2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / ipa-struct-reorg.c
blob6f62b703c5e29bcd0dbcdc349e3a2aac4cb06a4b
1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "gimple.h"
31 #include "tree-inline.h"
32 #include "tree-flow.h"
33 #include "tree-flow-inline.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "hashtab.h"
37 #include "toplev.h"
38 #include "flags.h"
39 #include "debug.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "diagnostic.h"
43 #include "tree-pretty-print.h"
44 #include "gimple-pretty-print.h"
45 #include "timevar.h"
46 #include "params.h"
47 #include "fibheap.h"
48 #include "intl.h"
49 #include "function.h"
50 #include "basic-block.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "ipa-struct-reorg.h"
54 #include "opts.h"
55 #include "ipa-type-escape.h"
56 #include "tree-dump.h"
57 #include "gimple.h"
59 /* This optimization implements structure peeling.
61 For example, given a structure type:
62 typedef struct
64 int a;
65 float b;
66 int c;
67 }str_t;
69 it can be peeled into two structure types as follows:
71 typedef struct and typedef struct
72 { {
73 int a; float b;
74 int c; } str_t_1;
75 }str_t_0;
77 or can be fully peeled:
79 typedef struct
81 int a;
82 }str_t_0;
84 typedef struct
86 float b;
87 }str_t_1;
89 typedef struct
91 int c;
92 }str_t_2;
94 When structure type is peeled all instances and their accesses
95 in the program are updated accordingly. For example, if there is
96 array of structures:
98 str_t A[N];
100 and structure type str_t was peeled into two structures str_t_0
101 and str_t_1 as it was shown above, then array A will be replaced
102 by two arrays as follows:
104 str_t_0 A_0[N];
105 str_t_1 A_1[N];
107 The field access of field a of element i of array A: A[i].a will be
108 replaced by an access to field a of element i of array A_0: A_0[i].a.
110 This optimization also supports dynamically allocated arrays.
111 If array of structures was allocated by malloc function:
113 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
115 the allocation site will be replaced to reflect new structure types:
117 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
118 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
120 The field access through the pointer p[i].a will be changed by p_0[i].a.
122 The goal of structure peeling is to improve spatial locality.
123 For example, if one of the fields of a structure is accessed frequently
124 in the loop:
126 for (i = 0; i < N; i++)
128 ... = A[i].a;
131 the allocation of field a of str_t contiguously in memory will
132 increase the chances of fetching the field from cache.
134 The analysis part of this optimization is based on the frequency of
135 field accesses, which are collected all over the program.
136 Then the fields with the frequencies that satisfy the following condition
137 get peeled out of the structure:
139 freq(f) > C * max_field_freq_in_struct
141 where max_field_freq_in_struct is the maximum field frequency
142 in the structure. C is a constant defining which portion of
143 max_field_freq_in_struct the fields should have in order to be peeled.
145 If profiling information is provided, it is used to calculate the
146 frequency of field accesses. Otherwise, the structure is fully peeled.
148 IPA type-escape analysis is used to determine when it is safe
149 to peel a structure.
151 The optimization is activated by flag -fipa-struct-reorg. */
153 /* New variables created by this optimization.
154 When doing struct peeling, each variable of
155 the original struct type will be replaced by
156 the set of new variables corresponding to
157 the new structure types. */
158 struct new_var_data {
159 /* VAR_DECL for original struct type. */
160 tree orig_var;
161 /* Vector of new variables. */
162 VEC(tree, heap) *new_vars;
165 typedef struct new_var_data *new_var;
166 typedef const struct new_var_data *const_new_var;
168 /* This structure represents allocation site of the structure. */
169 typedef struct alloc_site
171 gimple stmt;
172 d_str str;
173 } alloc_site_t;
175 DEF_VEC_O (alloc_site_t);
176 DEF_VEC_ALLOC_O (alloc_site_t, heap);
178 /* Allocation sites that belong to the same function. */
179 struct func_alloc_sites
181 tree func;
182 /* Vector of allocation sites for function. */
183 VEC (alloc_site_t, heap) *allocs;
186 typedef struct func_alloc_sites *fallocs_t;
187 typedef const struct func_alloc_sites *const_fallocs_t;
189 /* All allocation sites in the program. */
190 htab_t alloc_sites = NULL;
192 /* New global variables. Generated once for whole program. */
193 htab_t new_global_vars;
195 /* New local variables. Generated per-function. */
196 htab_t new_local_vars;
198 /* Vector of structures to be transformed. */
199 typedef struct data_structure structure;
200 DEF_VEC_O (structure);
201 DEF_VEC_ALLOC_O (structure, heap);
202 VEC (structure, heap) *structures;
204 /* Forward declarations. */
205 static bool is_equal_types (tree, tree);
207 /* Strip structure TYPE from pointers and arrays. */
209 static inline tree
210 strip_type (tree type)
212 gcc_assert (TYPE_P (type));
214 while (POINTER_TYPE_P (type)
215 || TREE_CODE (type) == ARRAY_TYPE)
216 type = TREE_TYPE (type);
218 return type;
221 /* This function returns type of VAR. */
223 static inline tree
224 get_type_of_var (tree var)
226 if (!var)
227 return NULL;
229 if (TREE_CODE (var) == PARM_DECL)
230 return DECL_ARG_TYPE (var);
231 else
232 return TREE_TYPE (var);
235 /* Set of actions we do for each newly generated STMT. */
237 static inline void
238 finalize_stmt (gimple stmt)
240 update_stmt (stmt);
241 mark_symbols_for_renaming (stmt);
244 /* This function finalizes STMT and appends it to the list STMTS. */
246 static inline void
247 finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
249 gimple_seq_add_stmt (stmts, stmt);
250 finalize_stmt (stmt);
253 /* This function returns true if two fields FIELD1 and FIELD2 are
254 semantically equal, and false otherwise. */
256 static bool
257 compare_fields (tree field1, tree field2)
259 if (DECL_NAME (field1) && DECL_NAME (field2))
261 const char *name1 = IDENTIFIER_POINTER (DECL_NAME (field1));
262 const char *name2 = IDENTIFIER_POINTER (DECL_NAME (field2));
264 gcc_assert (name1 && name2);
266 if (strcmp (name1, name2))
267 return false;
270 else if (DECL_NAME (field1) || DECL_NAME (field2))
271 return false;
273 if (!is_equal_types (TREE_TYPE (field1), TREE_TYPE (field2)))
274 return false;
276 return true;
279 /* Given structure type SRT_TYPE and field FIELD,
280 this function is looking for a field with the same name
281 and type as FIELD in STR_TYPE. It returns it if found,
282 or NULL_TREE otherwise. */
284 static tree
285 find_field_in_struct_1 (tree str_type, tree field)
287 tree str_field;
289 if (!DECL_NAME (field))
290 return NULL;
292 for (str_field = TYPE_FIELDS (str_type); str_field;
293 str_field = TREE_CHAIN (str_field))
296 if (!DECL_NAME (str_field))
297 continue;
299 if (compare_fields (field, str_field))
300 return str_field;
303 return NULL_TREE;
306 /* Given a field declaration FIELD_DECL, this function
307 returns corresponding field entry in structure STR. */
309 static struct field_entry *
310 find_field_in_struct (d_str str, tree field_decl)
312 int i;
314 tree field = find_field_in_struct_1 (str->decl, field_decl);
316 for (i = 0; i < str->num_fields; i++)
317 if (str->fields[i].decl == field)
318 return &(str->fields[i]);
320 return NULL;
323 /* This function checks whether ARG is a result of multiplication
324 of some number by STRUCT_SIZE. If yes, the function returns true
325 and this number is filled into NUM. */
327 static bool
328 is_result_of_mult (tree arg, tree *num, tree struct_size)
330 gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
332 /* If the allocation statement was of the form
333 D.2229_10 = <alloc_func> (D.2228_9);
334 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
336 if (size_def_stmt && is_gimple_assign (size_def_stmt))
338 tree lhs = gimple_assign_lhs (size_def_stmt);
340 /* We expect temporary here. */
341 if (!is_gimple_reg (lhs))
342 return false;
344 if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
346 tree arg0 = gimple_assign_rhs1 (size_def_stmt);
347 tree arg1 = gimple_assign_rhs2 (size_def_stmt);
349 if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
351 *num = arg1;
352 return true;
355 if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
357 *num = arg0;
358 return true;
363 *num = NULL_TREE;
364 return false;
368 /* This function returns true if access ACC corresponds to the pattern
369 generated by compiler when an address of element i of an array
370 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
371 pattern is recognized correctly, this function returns true
372 and fills missing fields in ACC. Otherwise it returns false. */
374 static bool
375 decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
377 tree ref_var;
378 tree struct_size, op0, op1;
379 tree before_cast;
380 enum tree_code rhs_code;
382 ref_var = TREE_OPERAND (acc->ref, 0);
384 if (TREE_CODE (ref_var) != SSA_NAME)
385 return false;
387 acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
388 if (!(acc->ref_def_stmt)
389 || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
390 return false;
392 rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
394 if (rhs_code != PLUS_EXPR
395 && rhs_code != MINUS_EXPR
396 && rhs_code != POINTER_PLUS_EXPR)
397 return false;
399 op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
400 op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
402 if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
403 &acc->base, &acc->offset,
404 &acc->cast_stmt))
405 return false;
407 if (acc->cast_stmt)
408 before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
409 else
410 before_cast = acc->offset;
412 if (!before_cast)
413 return false;
416 if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
417 return false;
419 struct_size = TYPE_SIZE_UNIT (str_decl);
421 if (!is_result_of_mult (before_cast, &acc->num, struct_size))
422 return false;
424 /* ??? Add TREE_OPERAND (acc->ref, 1) to acc->offset. */
425 if (!integer_zerop (TREE_OPERAND (acc->ref, 1)))
426 return false;
428 return true;
432 /* This function checks whether the access ACC of structure type STR
433 is of the form suitable for transformation. If yes, it returns true.
434 False otherwise. */
436 static bool
437 decompose_access (tree str_decl, struct field_access_site *acc)
439 gcc_assert (acc->ref);
441 if (TREE_CODE (acc->ref) == MEM_REF)
442 return decompose_indirect_ref_acc (str_decl, acc);
443 else if (TREE_CODE (acc->ref) == ARRAY_REF)
444 return true;
445 else if (TREE_CODE (acc->ref) == VAR_DECL)
446 return true;
448 return false;
451 /* This function creates empty field_access_site node. */
453 static inline struct field_access_site *
454 make_field_acc_node (void)
456 return XCNEW (struct field_access_site);
459 /* This function returns the structure field access, defined by STMT,
460 if it is already in hashtable of function accesses F_ACCS. */
462 static struct field_access_site *
463 is_in_field_accs (gimple stmt, htab_t f_accs)
465 return (struct field_access_site *)
466 htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
469 /* This function adds an access ACC to the hashtable
470 F_ACCS of field accesses. */
472 static void
473 add_field_acc_to_acc_sites (struct field_access_site *acc,
474 htab_t f_accs)
476 void **slot;
478 gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
479 slot = htab_find_slot_with_hash (f_accs, acc->stmt,
480 htab_hash_pointer (acc->stmt),
481 INSERT);
482 *slot = acc;
485 /* This function adds the VAR to vector of variables of
486 an access site defined by statement STMT. If access entry
487 with statement STMT does not exist in hashtable of
488 accesses ACCS, this function creates it. */
490 static void
491 add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
493 struct access_site *acc;
495 acc = (struct access_site *)
496 htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
498 if (!acc)
500 void **slot;
502 acc = XNEW (struct access_site);
503 acc->stmt = stmt;
504 if (!is_gimple_debug (stmt))
505 acc->vars = VEC_alloc (tree, heap, 10);
506 else
507 acc->vars = NULL;
508 slot = htab_find_slot_with_hash (accs, stmt,
509 htab_hash_pointer (stmt), INSERT);
510 *slot = acc;
512 if (!is_gimple_debug (stmt))
513 VEC_safe_push (tree, heap, acc->vars, var);
516 /* This function adds NEW_DECL to function
517 referenced vars, and marks it for renaming. */
519 static void
520 finalize_var_creation (tree new_decl)
522 add_referenced_var (new_decl);
523 mark_sym_for_renaming (new_decl);
526 /* This function finalizes VAR creation if it is a global VAR_DECL. */
528 static void
529 finalize_global_creation (tree var)
531 if (TREE_CODE (var) == VAR_DECL
532 && is_global_var (var))
533 finalize_var_creation (var);
536 /* This function inserts NEW_DECL to varpool. */
538 static inline void
539 insert_global_to_varpool (tree new_decl)
541 struct varpool_node *new_node;
543 new_node = varpool_node (new_decl);
544 notice_global_symbol (new_decl);
545 varpool_mark_needed_node (new_node);
546 varpool_finalize_decl (new_decl);
549 /* This function finalizes the creation of new variables,
550 defined by *SLOT->new_vars. */
552 static int
553 finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
555 new_var n_var = *(new_var *) slot;
556 unsigned i;
557 tree var;
559 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
560 finalize_var_creation (var);
561 return 1;
564 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
565 It returns it, if found, and NULL_TREE otherwise. */
567 static tree
568 find_var_in_new_vars_vec (new_var var, tree new_type)
570 tree n_var;
571 unsigned i;
573 for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
575 tree type = strip_type(get_type_of_var (n_var));
576 gcc_assert (type);
578 if (type == new_type)
579 return n_var;
582 return NULL_TREE;
585 /* This function returns new_var node, the orig_var of which is DECL.
586 It looks for new_var's in NEW_VARS_HTAB. If not found,
587 the function returns NULL. */
589 static new_var
590 is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
592 return (new_var) htab_find_with_hash (new_vars_htab, decl,
593 DECL_UID (decl));
596 /* Given original variable ORIG_VAR, this function returns
597 new variable corresponding to it of NEW_TYPE type. */
599 static tree
600 find_new_var_of_type (tree orig_var, tree new_type)
602 new_var var;
603 gcc_assert (orig_var && new_type);
605 if (TREE_CODE (orig_var) == SSA_NAME)
606 orig_var = SSA_NAME_VAR (orig_var);
608 var = is_in_new_vars_htab (orig_var, new_global_vars);
609 if (!var)
610 var = is_in_new_vars_htab (orig_var, new_local_vars);
611 gcc_assert (var);
612 return find_var_in_new_vars_vec (var, new_type);
615 /* This function generates stmt:
616 res = NUM * sizeof(TYPE) and returns it.
617 res is filled into RES. */
619 static gimple
620 gen_size (tree num, tree type, tree *res)
622 tree struct_size = TYPE_SIZE_UNIT (type);
623 HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
624 gimple new_stmt;
626 *res = create_tmp_var (TREE_TYPE (num), NULL);
628 if (*res)
629 add_referenced_var (*res);
631 if (exact_log2 (struct_size_int) == -1)
633 tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
634 new_stmt = gimple_build_assign (*res, fold_build2 (MULT_EXPR,
635 TREE_TYPE (num),
636 num, size));
638 else
640 tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
642 new_stmt = gimple_build_assign (*res, fold_build2 (LSHIFT_EXPR,
643 TREE_TYPE (num),
644 num, C));
647 finalize_stmt (new_stmt);
648 return new_stmt;
651 /* This function generates and returns a statement, that cast variable
652 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
653 into RES_P. ORIG_CAST_STMT is the original cast statement. */
655 static gimple
656 gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
657 tree *res_p)
659 tree lhs, new_lhs;
660 gimple new_stmt;
662 lhs = gimple_assign_lhs (orig_cast_stmt);
663 new_lhs = find_new_var_of_type (lhs, new_type);
664 gcc_assert (new_lhs);
666 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
667 finalize_stmt (new_stmt);
668 *res_p = new_lhs;
669 return new_stmt;
672 /* This function builds an edge between BB and E->dest and updates
673 phi nodes of E->dest. It returns newly created edge. */
675 static edge
676 make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
678 edge new_e;
679 tree arg;
680 gimple_stmt_iterator si;
682 new_e = make_edge (bb, e->dest, e->flags);
684 for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
686 gimple phi = gsi_stmt (si);
687 arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
688 add_phi_arg (phi, arg, new_e, gimple_phi_arg_location_from_edge (phi, e));
691 return new_e;
694 /* This function inserts NEW_STMT before STMT. */
696 static void
697 insert_before_stmt (gimple stmt, gimple new_stmt)
699 gimple_stmt_iterator bsi;
701 if (!stmt || !new_stmt)
702 return;
704 bsi = gsi_for_stmt (stmt);
705 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
708 /* Insert NEW_STMTS after STMT. */
710 static void
711 insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
713 gimple_stmt_iterator bsi;
715 if (!stmt || !new_stmts)
716 return;
718 bsi = gsi_for_stmt (stmt);
719 gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
722 /* Insert NEW_STMT after STMT. */
724 static void
725 insert_after_stmt (gimple stmt, gimple new_stmt)
727 gimple_stmt_iterator bsi;
729 if (!stmt || !new_stmt)
730 return;
732 bsi = gsi_for_stmt (stmt);
733 gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
736 /* This function returns vector of allocation sites
737 that appear in function FN_DECL. */
739 static fallocs_t
740 get_fallocs (tree fn_decl)
742 return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
743 htab_hash_pointer (fn_decl));
746 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
747 and it is a part of allocation of a structure,
748 then it is usually followed by a cast stmt
749 p_8 = (struct str_t *) D.2225_7;
750 which is returned by this function. */
752 static gimple
753 get_final_alloc_stmt (gimple alloc_stmt)
755 gimple final_stmt;
756 use_operand_p use_p;
757 tree alloc_res;
759 if (!alloc_stmt)
760 return NULL;
762 if (!is_gimple_call (alloc_stmt))
763 return NULL;
765 alloc_res = gimple_get_lhs (alloc_stmt);
767 if (TREE_CODE (alloc_res) != SSA_NAME)
768 return NULL;
770 if (!single_imm_use (alloc_res, &use_p, &final_stmt))
771 return NULL;
772 else
773 return final_stmt;
776 /* This function returns true if STMT is one of allocation
777 sites of function FN_DECL. It returns false otherwise. */
779 static bool
780 is_part_of_malloc (gimple stmt, tree fn_decl)
782 fallocs_t fallocs = get_fallocs (fn_decl);
784 if (fallocs)
786 alloc_site_t *call;
787 unsigned i;
789 for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
790 if (call->stmt == stmt
791 || get_final_alloc_stmt (call->stmt) == stmt)
792 return true;
794 return false;
797 /* Auxiliary structure for a lookup over field accesses. */
798 struct find_stmt_data
800 bool found;
801 gimple stmt;
804 /* This function looks for DATA->stmt among
805 the statements involved in the field access,
806 defined by SLOT. It stops when it's found. */
808 static int
809 find_in_field_accs (void **slot, void *data)
811 struct field_access_site *f_acc = *(struct field_access_site **) slot;
812 gimple stmt = ((struct find_stmt_data *)data)->stmt;
814 if (f_acc->stmt == stmt
815 || f_acc->ref_def_stmt == stmt
816 || f_acc->cast_stmt == stmt)
818 ((struct find_stmt_data *)data)->found = true;
819 return 0;
821 else
822 return 1;
825 /* This function checks whether STMT is part of field
826 accesses of structure STR. It returns true, if found,
827 and false otherwise. */
829 static bool
830 is_part_of_field_access (gimple stmt, d_str str)
832 int i;
834 for (i = 0; i < str->num_fields; i++)
836 struct find_stmt_data data;
837 data.found = false;
838 data.stmt = stmt;
840 if (str->fields[i].acc_sites)
841 htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
843 if (data.found)
844 return true;
847 return false;
850 /* Auxiliary data for exclude_from_accs function. */
852 struct exclude_data
854 tree fn_decl;
855 d_str str;
858 /* This function returns component_ref with the BASE and
859 field named FIELD_ID from structure TYPE. */
861 static inline tree
862 build_comp_ref (tree base, tree field_id, tree type)
864 tree field;
865 bool found = false;
868 /* Find field of structure type with the same name as field_id. */
869 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
871 if (DECL_NAME (field) == field_id)
873 found = true;
874 break;
878 gcc_assert (found);
880 return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
884 /* This struct represent data used for walk_tree
885 called from function find_pos_in_stmt.
886 - ref is a tree to be found,
887 - and pos is a pointer that points to ref in stmt. */
888 struct ref_pos
890 tree *pos;
891 tree ref;
892 tree container;
896 /* This is a callback function for walk_tree, called from
897 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
898 When *TP is equal to DATA->ref, the walk_tree stops,
899 and found position, equal to TP, is assigned to DATA->pos. */
901 static tree
902 find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
904 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
905 struct ref_pos *r_pos = (struct ref_pos *) wi->info;
906 tree ref = r_pos->ref;
907 tree t = *tp;
909 if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
911 r_pos->pos = tp;
912 return t;
915 r_pos->container = t;
916 *walk_subtrees = 1;
917 return NULL_TREE;
921 /* This function looks for the pointer of REF in STMT,
922 It returns it, if found, and NULL otherwise. */
924 static tree *
925 find_pos_in_stmt (gimple stmt, tree ref, struct ref_pos * r_pos)
927 struct walk_stmt_info wi;
929 r_pos->ref = ref;
930 r_pos->pos = NULL;
931 r_pos->container = NULL_TREE;
932 memset (&wi, 0, sizeof (wi));
933 wi.info = r_pos;
934 walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
936 return r_pos->pos;
939 /* This structure is used to represent array
940 or pointer-to wrappers of structure type.
941 For example, if type1 is structure type,
942 then for type1 ** we generate two type_wrapper
943 structures with wrap = 0 each one.
944 It's used to unwind the original type up to
945 structure type, replace it with the new structure type
946 and wrap it back in the opposite order. */
948 typedef struct type_wrapper
950 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
951 bool wrap;
953 /* Relevant for arrays as domain or index. */
954 tree domain;
955 }type_wrapper_t;
957 DEF_VEC_O (type_wrapper_t);
958 DEF_VEC_ALLOC_O (type_wrapper_t, heap);
960 /* This function replace field access ACC by the new
961 field access of structure type NEW_TYPE. */
963 static void
964 replace_field_acc (struct field_access_site *acc, tree new_type)
966 tree ref_var = acc->ref;
967 tree new_ref;
968 tree lhs, rhs;
969 tree *pos;
970 tree new_acc;
971 tree field_id = DECL_NAME (acc->field_decl);
972 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
973 type_wrapper_t *wr_p = NULL;
974 struct ref_pos r_pos;
976 while (TREE_CODE (ref_var) == MEM_REF
977 || TREE_CODE (ref_var) == ARRAY_REF)
979 type_wrapper_t wr;
981 if (TREE_CODE (ref_var) == MEM_REF)
983 wr.wrap = 0;
984 wr.domain = 0;
986 else
988 wr.wrap = 1;
989 wr.domain = TREE_OPERAND (ref_var, 1);
992 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
993 ref_var = TREE_OPERAND (ref_var, 0);
996 new_ref = find_new_var_of_type (ref_var, new_type);
997 finalize_global_creation (new_ref);
999 while (VEC_length (type_wrapper_t, wrapper) != 0)
1001 tree type = TREE_TYPE (TREE_TYPE (new_ref));
1003 wr_p = VEC_last (type_wrapper_t, wrapper);
1004 if (wr_p->wrap) /* Array. */
1005 new_ref = build4 (ARRAY_REF, type, new_ref,
1006 wr_p->domain, NULL_TREE, NULL_TREE);
1007 else /* Pointer. */
1008 new_ref = build_simple_mem_ref (new_ref);
1009 VEC_pop (type_wrapper_t, wrapper);
1012 new_acc = build_comp_ref (new_ref, field_id, new_type);
1013 VEC_free (type_wrapper_t, heap, wrapper);
1015 if (is_gimple_assign (acc->stmt))
1017 lhs = gimple_assign_lhs (acc->stmt);
1018 rhs = gimple_assign_rhs1 (acc->stmt);
1020 if (lhs == acc->comp_ref)
1021 gimple_assign_set_lhs (acc->stmt, new_acc);
1022 else if (rhs == acc->comp_ref)
1023 gimple_assign_set_rhs1 (acc->stmt, new_acc);
1024 else
1026 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
1027 gcc_assert (pos);
1028 *pos = new_acc;
1031 else
1033 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
1034 gcc_assert (pos);
1035 *pos = new_acc;
1038 finalize_stmt (acc->stmt);
1041 /* This function replace field access ACC by a new field access
1042 of structure type NEW_TYPE. */
1044 static void
1045 replace_field_access_stmt (struct field_access_site *acc, tree new_type)
1048 if (TREE_CODE (acc->ref) == MEM_REF
1049 ||TREE_CODE (acc->ref) == ARRAY_REF
1050 ||TREE_CODE (acc->ref) == VAR_DECL)
1051 replace_field_acc (acc, new_type);
1052 else
1053 gcc_unreachable ();
1056 /* This function looks for d_str, represented by TYPE, in the structures
1057 vector. If found, it returns an index of found structure. Otherwise
1058 it returns a length of the structures vector. */
1060 static unsigned
1061 find_structure (tree type)
1063 d_str str;
1064 unsigned i;
1066 type = TYPE_MAIN_VARIANT (type);
1068 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
1069 if (is_equal_types (str->decl, type))
1070 return i;
1072 return VEC_length (structure, structures);
1075 /* In this function we create new statements that have the same
1076 form as ORIG_STMT, but of type NEW_TYPE. The statements
1077 treated by this function are simple assignments,
1078 like assignments: p.8_7 = p; or statements with rhs of
1079 tree codes PLUS_EXPR and MINUS_EXPR. */
1081 static gimple
1082 create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
1084 tree lhs;
1085 tree new_lhs;
1086 gimple new_stmt;
1087 tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
1089 lhs = gimple_assign_lhs (orig_stmt);
1091 gcc_assert (TREE_CODE (lhs) == VAR_DECL
1092 || TREE_CODE (lhs) == SSA_NAME);
1094 new_lhs = find_new_var_of_type (lhs, new_type);
1095 gcc_assert (new_lhs);
1096 finalize_var_creation (new_lhs);
1098 switch (gimple_assign_rhs_code (orig_stmt))
1100 case PLUS_EXPR:
1101 case MINUS_EXPR:
1102 case POINTER_PLUS_EXPR:
1104 tree op0 = gimple_assign_rhs1 (orig_stmt);
1105 tree op1 = gimple_assign_rhs2 (orig_stmt);
1106 unsigned str0, str1;
1107 unsigned length = VEC_length (structure, structures);
1110 str0 = find_structure (strip_type (get_type_of_var (op0)));
1111 str1 = find_structure (strip_type (get_type_of_var (op1)));
1112 gcc_assert ((str0 != length) || (str1 != length));
1114 if (str0 != length)
1115 new_op0 = find_new_var_of_type (op0, new_type);
1116 if (str1 != length)
1117 new_op1 = find_new_var_of_type (op1, new_type);
1119 if (!new_op0)
1120 new_op0 = offset;
1121 if (!new_op1)
1122 new_op1 = offset;
1124 break;
1126 default:
1127 gcc_unreachable();
1130 new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
1131 new_lhs, new_op0, new_op1);
1132 finalize_stmt (new_stmt);
1134 return new_stmt;
1137 /* Given a field access F_ACC of the FIELD, this function
1138 replaces it by the new field access. */
1140 static void
1141 create_new_field_access (struct field_access_site *f_acc,
1142 struct field_entry field)
1144 tree new_type = field.field_mapping;
1145 gimple new_stmt;
1146 tree size_res;
1147 gimple mult_stmt;
1148 gimple cast_stmt;
1149 tree cast_res = NULL;
1151 if (f_acc->num)
1153 mult_stmt = gen_size (f_acc->num, new_type, &size_res);
1154 insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
1157 if (f_acc->cast_stmt)
1159 cast_stmt = gen_cast_stmt (size_res, new_type,
1160 f_acc->cast_stmt, &cast_res);
1161 insert_after_stmt (f_acc->cast_stmt, cast_stmt);
1164 if (f_acc->ref_def_stmt)
1166 tree offset;
1167 if (cast_res)
1168 offset = cast_res;
1169 else
1170 offset = size_res;
1172 new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
1173 new_type, offset);
1174 insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
1177 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1178 D.2162_18 by an appropriate variable of new_type type. */
1179 replace_field_access_stmt (f_acc, new_type);
1182 /* This function creates a new condition statement
1183 corresponding to the original COND_STMT, adds new basic block
1184 and redirects condition edges. NEW_VAR is a new condition
1185 variable located in the condition statement at the position POS. */
1187 static void
1188 create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
1190 gimple new_stmt;
1191 edge true_e = NULL, false_e = NULL;
1192 basic_block new_bb;
1193 gimple_stmt_iterator si;
1195 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
1196 &true_e, &false_e);
1198 new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
1199 pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
1200 pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
1201 NULL_TREE,
1202 NULL_TREE);
1204 finalize_stmt (new_stmt);
1206 /* Create new basic block after bb. */
1207 new_bb = create_empty_bb (gimple_bb (cond_stmt));
1209 /* Add new condition stmt to the new_bb. */
1210 si = gsi_start_bb (new_bb);
1211 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
1213 /* Create false and true edges from new_bb. */
1214 make_edge_and_fix_phis_of_dest (new_bb, true_e);
1215 make_edge_and_fix_phis_of_dest (new_bb, false_e);
1217 /* Redirect one of original edges to point to new_bb. */
1218 if (gimple_cond_code (cond_stmt) == NE_EXPR)
1219 redirect_edge_succ (true_e, new_bb);
1220 else
1221 redirect_edge_succ (false_e, new_bb);
1224 /* This function creates new condition statements corresponding
1225 to original condition STMT, one for each new type, and
1226 recursively redirect edges to newly generated basic blocks. */
1228 static void
1229 create_new_stmts_for_cond_expr (gimple stmt)
1231 tree arg0, arg1, arg;
1232 unsigned str0, str1;
1233 bool s0, s1;
1234 d_str str;
1235 tree type;
1236 unsigned pos;
1237 int i;
1238 unsigned length = VEC_length (structure, structures);
1240 gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
1241 || gimple_cond_code (stmt) == NE_EXPR);
1243 arg0 = gimple_cond_lhs (stmt);
1244 arg1 = gimple_cond_rhs (stmt);
1246 str0 = find_structure (strip_type (get_type_of_var (arg0)));
1247 str1 = find_structure (strip_type (get_type_of_var (arg1)));
1249 s0 = (str0 != length) ? true : false;
1250 s1 = (str1 != length) ? true : false;
1252 gcc_assert (s0 || s1);
1253 /* For now we allow only comparison with 0 or NULL. */
1254 gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
1256 str = integer_zerop (arg0) ?
1257 VEC_index (structure, structures, str1):
1258 VEC_index (structure, structures, str0);
1259 arg = integer_zerop (arg0) ? arg1 : arg0;
1260 pos = integer_zerop (arg0) ? 1 : 0;
1262 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1264 tree new_arg;
1266 new_arg = find_new_var_of_type (arg, type);
1267 create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
1271 /* This function looks for VAR in STMT, and replace it with NEW_VAR.
1272 If needed, it wraps NEW_VAR in pointers and indirect references
1273 before insertion. */
1275 static void
1276 insert_new_var_in_stmt (gimple stmt, tree var, tree new_var)
1278 struct ref_pos r_pos;
1279 tree *pos;
1281 pos = find_pos_in_stmt (stmt, var, &r_pos);
1282 gcc_assert (pos);
1284 while (r_pos.container && (TREE_CODE(r_pos.container) == MEM_REF
1285 || TREE_CODE(r_pos.container) == ADDR_EXPR))
1287 if (TREE_CODE(r_pos.container) == MEM_REF)
1288 new_var = build_simple_mem_ref (new_var);
1289 else
1290 new_var = build_fold_addr_expr (new_var);
1291 pos = find_pos_in_stmt (stmt, r_pos.container, &r_pos);
1294 *pos = new_var;
1298 /* Create a new general access to replace original access ACC
1299 for structure type NEW_TYPE. */
1301 static gimple
1302 create_general_new_stmt (struct access_site *acc, tree new_type)
1304 gimple old_stmt = acc->stmt;
1305 tree var;
1306 gimple new_stmt = gimple_copy (old_stmt);
1307 unsigned i;
1309 /* We are really building a new stmt, clear the virtual operands. */
1310 if (gimple_has_mem_ops (new_stmt))
1312 gimple_set_vuse (new_stmt, NULL_TREE);
1313 gimple_set_vdef (new_stmt, NULL_TREE);
1316 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
1318 tree new_var = find_new_var_of_type (var, new_type);
1319 tree lhs, rhs = NULL_TREE;
1321 gcc_assert (new_var);
1322 finalize_var_creation (new_var);
1324 if (is_gimple_assign (new_stmt))
1326 lhs = gimple_assign_lhs (new_stmt);
1328 if (TREE_CODE (lhs) == SSA_NAME)
1329 lhs = SSA_NAME_VAR (lhs);
1330 if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
1331 rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
1333 /* It can happen that rhs is a constructor.
1334 Then we have to replace it to be of new_type. */
1335 if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
1337 /* Dealing only with empty constructors right now. */
1338 gcc_assert (VEC_empty (constructor_elt,
1339 CONSTRUCTOR_ELTS (rhs)));
1340 rhs = build_constructor (new_type, 0);
1341 gimple_assign_set_rhs1 (new_stmt, rhs);
1344 if (lhs == var)
1345 gimple_assign_set_lhs (new_stmt, new_var);
1346 else if (rhs == var)
1347 gimple_assign_set_rhs1 (new_stmt, new_var);
1348 else
1349 insert_new_var_in_stmt (new_stmt, var, new_var);
1351 else
1352 insert_new_var_in_stmt (new_stmt, var, new_var);
1355 finalize_stmt (new_stmt);
1356 return new_stmt;
1359 /* For each new type in STR this function creates new general accesses
1360 corresponding to the original access ACC. */
1362 static void
1363 create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
1365 tree type;
1366 gimple stmt = acc->stmt;
1367 unsigned i;
1369 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1371 gimple new_stmt;
1373 new_stmt = create_general_new_stmt (acc, type);
1374 insert_after_stmt (stmt, new_stmt);
1378 /* This function creates a new general access of structure STR
1379 to replace the access ACC. */
1381 static void
1382 create_new_general_access (struct access_site *acc, d_str str)
1384 gimple stmt = acc->stmt;
1385 switch (gimple_code (stmt))
1387 case GIMPLE_COND:
1388 create_new_stmts_for_cond_expr (stmt);
1389 break;
1391 case GIMPLE_DEBUG:
1392 /* It is very hard to maintain usable debug info after struct peeling,
1393 for now just reset all debug stmts referencing objects that have
1394 been peeled. */
1395 gimple_debug_bind_reset_value (stmt);
1396 update_stmt (stmt);
1397 break;
1399 default:
1400 create_new_stmts_for_general_acc (acc, str);
1404 /* Auxiliary data for creation of accesses. */
1405 struct create_acc_data
1407 basic_block bb;
1408 d_str str;
1409 int field_index;
1412 /* This function creates a new general access, defined by SLOT.
1413 DATA is a pointer to create_acc_data structure. */
1415 static int
1416 create_new_acc (void **slot, void *data)
1418 struct access_site *acc = *(struct access_site **) slot;
1419 basic_block bb = ((struct create_acc_data *)data)->bb;
1420 d_str str = ((struct create_acc_data *)data)->str;
1422 if (gimple_bb (acc->stmt) == bb)
1423 create_new_general_access (acc, str);
1424 return 1;
1427 /* This function creates a new field access, defined by SLOT.
1428 DATA is a pointer to create_acc_data structure. */
1430 static int
1431 create_new_field_acc (void **slot, void *data)
1433 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1434 basic_block bb = ((struct create_acc_data *)data)->bb;
1435 d_str str = ((struct create_acc_data *)data)->str;
1436 int i = ((struct create_acc_data *)data)->field_index;
1438 if (gimple_bb (f_acc->stmt) == bb)
1439 create_new_field_access (f_acc, str->fields[i]);
1440 return 1;
1443 /* This function creates new accesses for the structure
1444 type STR in basic block BB. */
1446 static void
1447 create_new_accs_for_struct (d_str str, basic_block bb)
1449 int i;
1450 struct create_acc_data dt;
1452 dt.str = str;
1453 dt.bb = bb;
1454 dt.field_index = -1;
1456 for (i = 0; i < str->num_fields; i++)
1458 dt.field_index = i;
1460 if (str->fields[i].acc_sites)
1461 htab_traverse (str->fields[i].acc_sites,
1462 create_new_field_acc, &dt);
1464 if (str->accs)
1465 htab_traverse (str->accs, create_new_acc, &dt);
1468 /* This function inserts new variables from new_var,
1469 defined by SLOT, into varpool. */
1471 static int
1472 update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1474 new_var n_var = *(new_var *) slot;
1475 tree var;
1476 unsigned i;
1478 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
1479 insert_global_to_varpool (var);
1480 return 1;
1483 /* This function prints a field access site, defined by SLOT. */
1485 static int
1486 dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
1488 struct field_access_site *f_acc =
1489 *(struct field_access_site **) slot;
1491 fprintf(dump_file, "\n");
1492 if (f_acc->stmt)
1493 print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
1494 if (f_acc->ref_def_stmt)
1495 print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
1496 if (f_acc->cast_stmt)
1497 print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
1498 return 1;
1501 /* Print field accesses from hashtable F_ACCS. */
1503 static void
1504 dump_field_acc_sites (htab_t f_accs)
1506 if (!dump_file)
1507 return;
1509 if (f_accs)
1510 htab_traverse (f_accs, dump_field_acc, NULL);
1513 /* Hash value for fallocs_t. */
1515 static hashval_t
1516 malloc_hash (const void *x)
1518 return htab_hash_pointer (((const_fallocs_t)x)->func);
1521 /* This function returns nonzero if function of func_alloc_sites' X
1522 is equal to Y. */
1524 static int
1525 malloc_eq (const void *x, const void *y)
1527 return ((const_fallocs_t)x)->func == (const_tree)y;
1530 /* This function is a callback for traversal over a structure accesses.
1531 It frees an access represented by SLOT. */
1533 static int
1534 free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1536 struct access_site * acc = *(struct access_site **) slot;
1538 VEC_free (tree, heap, acc->vars);
1539 free (acc);
1540 return 1;
1543 /* This is a callback function for traversal over field accesses.
1544 It frees a field access represented by SLOT. */
1546 static int
1547 free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1549 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1551 free (f_acc);
1552 return 1;
1555 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1556 if it is not there yet. */
1558 static void
1559 add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
1561 unsigned i;
1562 tree t;
1564 if (!type)
1565 return;
1567 type = TYPE_MAIN_VARIANT (type);
1569 for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
1570 if (is_equal_types (t, type))
1571 break;
1573 if (i == VEC_length (tree, *unsuitable_types))
1574 VEC_safe_push (tree, heap, *unsuitable_types, type);
1577 /* Given a type TYPE, this function returns the name of the type. */
1579 static const char *
1580 get_type_name (tree type)
1582 if (! TYPE_NAME (type))
1583 return NULL;
1585 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
1586 return IDENTIFIER_POINTER (TYPE_NAME (type));
1587 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1588 && DECL_NAME (TYPE_NAME (type)))
1589 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1590 else
1591 return NULL;
1594 /* This function is a temporary hack to overcome the types problem.
1595 When several compilation units are compiled together
1596 with -combine, the TYPE_MAIN_VARIANT of the same type
1597 can appear differently in different compilation units.
1598 Therefore this function first compares type names.
1599 If there are no names, structure bodies are recursively
1600 compared. */
1602 static bool
1603 is_equal_types (tree type1, tree type2)
1605 const char * name1,* name2;
1607 if ((!type1 && type2)
1608 ||(!type2 && type1))
1609 return false;
1611 if (!type1 && !type2)
1612 return true;
1614 if (TREE_CODE (type1) != TREE_CODE (type2))
1615 return false;
1617 if (type1 == type2)
1618 return true;
1620 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
1621 return true;
1623 name1 = get_type_name (type1);
1624 name2 = get_type_name (type2);
1626 if (name1 && name2)
1627 return strcmp (name1, name2) == 0;
1629 switch (TREE_CODE (type1))
1631 case POINTER_TYPE:
1632 case REFERENCE_TYPE:
1634 return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
1636 break;
1638 case RECORD_TYPE:
1639 case UNION_TYPE:
1640 case QUAL_UNION_TYPE:
1641 case ENUMERAL_TYPE:
1643 tree field1, field2;
1645 /* Compare fields of structure. */
1646 for (field1 = TYPE_FIELDS (type1), field2 = TYPE_FIELDS (type2);
1647 field1 && field2;
1648 field1 = TREE_CHAIN (field1), field2 = TREE_CHAIN (field2))
1650 if (!compare_fields (field1, field2))
1651 return false;
1653 if (field1 || field2)
1654 return false;
1655 else
1656 return true;
1658 break;
1660 case INTEGER_TYPE:
1662 if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1663 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
1664 return true;
1666 break;
1668 case ARRAY_TYPE:
1670 tree d1, d2;
1671 tree max1, min1, max2, min2;
1673 if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
1674 return false;
1676 d1 = TYPE_DOMAIN (type1);
1677 d2 = TYPE_DOMAIN (type2);
1679 if (!d1 || !d2)
1680 return false;
1682 max1 = TYPE_MAX_VALUE (d1);
1683 max2 = TYPE_MAX_VALUE (d2);
1684 min1 = TYPE_MIN_VALUE (d1);
1685 min2 = TYPE_MIN_VALUE (d2);
1687 if (max1 && max2 && min1 && min2
1688 && TREE_CODE (max1) == TREE_CODE (max2)
1689 && TREE_CODE (max1) == INTEGER_CST
1690 && TREE_CODE (min1) == TREE_CODE (min2)
1691 && TREE_CODE (min1) == INTEGER_CST
1692 && tree_int_cst_equal (max1, max2)
1693 && tree_int_cst_equal (min1, min2))
1694 return true;
1696 break;
1698 default:
1699 gcc_unreachable();
1702 return false;
1705 /* This function free non-field accesses from hashtable ACCS. */
1707 static void
1708 free_accesses (htab_t accs)
1710 if (accs)
1711 htab_traverse (accs, free_accs, NULL);
1712 htab_delete (accs);
1715 /* This function free field accesses hashtable F_ACCS. */
1717 static void
1718 free_field_accesses (htab_t f_accs)
1720 if (f_accs)
1721 htab_traverse (f_accs, free_field_accs, NULL);
1722 htab_delete (f_accs);
1725 /* Update call graph with new edge generated by new MALLOC_STMT.
1726 The edge origin is CONTEXT function. */
1728 static void
1729 update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
1731 struct cgraph_node *src, *dest;
1732 tree malloc_fn_decl;
1734 if (!malloc_stmt)
1735 return;
1737 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1739 src = cgraph_node (context);
1740 dest = cgraph_node (malloc_fn_decl);
1741 cgraph_create_edge (src, dest, malloc_stmt,
1742 gimple_bb (malloc_stmt)->count,
1743 compute_call_stmt_bb_frequency
1744 (context, gimple_bb (malloc_stmt)),
1745 gimple_bb (malloc_stmt)->loop_depth);
1748 /* This function generates set of statements required
1749 to allocate number NUM of structures of type NEW_TYPE.
1750 The statements are stored in NEW_STMTS. The statement that contain
1751 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1753 static gimple
1754 create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
1755 tree num)
1757 tree new_malloc_size;
1758 tree malloc_fn_decl;
1759 gimple new_stmt;
1760 tree malloc_res;
1761 gimple call_stmt, final_stmt;
1762 tree cast_res;
1764 gcc_assert (num && malloc_stmt && new_type);
1765 *new_stmts = gimple_seq_alloc ();
1767 /* Generate argument to malloc as multiplication of num
1768 and size of new_type. */
1769 new_stmt = gen_size (num, new_type, &new_malloc_size);
1770 gimple_seq_add_stmt (new_stmts, new_stmt);
1772 /* Generate new call for malloc. */
1773 malloc_res = create_tmp_var (ptr_type_node, NULL);
1774 add_referenced_var (malloc_res);
1776 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1777 call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
1778 gimple_call_set_lhs (call_stmt, malloc_res);
1779 finalize_stmt_and_append (new_stmts, call_stmt);
1781 /* Create new cast statement. */
1782 final_stmt = get_final_alloc_stmt (malloc_stmt);
1783 gcc_assert (final_stmt);
1784 new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
1785 gimple_seq_add_stmt (new_stmts, new_stmt);
1787 return call_stmt;
1790 /* This function returns a tree representing
1791 the number of instances of structure STR_DECL allocated
1792 by allocation STMT. If new statements are generated,
1793 they are filled into NEW_STMTS_P. */
1795 static tree
1796 gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
1797 gimple_seq *new_stmts_p)
1799 tree arg;
1800 tree struct_size;
1801 HOST_WIDE_INT struct_size_int;
1803 if (!stmt)
1804 return NULL_TREE;
1806 /* Get malloc argument. */
1807 if (!is_gimple_call (stmt))
1808 return NULL_TREE;
1810 arg = gimple_call_arg (stmt, 0);
1812 if (TREE_CODE (arg) != SSA_NAME
1813 && !TREE_CONSTANT (arg))
1814 return NULL_TREE;
1816 struct_size = TYPE_SIZE_UNIT (str_decl);
1817 struct_size_int = TREE_INT_CST_LOW (struct_size);
1819 gcc_assert (struct_size);
1821 if (TREE_CODE (arg) == SSA_NAME)
1823 tree num;
1824 gimple div_stmt;
1826 if (is_result_of_mult (arg, &num, struct_size))
1827 return num;
1829 num = create_tmp_var (integer_type_node, NULL);
1831 if (num)
1832 add_referenced_var (num);
1834 if (exact_log2 (struct_size_int) == -1)
1835 div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
1836 struct_size);
1837 else
1839 tree C = build_int_cst (integer_type_node,
1840 exact_log2 (struct_size_int));
1842 div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
1844 gimple_seq_add_stmt (new_stmts_p, div_stmt);
1845 finalize_stmt (div_stmt);
1846 return num;
1849 if (CONSTANT_CLASS_P (arg)
1850 && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
1851 return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
1853 return NULL_TREE;
1856 /* This function is a callback for traversal on new_var's hashtable.
1857 SLOT is a pointer to new_var. This function prints to dump_file
1858 an original variable and all new variables from the new_var
1859 pointed by *SLOT. */
1861 static int
1862 dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1864 new_var n_var = *(new_var *) slot;
1865 tree var_type;
1866 tree var;
1867 unsigned i;
1869 var_type = get_type_of_var (n_var->orig_var);
1871 fprintf (dump_file, "\nOrig var: ");
1872 print_generic_expr (dump_file, n_var->orig_var, 0);
1873 fprintf (dump_file, " of type ");
1874 print_generic_expr (dump_file, var_type, 0);
1875 fprintf (dump_file, "\n");
1877 for (i = 0;
1878 VEC_iterate (tree, n_var->new_vars, i, var); i++)
1880 var_type = get_type_of_var (var);
1882 fprintf (dump_file, " ");
1883 print_generic_expr (dump_file, var, 0);
1884 fprintf (dump_file, " of type ");
1885 print_generic_expr (dump_file, var_type, 0);
1886 fprintf (dump_file, "\n");
1888 return 1;
1891 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1893 static inline void
1894 copy_decl_attributes (tree new_decl, tree orig_decl)
1897 DECL_ARTIFICIAL (new_decl) = 1;
1898 DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
1899 TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
1900 TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
1901 TREE_USED (new_decl) = TREE_USED (orig_decl);
1902 DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
1903 TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
1904 TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
1906 if (TREE_CODE (orig_decl) == VAR_DECL)
1908 TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
1909 DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
1913 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1914 the same way as a structure type is wrapped in DECL.
1915 It returns the generated type. */
1917 static inline tree
1918 gen_struct_type (tree decl, tree new_str_type)
1920 tree type_orig = get_type_of_var (decl);
1921 tree new_type = new_str_type;
1922 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
1923 type_wrapper_t wr;
1924 type_wrapper_t *wr_p;
1926 while (POINTER_TYPE_P (type_orig)
1927 || TREE_CODE (type_orig) == ARRAY_TYPE)
1929 if (POINTER_TYPE_P (type_orig))
1931 wr.wrap = 0;
1932 wr.domain = NULL_TREE;
1934 else
1936 gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
1937 wr.wrap = 1;
1938 wr.domain = TYPE_DOMAIN (type_orig);
1940 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
1941 type_orig = TREE_TYPE (type_orig);
1944 while (VEC_length (type_wrapper_t, wrapper) != 0)
1946 wr_p = VEC_last (type_wrapper_t, wrapper);
1948 if (wr_p->wrap) /* Array. */
1949 new_type = build_array_type (new_type, wr_p->domain);
1950 else /* Pointer. */
1951 new_type = build_pointer_type (new_type);
1953 VEC_pop (type_wrapper_t, wrapper);
1956 VEC_free (type_wrapper_t, heap, wrapper);
1957 return new_type;
1960 /* This function generates and returns new variable name based on
1961 ORIG_DECL name, combined with index I.
1962 The form of the new name is <orig_name>.<I> . */
1964 static tree
1965 gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
1967 const char *old_name;
1968 char *prefix;
1969 char *new_name;
1971 if (!DECL_NAME (orig_decl)
1972 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
1973 return NULL;
1975 /* If the original variable has a name, create an
1976 appropriate new name for the new variable. */
1978 old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
1979 prefix = XALLOCAVEC (char, strlen (old_name) + 1);
1980 strcpy (prefix, old_name);
1981 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
1982 return get_identifier (new_name);
1985 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1987 static void
1988 add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
1990 void **slot;
1992 slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
1993 DECL_UID (new_node->orig_var),
1994 INSERT);
1995 *slot = new_node;
1998 /* This function creates and returns new_var_data node
1999 with empty new_vars and orig_var equal to VAR. */
2001 static new_var
2002 create_new_var_node (tree var, d_str str)
2004 new_var node;
2006 node = XNEW (struct new_var_data);
2007 node->orig_var = var;
2008 node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
2009 return node;
2012 /* Check whether the type of VAR is potential candidate for peeling.
2013 Returns true if yes, false otherwise. If yes, TYPE_P will contain
2014 candidate type. If VAR is initialized, the type of VAR will be added
2015 to UNSUITABLE_TYPES. */
2017 static bool
2018 is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
2020 tree type;
2021 bool initialized = false;
2023 *type_p = NULL;
2025 if (!var)
2026 return false;
2028 /* There is no support of initialized vars. */
2029 if (TREE_CODE (var) == VAR_DECL
2030 && DECL_INITIAL (var) != NULL_TREE)
2031 initialized = true;
2033 type = get_type_of_var (var);
2035 if (type)
2037 type = TYPE_MAIN_VARIANT (strip_type (type));
2038 if (TREE_CODE (type) != RECORD_TYPE)
2039 return false;
2040 else
2042 if (initialized && unsuitable_types && *unsuitable_types)
2044 if (dump_file)
2046 fprintf (dump_file, "The type ");
2047 print_generic_expr (dump_file, type, 0);
2048 fprintf (dump_file, " is initialized...Excluded.");
2050 add_unsuitable_type (unsuitable_types, type);
2052 *type_p = type;
2053 return true;
2056 else
2057 return false;
2060 /* Hash value for field_access_site. */
2062 static hashval_t
2063 field_acc_hash (const void *x)
2065 return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
2068 /* This function returns nonzero if stmt of field_access_site X
2069 is equal to Y. */
2071 static int
2072 field_acc_eq (const void *x, const void *y)
2074 return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
2077 /* This function prints an access site, defined by SLOT. */
2079 static int
2080 dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
2082 struct access_site *acc = *(struct access_site **) slot;
2083 tree var;
2084 unsigned i;
2086 fprintf(dump_file, "\n");
2087 if (acc->stmt)
2088 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
2089 fprintf(dump_file, " : ");
2091 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
2093 print_generic_expr (dump_file, var, 0);
2094 fprintf(dump_file, ", ");
2096 return 1;
2099 /* This function frees memory allocated for structure clusters,
2100 starting from CLUSTER. */
2102 static void
2103 free_struct_cluster (struct field_cluster* cluster)
2105 if (cluster)
2107 if (cluster->fields_in_cluster)
2108 sbitmap_free (cluster->fields_in_cluster);
2109 if (cluster->sibling)
2110 free_struct_cluster (cluster->sibling);
2111 free (cluster);
2115 /* Free all allocated memory under the structure node pointed by D_NODE. */
2117 static void
2118 free_data_struct (d_str d_node)
2120 int i;
2122 if (!d_node)
2123 return;
2125 if (dump_file)
2127 fprintf (dump_file, "\nRemoving data structure \"");
2128 print_generic_expr (dump_file, d_node->decl, 0);
2129 fprintf (dump_file, "\" from data_struct_list.");
2132 /* Free all space under d_node. */
2133 if (d_node->fields)
2135 for (i = 0; i < d_node->num_fields; i++)
2136 free_field_accesses (d_node->fields[i].acc_sites);
2137 free (d_node->fields);
2140 if (d_node->accs)
2141 free_accesses (d_node->accs);
2143 if (d_node->struct_clustering)
2144 free_struct_cluster (d_node->struct_clustering);
2146 if (d_node->new_types)
2147 VEC_free (tree, heap, d_node->new_types);
2150 /* This function creates new general and field accesses in BB. */
2152 static void
2153 create_new_accesses_in_bb (basic_block bb)
2155 d_str str;
2156 unsigned i;
2158 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2159 create_new_accs_for_struct (str, bb);
2162 /* This function adds allocation sites for peeled structures.
2163 M_DATA is vector of allocation sites of function CONTEXT. */
2165 static void
2166 create_new_alloc_sites (fallocs_t m_data, tree context)
2168 alloc_site_t *call;
2169 unsigned j;
2171 for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
2173 gimple stmt = call->stmt;
2174 d_str str = call->str;
2175 tree num;
2176 gimple_seq new_stmts = NULL;
2177 gimple last_stmt = get_final_alloc_stmt (stmt);
2178 unsigned i;
2179 tree type;
2181 num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
2182 if (new_stmts)
2184 gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2185 insert_seq_after_stmt (last_stmt, new_stmts);
2186 last_stmt = last_stmt_tmp;
2189 /* Generate an allocation sites for each new structure type. */
2190 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
2192 gimple new_malloc_stmt = NULL;
2193 gimple last_stmt_tmp = NULL;
2195 new_stmts = NULL;
2196 new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
2197 last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2198 insert_seq_after_stmt (last_stmt, new_stmts);
2199 update_cgraph_with_malloc_call (new_malloc_stmt, context);
2200 last_stmt = last_stmt_tmp;
2205 /* This function prints new variables from hashtable
2206 NEW_VARS_HTAB to dump_file. */
2208 static void
2209 dump_new_vars (htab_t new_vars_htab)
2211 if (!dump_file)
2212 return;
2214 if (new_vars_htab)
2215 htab_traverse (new_vars_htab, dump_new_var, NULL);
2218 /* Given an original variable ORIG_DECL of structure type STR,
2219 this function generates new variables of the types defined
2220 by STR->new_type. Generated types are saved in new_var node NODE.
2221 ORIG_DECL should has VAR_DECL tree_code. */
2223 static void
2224 create_new_var_1 (tree orig_decl, d_str str, new_var node)
2226 unsigned i;
2227 tree type;
2229 for (i = 0;
2230 VEC_iterate (tree, str->new_types, i, type); i++)
2232 tree new_decl = NULL;
2233 tree new_name;
2235 new_name = gen_var_name (orig_decl, i);
2236 type = gen_struct_type (orig_decl, type);
2238 if (is_global_var (orig_decl))
2239 new_decl = build_decl (DECL_SOURCE_LOCATION (orig_decl),
2240 VAR_DECL, new_name, type);
2241 else
2243 const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
2244 new_decl = create_tmp_var (type, name);
2247 copy_decl_attributes (new_decl, orig_decl);
2248 VEC_safe_push (tree, heap, node->new_vars, new_decl);
2252 /* This function creates new variables to
2253 substitute the original variable VAR_DECL and adds
2254 them to the new_var's hashtable NEW_VARS_HTAB. */
2256 static void
2257 create_new_var (tree var_decl, htab_t new_vars_htab)
2259 new_var node;
2260 d_str str;
2261 tree type;
2262 unsigned i;
2264 if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
2265 return;
2267 if (!is_candidate (var_decl, &type, NULL))
2268 return;
2270 i = find_structure (type);
2271 if (i == VEC_length (structure, structures))
2272 return;
2274 str = VEC_index (structure, structures, i);
2275 node = create_new_var_node (var_decl, str);
2276 create_new_var_1 (var_decl, str, node);
2277 add_to_new_vars_htab (node, new_vars_htab);
2280 /* Hash value for new_var. */
2282 static hashval_t
2283 new_var_hash (const void *x)
2285 return DECL_UID (((const_new_var)x)->orig_var);
2288 /* This function returns nonzero if orig_var of new_var X
2289 and tree Y have equal UIDs. */
2291 static int
2292 new_var_eq (const void *x, const void *y)
2294 if (DECL_P ((const_tree)y))
2295 return DECL_UID (((const_new_var)x)->orig_var) == DECL_UID ((const_tree)y);
2296 else
2297 return 0;
2300 /* This function check whether a structure type represented by STR
2301 escapes due to ipa-type-escape analysis. If yes, this type is added
2302 to UNSUITABLE_TYPES vector. */
2304 static void
2305 check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
2307 tree type = str->decl;
2309 if (!ipa_type_escape_type_contained_p (type))
2311 if (dump_file)
2313 fprintf (dump_file, "\nEscaping type is ");
2314 print_generic_expr (dump_file, type, 0);
2316 add_unsuitable_type (unsuitable_types, type);
2320 /* Hash value for access_site. */
2322 static hashval_t
2323 acc_hash (const void *x)
2325 return htab_hash_pointer (((const struct access_site *)x)->stmt);
2328 /* Return nonzero if stmt of access_site X is equal to Y. */
2330 static int
2331 acc_eq (const void *x, const void *y)
2333 return ((const struct access_site *)x)->stmt == (const_gimple)y;
2336 /* Given a structure declaration STRUCT_DECL, and number of fields
2337 in the structure NUM_FIELDS, this function creates and returns
2338 corresponding field_entry's. */
2340 static struct field_entry *
2341 get_fields (tree struct_decl, int num_fields)
2343 struct field_entry *list;
2344 tree t = TYPE_FIELDS (struct_decl);
2345 int idx = 0;
2347 list = XNEWVEC (struct field_entry, num_fields);
2349 for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
2350 if (TREE_CODE (t) == FIELD_DECL)
2352 list[idx].index = idx;
2353 list[idx].decl = t;
2354 list[idx].acc_sites =
2355 htab_create (32, field_acc_hash, field_acc_eq, NULL);
2356 list[idx].count = 0;
2357 list[idx].field_mapping = NULL_TREE;
2360 return list;
2363 /* Print non-field accesses from hashtable ACCS of structure. */
2365 static void
2366 dump_access_sites (htab_t accs)
2368 if (!dump_file)
2369 return;
2371 if (accs)
2372 htab_traverse (accs, dump_acc, NULL);
2375 /* This function is a callback for alloc_sites hashtable
2376 traversal. SLOT is a pointer to fallocs_t. This function
2377 removes all allocations of the structure defined by DATA. */
2379 static int
2380 remove_str_allocs_in_func (void **slot, void *data)
2382 fallocs_t fallocs = *(fallocs_t *) slot;
2383 unsigned i = 0;
2384 alloc_site_t *call;
2386 while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
2388 if (call->str == (d_str) data)
2389 VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
2390 else
2391 i++;
2394 return 1;
2397 /* This function remove all entries corresponding to the STR structure
2398 from alloc_sites hashtable. */
2400 static void
2401 remove_str_allocs (d_str str)
2403 if (!str)
2404 return;
2406 if (alloc_sites)
2407 htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
2410 /* This function removes the structure with index I from structures vector. */
2412 static void
2413 remove_structure (unsigned i)
2415 d_str str;
2417 if (i >= VEC_length (structure, structures))
2418 return;
2420 str = VEC_index (structure, structures, i);
2422 /* Before removing the structure str, we have to remove its
2423 allocations from alloc_sites hashtable. */
2424 remove_str_allocs (str);
2425 free_data_struct (str);
2426 VEC_ordered_remove (structure, structures, i);
2429 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2430 COND_STMT is a condition statement to check. */
2432 static bool
2433 is_safe_cond_expr (gimple cond_stmt)
2435 tree arg0, arg1;
2436 unsigned str0, str1;
2437 bool s0, s1;
2438 unsigned length = VEC_length (structure, structures);
2440 if (gimple_cond_code (cond_stmt) != EQ_EXPR
2441 && gimple_cond_code (cond_stmt) != NE_EXPR)
2442 return false;
2444 arg0 = gimple_cond_lhs (cond_stmt);
2445 arg1 = gimple_cond_rhs (cond_stmt);
2447 str0 = find_structure (strip_type (get_type_of_var (arg0)));
2448 str1 = find_structure (strip_type (get_type_of_var (arg1)));
2450 s0 = (str0 != length) ? true : false;
2451 s1 = (str1 != length) ? true : false;
2453 if (!s0 && !s1)
2454 return false;
2456 /* For now we allow only comparison with 0 or NULL. */
2457 if (!integer_zerop (arg0) && !integer_zerop (arg1))
2458 return false;
2460 return true;
2463 /* This function excludes statements, that are
2464 part of allocation sites or field accesses, from the
2465 hashtable of general accesses. SLOT represents general
2466 access that will be checked. DATA is a pointer to
2467 exclude_data structure. */
2469 static int
2470 exclude_from_accs (void **slot, void *data)
2472 struct access_site *acc = *(struct access_site **) slot;
2473 tree fn_decl = ((struct exclude_data *)data)->fn_decl;
2474 d_str str = ((struct exclude_data *)data)->str;
2476 if (is_part_of_malloc (acc->stmt, fn_decl)
2477 || is_part_of_field_access (acc->stmt, str))
2479 VEC_free (tree, heap, acc->vars);
2480 free (acc);
2481 htab_clear_slot (str->accs, slot);
2483 return 1;
2486 /* Callback function for walk_tree called from collect_accesses_in_bb
2487 function. DATA is the statement which is analyzed. */
2489 static tree
2490 get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
2492 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
2493 gimple stmt = (gimple) wi->info;
2494 tree t = *tp;
2496 if (!t)
2497 return NULL;
2499 switch (TREE_CODE (t))
2501 case BIT_FIELD_REF:
2503 tree var = TREE_OPERAND(t, 0);
2504 tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
2505 unsigned i = find_structure (type);
2507 if (i != VEC_length (structure, structures))
2509 if (is_gimple_debug (stmt))
2511 d_str str;
2513 str = VEC_index (structure, structures, i);
2514 add_access_to_acc_sites (stmt, NULL, str->accs);
2515 *walk_subtrees = 0;
2516 break;
2518 if (dump_file)
2520 fprintf (dump_file, "\nThe type ");
2521 print_generic_expr (dump_file, type, 0);
2522 fprintf (dump_file, " has bitfield.");
2524 remove_structure (i);
2527 break;
2529 case COMPONENT_REF:
2531 tree ref = TREE_OPERAND (t, 0);
2532 tree field_decl = TREE_OPERAND (t, 1);
2535 if ((TREE_CODE (ref) == MEM_REF
2536 || TREE_CODE (ref) == ARRAY_REF
2537 || TREE_CODE (ref) == VAR_DECL)
2538 && TREE_CODE (field_decl) == FIELD_DECL)
2540 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
2541 unsigned i = find_structure (type);
2543 if (i != VEC_length (structure, structures))
2545 d_str str = VEC_index (structure, structures, i);
2546 struct field_entry * field =
2547 find_field_in_struct (str, field_decl);
2549 if (is_gimple_debug (stmt))
2551 add_access_to_acc_sites (stmt, NULL, str->accs);
2552 *walk_subtrees = 0;
2553 break;
2556 if (field)
2558 struct field_access_site *acc = make_field_acc_node ();
2560 gcc_assert (acc);
2562 acc->stmt = stmt;
2563 acc->comp_ref = t;
2564 acc->ref = ref;
2565 acc->field_decl = field_decl;
2567 /* Check whether the access is of the form
2568 we can deal with. */
2569 if (!decompose_access (str->decl, acc))
2571 if (dump_file)
2573 fprintf (dump_file, "\nThe type ");
2574 print_generic_expr (dump_file, type, 0);
2575 fprintf (dump_file,
2576 " has complicate access in statement ");
2577 print_gimple_stmt (dump_file, stmt, 0, 0);
2580 remove_structure (i);
2581 free (acc);
2583 else
2585 /* Increase count of field. */
2586 basic_block bb = gimple_bb (stmt);
2587 field->count += bb->count;
2589 /* Add stmt to the acc_sites of field. */
2590 add_field_acc_to_acc_sites (acc, field->acc_sites);
2592 *walk_subtrees = 0;
2597 break;
2599 case COND_EXPR:
2601 tree cond = COND_EXPR_COND (t);
2602 int i;
2603 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
2605 tree t = TREE_OPERAND (cond, i);
2607 *walk_subtrees = 1;
2608 walk_tree (&t, get_stmt_accesses, data, NULL);
2610 *walk_subtrees = 0;
2612 break;
2614 case VAR_DECL:
2615 case SSA_NAME:
2617 unsigned i;
2619 if (TREE_CODE (t) == SSA_NAME)
2620 t = SSA_NAME_VAR (t);
2622 i = find_structure (strip_type (get_type_of_var (t)));
2623 if (i != VEC_length (structure, structures))
2625 d_str str;
2627 str = VEC_index (structure, structures, i);
2628 add_access_to_acc_sites (stmt, t, str->accs);
2630 *walk_subtrees = 0;
2632 break;
2634 default:
2635 return NULL;
2638 return NULL;
2641 /* Free structures hashtable. */
2643 static void
2644 free_structures (void)
2646 d_str str;
2647 unsigned i;
2649 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2650 free_data_struct (str);
2652 VEC_free (structure, heap, structures);
2653 structures = NULL;
2656 /* This function is a callback for traversal over new_var's hashtable.
2657 SLOT is a pointer to new_var. This function frees memory allocated
2658 for new_var and pointed by *SLOT. */
2660 static int
2661 free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
2663 new_var n_var = *(new_var *) slot;
2665 /* Free vector of new_vars. */
2666 VEC_free (tree, heap, n_var->new_vars);
2667 free (n_var);
2668 return 1;
2671 /* Free new_vars hashtable NEW_VARS_HTAB. */
2673 static void
2674 free_new_vars_htab (htab_t new_vars_htab)
2676 if (new_vars_htab)
2677 htab_traverse (new_vars_htab, free_new_var, NULL);
2678 htab_delete (new_vars_htab);
2679 new_vars_htab = NULL;
2682 /* This function creates new general and field accesses that appear in cfun. */
2684 static void
2685 create_new_accesses_for_func (void)
2687 basic_block bb;
2689 FOR_EACH_BB_FN (bb, cfun)
2690 create_new_accesses_in_bb (bb);
2693 /* Create new allocation sites for the function represented by NODE. */
2695 static void
2696 create_new_alloc_sites_for_func (struct cgraph_node *node)
2698 fallocs_t fallocs = get_fallocs (node->decl);
2700 if (fallocs)
2701 create_new_alloc_sites (fallocs, node->decl);
2704 /* For each local variable of structure type from the vector of structures
2705 this function generates new variable(s) to replace it. */
2707 static void
2708 create_new_local_vars (void)
2710 tree var;
2711 referenced_var_iterator rvi;
2713 new_local_vars = htab_create (num_referenced_vars,
2714 new_var_hash, new_var_eq, NULL);
2716 FOR_EACH_REFERENCED_VAR (var, rvi)
2718 if (!is_global_var (var))
2719 create_new_var (var, new_local_vars);
2722 if (new_local_vars)
2723 htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
2724 dump_new_vars (new_local_vars);
2727 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2729 static inline void
2730 print_shift (unsigned HOST_WIDE_INT shift)
2732 unsigned HOST_WIDE_INT sh = shift;
2734 while (sh--)
2735 fprintf (dump_file, " ");
2738 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2740 static inline void
2741 update_fields_mapping (struct field_cluster *cluster, tree new_type,
2742 struct field_entry * fields, int num_fields)
2744 int i;
2746 for (i = 0; i < num_fields; i++)
2747 if (TEST_BIT (cluster->fields_in_cluster, i))
2748 fields[i].field_mapping = new_type;
2751 /* This functions builds structure with FIELDS,
2752 NAME and attributes similar to ORIG_STRUCT.
2753 It returns the newly created structure. */
2755 static tree
2756 build_basic_struct (tree fields, tree name, tree orig_struct)
2758 tree attributes = NULL_TREE;
2759 tree ref = 0;
2760 tree x;
2762 if (TYPE_ATTRIBUTES (orig_struct))
2763 attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
2764 ref = make_node (RECORD_TYPE);
2765 TYPE_SIZE (ref) = 0;
2766 decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
2767 TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
2768 for (x = fields; x; x = TREE_CHAIN (x))
2770 DECL_CONTEXT (x) = ref;
2771 DECL_PACKED (x) |= TYPE_PACKED (ref);
2773 TYPE_FIELDS (ref) = fields;
2774 layout_type (ref);
2775 TYPE_NAME (ref) = name;
2777 return ref;
2780 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2781 of preparation for new structure building. NUM_FIELDS is a total
2782 number of fields in the structure. The function returns newly
2783 generated fields. */
2785 static tree
2786 create_fields (struct field_cluster * cluster,
2787 struct field_entry * fields, int num_fields)
2789 int i;
2790 tree new_types = NULL_TREE;
2791 tree last = NULL_TREE;
2793 for (i = 0; i < num_fields; i++)
2794 if (TEST_BIT (cluster->fields_in_cluster, i))
2796 tree new_decl = unshare_expr (fields[i].decl);
2798 if (!new_types)
2799 new_types = new_decl;
2800 else
2801 TREE_CHAIN (last) = new_decl;
2802 last = new_decl;
2805 TREE_CHAIN (last) = NULL_TREE;
2806 return new_types;
2810 /* This function creates a cluster name. The name is based on
2811 the original structure name, if it is present. It has a form:
2813 <original_struct_name>_sub.<CLUST_NUM>
2815 The original structure name is taken from the type of DECL.
2816 If an original structure name is not present, it's generated to be:
2818 struct.<STR_NUM>
2820 The function returns identifier of the new cluster name. */
2822 static inline tree
2823 gen_cluster_name (tree decl, int clust_num, int str_num)
2825 const char * orig_name = get_type_name (decl);
2826 char * tmp_name = NULL;
2827 char * prefix;
2828 char * new_name;
2829 size_t len;
2831 if (!orig_name)
2832 ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
2834 len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
2835 prefix = XALLOCAVEC (char, len + 1);
2836 memcpy (prefix, tmp_name ? tmp_name : orig_name,
2837 strlen (tmp_name ? tmp_name : orig_name));
2838 strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
2840 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
2841 return get_identifier (new_name);
2844 /* This function checks whether the structure STR has bitfields.
2845 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2847 static void
2848 check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
2850 tree type = str->decl;
2851 int i;
2853 for (i = 0; i < str->num_fields; i++)
2854 if (DECL_BIT_FIELD (str->fields[i].decl))
2856 add_unsuitable_type (unsuitable_types, type);
2857 if (dump_file)
2859 fprintf (dump_file, "\nType ");
2860 print_generic_expr (dump_file, type, 0);
2861 fprintf (dump_file, "\nescapes due to bitfield ");
2862 print_generic_expr (dump_file, str->fields[i].decl, 0);
2864 break;
2868 /* This function adds to UNSUITABLE_TYPES those types that escape
2869 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2871 static void
2872 exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
2874 d_str str;
2875 unsigned i;
2877 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2878 check_type_escape (str, unsuitable_types);
2881 /* If a structure type is a return type of any function,
2882 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2884 static void
2885 exclude_returned_types (VEC (tree, heap) **unsuitable_types)
2887 struct cgraph_node *c_node;
2889 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2891 tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
2893 if (ret_t)
2895 ret_t = strip_type (ret_t);
2896 if (TREE_CODE (ret_t) == RECORD_TYPE)
2898 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
2899 if (dump_file)
2901 fprintf (dump_file, "\nThe type \"");
2902 print_generic_expr (dump_file, ret_t, 0);
2903 fprintf (dump_file,
2904 "\" is return type of function...Excluded.");
2911 /* This function looks for parameters of local functions
2912 which are of structure types, or derived from them (arrays
2913 of structures, pointers to structures, or their combinations).
2914 We are not handling peeling of such structures right now.
2915 The found structures types are added to UNSUITABLE_TYPES vector. */
2917 static void
2918 exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
2920 struct cgraph_node *c_node;
2922 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2923 if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
2925 tree fn = c_node->decl;
2926 tree arg;
2928 for (arg = DECL_ARGUMENTS (fn); arg; arg = DECL_CHAIN (arg))
2930 tree type = TREE_TYPE (arg);
2932 type = strip_type (type);
2933 if (TREE_CODE (type) == RECORD_TYPE)
2935 add_unsuitable_type (unsuitable_types,
2936 TYPE_MAIN_VARIANT (type));
2937 if (dump_file)
2939 fprintf (dump_file, "\nPointer to type \"");
2940 print_generic_expr (dump_file, type, 0);
2941 fprintf (dump_file,
2942 "\" is passed to local function...Excluded.");
2949 /* This function analyzes structure form of structures
2950 potential for transformation. If we are not capable to transform
2951 structure of some form, we remove it from the structures hashtable.
2952 Right now we cannot handle nested structs, when nesting is
2953 through any level of pointers or arrays.
2955 TBD: release these constrains in future.
2957 Note, that in this function we suppose that all structures
2958 in the program are members of the structures hashtable right now,
2959 without excluding escaping types. */
2961 static void
2962 check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
2964 int i;
2966 for (i = 0; i < str->num_fields; i++)
2968 tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
2970 if (TREE_CODE (f_type) == RECORD_TYPE)
2972 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
2973 add_unsuitable_type (unsuitable_types, str->decl);
2974 if (dump_file)
2976 fprintf (dump_file, "\nType ");
2977 print_generic_expr (dump_file, f_type, 0);
2978 fprintf (dump_file, " is a field in the structure ");
2979 print_generic_expr (dump_file, str->decl, 0);
2980 fprintf (dump_file, ". Escaping...");
2986 /* This function adds a structure TYPE to the vector of structures,
2987 if it's not already there. */
2989 static void
2990 add_structure (tree type)
2992 struct data_structure node;
2993 unsigned i;
2994 int num_fields;
2996 type = TYPE_MAIN_VARIANT (type);
2998 i = find_structure (type);
3000 if (i != VEC_length (structure, structures))
3001 return;
3003 num_fields = fields_length (type);
3004 node.decl = type;
3005 node.num_fields = num_fields;
3006 node.fields = get_fields (type, num_fields);
3007 node.struct_clustering = NULL;
3008 node.accs = htab_create (32, acc_hash, acc_eq, NULL);
3009 node.new_types = VEC_alloc (tree, heap, num_fields);
3010 node.count = 0;
3012 VEC_safe_push (structure, heap, structures, &node);
3014 if (dump_file)
3016 fprintf (dump_file, "\nAdding data structure \"");
3017 print_generic_expr (dump_file, type, 0);
3018 fprintf (dump_file, "\" to data_struct_list.");
3022 /* This function adds an allocation site to alloc_sites hashtable.
3023 The allocation site appears in STMT of function FN_DECL and
3024 allocates the structure represented by STR. */
3026 static void
3027 add_alloc_site (tree fn_decl, gimple stmt, d_str str)
3029 fallocs_t fallocs = NULL;
3030 alloc_site_t m_call;
3032 m_call.stmt = stmt;
3033 m_call.str = str;
3035 fallocs =
3036 (fallocs_t) htab_find_with_hash (alloc_sites,
3037 fn_decl, htab_hash_pointer (fn_decl));
3039 if (!fallocs)
3041 void **slot;
3043 fallocs = XNEW (struct func_alloc_sites);
3044 fallocs->func = fn_decl;
3045 fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
3046 slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
3047 htab_hash_pointer (fn_decl), INSERT);
3048 *slot = fallocs;
3050 VEC_safe_push (alloc_site_t, heap,
3051 fallocs->allocs, &m_call);
3053 if (dump_file)
3055 fprintf (dump_file, "\nAdding stmt ");
3056 print_gimple_stmt (dump_file, stmt, 0, 0);
3057 fprintf (dump_file, " to list of mallocs.");
3061 /* This function returns true if the result of STMT, that contains a call
3062 to an allocation function, is cast to one of the structure types.
3063 STMT should be of the form: T.2 = <alloc_func> (T.1);
3064 If true, I_P contains an index of an allocated structure.
3065 Otherwise I_P contains the length of the vector of structures. */
3067 static bool
3068 is_alloc_of_struct (gimple stmt, unsigned *i_p)
3070 tree lhs;
3071 tree type;
3072 gimple final_stmt;
3074 final_stmt = get_final_alloc_stmt (stmt);
3076 if (!final_stmt)
3077 return false;
3079 /* final_stmt should be of the form:
3080 T.3 = (struct_type *) T.2; */
3082 if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
3083 return false;
3085 lhs = gimple_assign_lhs (final_stmt);
3087 type = get_type_of_var (lhs);
3089 if (!type)
3090 return false;
3092 if (!POINTER_TYPE_P (type)
3093 || TREE_CODE (strip_type (type)) != RECORD_TYPE)
3094 return false;
3096 *i_p = find_structure (strip_type (type));
3098 if (*i_p == VEC_length (structure, structures))
3099 return false;
3101 return true;
3104 /* This function prints non-field and field accesses
3105 of the structure STR. */
3107 static void
3108 dump_accs (d_str str)
3110 int i;
3112 fprintf (dump_file, "\nAccess sites of struct ");
3113 print_generic_expr (dump_file, str->decl, 0);
3115 for (i = 0; i < str->num_fields; i++)
3117 fprintf (dump_file, "\nAccess site of field ");
3118 print_generic_expr (dump_file, str->fields[i].decl, 0);
3119 dump_field_acc_sites (str->fields[i].acc_sites);
3120 fprintf (dump_file, ":\n");
3122 fprintf (dump_file, "\nGeneral access sites\n");
3123 dump_access_sites (str->accs);
3126 /* This function checks whether an access statement, pointed by SLOT,
3127 is a condition we are capable to transform. It returns false if not,
3128 setting bool *DATA to false. */
3130 static int
3131 safe_cond_expr_check (void **slot, void *data)
3133 struct access_site *acc = *(struct access_site **) slot;
3135 if (gimple_code (acc->stmt) == GIMPLE_COND
3136 && !is_safe_cond_expr (acc->stmt))
3138 if (dump_file)
3140 fprintf (dump_file, "\nUnsafe conditional statement ");
3141 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
3143 *(bool *) data = false;
3144 return 0;
3146 return 1;
3149 /* This function excludes statements that are part of allocation sites and
3150 field accesses from the hashtable of general accesses of the structure
3151 type STR. Only accesses that belong to the function represented by
3152 NODE are treated. */
3154 static void
3155 exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
3157 struct exclude_data dt;
3158 dt.str = str;
3159 dt.fn_decl = node->decl;
3161 if (dt.str->accs)
3162 htab_traverse (dt.str->accs, exclude_from_accs, &dt);
3165 /* Collect accesses to the structure types that appear in basic block BB. */
3167 static void
3168 collect_accesses_in_bb (basic_block bb)
3170 gimple_stmt_iterator bsi;
3171 struct walk_stmt_info wi;
3173 memset (&wi, 0, sizeof (wi));
3175 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3177 gimple stmt = gsi_stmt (bsi);
3179 /* In asm stmt we cannot always track the arguments,
3180 so we just give up. */
3181 if (gimple_code (stmt) == GIMPLE_ASM)
3183 free_structures ();
3184 break;
3187 wi.info = (void *) stmt;
3188 walk_gimple_op (stmt, get_stmt_accesses, &wi);
3192 /* This function generates cluster substructure that contains FIELDS.
3193 The cluster added to the set of clusters of the structure STR. */
3195 static void
3196 gen_cluster (sbitmap fields, d_str str)
3198 struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
3200 crr_cluster->sibling = str->struct_clustering;
3201 str->struct_clustering = crr_cluster;
3202 crr_cluster->fields_in_cluster = fields;
3205 /* This function peels a field with the index I from the structure DS. */
3207 static void
3208 peel_field (int i, d_str ds)
3210 struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
3212 crr_cluster->sibling = ds->struct_clustering;
3213 ds->struct_clustering = crr_cluster;
3214 crr_cluster->fields_in_cluster =
3215 sbitmap_alloc ((unsigned int) ds->num_fields);
3216 sbitmap_zero (crr_cluster->fields_in_cluster);
3217 SET_BIT (crr_cluster->fields_in_cluster, i);
3220 /* This function calculates maximum field count in
3221 the structure STR. */
3223 static gcov_type
3224 get_max_field_count (d_str str)
3226 gcov_type max = 0;
3227 int i;
3229 for (i = 0; i < str->num_fields; i++)
3230 if (str->fields[i].count > max)
3231 max = str->fields[i].count;
3233 return max;
3236 /* Do struct-reorg transformation for individual function
3237 represented by NODE. All structure types relevant
3238 for this function are transformed. */
3240 static void
3241 do_reorg_for_func (struct cgraph_node *node)
3243 create_new_local_vars ();
3244 create_new_alloc_sites_for_func (node);
3245 create_new_accesses_for_func ();
3246 update_ssa (TODO_update_ssa);
3247 cleanup_tree_cfg ();
3248 cgraph_rebuild_references ();
3250 /* Free auxiliary data representing local variables. */
3251 free_new_vars_htab (new_local_vars);
3254 /* Print structure TYPE, its name, if it exists, and body.
3255 INDENT defines the level of indentation (similar
3256 to the option -i of indent command). SHIFT parameter
3257 defines a number of spaces by which a structure will
3258 be shifted right. */
3260 static void
3261 dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
3262 unsigned HOST_WIDE_INT shift)
3264 const char *struct_name;
3265 tree field;
3267 if (!type || !dump_file)
3268 return;
3270 if (TREE_CODE (type) != RECORD_TYPE)
3272 print_generic_expr (dump_file, type, 0);
3273 return;
3276 print_shift (shift);
3277 struct_name = get_type_name (type);
3278 fprintf (dump_file, "struct ");
3279 if (struct_name)
3280 fprintf (dump_file, "%s\n",struct_name);
3281 print_shift (shift);
3282 fprintf (dump_file, "{\n");
3284 for (field = TYPE_FIELDS (type); field;
3285 field = TREE_CHAIN (field))
3287 unsigned HOST_WIDE_INT s = indent;
3288 tree f_type = TREE_TYPE (field);
3290 print_shift (shift);
3291 while (s--)
3292 fprintf (dump_file, " ");
3293 dump_struct_type (f_type, indent, shift + indent);
3294 fprintf(dump_file, " ");
3295 print_generic_expr (dump_file, field, 0);
3296 fprintf(dump_file, ";\n");
3298 print_shift (shift);
3299 fprintf (dump_file, "}\n");
3302 /* This function creates new structure types to replace original type,
3303 indicated by STR->decl. The names of the new structure types are
3304 derived from the original structure type. If the original structure
3305 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3307 static void
3308 create_new_type (d_str str, int *str_num)
3310 int cluster_num = 0;
3312 struct field_cluster *cluster = str->struct_clustering;
3313 while (cluster)
3315 tree name = gen_cluster_name (str->decl, cluster_num,
3316 *str_num);
3317 tree fields;
3318 tree new_type;
3319 cluster_num++;
3321 fields = create_fields (cluster, str->fields,
3322 str->num_fields);
3323 new_type = build_basic_struct (fields, name, str->decl);
3325 update_fields_mapping (cluster, new_type,
3326 str->fields, str->num_fields);
3328 VEC_safe_push (tree, heap, str->new_types, new_type);
3329 cluster = cluster->sibling;
3331 (*str_num)++;
3334 /* This function is a callback for alloc_sites hashtable
3335 traversal. SLOT is a pointer to fallocs_t.
3336 This function frees memory pointed by *SLOT. */
3338 static int
3339 free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
3341 fallocs_t fallocs = *(fallocs_t *) slot;
3343 VEC_free (alloc_site_t, heap, fallocs->allocs);
3344 free (fallocs);
3345 return 1;
3348 /* Remove structures collected in UNSUITABLE_TYPES
3349 from structures vector. */
3351 static void
3352 remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
3354 d_str str;
3355 tree type;
3356 unsigned i, j;
3358 for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
3359 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3360 if (is_equal_types (str->decl, type))
3362 remove_structure (i);
3363 break;
3367 /* Exclude structure types with bitfields.
3368 We would not want to interfere with other optimizations
3369 that can be done in this case. The structure types with
3370 bitfields are added to UNSUITABLE_TYPES vector. */
3372 static void
3373 exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
3375 d_str str;
3376 unsigned i;
3378 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3379 check_bitfields (str, unsuitable_types);
3382 /* This function checks three types of escape. A structure type escapes:
3384 1. if it's a type of parameter of a local function.
3385 2. if it's a type of function return value.
3386 3. if it escapes as a result of ipa-type-escape analysis.
3388 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3390 static void
3391 exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
3393 exclude_types_passed_to_local_func (unsuitable_types);
3394 exclude_returned_types (unsuitable_types);
3395 exclude_escaping_types_1 (unsuitable_types);
3398 /* This function analyzes whether the form of
3399 structure is such that we are capable to transform it.
3400 Nested structures are checked here. Unsuitable structure
3401 types are added to UNSUITABLE_TYPE vector. */
3403 static void
3404 analyze_struct_form (VEC (tree, heap) **unsuitable_types)
3406 d_str str;
3407 unsigned i;
3409 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3410 check_struct_form (str, unsuitable_types);
3413 /* This function looks for structure types instantiated in the program.
3414 The candidate types are added to the structures vector.
3415 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3417 static void
3418 build_data_structure (VEC (tree, heap) **unsuitable_types)
3420 tree var, type;
3421 struct varpool_node *current_varpool;
3422 struct cgraph_node *c_node;
3424 /* Check global variables. */
3425 FOR_EACH_STATIC_VARIABLE (current_varpool)
3427 var = current_varpool->decl;
3428 if (is_candidate (var, &type, unsuitable_types))
3429 add_structure (type);
3432 /* Now add structures that are types of function parameters and
3433 local variables. */
3434 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3436 enum availability avail =
3437 cgraph_function_body_availability (c_node);
3439 /* We need AVAIL_AVAILABLE for main function. */
3440 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3442 struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
3443 unsigned ix;
3445 for (var = DECL_ARGUMENTS (c_node->decl); var;
3446 var = TREE_CHAIN (var))
3447 if (is_candidate (var, &type, unsuitable_types))
3448 add_structure (type);
3450 if (fn == NULL)
3452 /* Skip cones that haven't been materialized yet. */
3453 gcc_assert (c_node->clone_of
3454 && c_node->clone_of->decl != c_node->decl);
3455 continue;
3458 /* Check function local variables. */
3459 FOR_EACH_LOCAL_DECL (fn, ix, var)
3460 if (is_candidate (var, &type, unsuitable_types))
3461 add_structure (type);
3466 /* This function returns true if the program contains
3467 a call to user defined allocation function, or other
3468 functions that can interfere with struct-reorg optimizations. */
3470 static bool
3471 program_redefines_malloc_p (void)
3473 struct cgraph_node *c_node;
3474 struct cgraph_node *c_node2;
3475 struct cgraph_edge *c_edge;
3476 tree fndecl2;
3478 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3480 for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
3482 c_node2 = c_edge->callee;
3483 fndecl2 = c_node2->decl;
3484 if (is_gimple_call (c_edge->call_stmt))
3486 const char * fname = get_name (fndecl2);
3488 if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
3489 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
3490 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
3491 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
3492 return true;
3494 /* Check that there is no __builtin_object_size,
3495 __builtin_offsetof, or realloc's in the program. */
3496 if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
3497 || !strcmp (fname, "__builtin_offsetof")
3498 || !strcmp (fname, "realloc"))
3499 return true;
3504 return false;
3507 /* In this function we assume that an allocation statement
3509 var = (type_cast) malloc (size);
3511 is converted into the following set of statements:
3513 T.1 = size;
3514 T.2 = malloc (T.1);
3515 T.3 = (type_cast) T.2;
3516 var = T.3;
3518 In this function we collect into alloc_sites the allocation
3519 sites of variables of structure types that are present
3520 in structures vector. */
3522 static void
3523 collect_alloc_sites (void)
3525 struct cgraph_node *node;
3526 struct cgraph_edge *cs;
3528 for (node = cgraph_nodes; node; node = node->next)
3529 if (node->analyzed && node->decl)
3531 for (cs = node->callees; cs; cs = cs->next_callee)
3533 gimple stmt = cs->call_stmt;
3535 if (stmt)
3537 tree decl;
3539 if (is_gimple_call (stmt)
3540 && (decl = gimple_call_fndecl (stmt))
3541 && gimple_call_lhs (stmt))
3543 unsigned i;
3545 if (is_alloc_of_struct (stmt, &i))
3547 /* We support only malloc now. */
3548 if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
3550 d_str str;
3552 str = VEC_index (structure, structures, i);
3553 add_alloc_site (node->decl, stmt, str);
3555 else
3557 if (dump_file)
3559 fprintf (dump_file,
3560 "\nUnsupported allocation function ");
3561 print_gimple_stmt (dump_file, stmt, 0, 0);
3563 remove_structure (i);
3572 /* Print collected accesses. */
3574 static void
3575 dump_accesses (void)
3577 d_str str;
3578 unsigned i;
3580 if (!dump_file)
3581 return;
3583 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3584 dump_accs (str);
3587 /* This function checks whether the accesses of structures in condition
3588 expressions are of the kind we are capable to transform.
3589 If not, such structures are removed from the vector of structures. */
3591 static void
3592 check_cond_exprs (void)
3594 d_str str;
3595 unsigned i;
3597 i = 0;
3598 while (VEC_iterate (structure, structures, i, str))
3600 bool safe_p = true;
3602 if (str->accs)
3603 htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
3604 if (!safe_p)
3605 remove_structure (i);
3606 else
3607 i++;
3611 /* We exclude from non-field accesses of the structure
3612 all statements that will be treated as part of the structure
3613 allocation sites or field accesses. */
3615 static void
3616 exclude_alloc_and_field_accs (struct cgraph_node *node)
3618 d_str str;
3619 unsigned i;
3621 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3622 exclude_alloc_and_field_accs_1 (str, node);
3625 /* This function collects accesses of the fields of the structures
3626 that appear at function FN. */
3628 static void
3629 collect_accesses_in_func (struct function *fn)
3631 basic_block bb;
3633 if (! fn)
3634 return;
3636 /* Collect accesses for each basic blocks separately. */
3637 FOR_EACH_BB_FN (bb, fn)
3638 collect_accesses_in_bb (bb);
3641 /* This function summarizes counts of the fields into the structure count. */
3643 static void
3644 sum_counts (d_str str, gcov_type *hottest)
3646 int i;
3648 str->count = 0;
3649 for (i = 0; i < str->num_fields; i++)
3651 if (dump_file)
3653 fprintf (dump_file, "\nCounter of field \"");
3654 print_generic_expr (dump_file, str->fields[i].decl, 0);
3655 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
3656 str->fields[i].count);
3658 str->count += str->fields[i].count;
3661 if (dump_file)
3663 fprintf (dump_file, "\nCounter of struct \"");
3664 print_generic_expr (dump_file, str->decl, 0);
3665 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
3668 if (str->count > *hottest)
3669 *hottest = str->count;
3672 /* This function peels the field into separate structure if it's
3673 sufficiently hot, i.e. if its count provides at least 90% of
3674 the maximum field count in the structure. */
3676 static void
3677 peel_hot_fields (d_str str)
3679 gcov_type max_field_count;
3680 sbitmap fields_left = sbitmap_alloc (str->num_fields);
3681 int i;
3683 sbitmap_ones (fields_left);
3684 max_field_count =
3685 (gcov_type) (get_max_field_count (str)/100)*90;
3687 str->struct_clustering = NULL;
3689 for (i = 0; i < str->num_fields; i++)
3691 if (str->count >= max_field_count)
3693 RESET_BIT (fields_left, i);
3694 peel_field (i, str);
3698 i = sbitmap_first_set_bit (fields_left);
3699 if (i != -1)
3700 gen_cluster (fields_left, str);
3701 else
3702 sbitmap_free (fields_left);
3705 /* This function is a helper for do_reorg. It goes over
3706 functions in call graph and performs actual transformation
3707 on them. */
3709 static void
3710 do_reorg_1 (void)
3712 struct cgraph_node *node;
3714 /* Initialize the default bitmap obstack. */
3715 bitmap_obstack_initialize (NULL);
3717 for (node = cgraph_nodes; node; node = node->next)
3718 if (node->analyzed && node->decl)
3720 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3721 current_function_decl = node->decl;
3722 if (dump_file)
3723 fprintf (dump_file, "\nFunction to do reorg is %s: \n",
3724 (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
3725 do_reorg_for_func (node);
3726 free_dominance_info (CDI_DOMINATORS);
3727 free_dominance_info (CDI_POST_DOMINATORS);
3728 current_function_decl = NULL;
3729 pop_cfun ();
3732 set_cfun (NULL);
3733 bitmap_obstack_release (NULL);
3736 /* This function creates new global struct variables.
3737 For each original variable, the set of new variables
3738 is created with the new structure types corresponding
3739 to the structure type of original variable.
3740 Only VAR_DECL variables are treated by this function. */
3742 static void
3743 create_new_global_vars (void)
3745 struct varpool_node *current_varpool;
3746 unsigned HOST_WIDE_INT i;
3747 unsigned HOST_WIDE_INT varpool_size = 0;
3749 for (i = 0; i < 2; i++)
3751 if (i)
3752 new_global_vars = htab_create (varpool_size,
3753 new_var_hash, new_var_eq, NULL);
3754 FOR_EACH_STATIC_VARIABLE(current_varpool)
3756 tree var_decl = current_varpool->decl;
3758 if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
3759 continue;
3760 if (!i)
3761 varpool_size++;
3762 else
3763 create_new_var (var_decl, new_global_vars);
3767 if (new_global_vars)
3768 htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
3771 /* Dump all new types generated by this optimization. */
3773 static void
3774 dump_new_types (void)
3776 d_str str;
3777 tree type;
3778 unsigned i, j;
3780 if (!dump_file)
3781 return;
3783 fprintf (dump_file, "\nThe following are the new types generated by"
3784 " this optimization:\n");
3786 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3788 if (dump_file)
3790 fprintf (dump_file, "\nFor type ");
3791 dump_struct_type (str->decl, 2, 0);
3792 fprintf (dump_file, "\nthe number of new types is %d\n",
3793 VEC_length (tree, str->new_types));
3795 for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
3796 dump_struct_type (type, 2, 0);
3800 /* This function creates new types to replace old structure types. */
3802 static void
3803 create_new_types (void)
3805 d_str str;
3806 unsigned i;
3807 int str_num = 0;
3809 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3810 create_new_type (str, &str_num);
3813 /* Free allocation sites hashtable. */
3815 static void
3816 free_alloc_sites (void)
3818 if (alloc_sites)
3819 htab_traverse (alloc_sites, free_falloc_sites, NULL);
3820 htab_delete (alloc_sites);
3821 alloc_sites = NULL;
3824 /* This function collects structures potential
3825 for peeling transformation, and inserts
3826 them into structures hashtable. */
3828 static void
3829 collect_structures (void)
3831 VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
3833 structures = VEC_alloc (structure, heap, 32);
3835 /* If program contains user defined mallocs, we give up. */
3836 if (program_redefines_malloc_p ())
3837 return;
3839 /* Build data structures hashtable of all data structures
3840 in the program. */
3841 build_data_structure (&unsuitable_types);
3843 /* This function analyzes whether the form of
3844 structure is such that we are capable to transform it.
3845 Nested structures are checked here. */
3846 analyze_struct_form (&unsuitable_types);
3848 /* This function excludes those structure types
3849 that escape compilation unit. */
3850 exclude_escaping_types (&unsuitable_types);
3852 /* We do not want to change data layout of the structures with bitfields. */
3853 exclude_types_with_bit_fields (&unsuitable_types);
3855 remove_unsuitable_types (unsuitable_types);
3856 VEC_free (tree, heap, unsuitable_types);
3859 /* Collect structure allocation sites. In case of arrays
3860 we have nothing to do. */
3862 static void
3863 collect_allocation_sites (void)
3865 alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
3866 collect_alloc_sites ();
3869 /* This function collects data accesses for the
3870 structures to be transformed. For each structure
3871 field it updates the count field in field_entry. */
3873 static void
3874 collect_data_accesses (void)
3876 struct cgraph_node *c_node;
3878 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3880 enum availability avail = cgraph_function_body_availability (c_node);
3882 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3884 struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
3886 collect_accesses_in_func (func);
3887 exclude_alloc_and_field_accs (c_node);
3891 check_cond_exprs ();
3892 /* Print collected accesses. */
3893 dump_accesses ();
3896 /* We do not bother to transform cold structures.
3897 Coldness of the structure is defined relatively
3898 to the highest structure count among the structures
3899 to be transformed. It's triggered by the compiler parameter
3901 --param struct-reorg-cold-struct-ratio=<value>
3903 where <value> ranges from 0 to 100. Structures with count ratios
3904 that are less than this parameter are considered to be cold. */
3906 static void
3907 exclude_cold_structs (void)
3909 gcov_type hottest = 0;
3910 unsigned i;
3911 d_str str;
3913 /* We summarize counts of fields of a structure into the structure count. */
3914 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3915 sum_counts (str, &hottest);
3917 /* Remove cold structures from structures vector. */
3918 i = 0;
3919 while (VEC_iterate (structure, structures, i, str))
3920 if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
3922 if (dump_file)
3924 fprintf (dump_file, "\nThe structure ");
3925 print_generic_expr (dump_file, str->decl, 0);
3926 fprintf (dump_file, " is cold.");
3928 remove_structure (i);
3930 else
3931 i++;
3934 /* This function decomposes original structure into substructures,
3935 i.e.clusters. */
3937 static void
3938 peel_structs (void)
3940 d_str str;
3941 unsigned i;
3943 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3944 peel_hot_fields (str);
3947 /* Stage 3. */
3948 /* Do the actual transformation for each structure
3949 from the structures hashtable. */
3951 static void
3952 do_reorg (void)
3954 /* Check that there is a work to do. */
3955 if (!VEC_length (structure, structures))
3957 if (dump_file)
3958 fprintf (dump_file, "\nNo structures to transform. Exiting...");
3959 return;
3961 else
3963 if (dump_file)
3965 fprintf (dump_file, "\nNumber of structures to transform is %d",
3966 VEC_length (structure, structures));
3970 /* Generate new types. */
3971 create_new_types ();
3972 dump_new_types ();
3974 /* Create new global variables. */
3975 create_new_global_vars ();
3976 dump_new_vars (new_global_vars);
3978 /* Decompose structures for each function separately. */
3979 do_reorg_1 ();
3981 /* Free auxiliary data collected for global variables. */
3982 free_new_vars_htab (new_global_vars);
3985 /* Free all auxiliary data used by this optimization. */
3987 static void
3988 free_data_structs (void)
3990 free_structures ();
3991 free_alloc_sites ();
3994 /* Perform structure decomposition (peeling). */
3996 static void
3997 reorg_structs (void)
4000 /* Stage1. */
4001 /* Collect structure types. */
4002 collect_structures ();
4004 /* Collect structure allocation sites. */
4005 collect_allocation_sites ();
4007 /* Collect structure accesses. */
4008 collect_data_accesses ();
4010 /* We transform only hot structures. */
4011 exclude_cold_structs ();
4013 /* Stage2. */
4014 /* Decompose structures into substructures, i.e. clusters. */
4015 peel_structs ();
4017 /* Stage3. */
4018 /* Do the actual transformation for each structure
4019 from the structures hashtable. */
4020 do_reorg ();
4022 /* Free all auxiliary data used by this optimization. */
4023 free_data_structs ();
4026 /* Struct-reorg optimization entry point function. */
4028 static unsigned int
4029 reorg_structs_drive (void)
4031 /* IPA struct-reorg is completely broken - its analysis phase is
4032 non-conservative (which is not the only reason it is broken). */
4033 if (0)
4034 reorg_structs ();
4035 return 0;
4038 /* Struct-reorg optimization gate function. */
4040 static bool
4041 struct_reorg_gate (void)
4043 return flag_ipa_struct_reorg
4044 && flag_whole_program
4045 && (optimize > 0);
4048 struct simple_ipa_opt_pass pass_ipa_struct_reorg =
4051 SIMPLE_IPA_PASS,
4052 "ipa_struct_reorg", /* name */
4053 struct_reorg_gate, /* gate */
4054 reorg_structs_drive, /* execute */
4055 NULL, /* sub */
4056 NULL, /* next */
4057 0, /* static_pass_number */
4058 TV_INTEGRATION, /* tv_id */
4059 0, /* properties_required */
4060 0, /* properties_provided */
4061 0, /* properties_destroyed */
4062 TODO_verify_ssa, /* todo_flags_start */
4063 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */