_lowpart_common will
6270 do the wrong thing if RELOADREG is multi-word. RELOADREG
6271 will always be a REG here. */
6272 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6273 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6275 /* If we are putting this into a SUBREG and RELOADREG is a
6276 SUBREG, we would be making nested SUBREGs, so we have to fix
6277 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6279 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6281 if (GET_MODE (*r->subreg_loc)
6282 == GET_MODE (SUBREG_REG (reloadreg)))
6283 *r->subreg_loc = SUBREG_REG (reloadreg);
6284 else
6286 int final_offset =
6287 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6289 /* When working with SUBREGs the rule is that the byte
6290 offset must be a multiple of the SUBREG's mode. */
6291 final_offset = (final_offset /
6292 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6293 final_offset = (final_offset *
6294 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6296 *r->where = SUBREG_REG (reloadreg);
6297 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6300 else
6301 *r->where = reloadreg;
6303 /* If reload got no reg and isn't optional, something's wrong. */
6304 else
6305 gcc_assert (rld[r->what].optional);
6309 /* Make a copy of any replacements being done into X and move those
6310 copies to locations in Y, a copy of X. */
6312 void
6313 copy_replacements (rtx x, rtx y)
6315 /* We can't support X being a SUBREG because we might then need to know its
6316 location if something inside it was replaced. */
6317 gcc_assert (GET_CODE (x) != SUBREG);
6319 copy_replacements_1 (&x, &y, n_replacements);
6322 static void
6323 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6325 int i, j;
6326 rtx x, y;
6327 struct replacement *r;
6328 enum rtx_code code;
6329 const char *fmt;
6331 for (j = 0; j < orig_replacements; j++)
6333 if (replacements[j].subreg_loc == px)
6335 r = &replacements[n_replacements++];
6336 r->where = replacements[j].where;
6337 r->subreg_loc = py;
6338 r->what = replacements[j].what;
6339 r->mode = replacements[j].mode;
6341 else if (replacements[j].where == px)
6343 r = &replacements[n_replacements++];
6344 r->where = py;
6345 r->subreg_loc = 0;
6346 r->what = replacements[j].what;
6347 r->mode = replacements[j].mode;
6351 x = *px;
6352 y = *py;
6353 code = GET_CODE (x);
6354 fmt = GET_RTX_FORMAT (code);
6356 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6358 if (fmt[i] == 'e')
6359 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6360 else if (fmt[i] == 'E')
6361 for (j = XVECLEN (x, i); --j >= 0; )
6362 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6363 orig_replacements);
6367 /* Change any replacements being done to *X to be done to *Y. */
6369 void
6370 move_replacements (rtx *x, rtx *y)
6372 int i;
6374 for (i = 0; i < n_replacements; i++)
6375 if (replacements[i].subreg_loc == x)
6376 replacements[i].subreg_loc = y;
6377 else if (replacements[i].where == x)
6379 replacements[i].where = y;
6380 replacements[i].subreg_loc = 0;
6384 /* If LOC was scheduled to be replaced by something, return the replacement.
6385 Otherwise, return *LOC. */
6388 find_replacement (rtx *loc)
6390 struct replacement *r;
6392 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6394 rtx reloadreg = rld[r->what].reg_rtx;
6396 if (reloadreg && r->where == loc)
6398 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6399 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6401 return reloadreg;
6403 else if (reloadreg && r->subreg_loc == loc)
6405 /* RELOADREG must be either a REG or a SUBREG.
6407 ??? Is it actually still ever a SUBREG? If so, why? */
6409 if (REG_P (reloadreg))
6410 return gen_rtx_REG (GET_MODE (*loc),
6411 (REGNO (reloadreg) +
6412 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6413 GET_MODE (SUBREG_REG (*loc)),
6414 SUBREG_BYTE (*loc),
6415 GET_MODE (*loc))));
6416 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6417 return reloadreg;
6418 else
6420 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6422 /* When working with SUBREGs the rule is that the byte
6423 offset must be a multiple of the SUBREG's mode. */
6424 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6425 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6426 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6427 final_offset);
6432 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6433 what's inside and make a new rtl if so. */
6434 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6435 || GET_CODE (*loc) == MULT)
6437 rtx x = find_replacement (&XEXP (*loc, 0));
6438 rtx y = find_replacement (&XEXP (*loc, 1));
6440 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6441 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6444 return *loc;
6447 /* Return nonzero if register in range [REGNO, ENDREGNO)
6448 appears either explicitly or implicitly in X
6449 other than being stored into (except for earlyclobber operands).
6451 References contained within the substructure at LOC do not count.
6452 LOC may be zero, meaning don't ignore anything.
6454 This is similar to refers_to_regno_p in rtlanal.c except that we
6455 look at equivalences for pseudos that didn't get hard registers. */
6457 static int
6458 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6459 rtx x, rtx *loc)
6461 int i;
6462 unsigned int r;
6463 RTX_CODE code;
6464 const char *fmt;
6466 if (x == 0)
6467 return 0;
6469 repeat:
6470 code = GET_CODE (x);
6472 switch (code)
6474 case REG:
6475 r = REGNO (x);
6477 /* If this is a pseudo, a hard register must not have been allocated.
6478 X must therefore either be a constant or be in memory. */
6479 if (r >= FIRST_PSEUDO_REGISTER)
6481 if (reg_equiv_memory_loc[r])
6482 return refers_to_regno_for_reload_p (regno, endregno,
6483 reg_equiv_memory_loc[r],
6484 (rtx*) 0);
6486 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6487 return 0;
6490 return (endregno > r
6491 && regno < r + (r < FIRST_PSEUDO_REGISTER
6492 ? hard_regno_nregs[r][GET_MODE (x)]
6493 : 1));
6495 case SUBREG:
6496 /* If this is a SUBREG of a hard reg, we can see exactly which
6497 registers are being modified. Otherwise, handle normally. */
6498 if (REG_P (SUBREG_REG (x))
6499 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6501 unsigned int inner_regno = subreg_regno (x);
6502 unsigned int inner_endregno
6503 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6504 ? subreg_nregs (x) : 1);
6506 return endregno > inner_regno && regno < inner_endregno;
6508 break;
6510 case CLOBBER:
6511 case SET:
6512 if (&SET_DEST (x) != loc
6513 /* Note setting a SUBREG counts as referring to the REG it is in for
6514 a pseudo but not for hard registers since we can
6515 treat each word individually. */
6516 && ((GET_CODE (SET_DEST (x)) == SUBREG
6517 && loc != &SUBREG_REG (SET_DEST (x))
6518 && REG_P (SUBREG_REG (SET_DEST (x)))
6519 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6520 && refers_to_regno_for_reload_p (regno, endregno,
6521 SUBREG_REG (SET_DEST (x)),
6522 loc))
6523 /* If the output is an earlyclobber operand, this is
6524 a conflict. */
6525 || ((!REG_P (SET_DEST (x))
6526 || earlyclobber_operand_p (SET_DEST (x)))
6527 && refers_to_regno_for_reload_p (regno, endregno,
6528 SET_DEST (x), loc))))
6529 return 1;
6531 if (code == CLOBBER || loc == &SET_SRC (x))
6532 return 0;
6533 x = SET_SRC (x);
6534 goto repeat;
6536 default:
6537 break;
6540 /* X does not match, so try its subexpressions. */
6542 fmt = GET_RTX_FORMAT (code);
6543 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6545 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6547 if (i == 0)
6549 x = XEXP (x, 0);
6550 goto repeat;
6552 else
6553 if (refers_to_regno_for_reload_p (regno, endregno,
6554 XEXP (x, i), loc))
6555 return 1;
6557 else if (fmt[i] == 'E')
6559 int j;
6560 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6561 if (loc != &XVECEXP (x, i, j)
6562 && refers_to_regno_for_reload_p (regno, endregno,
6563 XVECEXP (x, i, j), loc))
6564 return 1;
6567 return 0;
6570 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6571 we check if any register number in X conflicts with the relevant register
6572 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6573 contains a MEM (we don't bother checking for memory addresses that can't
6574 conflict because we expect this to be a rare case.
6576 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6577 that we look at equivalences for pseudos that didn't get hard registers. */
6580 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6582 int regno, endregno;
6584 /* Overly conservative. */
6585 if (GET_CODE (x) == STRICT_LOW_PART
6586 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6587 x = XEXP (x, 0);
6589 /* If either argument is a constant, then modifying X can not affect IN. */
6590 if (CONSTANT_P (x) || CONSTANT_P (in))
6591 return 0;
6592 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6593 return refers_to_mem_for_reload_p (in);
6594 else if (GET_CODE (x) == SUBREG)
6596 regno = REGNO (SUBREG_REG (x));
6597 if (regno < FIRST_PSEUDO_REGISTER)
6598 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6599 GET_MODE (SUBREG_REG (x)),
6600 SUBREG_BYTE (x),
6601 GET_MODE (x));
6602 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6603 ? subreg_nregs (x) : 1);
6605 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6607 else if (REG_P (x))
6609 regno = REGNO (x);
6611 /* If this is a pseudo, it must not have been assigned a hard register.
6612 Therefore, it must either be in memory or be a constant. */
6614 if (regno >= FIRST_PSEUDO_REGISTER)
6616 if (reg_equiv_memory_loc[regno])
6617 return refers_to_mem_for_reload_p (in);
6618 gcc_assert (reg_equiv_constant[regno]);
6619 return 0;
6622 endregno = END_HARD_REGNO (x);
6624 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6626 else if (MEM_P (x))
6627 return refers_to_mem_for_reload_p (in);
6628 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6629 || GET_CODE (x) == CC0)
6630 return reg_mentioned_p (x, in);
6631 else
6633 gcc_assert (GET_CODE (x) == PLUS);
6635 /* We actually want to know if X is mentioned somewhere inside IN.
6636 We must not say that (plus (sp) (const_int 124)) is in
6637 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6638 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6639 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6640 while (MEM_P (in))
6641 in = XEXP (in, 0);
6642 if (REG_P (in))
6643 return 0;
6644 else if (GET_CODE (in) == PLUS)
6645 return (rtx_equal_p (x, in)
6646 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6647 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6648 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6649 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6652 gcc_unreachable ();
6655 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6656 registers. */
6658 static int
6659 refers_to_mem_for_reload_p (rtx x)
6661 const char *fmt;
6662 int i;
6664 if (MEM_P (x))
6665 return 1;
6667 if (REG_P (x))
6668 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6669 && reg_equiv_memory_loc[REGNO (x)]);
6671 fmt = GET_RTX_FORMAT (GET_CODE (x));
6672 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6673 if (fmt[i] == 'e'
6674 && (MEM_P (XEXP (x, i))
6675 || refers_to_mem_for_reload_p (XEXP (x, i))))
6676 return 1;
6678 return 0;
6681 /* Check the insns before INSN to see if there is a suitable register
6682 containing the same value as GOAL.
6683 If OTHER is -1, look for a register in class RCLASS.
6684 Otherwise, just see if register number OTHER shares GOAL's value.
6686 Return an rtx for the register found, or zero if none is found.
6688 If RELOAD_REG_P is (short *)1,
6689 we reject any hard reg that appears in reload_reg_rtx
6690 because such a hard reg is also needed coming into this insn.
6692 If RELOAD_REG_P is any other nonzero value,
6693 it is a vector indexed by hard reg number
6694 and we reject any hard reg whose element in the vector is nonnegative
6695 as well as any that appears in reload_reg_rtx.
6697 If GOAL is zero, then GOALREG is a register number; we look
6698 for an equivalent for that register.
6700 MODE is the machine mode of the value we want an equivalence for.
6701 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6703 This function is used by jump.c as well as in the reload pass.
6705 If GOAL is the sum of the stack pointer and a constant, we treat it
6706 as if it were a constant except that sp is required to be unchanging. */
6709 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6710 short *reload_reg_p, int goalreg, enum machine_mode mode)
6712 rtx p = insn;
6713 rtx goaltry, valtry, value, where;
6714 rtx pat;
6715 int regno = -1;
6716 int valueno;
6717 int goal_mem = 0;
6718 int goal_const = 0;
6719 int goal_mem_addr_varies = 0;
6720 int need_stable_sp = 0;
6721 int nregs;
6722 int valuenregs;
6723 int num = 0;
6725 if (goal == 0)
6726 regno = goalreg;
6727 else if (REG_P (goal))
6728 regno = REGNO (goal);
6729 else if (MEM_P (goal))
6731 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6732 if (MEM_VOLATILE_P (goal))
6733 return 0;
6734 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6735 return 0;
6736 /* An address with side effects must be reexecuted. */
6737 switch (code)
6739 case POST_INC:
6740 case PRE_INC:
6741 case POST_DEC:
6742 case PRE_DEC:
6743 case POST_MODIFY:
6744 case PRE_MODIFY:
6745 return 0;
6746 default:
6747 break;
6749 goal_mem = 1;
6751 else if (CONSTANT_P (goal))
6752 goal_const = 1;
6753 else if (GET_CODE (goal) == PLUS
6754 && XEXP (goal, 0) == stack_pointer_rtx
6755 && CONSTANT_P (XEXP (goal, 1)))
6756 goal_const = need_stable_sp = 1;
6757 else if (GET_CODE (goal) == PLUS
6758 && XEXP (goal, 0) == frame_pointer_rtx
6759 && CONSTANT_P (XEXP (goal, 1)))
6760 goal_const = 1;
6761 else
6762 return 0;
6764 num = 0;
6765 /* Scan insns back from INSN, looking for one that copies
6766 a value into or out of GOAL.
6767 Stop and give up if we reach a label. */
6769 while (1)
6771 p = PREV_INSN (p);
6772 if (p && DEBUG_INSN_P (p))
6773 continue;
6774 num++;
6775 if (p == 0 || LABEL_P (p)
6776 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6777 return 0;
6779 if (NONJUMP_INSN_P (p)
6780 /* If we don't want spill regs ... */
6781 && (! (reload_reg_p != 0
6782 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6783 /* ... then ignore insns introduced by reload; they aren't
6784 useful and can cause results in reload_as_needed to be
6785 different from what they were when calculating the need for
6786 spills. If we notice an input-reload insn here, we will
6787 reject it below, but it might hide a usable equivalent.
6788 That makes bad code. It may even fail: perhaps no reg was
6789 spilled for this insn because it was assumed we would find
6790 that equivalent. */
6791 || INSN_UID (p) < reload_first_uid))
6793 rtx tem;
6794 pat = single_set (p);
6796 /* First check for something that sets some reg equal to GOAL. */
6797 if (pat != 0
6798 && ((regno >= 0
6799 && true_regnum (SET_SRC (pat)) == regno
6800 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6802 (regno >= 0
6803 && true_regnum (SET_DEST (pat)) == regno
6804 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6806 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6807 /* When looking for stack pointer + const,
6808 make sure we don't use a stack adjust. */
6809 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6810 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6811 || (goal_mem
6812 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6813 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6814 || (goal_mem
6815 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6816 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6817 /* If we are looking for a constant,
6818 and something equivalent to that constant was copied
6819 into a reg, we can use that reg. */
6820 || (goal_const && REG_NOTES (p) != 0
6821 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6822 && ((rtx_equal_p (XEXP (tem, 0), goal)
6823 && (valueno
6824 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6825 || (REG_P (SET_DEST (pat))
6826 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6827 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6828 && CONST_INT_P (goal)
6829 && 0 != (goaltry
6830 = operand_subword (XEXP (tem, 0), 0, 0,
6831 VOIDmode))
6832 && rtx_equal_p (goal, goaltry)
6833 && (valtry
6834 = operand_subword (SET_DEST (pat), 0, 0,
6835 VOIDmode))
6836 && (valueno = true_regnum (valtry)) >= 0)))
6837 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6838 NULL_RTX))
6839 && REG_P (SET_DEST (pat))
6840 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6841 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6842 && CONST_INT_P (goal)
6843 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6844 VOIDmode))
6845 && rtx_equal_p (goal, goaltry)
6846 && (valtry
6847 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6848 && (valueno = true_regnum (valtry)) >= 0)))
6850 if (other >= 0)
6852 if (valueno != other)
6853 continue;
6855 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6856 continue;
6857 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6858 mode, valueno))
6859 continue;
6860 value = valtry;
6861 where = p;
6862 break;
6867 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6868 (or copying VALUE into GOAL, if GOAL is also a register).
6869 Now verify that VALUE is really valid. */
6871 /* VALUENO is the register number of VALUE; a hard register. */
6873 /* Don't try to re-use something that is killed in this insn. We want
6874 to be able to trust REG_UNUSED notes. */
6875 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6876 return 0;
6878 /* If we propose to get the value from the stack pointer or if GOAL is
6879 a MEM based on the stack pointer, we need a stable SP. */
6880 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6881 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6882 goal)))
6883 need_stable_sp = 1;
6885 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6886 if (GET_MODE (value) != mode)
6887 return 0;
6889 /* Reject VALUE if it was loaded from GOAL
6890 and is also a register that appears in the address of GOAL. */
6892 if (goal_mem && value == SET_DEST (single_set (where))
6893 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6894 goal, (rtx*) 0))
6895 return 0;
6897 /* Reject registers that overlap GOAL. */
6899 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6900 nregs = hard_regno_nregs[regno][mode];
6901 else
6902 nregs = 1;
6903 valuenregs = hard_regno_nregs[valueno][mode];
6905 if (!goal_mem && !goal_const
6906 && regno + nregs > valueno && regno < valueno + valuenregs)
6907 return 0;
6909 /* Reject VALUE if it is one of the regs reserved for reloads.
6910 Reload1 knows how to reuse them anyway, and it would get
6911 confused if we allocated one without its knowledge.
6912 (Now that insns introduced by reload are ignored above,
6913 this case shouldn't happen, but I'm not positive.) */
6915 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6917 int i;
6918 for (i = 0; i < valuenregs; ++i)
6919 if (reload_reg_p[valueno + i] >= 0)
6920 return 0;
6923 /* Reject VALUE if it is a register being used for an input reload
6924 even if it is not one of those reserved. */
6926 if (reload_reg_p != 0)
6928 int i;
6929 for (i = 0; i < n_reloads; i++)
6930 if (rld[i].reg_rtx != 0 && rld[i].in)
6932 int regno1 = REGNO (rld[i].reg_rtx);
6933 int nregs1 = hard_regno_nregs[regno1]
6934 [GET_MODE (rld[i].reg_rtx)];
6935 if (regno1 < valueno + valuenregs
6936 && regno1 + nregs1 > valueno)
6937 return 0;
6941 if (goal_mem)
6942 /* We must treat frame pointer as varying here,
6943 since it can vary--in a nonlocal goto as generated by expand_goto. */
6944 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6946 /* Now verify that the values of GOAL and VALUE remain unaltered
6947 until INSN is reached. */
6949 p = insn;
6950 while (1)
6952 p = PREV_INSN (p);
6953 if (p == where)
6954 return value;
6956 /* Don't trust the conversion past a function call
6957 if either of the two is in a call-clobbered register, or memory. */
6958 if (CALL_P (p))
6960 int i;
6962 if (goal_mem || need_stable_sp)
6963 return 0;
6965 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6966 for (i = 0; i < nregs; ++i)
6967 if (call_used_regs[regno + i]
6968 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6969 return 0;
6971 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6972 for (i = 0; i < valuenregs; ++i)
6973 if (call_used_regs[valueno + i]
6974 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6975 return 0;
6978 if (INSN_P (p))
6980 pat = PATTERN (p);
6982 /* Watch out for unspec_volatile, and volatile asms. */
6983 if (volatile_insn_p (pat))
6984 return 0;
6986 /* If this insn P stores in either GOAL or VALUE, return 0.
6987 If GOAL is a memory ref and this insn writes memory, return 0.
6988 If GOAL is a memory ref and its address is not constant,
6989 and this insn P changes a register used in GOAL, return 0. */
6991 if (GET_CODE (pat) == COND_EXEC)
6992 pat = COND_EXEC_CODE (pat);
6993 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6995 rtx dest = SET_DEST (pat);
6996 while (GET_CODE (dest) == SUBREG
6997 || GET_CODE (dest) == ZERO_EXTRACT
6998 || GET_CODE (dest) == STRICT_LOW_PART)
6999 dest = XEXP (dest, 0);
7000 if (REG_P (dest))
7002 int xregno = REGNO (dest);
7003 int xnregs;
7004 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7005 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7006 else
7007 xnregs = 1;
7008 if (xregno < regno + nregs && xregno + xnregs > regno)
7009 return 0;
7010 if (xregno < valueno + valuenregs
7011 && xregno + xnregs > valueno)
7012 return 0;
7013 if (goal_mem_addr_varies
7014 && reg_overlap_mentioned_for_reload_p (dest, goal))
7015 return 0;
7016 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7017 return 0;
7019 else if (goal_mem && MEM_P (dest)
7020 && ! push_operand (dest, GET_MODE (dest)))
7021 return 0;
7022 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7023 && reg_equiv_memory_loc[regno] != 0)
7024 return 0;
7025 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7026 return 0;
7028 else if (GET_CODE (pat) == PARALLEL)
7030 int i;
7031 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7033 rtx v1 = XVECEXP (pat, 0, i);
7034 if (GET_CODE (v1) == COND_EXEC)
7035 v1 = COND_EXEC_CODE (v1);
7036 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7038 rtx dest = SET_DEST (v1);
7039 while (GET_CODE (dest) == SUBREG
7040 || GET_CODE (dest) == ZERO_EXTRACT
7041 || GET_CODE (dest) == STRICT_LOW_PART)
7042 dest = XEXP (dest, 0);
7043 if (REG_P (dest))
7045 int xregno = REGNO (dest);
7046 int xnregs;
7047 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7048 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7049 else
7050 xnregs = 1;
7051 if (xregno < regno + nregs
7052 && xregno + xnregs > regno)
7053 return 0;
7054 if (xregno < valueno + valuenregs
7055 && xregno + xnregs > valueno)
7056 return 0;
7057 if (goal_mem_addr_varies
7058 && reg_overlap_mentioned_for_reload_p (dest,
7059 goal))
7060 return 0;
7061 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7062 return 0;
7064 else if (goal_mem && MEM_P (dest)
7065 && ! push_operand (dest, GET_MODE (dest)))
7066 return 0;
7067 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7068 && reg_equiv_memory_loc[regno] != 0)
7069 return 0;
7070 else if (need_stable_sp
7071 && push_operand (dest, GET_MODE (dest)))
7072 return 0;
7077 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7079 rtx link;
7081 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7082 link = XEXP (link, 1))
7084 pat = XEXP (link, 0);
7085 if (GET_CODE (pat) == CLOBBER)
7087 rtx dest = SET_DEST (pat);
7089 if (REG_P (dest))
7091 int xregno = REGNO (dest);
7092 int xnregs
7093 = hard_regno_nregs[xregno][GET_MODE (dest)];
7095 if (xregno < regno + nregs
7096 && xregno + xnregs > regno)
7097 return 0;
7098 else if (xregno < valueno + valuenregs
7099 && xregno + xnregs > valueno)
7100 return 0;
7101 else if (goal_mem_addr_varies
7102 && reg_overlap_mentioned_for_reload_p (dest,
7103 goal))
7104 return 0;
7107 else if (goal_mem && MEM_P (dest)
7108 && ! push_operand (dest, GET_MODE (dest)))
7109 return 0;
7110 else if (need_stable_sp
7111 && push_operand (dest, GET_MODE (dest)))
7112 return 0;
7117 #ifdef AUTO_INC_DEC
7118 /* If this insn auto-increments or auto-decrements
7119 either regno or valueno, return 0 now.
7120 If GOAL is a memory ref and its address is not constant,
7121 and this insn P increments a register used in GOAL, return 0. */
7123 rtx link;
7125 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7126 if (REG_NOTE_KIND (link) == REG_INC
7127 && REG_P (XEXP (link, 0)))
7129 int incno = REGNO (XEXP (link, 0));
7130 if (incno < regno + nregs && incno >= regno)
7131 return 0;
7132 if (incno < valueno + valuenregs && incno >= valueno)
7133 return 0;
7134 if (goal_mem_addr_varies
7135 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7136 goal))
7137 return 0;
7140 #endif
7145 /* Find a place where INCED appears in an increment or decrement operator
7146 within X, and return the amount INCED is incremented or decremented by.
7147 The value is always positive. */
7149 static int
7150 find_inc_amount (rtx x, rtx inced)
7152 enum rtx_code code = GET_CODE (x);
7153 const char *fmt;
7154 int i;
7156 if (code == MEM)
7158 rtx addr = XEXP (x, 0);
7159 if ((GET_CODE (addr) == PRE_DEC
7160 || GET_CODE (addr) == POST_DEC
7161 || GET_CODE (addr) == PRE_INC
7162 || GET_CODE (addr) == POST_INC)
7163 && XEXP (addr, 0) == inced)
7164 return GET_MODE_SIZE (GET_MODE (x));
7165 else if ((GET_CODE (addr) == PRE_MODIFY
7166 || GET_CODE (addr) == POST_MODIFY)
7167 && GET_CODE (XEXP (addr, 1)) == PLUS
7168 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7169 && XEXP (addr, 0) == inced
7170 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7172 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7173 return i < 0 ? -i : i;
7177 fmt = GET_RTX_FORMAT (code);
7178 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7180 if (fmt[i] == 'e')
7182 int tem = find_inc_amount (XEXP (x, i), inced);
7183 if (tem != 0)
7184 return tem;
7186 if (fmt[i] == 'E')
7188 int j;
7189 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7191 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7192 if (tem != 0)
7193 return tem;
7198 return 0;
7201 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7202 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7204 #ifdef AUTO_INC_DEC
7205 static int
7206 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7207 rtx insn)
7209 rtx link;
7211 gcc_assert (insn);
7213 if (! INSN_P (insn))
7214 return 0;
7216 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7217 if (REG_NOTE_KIND (link) == REG_INC)
7219 unsigned int test = (int) REGNO (XEXP (link, 0));
7220 if (test >= regno && test < endregno)
7221 return 1;
7223 return 0;
7225 #else
7227 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7229 #endif
7231 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7232 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7233 REG_INC. REGNO must refer to a hard register. */
7236 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7237 int sets)
7239 unsigned int nregs, endregno;
7241 /* regno must be a hard register. */
7242 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7244 nregs = hard_regno_nregs[regno][mode];
7245 endregno = regno + nregs;
7247 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7248 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7249 && REG_P (XEXP (PATTERN (insn), 0)))
7251 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7253 return test >= regno && test < endregno;
7256 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7257 return 1;
7259 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7261 int i = XVECLEN (PATTERN (insn), 0) - 1;
7263 for (; i >= 0; i--)
7265 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7266 if ((GET_CODE (elt) == CLOBBER
7267 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7268 && REG_P (XEXP (elt, 0)))
7270 unsigned int test = REGNO (XEXP (elt, 0));
7272 if (test >= regno && test < endregno)
7273 return 1;
7275 if (sets == 2
7276 && reg_inc_found_and_valid_p (regno, endregno, elt))
7277 return 1;
7281 return 0;
7284 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7286 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7288 int regno;
7290 if (GET_MODE (reloadreg) == mode)
7291 return reloadreg;
7293 regno = REGNO (reloadreg);
7295 if (WORDS_BIG_ENDIAN)
7296 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7297 - (int) hard_regno_nregs[regno][mode];
7299 return gen_rtx_REG (mode, regno);
7302 static const char *const reload_when_needed_name[] =
7304 "RELOAD_FOR_INPUT",
7305 "RELOAD_FOR_OUTPUT",
7306 "RELOAD_FOR_INSN",
7307 "RELOAD_FOR_INPUT_ADDRESS",
7308 "RELOAD_FOR_INPADDR_ADDRESS",
7309 "RELOAD_FOR_OUTPUT_ADDRESS",
7310 "RELOAD_FOR_OUTADDR_ADDRESS",
7311 "RELOAD_FOR_OPERAND_ADDRESS",
7312 "RELOAD_FOR_OPADDR_ADDR",
7313 "RELOAD_OTHER",
7314 "RELOAD_FOR_OTHER_ADDRESS"
7317 /* These functions are used to print the variables set by 'find_reloads' */
7319 DEBUG_FUNCTION void
7320 debug_reload_to_stream (FILE *f)
7322 int r;
7323 const char *prefix;
7325 if (! f)
7326 f = stderr;
7327 for (r = 0; r < n_reloads; r++)
7329 fprintf (f, "Reload %d: ", r);
7331 if (rld[r].in != 0)
7333 fprintf (f, "reload_in (%s) = ",
7334 GET_MODE_NAME (rld[r].inmode));
7335 print_inline_rtx (f, rld[r].in, 24);
7336 fprintf (f, "\n\t");
7339 if (rld[r].out != 0)
7341 fprintf (f, "reload_out (%s) = ",
7342 GET_MODE_NAME (rld[r].outmode));
7343 print_inline_rtx (f, rld[r].out, 24);
7344 fprintf (f, "\n\t");
7347 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7349 fprintf (f, "%s (opnum = %d)",
7350 reload_when_needed_name[(int) rld[r].when_needed],
7351 rld[r].opnum);
7353 if (rld[r].optional)
7354 fprintf (f, ", optional");
7356 if (rld[r].nongroup)
7357 fprintf (f, ", nongroup");
7359 if (rld[r].inc != 0)
7360 fprintf (f, ", inc by %d", rld[r].inc);
7362 if (rld[r].nocombine)
7363 fprintf (f, ", can't combine");
7365 if (rld[r].secondary_p)
7366 fprintf (f, ", secondary_reload_p");
7368 if (rld[r].in_reg != 0)
7370 fprintf (f, "\n\treload_in_reg: ");
7371 print_inline_rtx (f, rld[r].in_reg, 24);
7374 if (rld[r].out_reg != 0)
7376 fprintf (f, "\n\treload_out_reg: ");
7377 print_inline_rtx (f, rld[r].out_reg, 24);
7380 if (rld[r].reg_rtx != 0)
7382 fprintf (f, "\n\treload_reg_rtx: ");
7383 print_inline_rtx (f, rld[r].reg_rtx, 24);
7386 prefix = "\n\t";
7387 if (rld[r].secondary_in_reload != -1)
7389 fprintf (f, "%ssecondary_in_reload = %d",
7390 prefix, rld[r].secondary_in_reload);
7391 prefix = ", ";
7394 if (rld[r].secondary_out_reload != -1)
7395 fprintf (f, "%ssecondary_out_reload = %d\n",
7396 prefix, rld[r].secondary_out_reload);
7398 prefix = "\n\t";
7399 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7401 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7402 insn_data[rld[r].secondary_in_icode].name);
7403 prefix = ", ";
7406 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7407 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7408 insn_data[rld[r].secondary_out_icode].name);
7410 fprintf (f, "\n");
7414 DEBUG_FUNCTION void
7415 debug_reload (void)
7417 debug_reload_to_stream (stderr);