2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / ira.c
bloba6b77cdd3df92033d2c429a6e15dfbaee7464ab4
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Optional aggressive coalescing of allocnos in the region.
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
277 Literature is worth to read for better understanding the code:
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "df.h"
314 #include "expr.h"
315 #include "recog.h"
316 #include "params.h"
317 #include "timevar.h"
318 #include "tree-pass.h"
319 #include "output.h"
320 #include "except.h"
321 #include "reload.h"
322 #include "diagnostic-core.h"
323 #include "integrate.h"
324 #include "ggc.h"
325 #include "ira-int.h"
328 struct target_ira default_target_ira;
329 struct target_ira_int default_target_ira_int;
330 #if SWITCHABLE_TARGET
331 struct target_ira *this_target_ira = &default_target_ira;
332 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
333 #endif
335 /* A modified value of flag `-fira-verbose' used internally. */
336 int internal_flag_ira_verbose;
338 /* Dump file of the allocator if it is not NULL. */
339 FILE *ira_dump_file;
341 /* The number of elements in the following array. */
342 int ira_spilled_reg_stack_slots_num;
344 /* The following array contains info about spilled pseudo-registers
345 stack slots used in current function so far. */
346 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
348 /* Correspondingly overall cost of the allocation, cost of the
349 allocnos assigned to hard-registers, cost of the allocnos assigned
350 to memory, cost of loads, stores and register move insns generated
351 for pseudo-register live range splitting (see ira-emit.c). */
352 int ira_overall_cost;
353 int ira_reg_cost, ira_mem_cost;
354 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
355 int ira_move_loops_num, ira_additional_jumps_num;
357 /* All registers that can be eliminated. */
359 HARD_REG_SET eliminable_regset;
361 /* Temporary hard reg set used for a different calculation. */
362 static HARD_REG_SET temp_hard_regset;
366 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
367 static void
368 setup_reg_mode_hard_regset (void)
370 int i, m, hard_regno;
372 for (m = 0; m < NUM_MACHINE_MODES; m++)
373 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
375 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
376 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
377 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
378 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
379 hard_regno + i);
384 #define no_unit_alloc_regs \
385 (this_target_ira_int->x_no_unit_alloc_regs)
387 /* The function sets up the three arrays declared above. */
388 static void
389 setup_class_hard_regs (void)
391 int cl, i, hard_regno, n;
392 HARD_REG_SET processed_hard_reg_set;
394 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
395 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
397 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
398 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
399 CLEAR_HARD_REG_SET (processed_hard_reg_set);
400 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
402 ira_non_ordered_class_hard_regs[cl][0] = -1;
403 ira_class_hard_reg_index[cl][0] = -1;
405 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
407 #ifdef REG_ALLOC_ORDER
408 hard_regno = reg_alloc_order[i];
409 #else
410 hard_regno = i;
411 #endif
412 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
413 continue;
414 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
415 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
416 ira_class_hard_reg_index[cl][hard_regno] = -1;
417 else
419 ira_class_hard_reg_index[cl][hard_regno] = n;
420 ira_class_hard_regs[cl][n++] = hard_regno;
423 ira_class_hard_regs_num[cl] = n;
424 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
425 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
426 ira_non_ordered_class_hard_regs[cl][n++] = i;
427 ira_assert (ira_class_hard_regs_num[cl] == n);
431 /* Set up IRA_AVAILABLE_CLASS_REGS. */
432 static void
433 setup_available_class_regs (void)
435 int i, j;
437 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
438 for (i = 0; i < N_REG_CLASSES; i++)
440 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
441 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
442 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
443 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
444 ira_available_class_regs[i]++;
448 /* Set up global variables defining info about hard registers for the
449 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
450 that we can use the hard frame pointer for the allocation. */
451 static void
452 setup_alloc_regs (bool use_hard_frame_p)
454 #ifdef ADJUST_REG_ALLOC_ORDER
455 ADJUST_REG_ALLOC_ORDER;
456 #endif
457 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
458 if (! use_hard_frame_p)
459 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
460 setup_class_hard_regs ();
461 setup_available_class_regs ();
466 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
467 static void
468 setup_class_subset_and_memory_move_costs (void)
470 int cl, cl2, mode;
471 HARD_REG_SET temp_hard_regset2;
473 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
474 ira_memory_move_cost[mode][NO_REGS][0]
475 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
476 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
478 if (cl != (int) NO_REGS)
479 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
481 ira_memory_move_cost[mode][cl][0] =
482 memory_move_cost ((enum machine_mode) mode,
483 (enum reg_class) cl, false);
484 ira_memory_move_cost[mode][cl][1] =
485 memory_move_cost ((enum machine_mode) mode,
486 (enum reg_class) cl, true);
487 /* Costs for NO_REGS are used in cost calculation on the
488 1st pass when the preferred register classes are not
489 known yet. In this case we take the best scenario. */
490 if (ira_memory_move_cost[mode][NO_REGS][0]
491 > ira_memory_move_cost[mode][cl][0])
492 ira_memory_move_cost[mode][NO_REGS][0]
493 = ira_memory_move_cost[mode][cl][0];
494 if (ira_memory_move_cost[mode][NO_REGS][1]
495 > ira_memory_move_cost[mode][cl][1])
496 ira_memory_move_cost[mode][NO_REGS][1]
497 = ira_memory_move_cost[mode][cl][1];
499 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
501 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
502 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
503 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
504 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
505 ira_class_subset_p[cl][cl2]
506 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
513 /* Define the following macro if allocation through malloc if
514 preferable. */
515 #define IRA_NO_OBSTACK
517 #ifndef IRA_NO_OBSTACK
518 /* Obstack used for storing all dynamic data (except bitmaps) of the
519 IRA. */
520 static struct obstack ira_obstack;
521 #endif
523 /* Obstack used for storing all bitmaps of the IRA. */
524 static struct bitmap_obstack ira_bitmap_obstack;
526 /* Allocate memory of size LEN for IRA data. */
527 void *
528 ira_allocate (size_t len)
530 void *res;
532 #ifndef IRA_NO_OBSTACK
533 res = obstack_alloc (&ira_obstack, len);
534 #else
535 res = xmalloc (len);
536 #endif
537 return res;
540 /* Reallocate memory PTR of size LEN for IRA data. */
541 void *
542 ira_reallocate (void *ptr, size_t len)
544 void *res;
546 #ifndef IRA_NO_OBSTACK
547 res = obstack_alloc (&ira_obstack, len);
548 #else
549 res = xrealloc (ptr, len);
550 #endif
551 return res;
554 /* Free memory ADDR allocated for IRA data. */
555 void
556 ira_free (void *addr ATTRIBUTE_UNUSED)
558 #ifndef IRA_NO_OBSTACK
559 /* do nothing */
560 #else
561 free (addr);
562 #endif
566 /* Allocate and returns bitmap for IRA. */
567 bitmap
568 ira_allocate_bitmap (void)
570 return BITMAP_ALLOC (&ira_bitmap_obstack);
573 /* Free bitmap B allocated for IRA. */
574 void
575 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
577 /* do nothing */
582 /* Output information about allocation of all allocnos (except for
583 caps) into file F. */
584 void
585 ira_print_disposition (FILE *f)
587 int i, n, max_regno;
588 ira_allocno_t a;
589 basic_block bb;
591 fprintf (f, "Disposition:");
592 max_regno = max_reg_num ();
593 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
594 for (a = ira_regno_allocno_map[i];
595 a != NULL;
596 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
598 if (n % 4 == 0)
599 fprintf (f, "\n");
600 n++;
601 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
602 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
603 fprintf (f, "b%-3d", bb->index);
604 else
605 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
606 if (ALLOCNO_HARD_REGNO (a) >= 0)
607 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
608 else
609 fprintf (f, " mem");
611 fprintf (f, "\n");
614 /* Outputs information about allocation of all allocnos into
615 stderr. */
616 void
617 ira_debug_disposition (void)
619 ira_print_disposition (stderr);
623 #define alloc_reg_class_subclasses \
624 (this_target_ira_int->x_alloc_reg_class_subclasses)
626 /* Initialize the table of subclasses of each reg class. */
627 static void
628 setup_reg_subclasses (void)
630 int i, j;
631 HARD_REG_SET temp_hard_regset2;
633 for (i = 0; i < N_REG_CLASSES; i++)
634 for (j = 0; j < N_REG_CLASSES; j++)
635 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
637 for (i = 0; i < N_REG_CLASSES; i++)
639 if (i == (int) NO_REGS)
640 continue;
642 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
643 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
644 if (hard_reg_set_empty_p (temp_hard_regset))
645 continue;
646 for (j = 0; j < N_REG_CLASSES; j++)
647 if (i != j)
649 enum reg_class *p;
651 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
652 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
653 if (! hard_reg_set_subset_p (temp_hard_regset,
654 temp_hard_regset2))
655 continue;
656 p = &alloc_reg_class_subclasses[j][0];
657 while (*p != LIM_REG_CLASSES) p++;
658 *p = (enum reg_class) i;
665 /* Set the four global variables defined above. */
666 static void
667 setup_cover_and_important_classes (void)
669 int i, j, n, cl;
670 bool set_p;
671 const reg_class_t *cover_classes;
672 HARD_REG_SET temp_hard_regset2;
673 static enum reg_class classes[LIM_REG_CLASSES + 1];
675 if (targetm.ira_cover_classes == NULL)
676 cover_classes = NULL;
677 else
678 cover_classes = targetm.ira_cover_classes ();
679 if (cover_classes == NULL)
680 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
681 else
683 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
684 classes[i] = (enum reg_class) cl;
685 classes[i] = LIM_REG_CLASSES;
688 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
690 n = 0;
691 for (i = 0; i <= LIM_REG_CLASSES; i++)
693 if (i == NO_REGS)
694 continue;
695 #ifdef CONSTRAINT_NUM_DEFINED_P
696 for (j = 0; j < CONSTRAINT__LIMIT; j++)
697 if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
698 break;
699 if (j < CONSTRAINT__LIMIT)
701 classes[n++] = (enum reg_class) i;
702 continue;
704 #endif
705 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
706 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
707 for (j = 0; j < LIM_REG_CLASSES; j++)
709 if (i == j)
710 continue;
711 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
712 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
713 no_unit_alloc_regs);
714 if (hard_reg_set_equal_p (temp_hard_regset,
715 temp_hard_regset2))
716 break;
718 if (j >= i)
719 classes[n++] = (enum reg_class) i;
721 classes[n] = LIM_REG_CLASSES;
724 ira_reg_class_cover_size = 0;
725 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
727 for (j = 0; j < i; j++)
728 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
729 && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
730 gcc_unreachable ();
731 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
732 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
733 if (! hard_reg_set_empty_p (temp_hard_regset))
734 ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
736 ira_important_classes_num = 0;
737 for (cl = 0; cl < N_REG_CLASSES; cl++)
739 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
740 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
741 if (! hard_reg_set_empty_p (temp_hard_regset))
743 set_p = false;
744 for (j = 0; j < ira_reg_class_cover_size; j++)
746 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
747 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
748 COPY_HARD_REG_SET (temp_hard_regset2,
749 reg_class_contents[ira_reg_class_cover[j]]);
750 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
751 if ((enum reg_class) cl == ira_reg_class_cover[j]
752 || hard_reg_set_equal_p (temp_hard_regset,
753 temp_hard_regset2))
754 break;
755 else if (hard_reg_set_subset_p (temp_hard_regset,
756 temp_hard_regset2))
757 set_p = true;
759 if (set_p && j >= ira_reg_class_cover_size)
760 ira_important_classes[ira_important_classes_num++]
761 = (enum reg_class) cl;
764 for (j = 0; j < ira_reg_class_cover_size; j++)
765 ira_important_classes[ira_important_classes_num++]
766 = ira_reg_class_cover[j];
769 /* Set up array IRA_CLASS_TRANSLATE. */
770 static void
771 setup_class_translate (void)
773 int cl, mode;
774 enum reg_class cover_class, best_class, *cl_ptr;
775 int i, cost, min_cost, best_cost;
777 for (cl = 0; cl < N_REG_CLASSES; cl++)
778 ira_class_translate[cl] = NO_REGS;
780 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
781 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
783 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
784 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
785 for (i = 0; i < ira_reg_class_cover_size; i++)
787 HARD_REG_SET temp_hard_regset2;
789 cover_class = ira_reg_class_cover[i];
790 COPY_HARD_REG_SET (temp_hard_regset2,
791 reg_class_contents[cover_class]);
792 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
793 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
794 ira_class_translate[cl] = cover_class;
797 for (i = 0; i < ira_reg_class_cover_size; i++)
799 cover_class = ira_reg_class_cover[i];
800 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
801 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
802 (cl = *cl_ptr) != LIM_REG_CLASSES;
803 cl_ptr++)
805 if (ira_class_translate[cl] == NO_REGS)
806 ira_class_translate[cl] = cover_class;
807 #ifdef ENABLE_IRA_CHECKING
808 else
810 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
811 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
812 if (! hard_reg_set_empty_p (temp_hard_regset))
813 gcc_unreachable ();
815 #endif
817 ira_class_translate[cover_class] = cover_class;
819 /* For classes which are not fully covered by a cover class (in
820 other words covered by more one cover class), use the cheapest
821 cover class. */
822 for (cl = 0; cl < N_REG_CLASSES; cl++)
824 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
825 continue;
826 best_class = NO_REGS;
827 best_cost = INT_MAX;
828 for (i = 0; i < ira_reg_class_cover_size; i++)
830 cover_class = ira_reg_class_cover[i];
831 COPY_HARD_REG_SET (temp_hard_regset,
832 reg_class_contents[cover_class]);
833 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
834 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
835 if (! hard_reg_set_empty_p (temp_hard_regset))
837 min_cost = INT_MAX;
838 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
840 cost = (ira_memory_move_cost[mode][cl][0]
841 + ira_memory_move_cost[mode][cl][1]);
842 if (min_cost > cost)
843 min_cost = cost;
845 if (best_class == NO_REGS || best_cost > min_cost)
847 best_class = cover_class;
848 best_cost = min_cost;
852 ira_class_translate[cl] = best_class;
856 /* Order numbers of cover classes in original target cover class
857 array, -1 for non-cover classes. This is only live during
858 reorder_important_classes. */
859 static int cover_class_order[N_REG_CLASSES];
861 /* The function used to sort the important classes. */
862 static int
863 comp_reg_classes_func (const void *v1p, const void *v2p)
865 enum reg_class cl1 = *(const enum reg_class *) v1p;
866 enum reg_class cl2 = *(const enum reg_class *) v2p;
867 int diff;
869 cl1 = ira_class_translate[cl1];
870 cl2 = ira_class_translate[cl2];
871 if (cl1 != NO_REGS && cl2 != NO_REGS
872 && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
873 return diff;
874 return (int) cl1 - (int) cl2;
877 /* Reorder important classes according to the order of their cover
878 classes. */
879 static void
880 reorder_important_classes (void)
882 int i;
884 for (i = 0; i < N_REG_CLASSES; i++)
885 cover_class_order[i] = -1;
886 for (i = 0; i < ira_reg_class_cover_size; i++)
887 cover_class_order[ira_reg_class_cover[i]] = i;
888 qsort (ira_important_classes, ira_important_classes_num,
889 sizeof (enum reg_class), comp_reg_classes_func);
892 /* Set up the above reg class relations. */
893 static void
894 setup_reg_class_relations (void)
896 int i, cl1, cl2, cl3;
897 HARD_REG_SET intersection_set, union_set, temp_set2;
898 bool important_class_p[N_REG_CLASSES];
900 memset (important_class_p, 0, sizeof (important_class_p));
901 for (i = 0; i < ira_important_classes_num; i++)
902 important_class_p[ira_important_classes[i]] = true;
903 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
905 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
906 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
908 ira_reg_classes_intersect_p[cl1][cl2] = false;
909 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
910 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
911 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
912 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
913 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
914 if (hard_reg_set_empty_p (temp_hard_regset)
915 && hard_reg_set_empty_p (temp_set2))
917 for (i = 0;; i++)
919 cl3 = reg_class_subclasses[cl1][i];
920 if (cl3 == LIM_REG_CLASSES)
921 break;
922 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
923 (enum reg_class) cl3))
924 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
926 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
927 continue;
929 ira_reg_classes_intersect_p[cl1][cl2]
930 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
931 if (important_class_p[cl1] && important_class_p[cl2]
932 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
934 enum reg_class *p;
936 p = &ira_reg_class_super_classes[cl1][0];
937 while (*p != LIM_REG_CLASSES)
938 p++;
939 *p++ = (enum reg_class) cl2;
940 *p = LIM_REG_CLASSES;
942 ira_reg_class_union[cl1][cl2] = NO_REGS;
943 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
944 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
945 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
946 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
947 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
948 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
949 for (i = 0; i < ira_important_classes_num; i++)
951 cl3 = ira_important_classes[i];
952 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
953 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
954 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
956 COPY_HARD_REG_SET
957 (temp_set2,
958 reg_class_contents[(int)
959 ira_reg_class_intersect[cl1][cl2]]);
960 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
961 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
962 /* Ignore unavailable hard registers and prefer
963 smallest class for debugging purposes. */
964 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
965 && hard_reg_set_subset_p
966 (reg_class_contents[cl3],
967 reg_class_contents
968 [(int) ira_reg_class_intersect[cl1][cl2]])))
969 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
971 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
973 COPY_HARD_REG_SET
974 (temp_set2,
975 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
976 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
977 if (ira_reg_class_union[cl1][cl2] == NO_REGS
978 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
980 && (! hard_reg_set_equal_p (temp_set2,
981 temp_hard_regset)
982 /* Ignore unavailable hard registers and
983 prefer smallest class for debugging
984 purposes. */
985 || hard_reg_set_subset_p
986 (reg_class_contents[cl3],
987 reg_class_contents
988 [(int) ira_reg_class_union[cl1][cl2]]))))
989 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
996 /* Output all cover classes and the translation map into file F. */
997 static void
998 print_class_cover (FILE *f)
1000 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1001 int i;
1003 fprintf (f, "Class cover:\n");
1004 for (i = 0; i < ira_reg_class_cover_size; i++)
1005 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1006 fprintf (f, "\nClass translation:\n");
1007 for (i = 0; i < N_REG_CLASSES; i++)
1008 fprintf (f, " %s -> %s\n", reg_class_names[i],
1009 reg_class_names[ira_class_translate[i]]);
1012 /* Output all cover classes and the translation map into
1013 stderr. */
1014 void
1015 ira_debug_class_cover (void)
1017 print_class_cover (stderr);
1020 /* Set up different arrays concerning class subsets, cover and
1021 important classes. */
1022 static void
1023 find_reg_class_closure (void)
1025 setup_reg_subclasses ();
1026 setup_cover_and_important_classes ();
1027 setup_class_translate ();
1028 reorder_important_classes ();
1029 setup_reg_class_relations ();
1034 /* Set up the array above. */
1035 static void
1036 setup_hard_regno_cover_class (void)
1038 int i, j;
1039 enum reg_class cl;
1041 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1043 ira_hard_regno_cover_class[i] = NO_REGS;
1044 for (j = 0; j < ira_reg_class_cover_size; j++)
1046 cl = ira_reg_class_cover[j];
1047 if (ira_class_hard_reg_index[cl][i] >= 0)
1049 ira_hard_regno_cover_class[i] = cl;
1050 break;
1059 /* Form IRA_REG_CLASS_NREGS map. */
1060 static void
1061 setup_reg_class_nregs (void)
1063 int cl, m;
1065 for (cl = 0; cl < N_REG_CLASSES; cl++)
1066 for (m = 0; m < MAX_MACHINE_MODE; m++)
1067 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1068 (enum machine_mode) m);
1073 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1074 static void
1075 setup_prohibited_class_mode_regs (void)
1077 int i, j, k, hard_regno;
1078 enum reg_class cl;
1080 for (i = 0; i < ira_reg_class_cover_size; i++)
1082 cl = ira_reg_class_cover[i];
1083 for (j = 0; j < NUM_MACHINE_MODES; j++)
1085 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1086 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1088 hard_regno = ira_class_hard_regs[cl][k];
1089 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1090 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1091 hard_regno);
1099 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1100 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1101 not done yet. */
1102 void
1103 ira_init_register_move_cost (enum machine_mode mode)
1105 int cl1, cl2;
1107 ira_assert (ira_register_move_cost[mode] == NULL
1108 && ira_may_move_in_cost[mode] == NULL
1109 && ira_may_move_out_cost[mode] == NULL);
1110 if (move_cost[mode] == NULL)
1111 init_move_cost (mode);
1112 ira_register_move_cost[mode] = move_cost[mode];
1113 /* Don't use ira_allocate because the tables exist out of scope of a
1114 IRA call. */
1115 ira_may_move_in_cost[mode]
1116 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1117 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1118 sizeof (move_table) * N_REG_CLASSES);
1119 ira_may_move_out_cost[mode]
1120 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1121 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1122 sizeof (move_table) * N_REG_CLASSES);
1123 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1125 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1127 if (ira_class_subset_p[cl1][cl2])
1128 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1129 if (ira_class_subset_p[cl2][cl1])
1130 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1137 /* This is called once during compiler work. It sets up
1138 different arrays whose values don't depend on the compiled
1139 function. */
1140 void
1141 ira_init_once (void)
1143 int mode;
1145 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1147 ira_register_move_cost[mode] = NULL;
1148 ira_may_move_in_cost[mode] = NULL;
1149 ira_may_move_out_cost[mode] = NULL;
1151 ira_init_costs_once ();
1154 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1155 ira_may_move_out_cost for each mode. */
1156 static void
1157 free_register_move_costs (void)
1159 int mode;
1161 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1163 if (ira_may_move_in_cost[mode] != NULL)
1164 free (ira_may_move_in_cost[mode]);
1165 if (ira_may_move_out_cost[mode] != NULL)
1166 free (ira_may_move_out_cost[mode]);
1167 ira_register_move_cost[mode] = NULL;
1168 ira_may_move_in_cost[mode] = NULL;
1169 ira_may_move_out_cost[mode] = NULL;
1173 /* This is called every time when register related information is
1174 changed. */
1175 void
1176 ira_init (void)
1178 free_register_move_costs ();
1179 setup_reg_mode_hard_regset ();
1180 setup_alloc_regs (flag_omit_frame_pointer != 0);
1181 setup_class_subset_and_memory_move_costs ();
1182 find_reg_class_closure ();
1183 setup_hard_regno_cover_class ();
1184 setup_reg_class_nregs ();
1185 setup_prohibited_class_mode_regs ();
1186 ira_init_costs ();
1189 /* Function called once at the end of compiler work. */
1190 void
1191 ira_finish_once (void)
1193 ira_finish_costs_once ();
1194 free_register_move_costs ();
1198 #define ira_prohibited_mode_move_regs_initialized_p \
1199 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1201 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1202 static void
1203 setup_prohibited_mode_move_regs (void)
1205 int i, j;
1206 rtx test_reg1, test_reg2, move_pat, move_insn;
1208 if (ira_prohibited_mode_move_regs_initialized_p)
1209 return;
1210 ira_prohibited_mode_move_regs_initialized_p = true;
1211 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1212 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1213 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1214 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1215 for (i = 0; i < NUM_MACHINE_MODES; i++)
1217 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1218 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1220 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1221 continue;
1222 SET_REGNO (test_reg1, j);
1223 PUT_MODE (test_reg1, (enum machine_mode) i);
1224 SET_REGNO (test_reg2, j);
1225 PUT_MODE (test_reg2, (enum machine_mode) i);
1226 INSN_CODE (move_insn) = -1;
1227 recog_memoized (move_insn);
1228 if (INSN_CODE (move_insn) < 0)
1229 continue;
1230 extract_insn (move_insn);
1231 if (! constrain_operands (1))
1232 continue;
1233 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1240 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1241 static bool
1242 ira_bad_reload_regno_1 (int regno, rtx x)
1244 int x_regno, n, i;
1245 ira_allocno_t a;
1246 enum reg_class pref;
1248 /* We only deal with pseudo regs. */
1249 if (! x || GET_CODE (x) != REG)
1250 return false;
1252 x_regno = REGNO (x);
1253 if (x_regno < FIRST_PSEUDO_REGISTER)
1254 return false;
1256 /* If the pseudo prefers REGNO explicitly, then do not consider
1257 REGNO a bad spill choice. */
1258 pref = reg_preferred_class (x_regno);
1259 if (reg_class_size[pref] == 1)
1260 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1262 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1263 poor choice for a reload regno. */
1264 a = ira_regno_allocno_map[x_regno];
1265 n = ALLOCNO_NUM_OBJECTS (a);
1266 for (i = 0; i < n; i++)
1268 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1269 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1270 return true;
1272 return false;
1275 /* Return nonzero if REGNO is a particularly bad choice for reloading
1276 IN or OUT. */
1277 bool
1278 ira_bad_reload_regno (int regno, rtx in, rtx out)
1280 return (ira_bad_reload_regno_1 (regno, in)
1281 || ira_bad_reload_regno_1 (regno, out));
1284 /* Function specific hard registers that can not be used for the
1285 register allocation. */
1286 HARD_REG_SET ira_no_alloc_regs;
1288 /* Return TRUE if *LOC contains an asm. */
1289 static int
1290 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1292 if ( !*loc)
1293 return FALSE;
1294 if (GET_CODE (*loc) == ASM_OPERANDS)
1295 return TRUE;
1296 return FALSE;
1300 /* Return TRUE if INSN contains an ASM. */
1301 static bool
1302 insn_contains_asm (rtx insn)
1304 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1307 /* Add register clobbers from asm statements. */
1308 static void
1309 compute_regs_asm_clobbered (void)
1311 basic_block bb;
1313 FOR_EACH_BB (bb)
1315 rtx insn;
1316 FOR_BB_INSNS_REVERSE (bb, insn)
1318 df_ref *def_rec;
1320 if (insn_contains_asm (insn))
1321 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1323 df_ref def = *def_rec;
1324 unsigned int dregno = DF_REF_REGNO (def);
1325 if (dregno < FIRST_PSEUDO_REGISTER)
1327 unsigned int i;
1328 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1329 unsigned int end = dregno
1330 + hard_regno_nregs[dregno][mode] - 1;
1332 for (i = dregno; i <= end; ++i)
1333 SET_HARD_REG_BIT(crtl->asm_clobbers, i);
1341 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1342 void
1343 ira_setup_eliminable_regset (void)
1345 #ifdef ELIMINABLE_REGS
1346 int i;
1347 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1348 #endif
1349 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1350 sp for alloca. So we can't eliminate the frame pointer in that
1351 case. At some point, we should improve this by emitting the
1352 sp-adjusting insns for this case. */
1353 int need_fp
1354 = (! flag_omit_frame_pointer
1355 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1356 /* We need the frame pointer to catch stack overflow exceptions
1357 if the stack pointer is moving. */
1358 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1359 || crtl->accesses_prior_frames
1360 || crtl->stack_realign_needed
1361 || targetm.frame_pointer_required ());
1363 frame_pointer_needed = need_fp;
1365 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1366 CLEAR_HARD_REG_SET (eliminable_regset);
1368 compute_regs_asm_clobbered ();
1370 /* Build the regset of all eliminable registers and show we can't
1371 use those that we already know won't be eliminated. */
1372 #ifdef ELIMINABLE_REGS
1373 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1375 bool cannot_elim
1376 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1377 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1379 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1381 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1383 if (cannot_elim)
1384 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1386 else if (cannot_elim)
1387 error ("%s cannot be used in asm here",
1388 reg_names[eliminables[i].from]);
1389 else
1390 df_set_regs_ever_live (eliminables[i].from, true);
1392 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1393 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1395 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1396 if (need_fp)
1397 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1399 else if (need_fp)
1400 error ("%s cannot be used in asm here",
1401 reg_names[HARD_FRAME_POINTER_REGNUM]);
1402 else
1403 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1404 #endif
1406 #else
1407 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1409 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1410 if (need_fp)
1411 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1413 else if (need_fp)
1414 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1415 else
1416 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1417 #endif
1422 /* The length of the following two arrays. */
1423 int ira_reg_equiv_len;
1425 /* The element value is TRUE if the corresponding regno value is
1426 invariant. */
1427 bool *ira_reg_equiv_invariant_p;
1429 /* The element value is equiv constant of given pseudo-register or
1430 NULL_RTX. */
1431 rtx *ira_reg_equiv_const;
1433 /* Set up the two arrays declared above. */
1434 static void
1435 find_reg_equiv_invariant_const (void)
1437 int i;
1438 bool invariant_p;
1439 rtx list, insn, note, constant, x;
1441 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1443 constant = NULL_RTX;
1444 invariant_p = false;
1445 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1447 insn = XEXP (list, 0);
1448 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1450 if (note == NULL_RTX)
1451 continue;
1453 x = XEXP (note, 0);
1455 if (! CONSTANT_P (x)
1456 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1458 /* It can happen that a REG_EQUIV note contains a MEM
1459 that is not a legitimate memory operand. As later
1460 stages of the reload assume that all addresses found
1461 in the reg_equiv_* arrays were originally legitimate,
1462 we ignore such REG_EQUIV notes. */
1463 if (memory_operand (x, VOIDmode))
1464 invariant_p = MEM_READONLY_P (x);
1465 else if (function_invariant_p (x))
1467 if (GET_CODE (x) == PLUS
1468 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1469 invariant_p = true;
1470 else
1471 constant = x;
1475 ira_reg_equiv_invariant_p[i] = invariant_p;
1476 ira_reg_equiv_const[i] = constant;
1482 /* Vector of substitutions of register numbers,
1483 used to map pseudo regs into hardware regs.
1484 This is set up as a result of register allocation.
1485 Element N is the hard reg assigned to pseudo reg N,
1486 or is -1 if no hard reg was assigned.
1487 If N is a hard reg number, element N is N. */
1488 short *reg_renumber;
1490 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1491 the allocation found by IRA. */
1492 static void
1493 setup_reg_renumber (void)
1495 int regno, hard_regno;
1496 ira_allocno_t a;
1497 ira_allocno_iterator ai;
1499 caller_save_needed = 0;
1500 FOR_EACH_ALLOCNO (a, ai)
1502 /* There are no caps at this point. */
1503 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1504 if (! ALLOCNO_ASSIGNED_P (a))
1505 /* It can happen if A is not referenced but partially anticipated
1506 somewhere in a region. */
1507 ALLOCNO_ASSIGNED_P (a) = true;
1508 ira_free_allocno_updated_costs (a);
1509 hard_regno = ALLOCNO_HARD_REGNO (a);
1510 regno = (int) REGNO (ALLOCNO_REG (a));
1511 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1512 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1513 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1514 call_used_reg_set))
1516 ira_assert (!optimize || flag_caller_saves
1517 || regno >= ira_reg_equiv_len
1518 || ira_reg_equiv_const[regno]
1519 || ira_reg_equiv_invariant_p[regno]);
1520 caller_save_needed = 1;
1525 /* Set up allocno assignment flags for further allocation
1526 improvements. */
1527 static void
1528 setup_allocno_assignment_flags (void)
1530 int hard_regno;
1531 ira_allocno_t a;
1532 ira_allocno_iterator ai;
1534 FOR_EACH_ALLOCNO (a, ai)
1536 if (! ALLOCNO_ASSIGNED_P (a))
1537 /* It can happen if A is not referenced but partially anticipated
1538 somewhere in a region. */
1539 ira_free_allocno_updated_costs (a);
1540 hard_regno = ALLOCNO_HARD_REGNO (a);
1541 /* Don't assign hard registers to allocnos which are destination
1542 of removed store at the end of loop. It has no sense to keep
1543 the same value in different hard registers. It is also
1544 impossible to assign hard registers correctly to such
1545 allocnos because the cost info and info about intersected
1546 calls are incorrect for them. */
1547 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1548 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1549 || (ALLOCNO_MEMORY_COST (a)
1550 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1551 ira_assert (hard_regno < 0
1552 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1553 reg_class_contents
1554 [ALLOCNO_COVER_CLASS (a)]));
1558 /* Evaluate overall allocation cost and the costs for using hard
1559 registers and memory for allocnos. */
1560 static void
1561 calculate_allocation_cost (void)
1563 int hard_regno, cost;
1564 ira_allocno_t a;
1565 ira_allocno_iterator ai;
1567 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1568 FOR_EACH_ALLOCNO (a, ai)
1570 hard_regno = ALLOCNO_HARD_REGNO (a);
1571 ira_assert (hard_regno < 0
1572 || ! ira_hard_reg_not_in_set_p
1573 (hard_regno, ALLOCNO_MODE (a),
1574 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1575 if (hard_regno < 0)
1577 cost = ALLOCNO_MEMORY_COST (a);
1578 ira_mem_cost += cost;
1580 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1582 cost = (ALLOCNO_HARD_REG_COSTS (a)
1583 [ira_class_hard_reg_index
1584 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1585 ira_reg_cost += cost;
1587 else
1589 cost = ALLOCNO_COVER_CLASS_COST (a);
1590 ira_reg_cost += cost;
1592 ira_overall_cost += cost;
1595 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1597 fprintf (ira_dump_file,
1598 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1599 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1600 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1601 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1602 ira_move_loops_num, ira_additional_jumps_num);
1607 #ifdef ENABLE_IRA_CHECKING
1608 /* Check the correctness of the allocation. We do need this because
1609 of complicated code to transform more one region internal
1610 representation into one region representation. */
1611 static void
1612 check_allocation (void)
1614 ira_allocno_t a;
1615 int hard_regno, nregs, conflict_nregs;
1616 ira_allocno_iterator ai;
1618 FOR_EACH_ALLOCNO (a, ai)
1620 int n = ALLOCNO_NUM_OBJECTS (a);
1621 int i;
1623 if (ALLOCNO_CAP_MEMBER (a) != NULL
1624 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1625 continue;
1626 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1627 if (nregs == 1)
1628 /* We allocated a single hard register. */
1629 n = 1;
1630 else if (n > 1)
1631 /* We allocated multiple hard registers, and we will test
1632 conflicts in a granularity of single hard regs. */
1633 nregs = 1;
1635 for (i = 0; i < n; i++)
1637 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1638 ira_object_t conflict_obj;
1639 ira_object_conflict_iterator oci;
1640 int this_regno = hard_regno;
1641 if (n > 1)
1643 if (WORDS_BIG_ENDIAN)
1644 this_regno += n - i - 1;
1645 else
1646 this_regno += i;
1648 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1650 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1651 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
1652 if (conflict_hard_regno < 0)
1653 continue;
1655 conflict_nregs
1656 = (hard_regno_nregs
1657 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1659 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
1660 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
1662 if (WORDS_BIG_ENDIAN)
1663 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
1664 - OBJECT_SUBWORD (conflict_obj) - 1);
1665 else
1666 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
1667 conflict_nregs = 1;
1670 if ((conflict_hard_regno <= this_regno
1671 && this_regno < conflict_hard_regno + conflict_nregs)
1672 || (this_regno <= conflict_hard_regno
1673 && conflict_hard_regno < this_regno + nregs))
1675 fprintf (stderr, "bad allocation for %d and %d\n",
1676 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1677 gcc_unreachable ();
1683 #endif
1685 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1686 by IRA. */
1687 static void
1688 fix_reg_equiv_init (void)
1690 int max_regno = max_reg_num ();
1691 int i, new_regno;
1692 rtx x, prev, next, insn, set;
1694 if (reg_equiv_init_size < max_regno)
1696 reg_equiv_init = GGC_RESIZEVEC (rtx, reg_equiv_init, max_regno);
1697 while (reg_equiv_init_size < max_regno)
1698 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1699 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1700 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1702 next = XEXP (x, 1);
1703 insn = XEXP (x, 0);
1704 set = single_set (insn);
1705 ira_assert (set != NULL_RTX
1706 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1707 if (REG_P (SET_DEST (set))
1708 && ((int) REGNO (SET_DEST (set)) == i
1709 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1710 new_regno = REGNO (SET_DEST (set));
1711 else if (REG_P (SET_SRC (set))
1712 && ((int) REGNO (SET_SRC (set)) == i
1713 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1714 new_regno = REGNO (SET_SRC (set));
1715 else
1716 gcc_unreachable ();
1717 if (new_regno == i)
1718 prev = x;
1719 else
1721 if (prev == NULL_RTX)
1722 reg_equiv_init[i] = next;
1723 else
1724 XEXP (prev, 1) = next;
1725 XEXP (x, 1) = reg_equiv_init[new_regno];
1726 reg_equiv_init[new_regno] = x;
1732 #ifdef ENABLE_IRA_CHECKING
1733 /* Print redundant memory-memory copies. */
1734 static void
1735 print_redundant_copies (void)
1737 int hard_regno;
1738 ira_allocno_t a;
1739 ira_copy_t cp, next_cp;
1740 ira_allocno_iterator ai;
1742 FOR_EACH_ALLOCNO (a, ai)
1744 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1745 /* It is a cap. */
1746 continue;
1747 hard_regno = ALLOCNO_HARD_REGNO (a);
1748 if (hard_regno >= 0)
1749 continue;
1750 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1751 if (cp->first == a)
1752 next_cp = cp->next_first_allocno_copy;
1753 else
1755 next_cp = cp->next_second_allocno_copy;
1756 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1757 && cp->insn != NULL_RTX
1758 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1759 fprintf (ira_dump_file,
1760 " Redundant move from %d(freq %d):%d\n",
1761 INSN_UID (cp->insn), cp->freq, hard_regno);
1765 #endif
1767 /* Setup preferred and alternative classes for new pseudo-registers
1768 created by IRA starting with START. */
1769 static void
1770 setup_preferred_alternate_classes_for_new_pseudos (int start)
1772 int i, old_regno;
1773 int max_regno = max_reg_num ();
1775 for (i = start; i < max_regno; i++)
1777 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1778 ira_assert (i != old_regno);
1779 setup_reg_classes (i, reg_preferred_class (old_regno),
1780 reg_alternate_class (old_regno),
1781 reg_cover_class (old_regno));
1782 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1783 fprintf (ira_dump_file,
1784 " New r%d: setting preferred %s, alternative %s\n",
1785 i, reg_class_names[reg_preferred_class (old_regno)],
1786 reg_class_names[reg_alternate_class (old_regno)]);
1792 /* Regional allocation can create new pseudo-registers. This function
1793 expands some arrays for pseudo-registers. */
1794 static void
1795 expand_reg_info (int old_size)
1797 int i;
1798 int size = max_reg_num ();
1800 resize_reg_info ();
1801 for (i = old_size; i < size; i++)
1802 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
1805 /* Return TRUE if there is too high register pressure in the function.
1806 It is used to decide when stack slot sharing is worth to do. */
1807 static bool
1808 too_high_register_pressure_p (void)
1810 int i;
1811 enum reg_class cover_class;
1813 for (i = 0; i < ira_reg_class_cover_size; i++)
1815 cover_class = ira_reg_class_cover[i];
1816 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1817 return true;
1819 return false;
1824 /* Indicate that hard register number FROM was eliminated and replaced with
1825 an offset from hard register number TO. The status of hard registers live
1826 at the start of a basic block is updated by replacing a use of FROM with
1827 a use of TO. */
1829 void
1830 mark_elimination (int from, int to)
1832 basic_block bb;
1834 FOR_EACH_BB (bb)
1836 /* We don't use LIVE info in IRA. */
1837 bitmap r = DF_LR_IN (bb);
1839 if (REGNO_REG_SET_P (r, from))
1841 CLEAR_REGNO_REG_SET (r, from);
1842 SET_REGNO_REG_SET (r, to);
1849 struct equivalence
1851 /* Set when a REG_EQUIV note is found or created. Use to
1852 keep track of what memory accesses might be created later,
1853 e.g. by reload. */
1854 rtx replacement;
1855 rtx *src_p;
1856 /* The list of each instruction which initializes this register. */
1857 rtx init_insns;
1858 /* Loop depth is used to recognize equivalences which appear
1859 to be present within the same loop (or in an inner loop). */
1860 int loop_depth;
1861 /* Nonzero if this had a preexisting REG_EQUIV note. */
1862 int is_arg_equivalence;
1863 /* Set when an attempt should be made to replace a register
1864 with the associated src_p entry. */
1865 char replace;
1868 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1869 structure for that register. */
1870 static struct equivalence *reg_equiv;
1872 /* Used for communication between the following two functions: contains
1873 a MEM that we wish to ensure remains unchanged. */
1874 static rtx equiv_mem;
1876 /* Set nonzero if EQUIV_MEM is modified. */
1877 static int equiv_mem_modified;
1879 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1880 Called via note_stores. */
1881 static void
1882 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1883 void *data ATTRIBUTE_UNUSED)
1885 if ((REG_P (dest)
1886 && reg_overlap_mentioned_p (dest, equiv_mem))
1887 || (MEM_P (dest)
1888 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1889 equiv_mem_modified = 1;
1892 /* Verify that no store between START and the death of REG invalidates
1893 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1894 by storing into an overlapping memory location, or with a non-const
1895 CALL_INSN.
1897 Return 1 if MEMREF remains valid. */
1898 static int
1899 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1901 rtx insn;
1902 rtx note;
1904 equiv_mem = memref;
1905 equiv_mem_modified = 0;
1907 /* If the memory reference has side effects or is volatile, it isn't a
1908 valid equivalence. */
1909 if (side_effects_p (memref))
1910 return 0;
1912 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1914 if (! INSN_P (insn))
1915 continue;
1917 if (find_reg_note (insn, REG_DEAD, reg))
1918 return 1;
1920 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
1921 && ! RTL_CONST_OR_PURE_CALL_P (insn))
1922 return 0;
1924 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1926 /* If a register mentioned in MEMREF is modified via an
1927 auto-increment, we lose the equivalence. Do the same if one
1928 dies; although we could extend the life, it doesn't seem worth
1929 the trouble. */
1931 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1932 if ((REG_NOTE_KIND (note) == REG_INC
1933 || REG_NOTE_KIND (note) == REG_DEAD)
1934 && REG_P (XEXP (note, 0))
1935 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1936 return 0;
1939 return 0;
1942 /* Returns zero if X is known to be invariant. */
1943 static int
1944 equiv_init_varies_p (rtx x)
1946 RTX_CODE code = GET_CODE (x);
1947 int i;
1948 const char *fmt;
1950 switch (code)
1952 case MEM:
1953 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
1955 case CONST:
1956 case CONST_INT:
1957 case CONST_DOUBLE:
1958 case CONST_FIXED:
1959 case CONST_VECTOR:
1960 case SYMBOL_REF:
1961 case LABEL_REF:
1962 return 0;
1964 case REG:
1965 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
1967 case ASM_OPERANDS:
1968 if (MEM_VOLATILE_P (x))
1969 return 1;
1971 /* Fall through. */
1973 default:
1974 break;
1977 fmt = GET_RTX_FORMAT (code);
1978 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1979 if (fmt[i] == 'e')
1981 if (equiv_init_varies_p (XEXP (x, i)))
1982 return 1;
1984 else if (fmt[i] == 'E')
1986 int j;
1987 for (j = 0; j < XVECLEN (x, i); j++)
1988 if (equiv_init_varies_p (XVECEXP (x, i, j)))
1989 return 1;
1992 return 0;
1995 /* Returns nonzero if X (used to initialize register REGNO) is movable.
1996 X is only movable if the registers it uses have equivalent initializations
1997 which appear to be within the same loop (or in an inner loop) and movable
1998 or if they are not candidates for local_alloc and don't vary. */
1999 static int
2000 equiv_init_movable_p (rtx x, int regno)
2002 int i, j;
2003 const char *fmt;
2004 enum rtx_code code = GET_CODE (x);
2006 switch (code)
2008 case SET:
2009 return equiv_init_movable_p (SET_SRC (x), regno);
2011 case CC0:
2012 case CLOBBER:
2013 return 0;
2015 case PRE_INC:
2016 case PRE_DEC:
2017 case POST_INC:
2018 case POST_DEC:
2019 case PRE_MODIFY:
2020 case POST_MODIFY:
2021 return 0;
2023 case REG:
2024 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2025 && reg_equiv[REGNO (x)].replace)
2026 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2028 case UNSPEC_VOLATILE:
2029 return 0;
2031 case ASM_OPERANDS:
2032 if (MEM_VOLATILE_P (x))
2033 return 0;
2035 /* Fall through. */
2037 default:
2038 break;
2041 fmt = GET_RTX_FORMAT (code);
2042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2043 switch (fmt[i])
2045 case 'e':
2046 if (! equiv_init_movable_p (XEXP (x, i), regno))
2047 return 0;
2048 break;
2049 case 'E':
2050 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2051 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2052 return 0;
2053 break;
2056 return 1;
2059 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2060 static int
2061 contains_replace_regs (rtx x)
2063 int i, j;
2064 const char *fmt;
2065 enum rtx_code code = GET_CODE (x);
2067 switch (code)
2069 case CONST_INT:
2070 case CONST:
2071 case LABEL_REF:
2072 case SYMBOL_REF:
2073 case CONST_DOUBLE:
2074 case CONST_FIXED:
2075 case CONST_VECTOR:
2076 case PC:
2077 case CC0:
2078 case HIGH:
2079 return 0;
2081 case REG:
2082 return reg_equiv[REGNO (x)].replace;
2084 default:
2085 break;
2088 fmt = GET_RTX_FORMAT (code);
2089 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2090 switch (fmt[i])
2092 case 'e':
2093 if (contains_replace_regs (XEXP (x, i)))
2094 return 1;
2095 break;
2096 case 'E':
2097 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2098 if (contains_replace_regs (XVECEXP (x, i, j)))
2099 return 1;
2100 break;
2103 return 0;
2106 /* TRUE if X references a memory location that would be affected by a store
2107 to MEMREF. */
2108 static int
2109 memref_referenced_p (rtx memref, rtx x)
2111 int i, j;
2112 const char *fmt;
2113 enum rtx_code code = GET_CODE (x);
2115 switch (code)
2117 case CONST_INT:
2118 case CONST:
2119 case LABEL_REF:
2120 case SYMBOL_REF:
2121 case CONST_DOUBLE:
2122 case CONST_FIXED:
2123 case CONST_VECTOR:
2124 case PC:
2125 case CC0:
2126 case HIGH:
2127 case LO_SUM:
2128 return 0;
2130 case REG:
2131 return (reg_equiv[REGNO (x)].replacement
2132 && memref_referenced_p (memref,
2133 reg_equiv[REGNO (x)].replacement));
2135 case MEM:
2136 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2137 return 1;
2138 break;
2140 case SET:
2141 /* If we are setting a MEM, it doesn't count (its address does), but any
2142 other SET_DEST that has a MEM in it is referencing the MEM. */
2143 if (MEM_P (SET_DEST (x)))
2145 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2146 return 1;
2148 else if (memref_referenced_p (memref, SET_DEST (x)))
2149 return 1;
2151 return memref_referenced_p (memref, SET_SRC (x));
2153 default:
2154 break;
2157 fmt = GET_RTX_FORMAT (code);
2158 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2159 switch (fmt[i])
2161 case 'e':
2162 if (memref_referenced_p (memref, XEXP (x, i)))
2163 return 1;
2164 break;
2165 case 'E':
2166 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2167 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2168 return 1;
2169 break;
2172 return 0;
2175 /* TRUE if some insn in the range (START, END] references a memory location
2176 that would be affected by a store to MEMREF. */
2177 static int
2178 memref_used_between_p (rtx memref, rtx start, rtx end)
2180 rtx insn;
2182 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2183 insn = NEXT_INSN (insn))
2185 if (!NONDEBUG_INSN_P (insn))
2186 continue;
2188 if (memref_referenced_p (memref, PATTERN (insn)))
2189 return 1;
2191 /* Nonconst functions may access memory. */
2192 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2193 return 1;
2196 return 0;
2199 /* Mark REG as having no known equivalence.
2200 Some instructions might have been processed before and furnished
2201 with REG_EQUIV notes for this register; these notes will have to be
2202 removed.
2203 STORE is the piece of RTL that does the non-constant / conflicting
2204 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2205 but needs to be there because this function is called from note_stores. */
2206 static void
2207 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2209 int regno;
2210 rtx list;
2212 if (!REG_P (reg))
2213 return;
2214 regno = REGNO (reg);
2215 list = reg_equiv[regno].init_insns;
2216 if (list == const0_rtx)
2217 return;
2218 reg_equiv[regno].init_insns = const0_rtx;
2219 reg_equiv[regno].replacement = NULL_RTX;
2220 /* This doesn't matter for equivalences made for argument registers, we
2221 should keep their initialization insns. */
2222 if (reg_equiv[regno].is_arg_equivalence)
2223 return;
2224 reg_equiv_init[regno] = NULL_RTX;
2225 for (; list; list = XEXP (list, 1))
2227 rtx insn = XEXP (list, 0);
2228 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2232 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2233 equivalent replacement. */
2235 static rtx
2236 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2238 if (REG_P (loc))
2240 bitmap cleared_regs = (bitmap) data;
2241 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2242 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2243 NULL_RTX, adjust_cleared_regs, data);
2245 return NULL_RTX;
2248 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2249 static int recorded_label_ref;
2251 /* Find registers that are equivalent to a single value throughout the
2252 compilation (either because they can be referenced in memory or are set once
2253 from a single constant). Lower their priority for a register.
2255 If such a register is only referenced once, try substituting its value
2256 into the using insn. If it succeeds, we can eliminate the register
2257 completely.
2259 Initialize the REG_EQUIV_INIT array of initializing insns.
2261 Return non-zero if jump label rebuilding should be done. */
2262 static int
2263 update_equiv_regs (void)
2265 rtx insn;
2266 basic_block bb;
2267 int loop_depth;
2268 bitmap cleared_regs;
2270 /* We need to keep track of whether or not we recorded a LABEL_REF so
2271 that we know if the jump optimizer needs to be rerun. */
2272 recorded_label_ref = 0;
2274 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2275 reg_equiv_init = ggc_alloc_cleared_vec_rtx (max_regno);
2276 reg_equiv_init_size = max_regno;
2278 init_alias_analysis ();
2280 /* Scan the insns and find which registers have equivalences. Do this
2281 in a separate scan of the insns because (due to -fcse-follow-jumps)
2282 a register can be set below its use. */
2283 FOR_EACH_BB (bb)
2285 loop_depth = bb->loop_depth;
2287 for (insn = BB_HEAD (bb);
2288 insn != NEXT_INSN (BB_END (bb));
2289 insn = NEXT_INSN (insn))
2291 rtx note;
2292 rtx set;
2293 rtx dest, src;
2294 int regno;
2296 if (! INSN_P (insn))
2297 continue;
2299 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2300 if (REG_NOTE_KIND (note) == REG_INC)
2301 no_equiv (XEXP (note, 0), note, NULL);
2303 set = single_set (insn);
2305 /* If this insn contains more (or less) than a single SET,
2306 only mark all destinations as having no known equivalence. */
2307 if (set == 0)
2309 note_stores (PATTERN (insn), no_equiv, NULL);
2310 continue;
2312 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2314 int i;
2316 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2318 rtx part = XVECEXP (PATTERN (insn), 0, i);
2319 if (part != set)
2320 note_stores (part, no_equiv, NULL);
2324 dest = SET_DEST (set);
2325 src = SET_SRC (set);
2327 /* See if this is setting up the equivalence between an argument
2328 register and its stack slot. */
2329 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2330 if (note)
2332 gcc_assert (REG_P (dest));
2333 regno = REGNO (dest);
2335 /* Note that we don't want to clear reg_equiv_init even if there
2336 are multiple sets of this register. */
2337 reg_equiv[regno].is_arg_equivalence = 1;
2339 /* Record for reload that this is an equivalencing insn. */
2340 if (rtx_equal_p (src, XEXP (note, 0)))
2341 reg_equiv_init[regno]
2342 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2344 /* Continue normally in case this is a candidate for
2345 replacements. */
2348 if (!optimize)
2349 continue;
2351 /* We only handle the case of a pseudo register being set
2352 once, or always to the same value. */
2353 /* ??? The mn10200 port breaks if we add equivalences for
2354 values that need an ADDRESS_REGS register and set them equivalent
2355 to a MEM of a pseudo. The actual problem is in the over-conservative
2356 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2357 calculate_needs, but we traditionally work around this problem
2358 here by rejecting equivalences when the destination is in a register
2359 that's likely spilled. This is fragile, of course, since the
2360 preferred class of a pseudo depends on all instructions that set
2361 or use it. */
2363 if (!REG_P (dest)
2364 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2365 || reg_equiv[regno].init_insns == const0_rtx
2366 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2367 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2369 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2370 also set somewhere else to a constant. */
2371 note_stores (set, no_equiv, NULL);
2372 continue;
2375 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2377 /* cse sometimes generates function invariants, but doesn't put a
2378 REG_EQUAL note on the insn. Since this note would be redundant,
2379 there's no point creating it earlier than here. */
2380 if (! note && ! rtx_varies_p (src, 0))
2381 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2383 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2384 since it represents a function call */
2385 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2386 note = NULL_RTX;
2388 if (DF_REG_DEF_COUNT (regno) != 1
2389 && (! note
2390 || rtx_varies_p (XEXP (note, 0), 0)
2391 || (reg_equiv[regno].replacement
2392 && ! rtx_equal_p (XEXP (note, 0),
2393 reg_equiv[regno].replacement))))
2395 no_equiv (dest, set, NULL);
2396 continue;
2398 /* Record this insn as initializing this register. */
2399 reg_equiv[regno].init_insns
2400 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2402 /* If this register is known to be equal to a constant, record that
2403 it is always equivalent to the constant. */
2404 if (DF_REG_DEF_COUNT (regno) == 1
2405 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2407 rtx note_value = XEXP (note, 0);
2408 remove_note (insn, note);
2409 set_unique_reg_note (insn, REG_EQUIV, note_value);
2412 /* If this insn introduces a "constant" register, decrease the priority
2413 of that register. Record this insn if the register is only used once
2414 more and the equivalence value is the same as our source.
2416 The latter condition is checked for two reasons: First, it is an
2417 indication that it may be more efficient to actually emit the insn
2418 as written (if no registers are available, reload will substitute
2419 the equivalence). Secondly, it avoids problems with any registers
2420 dying in this insn whose death notes would be missed.
2422 If we don't have a REG_EQUIV note, see if this insn is loading
2423 a register used only in one basic block from a MEM. If so, and the
2424 MEM remains unchanged for the life of the register, add a REG_EQUIV
2425 note. */
2427 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2429 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2430 && MEM_P (SET_SRC (set))
2431 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2432 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2434 if (note)
2436 int regno = REGNO (dest);
2437 rtx x = XEXP (note, 0);
2439 /* If we haven't done so, record for reload that this is an
2440 equivalencing insn. */
2441 if (!reg_equiv[regno].is_arg_equivalence)
2442 reg_equiv_init[regno]
2443 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2445 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2446 We might end up substituting the LABEL_REF for uses of the
2447 pseudo here or later. That kind of transformation may turn an
2448 indirect jump into a direct jump, in which case we must rerun the
2449 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2450 if (GET_CODE (x) == LABEL_REF
2451 || (GET_CODE (x) == CONST
2452 && GET_CODE (XEXP (x, 0)) == PLUS
2453 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2454 recorded_label_ref = 1;
2456 reg_equiv[regno].replacement = x;
2457 reg_equiv[regno].src_p = &SET_SRC (set);
2458 reg_equiv[regno].loop_depth = loop_depth;
2460 /* Don't mess with things live during setjmp. */
2461 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2463 /* Note that the statement below does not affect the priority
2464 in local-alloc! */
2465 REG_LIVE_LENGTH (regno) *= 2;
2467 /* If the register is referenced exactly twice, meaning it is
2468 set once and used once, indicate that the reference may be
2469 replaced by the equivalence we computed above. Do this
2470 even if the register is only used in one block so that
2471 dependencies can be handled where the last register is
2472 used in a different block (i.e. HIGH / LO_SUM sequences)
2473 and to reduce the number of registers alive across
2474 calls. */
2476 if (REG_N_REFS (regno) == 2
2477 && (rtx_equal_p (x, src)
2478 || ! equiv_init_varies_p (src))
2479 && NONJUMP_INSN_P (insn)
2480 && equiv_init_movable_p (PATTERN (insn), regno))
2481 reg_equiv[regno].replace = 1;
2487 if (!optimize)
2488 goto out;
2490 /* A second pass, to gather additional equivalences with memory. This needs
2491 to be done after we know which registers we are going to replace. */
2493 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2495 rtx set, src, dest;
2496 unsigned regno;
2498 if (! INSN_P (insn))
2499 continue;
2501 set = single_set (insn);
2502 if (! set)
2503 continue;
2505 dest = SET_DEST (set);
2506 src = SET_SRC (set);
2508 /* If this sets a MEM to the contents of a REG that is only used
2509 in a single basic block, see if the register is always equivalent
2510 to that memory location and if moving the store from INSN to the
2511 insn that set REG is safe. If so, put a REG_EQUIV note on the
2512 initializing insn.
2514 Don't add a REG_EQUIV note if the insn already has one. The existing
2515 REG_EQUIV is likely more useful than the one we are adding.
2517 If one of the regs in the address has reg_equiv[REGNO].replace set,
2518 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2519 optimization may move the set of this register immediately before
2520 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2521 the mention in the REG_EQUIV note would be to an uninitialized
2522 pseudo. */
2524 if (MEM_P (dest) && REG_P (src)
2525 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2526 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2527 && DF_REG_DEF_COUNT (regno) == 1
2528 && reg_equiv[regno].init_insns != 0
2529 && reg_equiv[regno].init_insns != const0_rtx
2530 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2531 REG_EQUIV, NULL_RTX)
2532 && ! contains_replace_regs (XEXP (dest, 0)))
2534 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2535 if (validate_equiv_mem (init_insn, src, dest)
2536 && ! memref_used_between_p (dest, init_insn, insn)
2537 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2538 multiple sets. */
2539 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2541 /* This insn makes the equivalence, not the one initializing
2542 the register. */
2543 reg_equiv_init[regno]
2544 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2545 df_notes_rescan (init_insn);
2550 cleared_regs = BITMAP_ALLOC (NULL);
2551 /* Now scan all regs killed in an insn to see if any of them are
2552 registers only used that once. If so, see if we can replace the
2553 reference with the equivalent form. If we can, delete the
2554 initializing reference and this register will go away. If we
2555 can't replace the reference, and the initializing reference is
2556 within the same loop (or in an inner loop), then move the register
2557 initialization just before the use, so that they are in the same
2558 basic block. */
2559 FOR_EACH_BB_REVERSE (bb)
2561 loop_depth = bb->loop_depth;
2562 for (insn = BB_END (bb);
2563 insn != PREV_INSN (BB_HEAD (bb));
2564 insn = PREV_INSN (insn))
2566 rtx link;
2568 if (! INSN_P (insn))
2569 continue;
2571 /* Don't substitute into a non-local goto, this confuses CFG. */
2572 if (JUMP_P (insn)
2573 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2574 continue;
2576 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2578 if (REG_NOTE_KIND (link) == REG_DEAD
2579 /* Make sure this insn still refers to the register. */
2580 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2582 int regno = REGNO (XEXP (link, 0));
2583 rtx equiv_insn;
2585 if (! reg_equiv[regno].replace
2586 || reg_equiv[regno].loop_depth < loop_depth)
2587 continue;
2589 /* reg_equiv[REGNO].replace gets set only when
2590 REG_N_REFS[REGNO] is 2, i.e. the register is set
2591 once and used once. (If it were only set, but not used,
2592 flow would have deleted the setting insns.) Hence
2593 there can only be one insn in reg_equiv[REGNO].init_insns. */
2594 gcc_assert (reg_equiv[regno].init_insns
2595 && !XEXP (reg_equiv[regno].init_insns, 1));
2596 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2598 /* We may not move instructions that can throw, since
2599 that changes basic block boundaries and we are not
2600 prepared to adjust the CFG to match. */
2601 if (can_throw_internal (equiv_insn))
2602 continue;
2604 if (asm_noperands (PATTERN (equiv_insn)) < 0
2605 && validate_replace_rtx (regno_reg_rtx[regno],
2606 *(reg_equiv[regno].src_p), insn))
2608 rtx equiv_link;
2609 rtx last_link;
2610 rtx note;
2612 /* Find the last note. */
2613 for (last_link = link; XEXP (last_link, 1);
2614 last_link = XEXP (last_link, 1))
2617 /* Append the REG_DEAD notes from equiv_insn. */
2618 equiv_link = REG_NOTES (equiv_insn);
2619 while (equiv_link)
2621 note = equiv_link;
2622 equiv_link = XEXP (equiv_link, 1);
2623 if (REG_NOTE_KIND (note) == REG_DEAD)
2625 remove_note (equiv_insn, note);
2626 XEXP (last_link, 1) = note;
2627 XEXP (note, 1) = NULL_RTX;
2628 last_link = note;
2632 remove_death (regno, insn);
2633 SET_REG_N_REFS (regno, 0);
2634 REG_FREQ (regno) = 0;
2635 delete_insn (equiv_insn);
2637 reg_equiv[regno].init_insns
2638 = XEXP (reg_equiv[regno].init_insns, 1);
2640 reg_equiv_init[regno] = NULL_RTX;
2641 bitmap_set_bit (cleared_regs, regno);
2643 /* Move the initialization of the register to just before
2644 INSN. Update the flow information. */
2645 else if (prev_nondebug_insn (insn) != equiv_insn)
2647 rtx new_insn;
2649 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2650 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2651 REG_NOTES (equiv_insn) = 0;
2652 /* Rescan it to process the notes. */
2653 df_insn_rescan (new_insn);
2655 /* Make sure this insn is recognized before
2656 reload begins, otherwise
2657 eliminate_regs_in_insn will die. */
2658 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2660 delete_insn (equiv_insn);
2662 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2664 REG_BASIC_BLOCK (regno) = bb->index;
2665 REG_N_CALLS_CROSSED (regno) = 0;
2666 REG_FREQ_CALLS_CROSSED (regno) = 0;
2667 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2668 REG_LIVE_LENGTH (regno) = 2;
2670 if (insn == BB_HEAD (bb))
2671 BB_HEAD (bb) = PREV_INSN (insn);
2673 reg_equiv_init[regno]
2674 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2675 bitmap_set_bit (cleared_regs, regno);
2682 if (!bitmap_empty_p (cleared_regs))
2684 FOR_EACH_BB (bb)
2686 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2687 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2688 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2689 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2692 /* Last pass - adjust debug insns referencing cleared regs. */
2693 if (MAY_HAVE_DEBUG_INSNS)
2694 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2695 if (DEBUG_INSN_P (insn))
2697 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
2698 INSN_VAR_LOCATION_LOC (insn)
2699 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
2700 adjust_cleared_regs,
2701 (void *) cleared_regs);
2702 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
2703 df_insn_rescan (insn);
2707 BITMAP_FREE (cleared_regs);
2709 out:
2710 /* Clean up. */
2712 end_alias_analysis ();
2713 free (reg_equiv);
2714 return recorded_label_ref;
2719 /* Print chain C to FILE. */
2720 static void
2721 print_insn_chain (FILE *file, struct insn_chain *c)
2723 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2724 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2725 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2729 /* Print all reload_insn_chains to FILE. */
2730 static void
2731 print_insn_chains (FILE *file)
2733 struct insn_chain *c;
2734 for (c = reload_insn_chain; c ; c = c->next)
2735 print_insn_chain (file, c);
2738 /* Return true if pseudo REGNO should be added to set live_throughout
2739 or dead_or_set of the insn chains for reload consideration. */
2740 static bool
2741 pseudo_for_reload_consideration_p (int regno)
2743 /* Consider spilled pseudos too for IRA because they still have a
2744 chance to get hard-registers in the reload when IRA is used. */
2745 return (reg_renumber[regno] >= 0
2746 || (ira_conflicts_p && flag_ira_share_spill_slots));
2749 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2750 REG to the number of nregs, and INIT_VALUE to get the
2751 initialization. ALLOCNUM need not be the regno of REG. */
2752 static void
2753 init_live_subregs (bool init_value, sbitmap *live_subregs,
2754 int *live_subregs_used, int allocnum, rtx reg)
2756 unsigned int regno = REGNO (SUBREG_REG (reg));
2757 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2759 gcc_assert (size > 0);
2761 /* Been there, done that. */
2762 if (live_subregs_used[allocnum])
2763 return;
2765 /* Create a new one with zeros. */
2766 if (live_subregs[allocnum] == NULL)
2767 live_subregs[allocnum] = sbitmap_alloc (size);
2769 /* If the entire reg was live before blasting into subregs, we need
2770 to init all of the subregs to ones else init to 0. */
2771 if (init_value)
2772 sbitmap_ones (live_subregs[allocnum]);
2773 else
2774 sbitmap_zero (live_subregs[allocnum]);
2776 /* Set the number of bits that we really want. */
2777 live_subregs_used[allocnum] = size;
2780 /* Walk the insns of the current function and build reload_insn_chain,
2781 and record register life information. */
2782 static void
2783 build_insn_chain (void)
2785 unsigned int i;
2786 struct insn_chain **p = &reload_insn_chain;
2787 basic_block bb;
2788 struct insn_chain *c = NULL;
2789 struct insn_chain *next = NULL;
2790 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2791 bitmap elim_regset = BITMAP_ALLOC (NULL);
2792 /* live_subregs is a vector used to keep accurate information about
2793 which hardregs are live in multiword pseudos. live_subregs and
2794 live_subregs_used are indexed by pseudo number. The live_subreg
2795 entry for a particular pseudo is only used if the corresponding
2796 element is non zero in live_subregs_used. The value in
2797 live_subregs_used is number of bytes that the pseudo can
2798 occupy. */
2799 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2800 int *live_subregs_used = XNEWVEC (int, max_regno);
2802 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2803 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2804 bitmap_set_bit (elim_regset, i);
2805 FOR_EACH_BB_REVERSE (bb)
2807 bitmap_iterator bi;
2808 rtx insn;
2810 CLEAR_REG_SET (live_relevant_regs);
2811 memset (live_subregs_used, 0, max_regno * sizeof (int));
2813 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2815 if (i >= FIRST_PSEUDO_REGISTER)
2816 break;
2817 bitmap_set_bit (live_relevant_regs, i);
2820 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2821 FIRST_PSEUDO_REGISTER, i, bi)
2823 if (pseudo_for_reload_consideration_p (i))
2824 bitmap_set_bit (live_relevant_regs, i);
2827 FOR_BB_INSNS_REVERSE (bb, insn)
2829 if (!NOTE_P (insn) && !BARRIER_P (insn))
2831 unsigned int uid = INSN_UID (insn);
2832 df_ref *def_rec;
2833 df_ref *use_rec;
2835 c = new_insn_chain ();
2836 c->next = next;
2837 next = c;
2838 *p = c;
2839 p = &c->prev;
2841 c->insn = insn;
2842 c->block = bb->index;
2844 if (INSN_P (insn))
2845 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2847 df_ref def = *def_rec;
2848 unsigned int regno = DF_REF_REGNO (def);
2850 /* Ignore may clobbers because these are generated
2851 from calls. However, every other kind of def is
2852 added to dead_or_set. */
2853 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2855 if (regno < FIRST_PSEUDO_REGISTER)
2857 if (!fixed_regs[regno])
2858 bitmap_set_bit (&c->dead_or_set, regno);
2860 else if (pseudo_for_reload_consideration_p (regno))
2861 bitmap_set_bit (&c->dead_or_set, regno);
2864 if ((regno < FIRST_PSEUDO_REGISTER
2865 || reg_renumber[regno] >= 0
2866 || ira_conflicts_p)
2867 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2869 rtx reg = DF_REF_REG (def);
2871 /* We can model subregs, but not if they are
2872 wrapped in ZERO_EXTRACTS. */
2873 if (GET_CODE (reg) == SUBREG
2874 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2876 unsigned int start = SUBREG_BYTE (reg);
2877 unsigned int last = start
2878 + GET_MODE_SIZE (GET_MODE (reg));
2880 init_live_subregs
2881 (bitmap_bit_p (live_relevant_regs, regno),
2882 live_subregs, live_subregs_used, regno, reg);
2884 if (!DF_REF_FLAGS_IS_SET
2885 (def, DF_REF_STRICT_LOW_PART))
2887 /* Expand the range to cover entire words.
2888 Bytes added here are "don't care". */
2889 start
2890 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2891 last = ((last + UNITS_PER_WORD - 1)
2892 / UNITS_PER_WORD * UNITS_PER_WORD);
2895 /* Ignore the paradoxical bits. */
2896 if ((int)last > live_subregs_used[regno])
2897 last = live_subregs_used[regno];
2899 while (start < last)
2901 RESET_BIT (live_subregs[regno], start);
2902 start++;
2905 if (sbitmap_empty_p (live_subregs[regno]))
2907 live_subregs_used[regno] = 0;
2908 bitmap_clear_bit (live_relevant_regs, regno);
2910 else
2911 /* Set live_relevant_regs here because
2912 that bit has to be true to get us to
2913 look at the live_subregs fields. */
2914 bitmap_set_bit (live_relevant_regs, regno);
2916 else
2918 /* DF_REF_PARTIAL is generated for
2919 subregs, STRICT_LOW_PART, and
2920 ZERO_EXTRACT. We handle the subreg
2921 case above so here we have to keep from
2922 modeling the def as a killing def. */
2923 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2925 bitmap_clear_bit (live_relevant_regs, regno);
2926 live_subregs_used[regno] = 0;
2932 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2933 bitmap_copy (&c->live_throughout, live_relevant_regs);
2935 if (INSN_P (insn))
2936 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2938 df_ref use = *use_rec;
2939 unsigned int regno = DF_REF_REGNO (use);
2940 rtx reg = DF_REF_REG (use);
2942 /* DF_REF_READ_WRITE on a use means that this use
2943 is fabricated from a def that is a partial set
2944 to a multiword reg. Here, we only model the
2945 subreg case that is not wrapped in ZERO_EXTRACT
2946 precisely so we do not need to look at the
2947 fabricated use. */
2948 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
2949 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2950 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
2951 continue;
2953 /* Add the last use of each var to dead_or_set. */
2954 if (!bitmap_bit_p (live_relevant_regs, regno))
2956 if (regno < FIRST_PSEUDO_REGISTER)
2958 if (!fixed_regs[regno])
2959 bitmap_set_bit (&c->dead_or_set, regno);
2961 else if (pseudo_for_reload_consideration_p (regno))
2962 bitmap_set_bit (&c->dead_or_set, regno);
2965 if (regno < FIRST_PSEUDO_REGISTER
2966 || pseudo_for_reload_consideration_p (regno))
2968 if (GET_CODE (reg) == SUBREG
2969 && !DF_REF_FLAGS_IS_SET (use,
2970 DF_REF_SIGN_EXTRACT
2971 | DF_REF_ZERO_EXTRACT))
2973 unsigned int start = SUBREG_BYTE (reg);
2974 unsigned int last = start
2975 + GET_MODE_SIZE (GET_MODE (reg));
2977 init_live_subregs
2978 (bitmap_bit_p (live_relevant_regs, regno),
2979 live_subregs, live_subregs_used, regno, reg);
2981 /* Ignore the paradoxical bits. */
2982 if ((int)last > live_subregs_used[regno])
2983 last = live_subregs_used[regno];
2985 while (start < last)
2987 SET_BIT (live_subregs[regno], start);
2988 start++;
2991 else
2992 /* Resetting the live_subregs_used is
2993 effectively saying do not use the subregs
2994 because we are reading the whole
2995 pseudo. */
2996 live_subregs_used[regno] = 0;
2997 bitmap_set_bit (live_relevant_regs, regno);
3003 /* FIXME!! The following code is a disaster. Reload needs to see the
3004 labels and jump tables that are just hanging out in between
3005 the basic blocks. See pr33676. */
3006 insn = BB_HEAD (bb);
3008 /* Skip over the barriers and cruft. */
3009 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3010 || BLOCK_FOR_INSN (insn) == bb))
3011 insn = PREV_INSN (insn);
3013 /* While we add anything except barriers and notes, the focus is
3014 to get the labels and jump tables into the
3015 reload_insn_chain. */
3016 while (insn)
3018 if (!NOTE_P (insn) && !BARRIER_P (insn))
3020 if (BLOCK_FOR_INSN (insn))
3021 break;
3023 c = new_insn_chain ();
3024 c->next = next;
3025 next = c;
3026 *p = c;
3027 p = &c->prev;
3029 /* The block makes no sense here, but it is what the old
3030 code did. */
3031 c->block = bb->index;
3032 c->insn = insn;
3033 bitmap_copy (&c->live_throughout, live_relevant_regs);
3035 insn = PREV_INSN (insn);
3039 for (i = 0; i < (unsigned int) max_regno; i++)
3040 if (live_subregs[i])
3041 free (live_subregs[i]);
3043 reload_insn_chain = c;
3044 *p = NULL;
3046 free (live_subregs);
3047 free (live_subregs_used);
3048 BITMAP_FREE (live_relevant_regs);
3049 BITMAP_FREE (elim_regset);
3051 if (dump_file)
3052 print_insn_chains (dump_file);
3055 /* Allocate memory for reg_equiv_memory_loc. */
3056 static void
3057 init_reg_equiv_memory_loc (void)
3059 max_regno = max_reg_num ();
3061 /* And the reg_equiv_memory_loc array. */
3062 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3063 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3064 sizeof (rtx) * max_regno);
3065 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3068 /* All natural loops. */
3069 struct loops ira_loops;
3071 /* True if we have allocno conflicts. It is false for non-optimized
3072 mode or when the conflict table is too big. */
3073 bool ira_conflicts_p;
3075 /* This is the main entry of IRA. */
3076 static void
3077 ira (FILE *f)
3079 int overall_cost_before, allocated_reg_info_size;
3080 bool loops_p;
3081 int max_regno_before_ira, ira_max_point_before_emit;
3082 int rebuild_p;
3083 int saved_flag_ira_share_spill_slots;
3084 basic_block bb;
3086 timevar_push (TV_IRA);
3088 if (flag_caller_saves)
3089 init_caller_save ();
3091 if (flag_ira_verbose < 10)
3093 internal_flag_ira_verbose = flag_ira_verbose;
3094 ira_dump_file = f;
3096 else
3098 internal_flag_ira_verbose = flag_ira_verbose - 10;
3099 ira_dump_file = stderr;
3102 ira_conflicts_p = optimize > 0;
3103 setup_prohibited_mode_move_regs ();
3105 df_note_add_problem ();
3107 if (optimize == 1)
3109 df_live_add_problem ();
3110 df_live_set_all_dirty ();
3112 #ifdef ENABLE_CHECKING
3113 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3114 #endif
3115 df_analyze ();
3116 df_clear_flags (DF_NO_INSN_RESCAN);
3117 regstat_init_n_sets_and_refs ();
3118 regstat_compute_ri ();
3120 /* If we are not optimizing, then this is the only place before
3121 register allocation where dataflow is done. And that is needed
3122 to generate these warnings. */
3123 if (warn_clobbered)
3124 generate_setjmp_warnings ();
3126 /* Determine if the current function is a leaf before running IRA
3127 since this can impact optimizations done by the prologue and
3128 epilogue thus changing register elimination offsets. */
3129 current_function_is_leaf = leaf_function_p ();
3131 if (resize_reg_info () && flag_ira_loop_pressure)
3132 ira_set_pseudo_classes (ira_dump_file);
3134 rebuild_p = update_equiv_regs ();
3136 #ifndef IRA_NO_OBSTACK
3137 gcc_obstack_init (&ira_obstack);
3138 #endif
3139 bitmap_obstack_initialize (&ira_bitmap_obstack);
3140 if (optimize)
3142 max_regno = max_reg_num ();
3143 ira_reg_equiv_len = max_regno;
3144 ira_reg_equiv_invariant_p
3145 = (bool *) ira_allocate (max_regno * sizeof (bool));
3146 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3147 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3148 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3149 find_reg_equiv_invariant_const ();
3150 if (rebuild_p)
3152 timevar_push (TV_JUMP);
3153 rebuild_jump_labels (get_insns ());
3154 purge_all_dead_edges ();
3155 timevar_pop (TV_JUMP);
3159 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3160 ira_setup_eliminable_regset ();
3162 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3163 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3164 ira_move_loops_num = ira_additional_jumps_num = 0;
3166 ira_assert (current_loops == NULL);
3167 flow_loops_find (&ira_loops);
3168 record_loop_exits ();
3169 current_loops = &ira_loops;
3171 init_reg_equiv_memory_loc ();
3173 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3174 fprintf (ira_dump_file, "Building IRA IR\n");
3175 loops_p = ira_build (optimize
3176 && (flag_ira_region == IRA_REGION_ALL
3177 || flag_ira_region == IRA_REGION_MIXED));
3179 ira_assert (ira_conflicts_p || !loops_p);
3181 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3182 if (too_high_register_pressure_p ())
3183 /* It is just wasting compiler's time to pack spilled pseudos into
3184 stack slots in this case -- prohibit it. */
3185 flag_ira_share_spill_slots = FALSE;
3187 ira_color ();
3189 ira_max_point_before_emit = ira_max_point;
3191 ira_emit (loops_p);
3193 if (ira_conflicts_p)
3195 max_regno = max_reg_num ();
3197 if (! loops_p)
3198 ira_initiate_assign ();
3199 else
3201 expand_reg_info (allocated_reg_info_size);
3202 setup_preferred_alternate_classes_for_new_pseudos
3203 (allocated_reg_info_size);
3204 allocated_reg_info_size = max_regno;
3206 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3207 fprintf (ira_dump_file, "Flattening IR\n");
3208 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3209 /* New insns were generated: add notes and recalculate live
3210 info. */
3211 df_analyze ();
3213 flow_loops_find (&ira_loops);
3214 record_loop_exits ();
3215 current_loops = &ira_loops;
3217 setup_allocno_assignment_flags ();
3218 ira_initiate_assign ();
3219 ira_reassign_conflict_allocnos (max_regno);
3223 setup_reg_renumber ();
3225 calculate_allocation_cost ();
3227 #ifdef ENABLE_IRA_CHECKING
3228 if (ira_conflicts_p)
3229 check_allocation ();
3230 #endif
3232 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3234 init_reg_equiv_memory_loc ();
3236 if (max_regno != max_regno_before_ira)
3238 regstat_free_n_sets_and_refs ();
3239 regstat_free_ri ();
3240 regstat_init_n_sets_and_refs ();
3241 regstat_compute_ri ();
3244 allocate_initial_values (reg_equiv_memory_loc);
3246 overall_cost_before = ira_overall_cost;
3247 if (ira_conflicts_p)
3249 fix_reg_equiv_init ();
3251 #ifdef ENABLE_IRA_CHECKING
3252 print_redundant_copies ();
3253 #endif
3255 ira_spilled_reg_stack_slots_num = 0;
3256 ira_spilled_reg_stack_slots
3257 = ((struct ira_spilled_reg_stack_slot *)
3258 ira_allocate (max_regno
3259 * sizeof (struct ira_spilled_reg_stack_slot)));
3260 memset (ira_spilled_reg_stack_slots, 0,
3261 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3264 timevar_pop (TV_IRA);
3266 timevar_push (TV_RELOAD);
3267 df_set_flags (DF_NO_INSN_RESCAN);
3268 build_insn_chain ();
3270 reload_completed = !reload (get_insns (), ira_conflicts_p);
3272 finish_subregs_of_mode ();
3274 timevar_pop (TV_RELOAD);
3276 timevar_push (TV_IRA);
3278 if (ira_conflicts_p)
3280 ira_free (ira_spilled_reg_stack_slots);
3282 ira_finish_assign ();
3285 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3286 && overall_cost_before != ira_overall_cost)
3287 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3288 ira_destroy ();
3290 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3292 flow_loops_free (&ira_loops);
3293 free_dominance_info (CDI_DOMINATORS);
3294 FOR_ALL_BB (bb)
3295 bb->loop_father = NULL;
3296 current_loops = NULL;
3298 regstat_free_ri ();
3299 regstat_free_n_sets_and_refs ();
3301 if (optimize)
3303 cleanup_cfg (CLEANUP_EXPENSIVE);
3305 ira_free (ira_reg_equiv_invariant_p);
3306 ira_free (ira_reg_equiv_const);
3309 bitmap_obstack_release (&ira_bitmap_obstack);
3310 #ifndef IRA_NO_OBSTACK
3311 obstack_free (&ira_obstack, NULL);
3312 #endif
3314 /* The code after the reload has changed so much that at this point
3315 we might as well just rescan everything. Not that
3316 df_rescan_all_insns is not going to help here because it does not
3317 touch the artificial uses and defs. */
3318 df_finish_pass (true);
3319 if (optimize > 1)
3320 df_live_add_problem ();
3321 df_scan_alloc (NULL);
3322 df_scan_blocks ();
3324 if (optimize)
3325 df_analyze ();
3327 timevar_pop (TV_IRA);
3332 static bool
3333 gate_ira (void)
3335 return true;
3338 /* Run the integrated register allocator. */
3339 static unsigned int
3340 rest_of_handle_ira (void)
3342 ira (dump_file);
3343 return 0;
3346 struct rtl_opt_pass pass_ira =
3349 RTL_PASS,
3350 "ira", /* name */
3351 gate_ira, /* gate */
3352 rest_of_handle_ira, /* execute */
3353 NULL, /* sub */
3354 NULL, /* next */
3355 0, /* static_pass_number */
3356 TV_NONE, /* tv_id */
3357 0, /* properties_required */
3358 0, /* properties_provided */
3359 0, /* properties_destroyed */
3360 0, /* todo_flags_start */
3361 TODO_dump_func |
3362 TODO_ggc_collect /* todo_flags_finish */