2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / recog.c
blob368783ff570b4aeb41d8cf307e5a81d4ac76a42a
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "toplev.h" /* exact_log2 may be used by targets */
47 #ifndef STACK_PUSH_CODE
48 #ifdef STACK_GROWS_DOWNWARD
49 #define STACK_PUSH_CODE PRE_DEC
50 #else
51 #define STACK_PUSH_CODE PRE_INC
52 #endif
53 #endif
55 #ifndef STACK_POP_CODE
56 #ifdef STACK_GROWS_DOWNWARD
57 #define STACK_POP_CODE POST_INC
58 #else
59 #define STACK_POP_CODE POST_DEC
60 #endif
61 #endif
63 #ifndef HAVE_ATTR_enabled
64 static inline bool
65 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
67 return true;
69 #endif
71 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
72 static void validate_replace_src_1 (rtx *, void *);
73 static rtx split_insn (rtx);
75 /* Nonzero means allow operands to be volatile.
76 This should be 0 if you are generating rtl, such as if you are calling
77 the functions in optabs.c and expmed.c (most of the time).
78 This should be 1 if all valid insns need to be recognized,
79 such as in reginfo.c and final.c and reload.c.
81 init_recog and init_recog_no_volatile are responsible for setting this. */
83 int volatile_ok;
85 struct recog_data recog_data;
87 /* Contains a vector of operand_alternative structures for every operand.
88 Set up by preprocess_constraints. */
89 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
91 /* On return from `constrain_operands', indicate which alternative
92 was satisfied. */
94 int which_alternative;
96 /* Nonzero after end of reload pass.
97 Set to 1 or 0 by toplev.c.
98 Controls the significance of (SUBREG (MEM)). */
100 int reload_completed;
102 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
103 int epilogue_completed;
105 /* Initialize data used by the function `recog'.
106 This must be called once in the compilation of a function
107 before any insn recognition may be done in the function. */
109 void
110 init_recog_no_volatile (void)
112 volatile_ok = 0;
115 void
116 init_recog (void)
118 volatile_ok = 1;
122 /* Check that X is an insn-body for an `asm' with operands
123 and that the operands mentioned in it are legitimate. */
126 check_asm_operands (rtx x)
128 int noperands;
129 rtx *operands;
130 const char **constraints;
131 int i;
133 /* Post-reload, be more strict with things. */
134 if (reload_completed)
136 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
137 extract_insn (make_insn_raw (x));
138 constrain_operands (1);
139 return which_alternative >= 0;
142 noperands = asm_noperands (x);
143 if (noperands < 0)
144 return 0;
145 if (noperands == 0)
146 return 1;
148 operands = XALLOCAVEC (rtx, noperands);
149 constraints = XALLOCAVEC (const char *, noperands);
151 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
153 for (i = 0; i < noperands; i++)
155 const char *c = constraints[i];
156 if (c[0] == '%')
157 c++;
158 if (! asm_operand_ok (operands[i], c, constraints))
159 return 0;
162 return 1;
165 /* Static data for the next two routines. */
167 typedef struct change_t
169 rtx object;
170 int old_code;
171 rtx *loc;
172 rtx old;
173 bool unshare;
174 } change_t;
176 static change_t *changes;
177 static int changes_allocated;
179 static int num_changes = 0;
181 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
182 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
183 the change is simply made.
185 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
186 will be called with the address and mode as parameters. If OBJECT is
187 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
188 the change in place.
190 IN_GROUP is nonzero if this is part of a group of changes that must be
191 performed as a group. In that case, the changes will be stored. The
192 function `apply_change_group' will validate and apply the changes.
194 If IN_GROUP is zero, this is a single change. Try to recognize the insn
195 or validate the memory reference with the change applied. If the result
196 is not valid for the machine, suppress the change and return zero.
197 Otherwise, perform the change and return 1. */
199 static bool
200 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
202 rtx old = *loc;
204 if (old == new_rtx || rtx_equal_p (old, new_rtx))
205 return 1;
207 gcc_assert (in_group != 0 || num_changes == 0);
209 *loc = new_rtx;
211 /* Save the information describing this change. */
212 if (num_changes >= changes_allocated)
214 if (changes_allocated == 0)
215 /* This value allows for repeated substitutions inside complex
216 indexed addresses, or changes in up to 5 insns. */
217 changes_allocated = MAX_RECOG_OPERANDS * 5;
218 else
219 changes_allocated *= 2;
221 changes = XRESIZEVEC (change_t, changes, changes_allocated);
224 changes[num_changes].object = object;
225 changes[num_changes].loc = loc;
226 changes[num_changes].old = old;
227 changes[num_changes].unshare = unshare;
229 if (object && !MEM_P (object))
231 /* Set INSN_CODE to force rerecognition of insn. Save old code in
232 case invalid. */
233 changes[num_changes].old_code = INSN_CODE (object);
234 INSN_CODE (object) = -1;
237 num_changes++;
239 /* If we are making a group of changes, return 1. Otherwise, validate the
240 change group we made. */
242 if (in_group)
243 return 1;
244 else
245 return apply_change_group ();
248 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
249 UNSHARE to false. */
251 bool
252 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
254 return validate_change_1 (object, loc, new_rtx, in_group, false);
257 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
258 UNSHARE to true. */
260 bool
261 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
263 return validate_change_1 (object, loc, new_rtx, in_group, true);
267 /* Keep X canonicalized if some changes have made it non-canonical; only
268 modifies the operands of X, not (for example) its code. Simplifications
269 are not the job of this routine.
271 Return true if anything was changed. */
272 bool
273 canonicalize_change_group (rtx insn, rtx x)
275 if (COMMUTATIVE_P (x)
276 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
278 /* Oops, the caller has made X no longer canonical.
279 Let's redo the changes in the correct order. */
280 rtx tem = XEXP (x, 0);
281 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
282 validate_change (insn, &XEXP (x, 1), tem, 1);
283 return true;
285 else
286 return false;
290 /* This subroutine of apply_change_group verifies whether the changes to INSN
291 were valid; i.e. whether INSN can still be recognized. */
294 insn_invalid_p (rtx insn)
296 rtx pat = PATTERN (insn);
297 int num_clobbers = 0;
298 /* If we are before reload and the pattern is a SET, see if we can add
299 clobbers. */
300 int icode = recog (pat, insn,
301 (GET_CODE (pat) == SET
302 && ! reload_completed && ! reload_in_progress)
303 ? &num_clobbers : 0);
304 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
307 /* If this is an asm and the operand aren't legal, then fail. Likewise if
308 this is not an asm and the insn wasn't recognized. */
309 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
310 || (!is_asm && icode < 0))
311 return 1;
313 /* If we have to add CLOBBERs, fail if we have to add ones that reference
314 hard registers since our callers can't know if they are live or not.
315 Otherwise, add them. */
316 if (num_clobbers > 0)
318 rtx newpat;
320 if (added_clobbers_hard_reg_p (icode))
321 return 1;
323 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
324 XVECEXP (newpat, 0, 0) = pat;
325 add_clobbers (newpat, icode);
326 PATTERN (insn) = pat = newpat;
329 /* After reload, verify that all constraints are satisfied. */
330 if (reload_completed)
332 extract_insn (insn);
334 if (! constrain_operands (1))
335 return 1;
338 INSN_CODE (insn) = icode;
339 return 0;
342 /* Return number of changes made and not validated yet. */
344 num_changes_pending (void)
346 return num_changes;
349 /* Tentatively apply the changes numbered NUM and up.
350 Return 1 if all changes are valid, zero otherwise. */
353 verify_changes (int num)
355 int i;
356 rtx last_validated = NULL_RTX;
358 /* The changes have been applied and all INSN_CODEs have been reset to force
359 rerecognition.
361 The changes are valid if we aren't given an object, or if we are
362 given a MEM and it still is a valid address, or if this is in insn
363 and it is recognized. In the latter case, if reload has completed,
364 we also require that the operands meet the constraints for
365 the insn. */
367 for (i = num; i < num_changes; i++)
369 rtx object = changes[i].object;
371 /* If there is no object to test or if it is the same as the one we
372 already tested, ignore it. */
373 if (object == 0 || object == last_validated)
374 continue;
376 if (MEM_P (object))
378 if (! memory_address_addr_space_p (GET_MODE (object),
379 XEXP (object, 0),
380 MEM_ADDR_SPACE (object)))
381 break;
383 else if (REG_P (changes[i].old)
384 && asm_noperands (PATTERN (object)) > 0
385 && REG_EXPR (changes[i].old) != NULL_TREE
386 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
387 && DECL_REGISTER (REG_EXPR (changes[i].old)))
389 /* Don't allow changes of hard register operands to inline
390 assemblies if they have been defined as register asm ("x"). */
391 break;
393 else if (DEBUG_INSN_P (object))
394 continue;
395 else if (insn_invalid_p (object))
397 rtx pat = PATTERN (object);
399 /* Perhaps we couldn't recognize the insn because there were
400 extra CLOBBERs at the end. If so, try to re-recognize
401 without the last CLOBBER (later iterations will cause each of
402 them to be eliminated, in turn). But don't do this if we
403 have an ASM_OPERAND. */
404 if (GET_CODE (pat) == PARALLEL
405 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
406 && asm_noperands (PATTERN (object)) < 0)
408 rtx newpat;
410 if (XVECLEN (pat, 0) == 2)
411 newpat = XVECEXP (pat, 0, 0);
412 else
414 int j;
416 newpat
417 = gen_rtx_PARALLEL (VOIDmode,
418 rtvec_alloc (XVECLEN (pat, 0) - 1));
419 for (j = 0; j < XVECLEN (newpat, 0); j++)
420 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
423 /* Add a new change to this group to replace the pattern
424 with this new pattern. Then consider this change
425 as having succeeded. The change we added will
426 cause the entire call to fail if things remain invalid.
428 Note that this can lose if a later change than the one
429 we are processing specified &XVECEXP (PATTERN (object), 0, X)
430 but this shouldn't occur. */
432 validate_change (object, &PATTERN (object), newpat, 1);
433 continue;
435 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
436 || GET_CODE (pat) == VAR_LOCATION)
437 /* If this insn is a CLOBBER or USE, it is always valid, but is
438 never recognized. */
439 continue;
440 else
441 break;
443 last_validated = object;
446 return (i == num_changes);
449 /* A group of changes has previously been issued with validate_change
450 and verified with verify_changes. Call df_insn_rescan for each of
451 the insn changed and clear num_changes. */
453 void
454 confirm_change_group (void)
456 int i;
457 rtx last_object = NULL;
459 for (i = 0; i < num_changes; i++)
461 rtx object = changes[i].object;
463 if (changes[i].unshare)
464 *changes[i].loc = copy_rtx (*changes[i].loc);
466 /* Avoid unnecessary rescanning when multiple changes to same instruction
467 are made. */
468 if (object)
470 if (object != last_object && last_object && INSN_P (last_object))
471 df_insn_rescan (last_object);
472 last_object = object;
476 if (last_object && INSN_P (last_object))
477 df_insn_rescan (last_object);
478 num_changes = 0;
481 /* Apply a group of changes previously issued with `validate_change'.
482 If all changes are valid, call confirm_change_group and return 1,
483 otherwise, call cancel_changes and return 0. */
486 apply_change_group (void)
488 if (verify_changes (0))
490 confirm_change_group ();
491 return 1;
493 else
495 cancel_changes (0);
496 return 0;
501 /* Return the number of changes so far in the current group. */
504 num_validated_changes (void)
506 return num_changes;
509 /* Retract the changes numbered NUM and up. */
511 void
512 cancel_changes (int num)
514 int i;
516 /* Back out all the changes. Do this in the opposite order in which
517 they were made. */
518 for (i = num_changes - 1; i >= num; i--)
520 *changes[i].loc = changes[i].old;
521 if (changes[i].object && !MEM_P (changes[i].object))
522 INSN_CODE (changes[i].object) = changes[i].old_code;
524 num_changes = num;
527 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
528 rtx. */
530 static void
531 simplify_while_replacing (rtx *loc, rtx to, rtx object,
532 enum machine_mode op0_mode)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx new_rtx;
538 if (SWAPPABLE_OPERANDS_P (x)
539 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
541 validate_unshare_change (object, loc,
542 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
543 : swap_condition (code),
544 GET_MODE (x), XEXP (x, 1),
545 XEXP (x, 0)), 1);
546 x = *loc;
547 code = GET_CODE (x);
550 switch (code)
552 case PLUS:
553 /* If we have a PLUS whose second operand is now a CONST_INT, use
554 simplify_gen_binary to try to simplify it.
555 ??? We may want later to remove this, once simplification is
556 separated from this function. */
557 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
558 validate_change (object, loc,
559 simplify_gen_binary
560 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
561 break;
562 case MINUS:
563 if (CONST_INT_P (XEXP (x, 1))
564 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
565 validate_change (object, loc,
566 simplify_gen_binary
567 (PLUS, GET_MODE (x), XEXP (x, 0),
568 simplify_gen_unary (NEG,
569 GET_MODE (x), XEXP (x, 1),
570 GET_MODE (x))), 1);
571 break;
572 case ZERO_EXTEND:
573 case SIGN_EXTEND:
574 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
576 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
577 op0_mode);
578 /* If any of the above failed, substitute in something that
579 we know won't be recognized. */
580 if (!new_rtx)
581 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
582 validate_change (object, loc, new_rtx, 1);
584 break;
585 case SUBREG:
586 /* All subregs possible to simplify should be simplified. */
587 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
588 SUBREG_BYTE (x));
590 /* Subregs of VOIDmode operands are incorrect. */
591 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
592 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
593 if (new_rtx)
594 validate_change (object, loc, new_rtx, 1);
595 break;
596 case ZERO_EXTRACT:
597 case SIGN_EXTRACT:
598 /* If we are replacing a register with memory, try to change the memory
599 to be the mode required for memory in extract operations (this isn't
600 likely to be an insertion operation; if it was, nothing bad will
601 happen, we might just fail in some cases). */
603 if (MEM_P (XEXP (x, 0))
604 && CONST_INT_P (XEXP (x, 1))
605 && CONST_INT_P (XEXP (x, 2))
606 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
607 && !MEM_VOLATILE_P (XEXP (x, 0)))
609 enum machine_mode wanted_mode = VOIDmode;
610 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
611 int pos = INTVAL (XEXP (x, 2));
613 if (GET_CODE (x) == ZERO_EXTRACT)
615 enum machine_mode new_mode
616 = mode_for_extraction (EP_extzv, 1);
617 if (new_mode != MAX_MACHINE_MODE)
618 wanted_mode = new_mode;
620 else if (GET_CODE (x) == SIGN_EXTRACT)
622 enum machine_mode new_mode
623 = mode_for_extraction (EP_extv, 1);
624 if (new_mode != MAX_MACHINE_MODE)
625 wanted_mode = new_mode;
628 /* If we have a narrower mode, we can do something. */
629 if (wanted_mode != VOIDmode
630 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
632 int offset = pos / BITS_PER_UNIT;
633 rtx newmem;
635 /* If the bytes and bits are counted differently, we
636 must adjust the offset. */
637 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
638 offset =
639 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
640 offset);
642 pos %= GET_MODE_BITSIZE (wanted_mode);
644 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
646 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
647 validate_change (object, &XEXP (x, 0), newmem, 1);
651 break;
653 default:
654 break;
658 /* Replace every occurrence of FROM in X with TO. Mark each change with
659 validate_change passing OBJECT. */
661 static void
662 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
663 bool simplify)
665 int i, j;
666 const char *fmt;
667 rtx x = *loc;
668 enum rtx_code code;
669 enum machine_mode op0_mode = VOIDmode;
670 int prev_changes = num_changes;
672 if (!x)
673 return;
675 code = GET_CODE (x);
676 fmt = GET_RTX_FORMAT (code);
677 if (fmt[0] == 'e')
678 op0_mode = GET_MODE (XEXP (x, 0));
680 /* X matches FROM if it is the same rtx or they are both referring to the
681 same register in the same mode. Avoid calling rtx_equal_p unless the
682 operands look similar. */
684 if (x == from
685 || (REG_P (x) && REG_P (from)
686 && GET_MODE (x) == GET_MODE (from)
687 && REGNO (x) == REGNO (from))
688 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
689 && rtx_equal_p (x, from)))
691 validate_unshare_change (object, loc, to, 1);
692 return;
695 /* Call ourself recursively to perform the replacements.
696 We must not replace inside already replaced expression, otherwise we
697 get infinite recursion for replacements like (reg X)->(subreg (reg X))
698 done by regmove, so we must special case shared ASM_OPERANDS. */
700 if (GET_CODE (x) == PARALLEL)
702 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
704 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
705 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
707 /* Verify that operands are really shared. */
708 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
709 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
710 (x, 0, j))));
711 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
712 from, to, object, simplify);
714 else
715 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
716 simplify);
719 else
720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
722 if (fmt[i] == 'e')
723 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
724 else if (fmt[i] == 'E')
725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
726 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
727 simplify);
730 /* If we didn't substitute, there is nothing more to do. */
731 if (num_changes == prev_changes)
732 return;
734 /* Allow substituted expression to have different mode. This is used by
735 regmove to change mode of pseudo register. */
736 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
737 op0_mode = GET_MODE (XEXP (x, 0));
739 /* Do changes needed to keep rtx consistent. Don't do any other
740 simplifications, as it is not our job. */
741 if (simplify)
742 simplify_while_replacing (loc, to, object, op0_mode);
745 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
746 with TO. After all changes have been made, validate by seeing
747 if INSN is still valid. */
750 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
752 validate_replace_rtx_1 (loc, from, to, insn, true);
753 return apply_change_group ();
756 /* Try replacing every occurrence of FROM in INSN with TO. After all
757 changes have been made, validate by seeing if INSN is still valid. */
760 validate_replace_rtx (rtx from, rtx to, rtx insn)
762 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
763 return apply_change_group ();
766 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
767 is a part of INSN. After all changes have been made, validate by seeing if
768 INSN is still valid.
769 validate_replace_rtx (from, to, insn) is equivalent to
770 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
773 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
775 validate_replace_rtx_1 (where, from, to, insn, true);
776 return apply_change_group ();
779 /* Same as above, but do not simplify rtx afterwards. */
781 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
782 rtx insn)
784 validate_replace_rtx_1 (where, from, to, insn, false);
785 return apply_change_group ();
789 /* Try replacing every occurrence of FROM in INSN with TO. This also
790 will replace in REG_EQUAL and REG_EQUIV notes. */
792 void
793 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
795 rtx note;
796 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
797 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
798 if (REG_NOTE_KIND (note) == REG_EQUAL
799 || REG_NOTE_KIND (note) == REG_EQUIV)
800 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
803 /* Function called by note_uses to replace used subexpressions. */
804 struct validate_replace_src_data
806 rtx from; /* Old RTX */
807 rtx to; /* New RTX */
808 rtx insn; /* Insn in which substitution is occurring. */
811 static void
812 validate_replace_src_1 (rtx *x, void *data)
814 struct validate_replace_src_data *d
815 = (struct validate_replace_src_data *) data;
817 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
820 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
821 SET_DESTs. */
823 void
824 validate_replace_src_group (rtx from, rtx to, rtx insn)
826 struct validate_replace_src_data d;
828 d.from = from;
829 d.to = to;
830 d.insn = insn;
831 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
834 /* Try simplify INSN.
835 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
836 pattern and return true if something was simplified. */
838 bool
839 validate_simplify_insn (rtx insn)
841 int i;
842 rtx pat = NULL;
843 rtx newpat = NULL;
845 pat = PATTERN (insn);
847 if (GET_CODE (pat) == SET)
849 newpat = simplify_rtx (SET_SRC (pat));
850 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
851 validate_change (insn, &SET_SRC (pat), newpat, 1);
852 newpat = simplify_rtx (SET_DEST (pat));
853 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
854 validate_change (insn, &SET_DEST (pat), newpat, 1);
856 else if (GET_CODE (pat) == PARALLEL)
857 for (i = 0; i < XVECLEN (pat, 0); i++)
859 rtx s = XVECEXP (pat, 0, i);
861 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
863 newpat = simplify_rtx (SET_SRC (s));
864 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
865 validate_change (insn, &SET_SRC (s), newpat, 1);
866 newpat = simplify_rtx (SET_DEST (s));
867 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
868 validate_change (insn, &SET_DEST (s), newpat, 1);
871 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
874 #ifdef HAVE_cc0
875 /* Return 1 if the insn using CC0 set by INSN does not contain
876 any ordered tests applied to the condition codes.
877 EQ and NE tests do not count. */
880 next_insn_tests_no_inequality (rtx insn)
882 rtx next = next_cc0_user (insn);
884 /* If there is no next insn, we have to take the conservative choice. */
885 if (next == 0)
886 return 0;
888 return (INSN_P (next)
889 && ! inequality_comparisons_p (PATTERN (next)));
891 #endif
893 /* Return 1 if OP is a valid general operand for machine mode MODE.
894 This is either a register reference, a memory reference,
895 or a constant. In the case of a memory reference, the address
896 is checked for general validity for the target machine.
898 Register and memory references must have mode MODE in order to be valid,
899 but some constants have no machine mode and are valid for any mode.
901 If MODE is VOIDmode, OP is checked for validity for whatever mode
902 it has.
904 The main use of this function is as a predicate in match_operand
905 expressions in the machine description.
907 For an explanation of this function's behavior for registers of
908 class NO_REGS, see the comment for `register_operand'. */
911 general_operand (rtx op, enum machine_mode mode)
913 enum rtx_code code = GET_CODE (op);
915 if (mode == VOIDmode)
916 mode = GET_MODE (op);
918 /* Don't accept CONST_INT or anything similar
919 if the caller wants something floating. */
920 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
921 && GET_MODE_CLASS (mode) != MODE_INT
922 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
923 return 0;
925 if (CONST_INT_P (op)
926 && mode != VOIDmode
927 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
928 return 0;
930 if (CONSTANT_P (op))
931 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
932 || mode == VOIDmode)
933 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
934 && LEGITIMATE_CONSTANT_P (op));
936 /* Except for certain constants with VOIDmode, already checked for,
937 OP's mode must match MODE if MODE specifies a mode. */
939 if (GET_MODE (op) != mode)
940 return 0;
942 if (code == SUBREG)
944 rtx sub = SUBREG_REG (op);
946 #ifdef INSN_SCHEDULING
947 /* On machines that have insn scheduling, we want all memory
948 reference to be explicit, so outlaw paradoxical SUBREGs.
949 However, we must allow them after reload so that they can
950 get cleaned up by cleanup_subreg_operands. */
951 if (!reload_completed && MEM_P (sub)
952 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
953 return 0;
954 #endif
955 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
956 may result in incorrect reference. We should simplify all valid
957 subregs of MEM anyway. But allow this after reload because we
958 might be called from cleanup_subreg_operands.
960 ??? This is a kludge. */
961 if (!reload_completed && SUBREG_BYTE (op) != 0
962 && MEM_P (sub))
963 return 0;
965 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
966 create such rtl, and we must reject it. */
967 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
968 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
969 return 0;
971 op = sub;
972 code = GET_CODE (op);
975 if (code == REG)
976 /* A register whose class is NO_REGS is not a general operand. */
977 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
978 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
980 if (code == MEM)
982 rtx y = XEXP (op, 0);
984 if (! volatile_ok && MEM_VOLATILE_P (op))
985 return 0;
987 /* Use the mem's mode, since it will be reloaded thus. */
988 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
989 return 1;
992 return 0;
995 /* Return 1 if OP is a valid memory address for a memory reference
996 of mode MODE.
998 The main use of this function is as a predicate in match_operand
999 expressions in the machine description. */
1002 address_operand (rtx op, enum machine_mode mode)
1004 return memory_address_p (mode, op);
1007 /* Return 1 if OP is a register reference of mode MODE.
1008 If MODE is VOIDmode, accept a register in any mode.
1010 The main use of this function is as a predicate in match_operand
1011 expressions in the machine description.
1013 As a special exception, registers whose class is NO_REGS are
1014 not accepted by `register_operand'. The reason for this change
1015 is to allow the representation of special architecture artifacts
1016 (such as a condition code register) without extending the rtl
1017 definitions. Since registers of class NO_REGS cannot be used
1018 as registers in any case where register classes are examined,
1019 it is most consistent to keep this function from accepting them. */
1022 register_operand (rtx op, enum machine_mode mode)
1024 if (GET_MODE (op) != mode && mode != VOIDmode)
1025 return 0;
1027 if (GET_CODE (op) == SUBREG)
1029 rtx sub = SUBREG_REG (op);
1031 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1032 because it is guaranteed to be reloaded into one.
1033 Just make sure the MEM is valid in itself.
1034 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1035 but currently it does result from (SUBREG (REG)...) where the
1036 reg went on the stack.) */
1037 if (! reload_completed && MEM_P (sub))
1038 return general_operand (op, mode);
1040 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 if (REG_P (sub)
1042 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1043 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1044 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1045 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1046 return 0;
1047 #endif
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1053 return 0;
1055 op = sub;
1058 /* We don't consider registers whose class is NO_REGS
1059 to be a register operand. */
1060 return (REG_P (op)
1061 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1062 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1065 /* Return 1 for a register in Pmode; ignore the tested mode. */
1068 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1070 return register_operand (op, Pmode);
1073 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1074 or a hard register. */
1077 scratch_operand (rtx op, enum machine_mode mode)
1079 if (GET_MODE (op) != mode && mode != VOIDmode)
1080 return 0;
1082 return (GET_CODE (op) == SCRATCH
1083 || (REG_P (op)
1084 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1087 /* Return 1 if OP is a valid immediate operand for mode MODE.
1089 The main use of this function is as a predicate in match_operand
1090 expressions in the machine description. */
1093 immediate_operand (rtx op, enum machine_mode mode)
1095 /* Don't accept CONST_INT or anything similar
1096 if the caller wants something floating. */
1097 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1098 && GET_MODE_CLASS (mode) != MODE_INT
1099 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1100 return 0;
1102 if (CONST_INT_P (op)
1103 && mode != VOIDmode
1104 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1105 return 0;
1107 return (CONSTANT_P (op)
1108 && (GET_MODE (op) == mode || mode == VOIDmode
1109 || GET_MODE (op) == VOIDmode)
1110 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1111 && LEGITIMATE_CONSTANT_P (op));
1114 /* Returns 1 if OP is an operand that is a CONST_INT. */
1117 const_int_operand (rtx op, enum machine_mode mode)
1119 if (!CONST_INT_P (op))
1120 return 0;
1122 if (mode != VOIDmode
1123 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1124 return 0;
1126 return 1;
1129 /* Returns 1 if OP is an operand that is a constant integer or constant
1130 floating-point number. */
1133 const_double_operand (rtx op, enum machine_mode mode)
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1142 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1143 && (mode == VOIDmode || GET_MODE (op) == mode
1144 || GET_MODE (op) == VOIDmode));
1147 /* Return 1 if OP is a general operand that is not an immediate operand. */
1150 nonimmediate_operand (rtx op, enum machine_mode mode)
1152 return (general_operand (op, mode) && ! CONSTANT_P (op));
1155 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1158 nonmemory_operand (rtx op, enum machine_mode mode)
1160 if (CONSTANT_P (op))
1162 /* Don't accept CONST_INT or anything similar
1163 if the caller wants something floating. */
1164 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1165 && GET_MODE_CLASS (mode) != MODE_INT
1166 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1167 return 0;
1169 if (CONST_INT_P (op)
1170 && mode != VOIDmode
1171 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1172 return 0;
1174 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1175 || mode == VOIDmode)
1176 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1177 && LEGITIMATE_CONSTANT_P (op));
1180 if (GET_MODE (op) != mode && mode != VOIDmode)
1181 return 0;
1183 if (GET_CODE (op) == SUBREG)
1185 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1186 because it is guaranteed to be reloaded into one.
1187 Just make sure the MEM is valid in itself.
1188 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1189 but currently it does result from (SUBREG (REG)...) where the
1190 reg went on the stack.) */
1191 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1192 return general_operand (op, mode);
1193 op = SUBREG_REG (op);
1196 /* We don't consider registers whose class is NO_REGS
1197 to be a register operand. */
1198 return (REG_P (op)
1199 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1200 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1203 /* Return 1 if OP is a valid operand that stands for pushing a
1204 value of mode MODE onto the stack.
1206 The main use of this function is as a predicate in match_operand
1207 expressions in the machine description. */
1210 push_operand (rtx op, enum machine_mode mode)
1212 unsigned int rounded_size = GET_MODE_SIZE (mode);
1214 #ifdef PUSH_ROUNDING
1215 rounded_size = PUSH_ROUNDING (rounded_size);
1216 #endif
1218 if (!MEM_P (op))
1219 return 0;
1221 if (mode != VOIDmode && GET_MODE (op) != mode)
1222 return 0;
1224 op = XEXP (op, 0);
1226 if (rounded_size == GET_MODE_SIZE (mode))
1228 if (GET_CODE (op) != STACK_PUSH_CODE)
1229 return 0;
1231 else
1233 if (GET_CODE (op) != PRE_MODIFY
1234 || GET_CODE (XEXP (op, 1)) != PLUS
1235 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1236 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1237 #ifdef STACK_GROWS_DOWNWARD
1238 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1239 #else
1240 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1241 #endif
1243 return 0;
1246 return XEXP (op, 0) == stack_pointer_rtx;
1249 /* Return 1 if OP is a valid operand that stands for popping a
1250 value of mode MODE off the stack.
1252 The main use of this function is as a predicate in match_operand
1253 expressions in the machine description. */
1256 pop_operand (rtx op, enum machine_mode mode)
1258 if (!MEM_P (op))
1259 return 0;
1261 if (mode != VOIDmode && GET_MODE (op) != mode)
1262 return 0;
1264 op = XEXP (op, 0);
1266 if (GET_CODE (op) != STACK_POP_CODE)
1267 return 0;
1269 return XEXP (op, 0) == stack_pointer_rtx;
1272 /* Return 1 if ADDR is a valid memory address
1273 for mode MODE in address space AS. */
1276 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1277 rtx addr, addr_space_t as)
1279 #ifdef GO_IF_LEGITIMATE_ADDRESS
1280 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1281 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1282 return 0;
1284 win:
1285 return 1;
1286 #else
1287 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1288 #endif
1291 /* Return 1 if OP is a valid memory reference with mode MODE,
1292 including a valid address.
1294 The main use of this function is as a predicate in match_operand
1295 expressions in the machine description. */
1298 memory_operand (rtx op, enum machine_mode mode)
1300 rtx inner;
1302 if (! reload_completed)
1303 /* Note that no SUBREG is a memory operand before end of reload pass,
1304 because (SUBREG (MEM...)) forces reloading into a register. */
1305 return MEM_P (op) && general_operand (op, mode);
1307 if (mode != VOIDmode && GET_MODE (op) != mode)
1308 return 0;
1310 inner = op;
1311 if (GET_CODE (inner) == SUBREG)
1312 inner = SUBREG_REG (inner);
1314 return (MEM_P (inner) && general_operand (op, mode));
1317 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1318 that is, a memory reference whose address is a general_operand. */
1321 indirect_operand (rtx op, enum machine_mode mode)
1323 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1324 if (! reload_completed
1325 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1327 int offset = SUBREG_BYTE (op);
1328 rtx inner = SUBREG_REG (op);
1330 if (mode != VOIDmode && GET_MODE (op) != mode)
1331 return 0;
1333 /* The only way that we can have a general_operand as the resulting
1334 address is if OFFSET is zero and the address already is an operand
1335 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1336 operand. */
1338 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1339 || (GET_CODE (XEXP (inner, 0)) == PLUS
1340 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1341 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1342 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1345 return (MEM_P (op)
1346 && memory_operand (op, mode)
1347 && general_operand (XEXP (op, 0), Pmode));
1350 /* Return 1 if this is an ordered comparison operator (not including
1351 ORDERED and UNORDERED). */
1354 ordered_comparison_operator (rtx op, enum machine_mode mode)
1356 if (mode != VOIDmode && GET_MODE (op) != mode)
1357 return false;
1358 switch (GET_CODE (op))
1360 case EQ:
1361 case NE:
1362 case LT:
1363 case LTU:
1364 case LE:
1365 case LEU:
1366 case GT:
1367 case GTU:
1368 case GE:
1369 case GEU:
1370 return true;
1371 default:
1372 return false;
1376 /* Return 1 if this is a comparison operator. This allows the use of
1377 MATCH_OPERATOR to recognize all the branch insns. */
1380 comparison_operator (rtx op, enum machine_mode mode)
1382 return ((mode == VOIDmode || GET_MODE (op) == mode)
1383 && COMPARISON_P (op));
1386 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1389 extract_asm_operands (rtx body)
1391 rtx tmp;
1392 switch (GET_CODE (body))
1394 case ASM_OPERANDS:
1395 return body;
1397 case SET:
1398 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1399 tmp = SET_SRC (body);
1400 if (GET_CODE (tmp) == ASM_OPERANDS)
1401 return tmp;
1402 break;
1404 case PARALLEL:
1405 tmp = XVECEXP (body, 0, 0);
1406 if (GET_CODE (tmp) == ASM_OPERANDS)
1407 return tmp;
1408 if (GET_CODE (tmp) == SET)
1410 tmp = SET_SRC (tmp);
1411 if (GET_CODE (tmp) == ASM_OPERANDS)
1412 return tmp;
1414 break;
1416 default:
1417 break;
1419 return NULL;
1422 /* If BODY is an insn body that uses ASM_OPERANDS,
1423 return the number of operands (both input and output) in the insn.
1424 Otherwise return -1. */
1427 asm_noperands (const_rtx body)
1429 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1430 int n_sets = 0;
1432 if (asm_op == NULL)
1433 return -1;
1435 if (GET_CODE (body) == SET)
1436 n_sets = 1;
1437 else if (GET_CODE (body) == PARALLEL)
1439 int i;
1440 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1442 /* Multiple output operands, or 1 output plus some clobbers:
1443 body is
1444 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1445 /* Count backwards through CLOBBERs to determine number of SETs. */
1446 for (i = XVECLEN (body, 0); i > 0; i--)
1448 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1449 break;
1450 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1451 return -1;
1454 /* N_SETS is now number of output operands. */
1455 n_sets = i;
1457 /* Verify that all the SETs we have
1458 came from a single original asm_operands insn
1459 (so that invalid combinations are blocked). */
1460 for (i = 0; i < n_sets; i++)
1462 rtx elt = XVECEXP (body, 0, i);
1463 if (GET_CODE (elt) != SET)
1464 return -1;
1465 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1466 return -1;
1467 /* If these ASM_OPERANDS rtx's came from different original insns
1468 then they aren't allowed together. */
1469 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1470 != ASM_OPERANDS_INPUT_VEC (asm_op))
1471 return -1;
1474 else
1476 /* 0 outputs, but some clobbers:
1477 body is [(asm_operands ...) (clobber (reg ...))...]. */
1478 /* Make sure all the other parallel things really are clobbers. */
1479 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1480 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1481 return -1;
1485 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1486 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1489 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1490 copy its operands (both input and output) into the vector OPERANDS,
1491 the locations of the operands within the insn into the vector OPERAND_LOCS,
1492 and the constraints for the operands into CONSTRAINTS.
1493 Write the modes of the operands into MODES.
1494 Return the assembler-template.
1496 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1497 we don't store that info. */
1499 const char *
1500 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1501 const char **constraints, enum machine_mode *modes,
1502 location_t *loc)
1504 int nbase = 0, n, i;
1505 rtx asmop;
1507 switch (GET_CODE (body))
1509 case ASM_OPERANDS:
1510 /* Zero output asm: BODY is (asm_operands ...). */
1511 asmop = body;
1512 break;
1514 case SET:
1515 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1516 asmop = SET_SRC (body);
1518 /* The output is in the SET.
1519 Its constraint is in the ASM_OPERANDS itself. */
1520 if (operands)
1521 operands[0] = SET_DEST (body);
1522 if (operand_locs)
1523 operand_locs[0] = &SET_DEST (body);
1524 if (constraints)
1525 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1526 if (modes)
1527 modes[0] = GET_MODE (SET_DEST (body));
1528 nbase = 1;
1529 break;
1531 case PARALLEL:
1533 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1535 asmop = XVECEXP (body, 0, 0);
1536 if (GET_CODE (asmop) == SET)
1538 asmop = SET_SRC (asmop);
1540 /* At least one output, plus some CLOBBERs. The outputs are in
1541 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1542 for (i = 0; i < nparallel; i++)
1544 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1545 break; /* Past last SET */
1546 if (operands)
1547 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1548 if (operand_locs)
1549 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1550 if (constraints)
1551 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1552 if (modes)
1553 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1555 nbase = i;
1557 break;
1560 default:
1561 gcc_unreachable ();
1564 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1565 for (i = 0; i < n; i++)
1567 if (operand_locs)
1568 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1569 if (operands)
1570 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1571 if (constraints)
1572 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1573 if (modes)
1574 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1576 nbase += n;
1578 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1579 for (i = 0; i < n; i++)
1581 if (operand_locs)
1582 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1583 if (operands)
1584 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1585 if (constraints)
1586 constraints[nbase + i] = "";
1587 if (modes)
1588 modes[nbase + i] = Pmode;
1591 if (loc)
1592 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1594 return ASM_OPERANDS_TEMPLATE (asmop);
1597 /* Check if an asm_operand matches its constraints.
1598 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1601 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1603 int result = 0;
1604 #ifdef AUTO_INC_DEC
1605 bool incdec_ok = false;
1606 #endif
1608 /* Use constrain_operands after reload. */
1609 gcc_assert (!reload_completed);
1611 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1612 many alternatives as required to match the other operands. */
1613 if (*constraint == '\0')
1614 result = 1;
1616 while (*constraint)
1618 char c = *constraint;
1619 int len;
1620 switch (c)
1622 case ',':
1623 constraint++;
1624 continue;
1625 case '=':
1626 case '+':
1627 case '*':
1628 case '%':
1629 case '!':
1630 case '#':
1631 case '&':
1632 case '?':
1633 break;
1635 case '0': case '1': case '2': case '3': case '4':
1636 case '5': case '6': case '7': case '8': case '9':
1637 /* If caller provided constraints pointer, look up
1638 the maching constraint. Otherwise, our caller should have
1639 given us the proper matching constraint, but we can't
1640 actually fail the check if they didn't. Indicate that
1641 results are inconclusive. */
1642 if (constraints)
1644 char *end;
1645 unsigned long match;
1647 match = strtoul (constraint, &end, 10);
1648 if (!result)
1649 result = asm_operand_ok (op, constraints[match], NULL);
1650 constraint = (const char *) end;
1652 else
1655 constraint++;
1656 while (ISDIGIT (*constraint));
1657 if (! result)
1658 result = -1;
1660 continue;
1662 case 'p':
1663 if (address_operand (op, VOIDmode))
1664 result = 1;
1665 break;
1667 case TARGET_MEM_CONSTRAINT:
1668 case 'V': /* non-offsettable */
1669 if (memory_operand (op, VOIDmode))
1670 result = 1;
1671 break;
1673 case 'o': /* offsettable */
1674 if (offsettable_nonstrict_memref_p (op))
1675 result = 1;
1676 break;
1678 case '<':
1679 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1680 excepting those that expand_call created. Further, on some
1681 machines which do not have generalized auto inc/dec, an inc/dec
1682 is not a memory_operand.
1684 Match any memory and hope things are resolved after reload. */
1686 if (MEM_P (op)
1687 && (1
1688 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1689 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1690 result = 1;
1691 #ifdef AUTO_INC_DEC
1692 incdec_ok = true;
1693 #endif
1694 break;
1696 case '>':
1697 if (MEM_P (op)
1698 && (1
1699 || GET_CODE (XEXP (op, 0)) == PRE_INC
1700 || GET_CODE (XEXP (op, 0)) == POST_INC))
1701 result = 1;
1702 #ifdef AUTO_INC_DEC
1703 incdec_ok = true;
1704 #endif
1705 break;
1707 case 'E':
1708 case 'F':
1709 if (GET_CODE (op) == CONST_DOUBLE
1710 || (GET_CODE (op) == CONST_VECTOR
1711 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1712 result = 1;
1713 break;
1715 case 'G':
1716 if (GET_CODE (op) == CONST_DOUBLE
1717 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1718 result = 1;
1719 break;
1720 case 'H':
1721 if (GET_CODE (op) == CONST_DOUBLE
1722 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1723 result = 1;
1724 break;
1726 case 's':
1727 if (CONST_INT_P (op)
1728 || (GET_CODE (op) == CONST_DOUBLE
1729 && GET_MODE (op) == VOIDmode))
1730 break;
1731 /* Fall through. */
1733 case 'i':
1734 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1735 result = 1;
1736 break;
1738 case 'n':
1739 if (CONST_INT_P (op)
1740 || (GET_CODE (op) == CONST_DOUBLE
1741 && GET_MODE (op) == VOIDmode))
1742 result = 1;
1743 break;
1745 case 'I':
1746 if (CONST_INT_P (op)
1747 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1748 result = 1;
1749 break;
1750 case 'J':
1751 if (CONST_INT_P (op)
1752 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1753 result = 1;
1754 break;
1755 case 'K':
1756 if (CONST_INT_P (op)
1757 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1758 result = 1;
1759 break;
1760 case 'L':
1761 if (CONST_INT_P (op)
1762 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1763 result = 1;
1764 break;
1765 case 'M':
1766 if (CONST_INT_P (op)
1767 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1768 result = 1;
1769 break;
1770 case 'N':
1771 if (CONST_INT_P (op)
1772 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1773 result = 1;
1774 break;
1775 case 'O':
1776 if (CONST_INT_P (op)
1777 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1778 result = 1;
1779 break;
1780 case 'P':
1781 if (CONST_INT_P (op)
1782 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1783 result = 1;
1784 break;
1786 case 'X':
1787 result = 1;
1788 break;
1790 case 'g':
1791 if (general_operand (op, VOIDmode))
1792 result = 1;
1793 break;
1795 default:
1796 /* For all other letters, we first check for a register class,
1797 otherwise it is an EXTRA_CONSTRAINT. */
1798 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1800 case 'r':
1801 if (GET_MODE (op) == BLKmode)
1802 break;
1803 if (register_operand (op, VOIDmode))
1804 result = 1;
1806 #ifdef EXTRA_CONSTRAINT_STR
1807 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1808 /* Every memory operand can be reloaded to fit. */
1809 result = result || memory_operand (op, VOIDmode);
1810 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1811 /* Every address operand can be reloaded to fit. */
1812 result = result || address_operand (op, VOIDmode);
1813 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1814 result = 1;
1815 #endif
1816 break;
1818 len = CONSTRAINT_LEN (c, constraint);
1820 constraint++;
1821 while (--len && *constraint);
1822 if (len)
1823 return 0;
1826 #ifdef AUTO_INC_DEC
1827 /* For operands without < or > constraints reject side-effects. */
1828 if (!incdec_ok && result && MEM_P (op))
1829 switch (GET_CODE (XEXP (op, 0)))
1831 case PRE_INC:
1832 case POST_INC:
1833 case PRE_DEC:
1834 case POST_DEC:
1835 case PRE_MODIFY:
1836 case POST_MODIFY:
1837 return 0;
1838 default:
1839 break;
1841 #endif
1843 return result;
1846 /* Given an rtx *P, if it is a sum containing an integer constant term,
1847 return the location (type rtx *) of the pointer to that constant term.
1848 Otherwise, return a null pointer. */
1850 rtx *
1851 find_constant_term_loc (rtx *p)
1853 rtx *tem;
1854 enum rtx_code code = GET_CODE (*p);
1856 /* If *P IS such a constant term, P is its location. */
1858 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1859 || code == CONST)
1860 return p;
1862 /* Otherwise, if not a sum, it has no constant term. */
1864 if (GET_CODE (*p) != PLUS)
1865 return 0;
1867 /* If one of the summands is constant, return its location. */
1869 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1870 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1871 return p;
1873 /* Otherwise, check each summand for containing a constant term. */
1875 if (XEXP (*p, 0) != 0)
1877 tem = find_constant_term_loc (&XEXP (*p, 0));
1878 if (tem != 0)
1879 return tem;
1882 if (XEXP (*p, 1) != 0)
1884 tem = find_constant_term_loc (&XEXP (*p, 1));
1885 if (tem != 0)
1886 return tem;
1889 return 0;
1892 /* Return 1 if OP is a memory reference
1893 whose address contains no side effects
1894 and remains valid after the addition
1895 of a positive integer less than the
1896 size of the object being referenced.
1898 We assume that the original address is valid and do not check it.
1900 This uses strict_memory_address_p as a subroutine, so
1901 don't use it before reload. */
1904 offsettable_memref_p (rtx op)
1906 return ((MEM_P (op))
1907 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1908 MEM_ADDR_SPACE (op)));
1911 /* Similar, but don't require a strictly valid mem ref:
1912 consider pseudo-regs valid as index or base regs. */
1915 offsettable_nonstrict_memref_p (rtx op)
1917 return ((MEM_P (op))
1918 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1919 MEM_ADDR_SPACE (op)));
1922 /* Return 1 if Y is a memory address which contains no side effects
1923 and would remain valid for address space AS after the addition of
1924 a positive integer less than the size of that mode.
1926 We assume that the original address is valid and do not check it.
1927 We do check that it is valid for narrower modes.
1929 If STRICTP is nonzero, we require a strictly valid address,
1930 for the sake of use in reload.c. */
1933 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1934 addr_space_t as)
1936 enum rtx_code ycode = GET_CODE (y);
1937 rtx z;
1938 rtx y1 = y;
1939 rtx *y2;
1940 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1941 (strictp ? strict_memory_address_addr_space_p
1942 : memory_address_addr_space_p);
1943 unsigned int mode_sz = GET_MODE_SIZE (mode);
1945 if (CONSTANT_ADDRESS_P (y))
1946 return 1;
1948 /* Adjusting an offsettable address involves changing to a narrower mode.
1949 Make sure that's OK. */
1951 if (mode_dependent_address_p (y))
1952 return 0;
1954 /* ??? How much offset does an offsettable BLKmode reference need?
1955 Clearly that depends on the situation in which it's being used.
1956 However, the current situation in which we test 0xffffffff is
1957 less than ideal. Caveat user. */
1958 if (mode_sz == 0)
1959 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1961 /* If the expression contains a constant term,
1962 see if it remains valid when max possible offset is added. */
1964 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1966 int good;
1968 y1 = *y2;
1969 *y2 = plus_constant (*y2, mode_sz - 1);
1970 /* Use QImode because an odd displacement may be automatically invalid
1971 for any wider mode. But it should be valid for a single byte. */
1972 good = (*addressp) (QImode, y, as);
1974 /* In any case, restore old contents of memory. */
1975 *y2 = y1;
1976 return good;
1979 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1980 return 0;
1982 /* The offset added here is chosen as the maximum offset that
1983 any instruction could need to add when operating on something
1984 of the specified mode. We assume that if Y and Y+c are
1985 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1986 go inside a LO_SUM here, so we do so as well. */
1987 if (GET_CODE (y) == LO_SUM
1988 && mode != BLKmode
1989 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1990 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1991 plus_constant (XEXP (y, 1), mode_sz - 1));
1992 else
1993 z = plus_constant (y, mode_sz - 1);
1995 /* Use QImode because an odd displacement may be automatically invalid
1996 for any wider mode. But it should be valid for a single byte. */
1997 return (*addressp) (QImode, z, as);
2000 /* Return 1 if ADDR is an address-expression whose effect depends
2001 on the mode of the memory reference it is used in.
2003 Autoincrement addressing is a typical example of mode-dependence
2004 because the amount of the increment depends on the mode. */
2006 bool
2007 mode_dependent_address_p (rtx addr)
2009 /* Auto-increment addressing with anything other than post_modify
2010 or pre_modify always introduces a mode dependency. Catch such
2011 cases now instead of deferring to the target. */
2012 if (GET_CODE (addr) == PRE_INC
2013 || GET_CODE (addr) == POST_INC
2014 || GET_CODE (addr) == PRE_DEC
2015 || GET_CODE (addr) == POST_DEC)
2016 return true;
2018 return targetm.mode_dependent_address_p (addr);
2021 /* Like extract_insn, but save insn extracted and don't extract again, when
2022 called again for the same insn expecting that recog_data still contain the
2023 valid information. This is used primary by gen_attr infrastructure that
2024 often does extract insn again and again. */
2025 void
2026 extract_insn_cached (rtx insn)
2028 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2029 return;
2030 extract_insn (insn);
2031 recog_data.insn = insn;
2034 /* Do cached extract_insn, constrain_operands and complain about failures.
2035 Used by insn_attrtab. */
2036 void
2037 extract_constrain_insn_cached (rtx insn)
2039 extract_insn_cached (insn);
2040 if (which_alternative == -1
2041 && !constrain_operands (reload_completed))
2042 fatal_insn_not_found (insn);
2045 /* Do cached constrain_operands and complain about failures. */
2047 constrain_operands_cached (int strict)
2049 if (which_alternative == -1)
2050 return constrain_operands (strict);
2051 else
2052 return 1;
2055 /* Analyze INSN and fill in recog_data. */
2057 void
2058 extract_insn (rtx insn)
2060 int i;
2061 int icode;
2062 int noperands;
2063 rtx body = PATTERN (insn);
2065 recog_data.n_operands = 0;
2066 recog_data.n_alternatives = 0;
2067 recog_data.n_dups = 0;
2068 recog_data.is_asm = false;
2070 switch (GET_CODE (body))
2072 case USE:
2073 case CLOBBER:
2074 case ASM_INPUT:
2075 case ADDR_VEC:
2076 case ADDR_DIFF_VEC:
2077 case VAR_LOCATION:
2078 return;
2080 case SET:
2081 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2082 goto asm_insn;
2083 else
2084 goto normal_insn;
2085 case PARALLEL:
2086 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2087 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2088 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2089 goto asm_insn;
2090 else
2091 goto normal_insn;
2092 case ASM_OPERANDS:
2093 asm_insn:
2094 recog_data.n_operands = noperands = asm_noperands (body);
2095 if (noperands >= 0)
2097 /* This insn is an `asm' with operands. */
2099 /* expand_asm_operands makes sure there aren't too many operands. */
2100 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2102 /* Now get the operand values and constraints out of the insn. */
2103 decode_asm_operands (body, recog_data.operand,
2104 recog_data.operand_loc,
2105 recog_data.constraints,
2106 recog_data.operand_mode, NULL);
2107 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2108 if (noperands > 0)
2110 const char *p = recog_data.constraints[0];
2111 recog_data.n_alternatives = 1;
2112 while (*p)
2113 recog_data.n_alternatives += (*p++ == ',');
2115 recog_data.is_asm = true;
2116 break;
2118 fatal_insn_not_found (insn);
2120 default:
2121 normal_insn:
2122 /* Ordinary insn: recognize it, get the operands via insn_extract
2123 and get the constraints. */
2125 icode = recog_memoized (insn);
2126 if (icode < 0)
2127 fatal_insn_not_found (insn);
2129 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2130 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2131 recog_data.n_dups = insn_data[icode].n_dups;
2133 insn_extract (insn);
2135 for (i = 0; i < noperands; i++)
2137 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2138 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2139 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2140 /* VOIDmode match_operands gets mode from their real operand. */
2141 if (recog_data.operand_mode[i] == VOIDmode)
2142 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2145 for (i = 0; i < noperands; i++)
2146 recog_data.operand_type[i]
2147 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2148 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2149 : OP_IN);
2151 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2153 if (INSN_CODE (insn) < 0)
2154 for (i = 0; i < recog_data.n_alternatives; i++)
2155 recog_data.alternative_enabled_p[i] = true;
2156 else
2158 recog_data.insn = insn;
2159 for (i = 0; i < recog_data.n_alternatives; i++)
2161 which_alternative = i;
2162 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2166 recog_data.insn = NULL;
2167 which_alternative = -1;
2170 /* After calling extract_insn, you can use this function to extract some
2171 information from the constraint strings into a more usable form.
2172 The collected data is stored in recog_op_alt. */
2173 void
2174 preprocess_constraints (void)
2176 int i;
2178 for (i = 0; i < recog_data.n_operands; i++)
2179 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2180 * sizeof (struct operand_alternative)));
2182 for (i = 0; i < recog_data.n_operands; i++)
2184 int j;
2185 struct operand_alternative *op_alt;
2186 const char *p = recog_data.constraints[i];
2188 op_alt = recog_op_alt[i];
2190 for (j = 0; j < recog_data.n_alternatives; j++)
2192 op_alt[j].cl = NO_REGS;
2193 op_alt[j].constraint = p;
2194 op_alt[j].matches = -1;
2195 op_alt[j].matched = -1;
2197 if (!recog_data.alternative_enabled_p[j])
2199 p = skip_alternative (p);
2200 continue;
2203 if (*p == '\0' || *p == ',')
2205 op_alt[j].anything_ok = 1;
2206 continue;
2209 for (;;)
2211 char c = *p;
2212 if (c == '#')
2214 c = *++p;
2215 while (c != ',' && c != '\0');
2216 if (c == ',' || c == '\0')
2218 p++;
2219 break;
2222 switch (c)
2224 case '=': case '+': case '*': case '%':
2225 case 'E': case 'F': case 'G': case 'H':
2226 case 's': case 'i': case 'n':
2227 case 'I': case 'J': case 'K': case 'L':
2228 case 'M': case 'N': case 'O': case 'P':
2229 /* These don't say anything we care about. */
2230 break;
2232 case '?':
2233 op_alt[j].reject += 6;
2234 break;
2235 case '!':
2236 op_alt[j].reject += 600;
2237 break;
2238 case '&':
2239 op_alt[j].earlyclobber = 1;
2240 break;
2242 case '0': case '1': case '2': case '3': case '4':
2243 case '5': case '6': case '7': case '8': case '9':
2245 char *end;
2246 op_alt[j].matches = strtoul (p, &end, 10);
2247 recog_op_alt[op_alt[j].matches][j].matched = i;
2248 p = end;
2250 continue;
2252 case TARGET_MEM_CONSTRAINT:
2253 op_alt[j].memory_ok = 1;
2254 break;
2255 case '<':
2256 op_alt[j].decmem_ok = 1;
2257 break;
2258 case '>':
2259 op_alt[j].incmem_ok = 1;
2260 break;
2261 case 'V':
2262 op_alt[j].nonoffmem_ok = 1;
2263 break;
2264 case 'o':
2265 op_alt[j].offmem_ok = 1;
2266 break;
2267 case 'X':
2268 op_alt[j].anything_ok = 1;
2269 break;
2271 case 'p':
2272 op_alt[j].is_address = 1;
2273 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2274 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2275 break;
2277 case 'g':
2278 case 'r':
2279 op_alt[j].cl =
2280 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2281 break;
2283 default:
2284 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2286 op_alt[j].memory_ok = 1;
2287 break;
2289 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2291 op_alt[j].is_address = 1;
2292 op_alt[j].cl
2293 = (reg_class_subunion
2294 [(int) op_alt[j].cl]
2295 [(int) base_reg_class (VOIDmode, ADDRESS,
2296 SCRATCH)]);
2297 break;
2300 op_alt[j].cl
2301 = (reg_class_subunion
2302 [(int) op_alt[j].cl]
2303 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2304 break;
2306 p += CONSTRAINT_LEN (c, p);
2312 /* Check the operands of an insn against the insn's operand constraints
2313 and return 1 if they are valid.
2314 The information about the insn's operands, constraints, operand modes
2315 etc. is obtained from the global variables set up by extract_insn.
2317 WHICH_ALTERNATIVE is set to a number which indicates which
2318 alternative of constraints was matched: 0 for the first alternative,
2319 1 for the next, etc.
2321 In addition, when two operands are required to match
2322 and it happens that the output operand is (reg) while the
2323 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2324 make the output operand look like the input.
2325 This is because the output operand is the one the template will print.
2327 This is used in final, just before printing the assembler code and by
2328 the routines that determine an insn's attribute.
2330 If STRICT is a positive nonzero value, it means that we have been
2331 called after reload has been completed. In that case, we must
2332 do all checks strictly. If it is zero, it means that we have been called
2333 before reload has completed. In that case, we first try to see if we can
2334 find an alternative that matches strictly. If not, we try again, this
2335 time assuming that reload will fix up the insn. This provides a "best
2336 guess" for the alternative and is used to compute attributes of insns prior
2337 to reload. A negative value of STRICT is used for this internal call. */
2339 struct funny_match
2341 int this_op, other;
2345 constrain_operands (int strict)
2347 const char *constraints[MAX_RECOG_OPERANDS];
2348 int matching_operands[MAX_RECOG_OPERANDS];
2349 int earlyclobber[MAX_RECOG_OPERANDS];
2350 int c;
2352 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2353 int funny_match_index;
2355 which_alternative = 0;
2356 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2357 return 1;
2359 for (c = 0; c < recog_data.n_operands; c++)
2361 constraints[c] = recog_data.constraints[c];
2362 matching_operands[c] = -1;
2367 int seen_earlyclobber_at = -1;
2368 int opno;
2369 int lose = 0;
2370 funny_match_index = 0;
2372 if (!recog_data.alternative_enabled_p[which_alternative])
2374 int i;
2376 for (i = 0; i < recog_data.n_operands; i++)
2377 constraints[i] = skip_alternative (constraints[i]);
2379 which_alternative++;
2380 continue;
2383 for (opno = 0; opno < recog_data.n_operands; opno++)
2385 rtx op = recog_data.operand[opno];
2386 enum machine_mode mode = GET_MODE (op);
2387 const char *p = constraints[opno];
2388 int offset = 0;
2389 int win = 0;
2390 int val;
2391 int len;
2393 earlyclobber[opno] = 0;
2395 /* A unary operator may be accepted by the predicate, but it
2396 is irrelevant for matching constraints. */
2397 if (UNARY_P (op))
2398 op = XEXP (op, 0);
2400 if (GET_CODE (op) == SUBREG)
2402 if (REG_P (SUBREG_REG (op))
2403 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2404 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2405 GET_MODE (SUBREG_REG (op)),
2406 SUBREG_BYTE (op),
2407 GET_MODE (op));
2408 op = SUBREG_REG (op);
2411 /* An empty constraint or empty alternative
2412 allows anything which matched the pattern. */
2413 if (*p == 0 || *p == ',')
2414 win = 1;
2417 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2419 case '\0':
2420 len = 0;
2421 break;
2422 case ',':
2423 c = '\0';
2424 break;
2426 case '?': case '!': case '*': case '%':
2427 case '=': case '+':
2428 break;
2430 case '#':
2431 /* Ignore rest of this alternative as far as
2432 constraint checking is concerned. */
2434 p++;
2435 while (*p && *p != ',');
2436 len = 0;
2437 break;
2439 case '&':
2440 earlyclobber[opno] = 1;
2441 if (seen_earlyclobber_at < 0)
2442 seen_earlyclobber_at = opno;
2443 break;
2445 case '0': case '1': case '2': case '3': case '4':
2446 case '5': case '6': case '7': case '8': case '9':
2448 /* This operand must be the same as a previous one.
2449 This kind of constraint is used for instructions such
2450 as add when they take only two operands.
2452 Note that the lower-numbered operand is passed first.
2454 If we are not testing strictly, assume that this
2455 constraint will be satisfied. */
2457 char *end;
2458 int match;
2460 match = strtoul (p, &end, 10);
2461 p = end;
2463 if (strict < 0)
2464 val = 1;
2465 else
2467 rtx op1 = recog_data.operand[match];
2468 rtx op2 = recog_data.operand[opno];
2470 /* A unary operator may be accepted by the predicate,
2471 but it is irrelevant for matching constraints. */
2472 if (UNARY_P (op1))
2473 op1 = XEXP (op1, 0);
2474 if (UNARY_P (op2))
2475 op2 = XEXP (op2, 0);
2477 val = operands_match_p (op1, op2);
2480 matching_operands[opno] = match;
2481 matching_operands[match] = opno;
2483 if (val != 0)
2484 win = 1;
2486 /* If output is *x and input is *--x, arrange later
2487 to change the output to *--x as well, since the
2488 output op is the one that will be printed. */
2489 if (val == 2 && strict > 0)
2491 funny_match[funny_match_index].this_op = opno;
2492 funny_match[funny_match_index++].other = match;
2495 len = 0;
2496 break;
2498 case 'p':
2499 /* p is used for address_operands. When we are called by
2500 gen_reload, no one will have checked that the address is
2501 strictly valid, i.e., that all pseudos requiring hard regs
2502 have gotten them. */
2503 if (strict <= 0
2504 || (strict_memory_address_p (recog_data.operand_mode[opno],
2505 op)))
2506 win = 1;
2507 break;
2509 /* No need to check general_operand again;
2510 it was done in insn-recog.c. Well, except that reload
2511 doesn't check the validity of its replacements, but
2512 that should only matter when there's a bug. */
2513 case 'g':
2514 /* Anything goes unless it is a REG and really has a hard reg
2515 but the hard reg is not in the class GENERAL_REGS. */
2516 if (REG_P (op))
2518 if (strict < 0
2519 || GENERAL_REGS == ALL_REGS
2520 || (reload_in_progress
2521 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2522 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2523 win = 1;
2525 else if (strict < 0 || general_operand (op, mode))
2526 win = 1;
2527 break;
2529 case 'X':
2530 /* This is used for a MATCH_SCRATCH in the cases when
2531 we don't actually need anything. So anything goes
2532 any time. */
2533 win = 1;
2534 break;
2536 case TARGET_MEM_CONSTRAINT:
2537 /* Memory operands must be valid, to the extent
2538 required by STRICT. */
2539 if (MEM_P (op))
2541 if (strict > 0
2542 && !strict_memory_address_addr_space_p
2543 (GET_MODE (op), XEXP (op, 0),
2544 MEM_ADDR_SPACE (op)))
2545 break;
2546 if (strict == 0
2547 && !memory_address_addr_space_p
2548 (GET_MODE (op), XEXP (op, 0),
2549 MEM_ADDR_SPACE (op)))
2550 break;
2551 win = 1;
2553 /* Before reload, accept what reload can turn into mem. */
2554 else if (strict < 0 && CONSTANT_P (op))
2555 win = 1;
2556 /* During reload, accept a pseudo */
2557 else if (reload_in_progress && REG_P (op)
2558 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2559 win = 1;
2560 break;
2562 case '<':
2563 if (MEM_P (op)
2564 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2565 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2566 win = 1;
2567 break;
2569 case '>':
2570 if (MEM_P (op)
2571 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2572 || GET_CODE (XEXP (op, 0)) == POST_INC))
2573 win = 1;
2574 break;
2576 case 'E':
2577 case 'F':
2578 if (GET_CODE (op) == CONST_DOUBLE
2579 || (GET_CODE (op) == CONST_VECTOR
2580 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2581 win = 1;
2582 break;
2584 case 'G':
2585 case 'H':
2586 if (GET_CODE (op) == CONST_DOUBLE
2587 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2588 win = 1;
2589 break;
2591 case 's':
2592 if (CONST_INT_P (op)
2593 || (GET_CODE (op) == CONST_DOUBLE
2594 && GET_MODE (op) == VOIDmode))
2595 break;
2596 case 'i':
2597 if (CONSTANT_P (op))
2598 win = 1;
2599 break;
2601 case 'n':
2602 if (CONST_INT_P (op)
2603 || (GET_CODE (op) == CONST_DOUBLE
2604 && GET_MODE (op) == VOIDmode))
2605 win = 1;
2606 break;
2608 case 'I':
2609 case 'J':
2610 case 'K':
2611 case 'L':
2612 case 'M':
2613 case 'N':
2614 case 'O':
2615 case 'P':
2616 if (CONST_INT_P (op)
2617 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2618 win = 1;
2619 break;
2621 case 'V':
2622 if (MEM_P (op)
2623 && ((strict > 0 && ! offsettable_memref_p (op))
2624 || (strict < 0
2625 && !(CONSTANT_P (op) || MEM_P (op)))
2626 || (reload_in_progress
2627 && !(REG_P (op)
2628 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2629 win = 1;
2630 break;
2632 case 'o':
2633 if ((strict > 0 && offsettable_memref_p (op))
2634 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2635 /* Before reload, accept what reload can handle. */
2636 || (strict < 0
2637 && (CONSTANT_P (op) || MEM_P (op)))
2638 /* During reload, accept a pseudo */
2639 || (reload_in_progress && REG_P (op)
2640 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2641 win = 1;
2642 break;
2644 default:
2646 enum reg_class cl;
2648 cl = (c == 'r'
2649 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2650 if (cl != NO_REGS)
2652 if (strict < 0
2653 || (strict == 0
2654 && REG_P (op)
2655 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2656 || (strict == 0 && GET_CODE (op) == SCRATCH)
2657 || (REG_P (op)
2658 && reg_fits_class_p (op, cl, offset, mode)))
2659 win = 1;
2661 #ifdef EXTRA_CONSTRAINT_STR
2662 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2663 win = 1;
2665 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2666 /* Every memory operand can be reloaded to fit. */
2667 && ((strict < 0 && MEM_P (op))
2668 /* Before reload, accept what reload can turn
2669 into mem. */
2670 || (strict < 0 && CONSTANT_P (op))
2671 /* During reload, accept a pseudo */
2672 || (reload_in_progress && REG_P (op)
2673 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2674 win = 1;
2675 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2676 /* Every address operand can be reloaded to fit. */
2677 && strict < 0)
2678 win = 1;
2679 #endif
2680 break;
2683 while (p += len, c);
2685 constraints[opno] = p;
2686 /* If this operand did not win somehow,
2687 this alternative loses. */
2688 if (! win)
2689 lose = 1;
2691 /* This alternative won; the operands are ok.
2692 Change whichever operands this alternative says to change. */
2693 if (! lose)
2695 int opno, eopno;
2697 /* See if any earlyclobber operand conflicts with some other
2698 operand. */
2700 if (strict > 0 && seen_earlyclobber_at >= 0)
2701 for (eopno = seen_earlyclobber_at;
2702 eopno < recog_data.n_operands;
2703 eopno++)
2704 /* Ignore earlyclobber operands now in memory,
2705 because we would often report failure when we have
2706 two memory operands, one of which was formerly a REG. */
2707 if (earlyclobber[eopno]
2708 && REG_P (recog_data.operand[eopno]))
2709 for (opno = 0; opno < recog_data.n_operands; opno++)
2710 if ((MEM_P (recog_data.operand[opno])
2711 || recog_data.operand_type[opno] != OP_OUT)
2712 && opno != eopno
2713 /* Ignore things like match_operator operands. */
2714 && *recog_data.constraints[opno] != 0
2715 && ! (matching_operands[opno] == eopno
2716 && operands_match_p (recog_data.operand[opno],
2717 recog_data.operand[eopno]))
2718 && ! safe_from_earlyclobber (recog_data.operand[opno],
2719 recog_data.operand[eopno]))
2720 lose = 1;
2722 if (! lose)
2724 while (--funny_match_index >= 0)
2726 recog_data.operand[funny_match[funny_match_index].other]
2727 = recog_data.operand[funny_match[funny_match_index].this_op];
2730 #ifdef AUTO_INC_DEC
2731 /* For operands without < or > constraints reject side-effects. */
2732 if (recog_data.is_asm)
2734 for (opno = 0; opno < recog_data.n_operands; opno++)
2735 if (MEM_P (recog_data.operand[opno]))
2736 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2738 case PRE_INC:
2739 case POST_INC:
2740 case PRE_DEC:
2741 case POST_DEC:
2742 case PRE_MODIFY:
2743 case POST_MODIFY:
2744 if (strchr (recog_data.constraints[opno], '<') == NULL
2745 && strchr (recog_data.constraints[opno], '>')
2746 == NULL)
2747 return 0;
2748 break;
2749 default:
2750 break;
2753 #endif
2754 return 1;
2758 which_alternative++;
2760 while (which_alternative < recog_data.n_alternatives);
2762 which_alternative = -1;
2763 /* If we are about to reject this, but we are not to test strictly,
2764 try a very loose test. Only return failure if it fails also. */
2765 if (strict == 0)
2766 return constrain_operands (-1);
2767 else
2768 return 0;
2771 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2772 is a hard reg in class CLASS when its regno is offset by OFFSET
2773 and changed to mode MODE.
2774 If REG occupies multiple hard regs, all of them must be in CLASS. */
2777 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2778 enum machine_mode mode)
2780 int regno = REGNO (operand);
2782 if (cl == NO_REGS)
2783 return 0;
2785 return (regno < FIRST_PSEUDO_REGISTER
2786 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2787 mode, regno + offset));
2790 /* Split single instruction. Helper function for split_all_insns and
2791 split_all_insns_noflow. Return last insn in the sequence if successful,
2792 or NULL if unsuccessful. */
2794 static rtx
2795 split_insn (rtx insn)
2797 /* Split insns here to get max fine-grain parallelism. */
2798 rtx first = PREV_INSN (insn);
2799 rtx last = try_split (PATTERN (insn), insn, 1);
2800 rtx insn_set, last_set, note;
2802 if (last == insn)
2803 return NULL_RTX;
2805 /* If the original instruction was a single set that was known to be
2806 equivalent to a constant, see if we can say the same about the last
2807 instruction in the split sequence. The two instructions must set
2808 the same destination. */
2809 insn_set = single_set (insn);
2810 if (insn_set)
2812 last_set = single_set (last);
2813 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2815 note = find_reg_equal_equiv_note (insn);
2816 if (note && CONSTANT_P (XEXP (note, 0)))
2817 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2818 else if (CONSTANT_P (SET_SRC (insn_set)))
2819 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2823 /* try_split returns the NOTE that INSN became. */
2824 SET_INSN_DELETED (insn);
2826 /* ??? Coddle to md files that generate subregs in post-reload
2827 splitters instead of computing the proper hard register. */
2828 if (reload_completed && first != last)
2830 first = NEXT_INSN (first);
2831 for (;;)
2833 if (INSN_P (first))
2834 cleanup_subreg_operands (first);
2835 if (first == last)
2836 break;
2837 first = NEXT_INSN (first);
2841 return last;
2844 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2846 void
2847 split_all_insns (void)
2849 sbitmap blocks;
2850 bool changed;
2851 basic_block bb;
2853 blocks = sbitmap_alloc (last_basic_block);
2854 sbitmap_zero (blocks);
2855 changed = false;
2857 FOR_EACH_BB_REVERSE (bb)
2859 rtx insn, next;
2860 bool finish = false;
2862 rtl_profile_for_bb (bb);
2863 for (insn = BB_HEAD (bb); !finish ; insn = next)
2865 /* Can't use `next_real_insn' because that might go across
2866 CODE_LABELS and short-out basic blocks. */
2867 next = NEXT_INSN (insn);
2868 finish = (insn == BB_END (bb));
2869 if (INSN_P (insn))
2871 rtx set = single_set (insn);
2873 /* Don't split no-op move insns. These should silently
2874 disappear later in final. Splitting such insns would
2875 break the code that handles LIBCALL blocks. */
2876 if (set && set_noop_p (set))
2878 /* Nops get in the way while scheduling, so delete them
2879 now if register allocation has already been done. It
2880 is too risky to try to do this before register
2881 allocation, and there are unlikely to be very many
2882 nops then anyways. */
2883 if (reload_completed)
2884 delete_insn_and_edges (insn);
2886 else
2888 rtx last = split_insn (insn);
2889 if (last)
2891 /* The split sequence may include barrier, but the
2892 BB boundary we are interested in will be set to
2893 previous one. */
2895 while (BARRIER_P (last))
2896 last = PREV_INSN (last);
2897 SET_BIT (blocks, bb->index);
2898 changed = true;
2905 default_rtl_profile ();
2906 if (changed)
2907 find_many_sub_basic_blocks (blocks);
2909 #ifdef ENABLE_CHECKING
2910 verify_flow_info ();
2911 #endif
2913 sbitmap_free (blocks);
2916 /* Same as split_all_insns, but do not expect CFG to be available.
2917 Used by machine dependent reorg passes. */
2919 unsigned int
2920 split_all_insns_noflow (void)
2922 rtx next, insn;
2924 for (insn = get_insns (); insn; insn = next)
2926 next = NEXT_INSN (insn);
2927 if (INSN_P (insn))
2929 /* Don't split no-op move insns. These should silently
2930 disappear later in final. Splitting such insns would
2931 break the code that handles LIBCALL blocks. */
2932 rtx set = single_set (insn);
2933 if (set && set_noop_p (set))
2935 /* Nops get in the way while scheduling, so delete them
2936 now if register allocation has already been done. It
2937 is too risky to try to do this before register
2938 allocation, and there are unlikely to be very many
2939 nops then anyways.
2941 ??? Should we use delete_insn when the CFG isn't valid? */
2942 if (reload_completed)
2943 delete_insn_and_edges (insn);
2945 else
2946 split_insn (insn);
2949 return 0;
2952 #ifdef HAVE_peephole2
2953 struct peep2_insn_data
2955 rtx insn;
2956 regset live_before;
2959 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2960 static int peep2_current;
2962 static bool peep2_do_rebuild_jump_labels;
2963 static bool peep2_do_cleanup_cfg;
2965 /* The number of instructions available to match a peep2. */
2966 int peep2_current_count;
2968 /* A non-insn marker indicating the last insn of the block.
2969 The live_before regset for this element is correct, indicating
2970 DF_LIVE_OUT for the block. */
2971 #define PEEP2_EOB pc_rtx
2973 /* Wrap N to fit into the peep2_insn_data buffer. */
2975 static int
2976 peep2_buf_position (int n)
2978 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2979 n -= MAX_INSNS_PER_PEEP2 + 1;
2980 return n;
2983 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2984 does not exist. Used by the recognizer to find the next insn to match
2985 in a multi-insn pattern. */
2988 peep2_next_insn (int n)
2990 gcc_assert (n <= peep2_current_count);
2992 n = peep2_buf_position (peep2_current + n);
2994 return peep2_insn_data[n].insn;
2997 /* Return true if REGNO is dead before the Nth non-note insn
2998 after `current'. */
3001 peep2_regno_dead_p (int ofs, int regno)
3003 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3005 ofs = peep2_buf_position (peep2_current + ofs);
3007 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3009 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3012 /* Similarly for a REG. */
3015 peep2_reg_dead_p (int ofs, rtx reg)
3017 int regno, n;
3019 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3021 ofs = peep2_buf_position (peep2_current + ofs);
3023 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3025 regno = REGNO (reg);
3026 n = hard_regno_nregs[regno][GET_MODE (reg)];
3027 while (--n >= 0)
3028 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3029 return 0;
3030 return 1;
3033 /* Try to find a hard register of mode MODE, matching the register class in
3034 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3035 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3036 in which case the only condition is that the register must be available
3037 before CURRENT_INSN.
3038 Registers that already have bits set in REG_SET will not be considered.
3040 If an appropriate register is available, it will be returned and the
3041 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3042 returned. */
3045 peep2_find_free_register (int from, int to, const char *class_str,
3046 enum machine_mode mode, HARD_REG_SET *reg_set)
3048 static int search_ofs;
3049 enum reg_class cl;
3050 HARD_REG_SET live;
3051 int i;
3053 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3054 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3056 from = peep2_buf_position (peep2_current + from);
3057 to = peep2_buf_position (peep2_current + to);
3059 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3060 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3062 while (from != to)
3064 HARD_REG_SET this_live;
3066 from = peep2_buf_position (from + 1);
3067 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3068 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3069 IOR_HARD_REG_SET (live, this_live);
3072 cl = (class_str[0] == 'r' ? GENERAL_REGS
3073 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3075 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3077 int raw_regno, regno, success, j;
3079 /* Distribute the free registers as much as possible. */
3080 raw_regno = search_ofs + i;
3081 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3082 raw_regno -= FIRST_PSEUDO_REGISTER;
3083 #ifdef REG_ALLOC_ORDER
3084 regno = reg_alloc_order[raw_regno];
3085 #else
3086 regno = raw_regno;
3087 #endif
3089 /* Don't allocate fixed registers. */
3090 if (fixed_regs[regno])
3091 continue;
3092 /* Don't allocate global registers. */
3093 if (global_regs[regno])
3094 continue;
3095 /* Make sure the register is of the right class. */
3096 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3097 continue;
3098 /* And can support the mode we need. */
3099 if (! HARD_REGNO_MODE_OK (regno, mode))
3100 continue;
3101 /* And that we don't create an extra save/restore. */
3102 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3103 continue;
3104 if (! targetm.hard_regno_scratch_ok (regno))
3105 continue;
3107 /* And we don't clobber traceback for noreturn functions. */
3108 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3109 && (! reload_completed || frame_pointer_needed))
3110 continue;
3112 success = 1;
3113 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3115 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3116 || TEST_HARD_REG_BIT (live, regno + j))
3118 success = 0;
3119 break;
3122 if (success)
3124 add_to_hard_reg_set (reg_set, mode, regno);
3126 /* Start the next search with the next register. */
3127 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3128 raw_regno = 0;
3129 search_ofs = raw_regno;
3131 return gen_rtx_REG (mode, regno);
3135 search_ofs = 0;
3136 return NULL_RTX;
3139 /* Forget all currently tracked instructions, only remember current
3140 LIVE regset. */
3142 static void
3143 peep2_reinit_state (regset live)
3145 int i;
3147 /* Indicate that all slots except the last holds invalid data. */
3148 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3149 peep2_insn_data[i].insn = NULL_RTX;
3150 peep2_current_count = 0;
3152 /* Indicate that the last slot contains live_after data. */
3153 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3154 peep2_current = MAX_INSNS_PER_PEEP2;
3156 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3159 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3160 starting at INSN. Perform the replacement, removing the old insns and
3161 replacing them with ATTEMPT. Returns the last insn emitted. */
3163 static rtx
3164 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3166 int i;
3167 rtx last, note, before_try, x;
3168 bool was_call = false;
3170 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3171 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3172 cfg-related call notes. */
3173 for (i = 0; i <= match_len; ++i)
3175 int j;
3176 rtx old_insn, new_insn, note;
3178 j = peep2_buf_position (peep2_current + i);
3179 old_insn = peep2_insn_data[j].insn;
3180 if (!CALL_P (old_insn))
3181 continue;
3182 was_call = true;
3184 new_insn = attempt;
3185 while (new_insn != NULL_RTX)
3187 if (CALL_P (new_insn))
3188 break;
3189 new_insn = NEXT_INSN (new_insn);
3192 gcc_assert (new_insn != NULL_RTX);
3194 CALL_INSN_FUNCTION_USAGE (new_insn)
3195 = CALL_INSN_FUNCTION_USAGE (old_insn);
3197 for (note = REG_NOTES (old_insn);
3198 note;
3199 note = XEXP (note, 1))
3200 switch (REG_NOTE_KIND (note))
3202 case REG_NORETURN:
3203 case REG_SETJMP:
3204 add_reg_note (new_insn, REG_NOTE_KIND (note),
3205 XEXP (note, 0));
3206 break;
3207 default:
3208 /* Discard all other reg notes. */
3209 break;
3212 /* Croak if there is another call in the sequence. */
3213 while (++i <= match_len)
3215 j = peep2_buf_position (peep2_current + i);
3216 old_insn = peep2_insn_data[j].insn;
3217 gcc_assert (!CALL_P (old_insn));
3219 break;
3222 i = peep2_buf_position (peep2_current + match_len);
3224 note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3226 /* Replace the old sequence with the new. */
3227 last = emit_insn_after_setloc (attempt,
3228 peep2_insn_data[i].insn,
3229 INSN_LOCATOR (peep2_insn_data[i].insn));
3230 before_try = PREV_INSN (insn);
3231 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3233 /* Re-insert the EH_REGION notes. */
3234 if (note || (was_call && nonlocal_goto_handler_labels))
3236 edge eh_edge;
3237 edge_iterator ei;
3239 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3240 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3241 break;
3243 if (note)
3244 copy_reg_eh_region_note_backward (note, last, before_try);
3246 if (eh_edge)
3247 for (x = last; x != before_try; x = PREV_INSN (x))
3248 if (x != BB_END (bb)
3249 && (can_throw_internal (x)
3250 || can_nonlocal_goto (x)))
3252 edge nfte, nehe;
3253 int flags;
3255 nfte = split_block (bb, x);
3256 flags = (eh_edge->flags
3257 & (EDGE_EH | EDGE_ABNORMAL));
3258 if (CALL_P (x))
3259 flags |= EDGE_ABNORMAL_CALL;
3260 nehe = make_edge (nfte->src, eh_edge->dest,
3261 flags);
3263 nehe->probability = eh_edge->probability;
3264 nfte->probability
3265 = REG_BR_PROB_BASE - nehe->probability;
3267 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3268 bb = nfte->src;
3269 eh_edge = nehe;
3272 /* Converting possibly trapping insn to non-trapping is
3273 possible. Zap dummy outgoing edges. */
3274 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3277 /* If we generated a jump instruction, it won't have
3278 JUMP_LABEL set. Recompute after we're done. */
3279 for (x = last; x != before_try; x = PREV_INSN (x))
3280 if (JUMP_P (x))
3282 peep2_do_rebuild_jump_labels = true;
3283 break;
3286 return last;
3289 /* After performing a replacement in basic block BB, fix up the life
3290 information in our buffer. LAST is the last of the insns that we
3291 emitted as a replacement. PREV is the insn before the start of
3292 the replacement. MATCH_LEN is the number of instructions that were
3293 matched, and which now need to be replaced in the buffer. */
3295 static void
3296 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3298 int i = peep2_buf_position (peep2_current + match_len + 1);
3299 rtx x;
3300 regset_head live;
3302 INIT_REG_SET (&live);
3303 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3305 gcc_assert (peep2_current_count >= match_len + 1);
3306 peep2_current_count -= match_len + 1;
3308 x = last;
3311 if (INSN_P (x))
3313 df_insn_rescan (x);
3314 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3316 peep2_current_count++;
3317 if (--i < 0)
3318 i = MAX_INSNS_PER_PEEP2;
3319 peep2_insn_data[i].insn = x;
3320 df_simulate_one_insn_backwards (bb, x, &live);
3321 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3324 x = PREV_INSN (x);
3326 while (x != prev);
3327 CLEAR_REG_SET (&live);
3329 peep2_current = i;
3332 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3333 Return true if we added it, false otherwise. The caller will try to match
3334 peepholes against the buffer if we return false; otherwise it will try to
3335 add more instructions to the buffer. */
3337 static bool
3338 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3340 int pos;
3342 /* Once we have filled the maximum number of insns the buffer can hold,
3343 allow the caller to match the insns against peepholes. We wait until
3344 the buffer is full in case the target has similar peepholes of different
3345 length; we always want to match the longest if possible. */
3346 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3347 return false;
3349 /* If an insn has RTX_FRAME_RELATED_P set, peephole substitution would lose
3350 the REG_FRAME_RELATED_EXPR that is attached. */
3351 if (RTX_FRAME_RELATED_P (insn))
3353 /* Let the buffer drain first. */
3354 if (peep2_current_count > 0)
3355 return false;
3356 /* Step over the insn then return true without adding the insn
3357 to the buffer; this will cause us to process the next
3358 insn. */
3359 df_simulate_one_insn_forwards (bb, insn, live);
3360 return true;
3363 pos = peep2_buf_position (peep2_current + peep2_current_count);
3364 peep2_insn_data[pos].insn = insn;
3365 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3366 peep2_current_count++;
3368 df_simulate_one_insn_forwards (bb, insn, live);
3369 return true;
3372 /* Perform the peephole2 optimization pass. */
3374 static void
3375 peephole2_optimize (void)
3377 rtx insn;
3378 bitmap live;
3379 int i;
3380 basic_block bb;
3382 peep2_do_cleanup_cfg = false;
3383 peep2_do_rebuild_jump_labels = false;
3385 df_set_flags (DF_LR_RUN_DCE);
3386 df_note_add_problem ();
3387 df_analyze ();
3389 /* Initialize the regsets we're going to use. */
3390 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3391 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3392 live = BITMAP_ALLOC (&reg_obstack);
3394 FOR_EACH_BB_REVERSE (bb)
3396 bool past_end = false;
3397 int pos;
3399 rtl_profile_for_bb (bb);
3401 /* Start up propagation. */
3402 bitmap_copy (live, DF_LR_IN (bb));
3403 df_simulate_initialize_forwards (bb, live);
3404 peep2_reinit_state (live);
3406 insn = BB_HEAD (bb);
3407 for (;;)
3409 rtx attempt, head;
3410 int match_len;
3412 if (!past_end && !NONDEBUG_INSN_P (insn))
3414 next_insn:
3415 insn = NEXT_INSN (insn);
3416 if (insn == NEXT_INSN (BB_END (bb)))
3417 past_end = true;
3418 continue;
3420 if (!past_end && peep2_fill_buffer (bb, insn, live))
3421 goto next_insn;
3423 /* If we did not fill an empty buffer, it signals the end of the
3424 block. */
3425 if (peep2_current_count == 0)
3426 break;
3428 /* The buffer filled to the current maximum, so try to match. */
3430 pos = peep2_buf_position (peep2_current + peep2_current_count);
3431 peep2_insn_data[pos].insn = PEEP2_EOB;
3432 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3434 /* Match the peephole. */
3435 head = peep2_insn_data[peep2_current].insn;
3436 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3437 if (attempt != NULL)
3439 rtx last;
3440 last = peep2_attempt (bb, head, match_len, attempt);
3441 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3443 else
3445 /* If no match, advance the buffer by one insn. */
3446 peep2_current = peep2_buf_position (peep2_current + 1);
3447 peep2_current_count--;
3452 default_rtl_profile ();
3453 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3454 BITMAP_FREE (peep2_insn_data[i].live_before);
3455 BITMAP_FREE (live);
3456 if (peep2_do_rebuild_jump_labels)
3457 rebuild_jump_labels (get_insns ());
3459 #endif /* HAVE_peephole2 */
3461 /* Common predicates for use with define_bypass. */
3463 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3464 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3465 must be either a single_set or a PARALLEL with SETs inside. */
3468 store_data_bypass_p (rtx out_insn, rtx in_insn)
3470 rtx out_set, in_set;
3471 rtx out_pat, in_pat;
3472 rtx out_exp, in_exp;
3473 int i, j;
3475 in_set = single_set (in_insn);
3476 if (in_set)
3478 if (!MEM_P (SET_DEST (in_set)))
3479 return false;
3481 out_set = single_set (out_insn);
3482 if (out_set)
3484 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3485 return false;
3487 else
3489 out_pat = PATTERN (out_insn);
3491 if (GET_CODE (out_pat) != PARALLEL)
3492 return false;
3494 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3496 out_exp = XVECEXP (out_pat, 0, i);
3498 if (GET_CODE (out_exp) == CLOBBER)
3499 continue;
3501 gcc_assert (GET_CODE (out_exp) == SET);
3503 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3504 return false;
3508 else
3510 in_pat = PATTERN (in_insn);
3511 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3513 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3515 in_exp = XVECEXP (in_pat, 0, i);
3517 if (GET_CODE (in_exp) == CLOBBER)
3518 continue;
3520 gcc_assert (GET_CODE (in_exp) == SET);
3522 if (!MEM_P (SET_DEST (in_exp)))
3523 return false;
3525 out_set = single_set (out_insn);
3526 if (out_set)
3528 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3529 return false;
3531 else
3533 out_pat = PATTERN (out_insn);
3534 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3536 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3538 out_exp = XVECEXP (out_pat, 0, j);
3540 if (GET_CODE (out_exp) == CLOBBER)
3541 continue;
3543 gcc_assert (GET_CODE (out_exp) == SET);
3545 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3546 return false;
3552 return true;
3555 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3556 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3557 or multiple set; IN_INSN should be single_set for truth, but for convenience
3558 of insn categorization may be any JUMP or CALL insn. */
3561 if_test_bypass_p (rtx out_insn, rtx in_insn)
3563 rtx out_set, in_set;
3565 in_set = single_set (in_insn);
3566 if (! in_set)
3568 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3569 return false;
3572 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3573 return false;
3574 in_set = SET_SRC (in_set);
3576 out_set = single_set (out_insn);
3577 if (out_set)
3579 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3580 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3581 return false;
3583 else
3585 rtx out_pat;
3586 int i;
3588 out_pat = PATTERN (out_insn);
3589 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3591 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3593 rtx exp = XVECEXP (out_pat, 0, i);
3595 if (GET_CODE (exp) == CLOBBER)
3596 continue;
3598 gcc_assert (GET_CODE (exp) == SET);
3600 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3601 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3602 return false;
3606 return true;
3609 static bool
3610 gate_handle_peephole2 (void)
3612 return (optimize > 0 && flag_peephole2);
3615 static unsigned int
3616 rest_of_handle_peephole2 (void)
3618 #ifdef HAVE_peephole2
3619 peephole2_optimize ();
3620 #endif
3621 return 0;
3624 struct rtl_opt_pass pass_peephole2 =
3627 RTL_PASS,
3628 "peephole2", /* name */
3629 gate_handle_peephole2, /* gate */
3630 rest_of_handle_peephole2, /* execute */
3631 NULL, /* sub */
3632 NULL, /* next */
3633 0, /* static_pass_number */
3634 TV_PEEPHOLE2, /* tv_id */
3635 0, /* properties_required */
3636 0, /* properties_provided */
3637 0, /* properties_destroyed */
3638 0, /* todo_flags_start */
3639 TODO_df_finish | TODO_verify_rtl_sharing |
3640 TODO_dump_func /* todo_flags_finish */
3644 static unsigned int
3645 rest_of_handle_split_all_insns (void)
3647 split_all_insns ();
3648 return 0;
3651 struct rtl_opt_pass pass_split_all_insns =
3654 RTL_PASS,
3655 "split1", /* name */
3656 NULL, /* gate */
3657 rest_of_handle_split_all_insns, /* execute */
3658 NULL, /* sub */
3659 NULL, /* next */
3660 0, /* static_pass_number */
3661 TV_NONE, /* tv_id */
3662 0, /* properties_required */
3663 0, /* properties_provided */
3664 0, /* properties_destroyed */
3665 0, /* todo_flags_start */
3666 TODO_dump_func /* todo_flags_finish */
3670 static unsigned int
3671 rest_of_handle_split_after_reload (void)
3673 /* If optimizing, then go ahead and split insns now. */
3674 #ifndef STACK_REGS
3675 if (optimize > 0)
3676 #endif
3677 split_all_insns ();
3678 return 0;
3681 struct rtl_opt_pass pass_split_after_reload =
3684 RTL_PASS,
3685 "split2", /* name */
3686 NULL, /* gate */
3687 rest_of_handle_split_after_reload, /* execute */
3688 NULL, /* sub */
3689 NULL, /* next */
3690 0, /* static_pass_number */
3691 TV_NONE, /* tv_id */
3692 0, /* properties_required */
3693 0, /* properties_provided */
3694 0, /* properties_destroyed */
3695 0, /* todo_flags_start */
3696 TODO_dump_func /* todo_flags_finish */
3700 static bool
3701 gate_handle_split_before_regstack (void)
3703 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3704 /* If flow2 creates new instructions which need splitting
3705 and scheduling after reload is not done, they might not be
3706 split until final which doesn't allow splitting
3707 if HAVE_ATTR_length. */
3708 # ifdef INSN_SCHEDULING
3709 return (optimize && !flag_schedule_insns_after_reload);
3710 # else
3711 return (optimize);
3712 # endif
3713 #else
3714 return 0;
3715 #endif
3718 static unsigned int
3719 rest_of_handle_split_before_regstack (void)
3721 split_all_insns ();
3722 return 0;
3725 struct rtl_opt_pass pass_split_before_regstack =
3728 RTL_PASS,
3729 "split3", /* name */
3730 gate_handle_split_before_regstack, /* gate */
3731 rest_of_handle_split_before_regstack, /* execute */
3732 NULL, /* sub */
3733 NULL, /* next */
3734 0, /* static_pass_number */
3735 TV_NONE, /* tv_id */
3736 0, /* properties_required */
3737 0, /* properties_provided */
3738 0, /* properties_destroyed */
3739 0, /* todo_flags_start */
3740 TODO_dump_func /* todo_flags_finish */
3744 static bool
3745 gate_handle_split_before_sched2 (void)
3747 #ifdef INSN_SCHEDULING
3748 return optimize > 0 && flag_schedule_insns_after_reload;
3749 #else
3750 return 0;
3751 #endif
3754 static unsigned int
3755 rest_of_handle_split_before_sched2 (void)
3757 #ifdef INSN_SCHEDULING
3758 split_all_insns ();
3759 #endif
3760 return 0;
3763 struct rtl_opt_pass pass_split_before_sched2 =
3766 RTL_PASS,
3767 "split4", /* name */
3768 gate_handle_split_before_sched2, /* gate */
3769 rest_of_handle_split_before_sched2, /* execute */
3770 NULL, /* sub */
3771 NULL, /* next */
3772 0, /* static_pass_number */
3773 TV_NONE, /* tv_id */
3774 0, /* properties_required */
3775 0, /* properties_provided */
3776 0, /* properties_destroyed */
3777 0, /* todo_flags_start */
3778 TODO_verify_flow |
3779 TODO_dump_func /* todo_flags_finish */
3783 /* The placement of the splitting that we do for shorten_branches
3784 depends on whether regstack is used by the target or not. */
3785 static bool
3786 gate_do_final_split (void)
3788 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3789 return 1;
3790 #else
3791 return 0;
3792 #endif
3795 struct rtl_opt_pass pass_split_for_shorten_branches =
3798 RTL_PASS,
3799 "split5", /* name */
3800 gate_do_final_split, /* gate */
3801 split_all_insns_noflow, /* execute */
3802 NULL, /* sub */
3803 NULL, /* next */
3804 0, /* static_pass_number */
3805 TV_NONE, /* tv_id */
3806 0, /* properties_required */
3807 0, /* properties_provided */
3808 0, /* properties_destroyed */
3809 0, /* todo_flags_start */
3810 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */