2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / fwprop.c
bloba6f52cdce5b02be6568c0c762317859cd491e7b6
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "toplev.h"
29 #include "timevar.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "flags.h"
35 #include "obstack.h"
36 #include "basic-block.h"
37 #include "output.h"
38 #include "df.h"
39 #include "target.h"
40 #include "cfgloop.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "emit-rtl.h"
46 /* This pass does simple forward propagation and simplification when an
47 operand of an insn can only come from a single def. This pass uses
48 df.c, so it is global. However, we only do limited analysis of
49 available expressions.
51 1) The pass tries to propagate the source of the def into the use,
52 and checks if the result is independent of the substituted value.
53 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
54 zero, independent of the source register.
56 In particular, we propagate constants into the use site. Sometimes
57 RTL expansion did not put the constant in the same insn on purpose,
58 to satisfy a predicate, and the result will fail to be recognized;
59 but this happens rarely and in this case we can still create a
60 REG_EQUAL note. For multi-word operations, this
62 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
63 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
64 (set (subreg:SI (reg:DI 122) 0)
65 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
66 (set (subreg:SI (reg:DI 122) 4)
67 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
69 can be simplified to the much simpler
71 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
72 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
74 This particular propagation is also effective at putting together
75 complex addressing modes. We are more aggressive inside MEMs, in
76 that all definitions are propagated if the use is in a MEM; if the
77 result is a valid memory address we check address_cost to decide
78 whether the substitution is worthwhile.
80 2) The pass propagates register copies. This is not as effective as
81 the copy propagation done by CSE's canon_reg, which works by walking
82 the instruction chain, it can help the other transformations.
84 We should consider removing this optimization, and instead reorder the
85 RTL passes, because GCSE does this transformation too. With some luck,
86 the CSE pass at the end of rest_of_handle_gcse could also go away.
88 3) The pass looks for paradoxical subregs that are actually unnecessary.
89 Things like this:
91 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
92 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
93 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
94 (subreg:SI (reg:QI 121) 0)))
96 are very common on machines that can only do word-sized operations.
97 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
98 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
99 we can replace the paradoxical subreg with simply (reg:WIDE M). The
100 above will simplify this to
102 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
103 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
104 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
106 where the first two insns are now dead.
108 We used to use reaching definitions to find which uses have a
109 single reaching definition (sounds obvious...), but this is too
110 complex a problem in nasty testcases like PR33928. Now we use the
111 multiple definitions problem in df-problems.c. The similarity
112 between that problem and SSA form creation is taken further, in
113 that fwprop does a dominator walk to create its chains; however,
114 instead of creating a PHI function where multiple definitions meet
115 I just punt and record only singleton use-def chains, which is
116 all that is needed by fwprop. */
119 static int num_changes;
121 DEF_VEC_P(df_ref);
122 DEF_VEC_ALLOC_P(df_ref,heap);
123 static VEC(df_ref,heap) *use_def_ref;
124 static VEC(df_ref,heap) *reg_defs;
125 static VEC(df_ref,heap) *reg_defs_stack;
127 /* The MD bitmaps are trimmed to include only live registers to cut
128 memory usage on testcases like insn-recog.c. Track live registers
129 in the basic block and do not perform forward propagation if the
130 destination is a dead pseudo occurring in a note. */
131 static bitmap local_md;
132 static bitmap local_lr;
134 /* Return the only def in USE's use-def chain, or NULL if there is
135 more than one def in the chain. */
137 static inline df_ref
138 get_def_for_use (df_ref use)
140 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
144 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
145 TOP_FLAG says which artificials uses should be used, when DEF_REC
146 is an artificial def vector. LOCAL_MD is modified as after a
147 df_md_simulate_* function; we do more or less the same processing
148 done there, so we do not use those functions. */
150 #define DF_MD_GEN_FLAGS \
151 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
153 static void
154 process_defs (df_ref *def_rec, int top_flag)
156 df_ref def;
157 while ((def = *def_rec++) != NULL)
159 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
160 unsigned int dregno;
162 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
163 continue;
165 dregno = DF_REF_REGNO (def);
166 if (curr_def)
167 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
168 else
170 /* Do not store anything if "transitioning" from NULL to NULL. But
171 otherwise, push a special entry on the stack to tell the
172 leave_block callback that the entry in reg_defs was NULL. */
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 else
176 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
179 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
181 bitmap_set_bit (local_md, dregno);
182 VEC_replace (df_ref, reg_defs, dregno, NULL);
184 else
186 bitmap_clear_bit (local_md, dregno);
187 VEC_replace (df_ref, reg_defs, dregno, def);
193 /* Fill the use_def_ref vector with values for the uses in USE_REC,
194 taking reaching definitions info from LOCAL_MD and REG_DEFS.
195 TOP_FLAG says which artificials uses should be used, when USE_REC
196 is an artificial use vector. */
198 static void
199 process_uses (df_ref *use_rec, int top_flag)
201 df_ref use;
202 while ((use = *use_rec++) != NULL)
203 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
205 unsigned int uregno = DF_REF_REGNO (use);
206 if (VEC_index (df_ref, reg_defs, uregno)
207 && !bitmap_bit_p (local_md, uregno)
208 && bitmap_bit_p (local_lr, uregno))
209 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
210 VEC_index (df_ref, reg_defs, uregno));
215 static void
216 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
217 basic_block bb)
219 int bb_index = bb->index;
220 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
221 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
222 rtx insn;
224 bitmap_copy (local_md, &md_bb_info->in);
225 bitmap_copy (local_lr, &lr_bb_info->in);
227 /* Push a marker for the leave_block callback. */
228 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
230 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
231 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
233 /* We don't call df_simulate_initialize_forwards, as it may overestimate
234 the live registers if there are unused artificial defs. We prefer
235 liveness to be underestimated. */
237 FOR_BB_INSNS (bb, insn)
238 if (INSN_P (insn))
240 unsigned int uid = INSN_UID (insn);
241 process_uses (DF_INSN_UID_USES (uid), 0);
242 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
243 process_defs (DF_INSN_UID_DEFS (uid), 0);
244 df_simulate_one_insn_forwards (bb, insn, local_lr);
247 process_uses (df_get_artificial_uses (bb_index), 0);
248 process_defs (df_get_artificial_defs (bb_index), 0);
251 /* Pop the definitions created in this basic block when leaving its
252 dominated parts. */
254 static void
255 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
256 basic_block bb ATTRIBUTE_UNUSED)
258 df_ref saved_def;
259 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
261 unsigned int dregno = DF_REF_REGNO (saved_def);
263 /* See also process_defs. */
264 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
265 VEC_replace (df_ref, reg_defs, dregno, NULL);
266 else
267 VEC_replace (df_ref, reg_defs, dregno, saved_def);
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
275 static void
276 build_single_def_use_links (void)
278 struct dom_walk_data walk_data;
280 /* We use the multiple definitions problem to compute our restricted
281 use-def chains. */
282 df_set_flags (DF_EQ_NOTES);
283 df_md_add_problem ();
284 df_note_add_problem ();
285 df_analyze ();
286 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
288 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
289 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
291 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
292 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
294 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
295 local_md = BITMAP_ALLOC (NULL);
296 local_lr = BITMAP_ALLOC (NULL);
298 /* Walk the dominator tree looking for single reaching definitions
299 dominating the uses. This is similar to how SSA form is built. */
300 walk_data.dom_direction = CDI_DOMINATORS;
301 walk_data.initialize_block_local_data = NULL;
302 walk_data.before_dom_children = single_def_use_enter_block;
303 walk_data.after_dom_children = single_def_use_leave_block;
305 init_walk_dominator_tree (&walk_data);
306 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
307 fini_walk_dominator_tree (&walk_data);
309 BITMAP_FREE (local_lr);
310 BITMAP_FREE (local_md);
311 VEC_free (df_ref, heap, reg_defs);
312 VEC_free (df_ref, heap, reg_defs_stack);
316 /* Do not try to replace constant addresses or addresses of local and
317 argument slots. These MEM expressions are made only once and inserted
318 in many instructions, as well as being used to control symbol table
319 output. It is not safe to clobber them.
321 There are some uncommon cases where the address is already in a register
322 for some reason, but we cannot take advantage of that because we have
323 no easy way to unshare the MEM. In addition, looking up all stack
324 addresses is costly. */
326 static bool
327 can_simplify_addr (rtx addr)
329 rtx reg;
331 if (CONSTANT_ADDRESS_P (addr))
332 return false;
334 if (GET_CODE (addr) == PLUS)
335 reg = XEXP (addr, 0);
336 else
337 reg = addr;
339 return (!REG_P (reg)
340 || (REGNO (reg) != FRAME_POINTER_REGNUM
341 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
342 && REGNO (reg) != ARG_POINTER_REGNUM));
345 /* Returns a canonical version of X for the address, from the point of view,
346 that all multiplications are represented as MULT instead of the multiply
347 by a power of 2 being represented as ASHIFT.
349 Every ASHIFT we find has been made by simplify_gen_binary and was not
350 there before, so it is not shared. So we can do this in place. */
352 static void
353 canonicalize_address (rtx x)
355 for (;;)
356 switch (GET_CODE (x))
358 case ASHIFT:
359 if (CONST_INT_P (XEXP (x, 1))
360 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
361 && INTVAL (XEXP (x, 1)) >= 0)
363 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
364 PUT_CODE (x, MULT);
365 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
366 GET_MODE (x));
369 x = XEXP (x, 0);
370 break;
372 case PLUS:
373 if (GET_CODE (XEXP (x, 0)) == PLUS
374 || GET_CODE (XEXP (x, 0)) == ASHIFT
375 || GET_CODE (XEXP (x, 0)) == CONST)
376 canonicalize_address (XEXP (x, 0));
378 x = XEXP (x, 1);
379 break;
381 case CONST:
382 x = XEXP (x, 0);
383 break;
385 default:
386 return;
390 /* OLD is a memory address. Return whether it is good to use NEW instead,
391 for a memory access in the given MODE. */
393 static bool
394 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
395 addr_space_t as, bool speed)
397 int gain;
399 if (rtx_equal_p (old_rtx, new_rtx)
400 || !memory_address_addr_space_p (mode, new_rtx, as))
401 return false;
403 /* Copy propagation is always ok. */
404 if (REG_P (old_rtx) && REG_P (new_rtx))
405 return true;
407 /* Prefer the new address if it is less expensive. */
408 gain = (address_cost (old_rtx, mode, as, speed)
409 - address_cost (new_rtx, mode, as, speed));
411 /* If the addresses have equivalent cost, prefer the new address
412 if it has the highest `rtx_cost'. That has the potential of
413 eliminating the most insns without additional costs, and it
414 is the same that cse.c used to do. */
415 if (gain == 0)
416 gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
418 return (gain > 0);
422 /* Flags for the last parameter of propagate_rtx_1. */
424 enum {
425 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
426 if it is false, propagate_rtx_1 returns false if, for at least
427 one occurrence OLD, it failed to collapse the result to a constant.
428 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
429 collapse to zero if replacing (reg:M B) with (reg:M A).
431 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
432 propagate_rtx_1 just tries to make cheaper and valid memory
433 addresses. */
434 PR_CAN_APPEAR = 1,
436 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
437 outside memory addresses. This is needed because propagate_rtx_1 does
438 not do any analysis on memory; thus it is very conservative and in general
439 it will fail if non-read-only MEMs are found in the source expression.
441 PR_HANDLE_MEM is set when the source of the propagation was not
442 another MEM. Then, it is safe not to treat non-read-only MEMs as
443 ``opaque'' objects. */
444 PR_HANDLE_MEM = 2,
446 /* Set when costs should be optimized for speed. */
447 PR_OPTIMIZE_FOR_SPEED = 4
451 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
452 resulting expression. Replace *PX with a new RTL expression if an
453 occurrence of OLD was found.
455 This is only a wrapper around simplify-rtx.c: do not add any pattern
456 matching code here. (The sole exception is the handling of LO_SUM, but
457 that is because there is no simplify_gen_* function for LO_SUM). */
459 static bool
460 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
462 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
463 enum rtx_code code = GET_CODE (x);
464 enum machine_mode mode = GET_MODE (x);
465 enum machine_mode op_mode;
466 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
467 bool valid_ops = true;
469 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
471 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
472 they have side effects or not). */
473 *px = (side_effects_p (x)
474 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
475 : gen_rtx_SCRATCH (GET_MODE (x)));
476 return false;
479 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
480 address, and we are *not* inside one. */
481 if (x == old_rtx)
483 *px = new_rtx;
484 return can_appear;
487 /* If this is an expression, try recursive substitution. */
488 switch (GET_RTX_CLASS (code))
490 case RTX_UNARY:
491 op0 = XEXP (x, 0);
492 op_mode = GET_MODE (op0);
493 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
494 if (op0 == XEXP (x, 0))
495 return true;
496 tem = simplify_gen_unary (code, mode, op0, op_mode);
497 break;
499 case RTX_BIN_ARITH:
500 case RTX_COMM_ARITH:
501 op0 = XEXP (x, 0);
502 op1 = XEXP (x, 1);
503 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
504 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
505 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
506 return true;
507 tem = simplify_gen_binary (code, mode, op0, op1);
508 break;
510 case RTX_COMPARE:
511 case RTX_COMM_COMPARE:
512 op0 = XEXP (x, 0);
513 op1 = XEXP (x, 1);
514 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
515 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
516 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
517 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
518 return true;
519 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
520 break;
522 case RTX_TERNARY:
523 case RTX_BITFIELD_OPS:
524 op0 = XEXP (x, 0);
525 op1 = XEXP (x, 1);
526 op2 = XEXP (x, 2);
527 op_mode = GET_MODE (op0);
528 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
529 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
530 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
531 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
532 return true;
533 if (op_mode == VOIDmode)
534 op_mode = GET_MODE (op0);
535 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
536 break;
538 case RTX_EXTRA:
539 /* The only case we try to handle is a SUBREG. */
540 if (code == SUBREG)
542 op0 = XEXP (x, 0);
543 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
544 if (op0 == XEXP (x, 0))
545 return true;
546 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
547 SUBREG_BYTE (x));
549 break;
551 case RTX_OBJ:
552 if (code == MEM && x != new_rtx)
554 rtx new_op0;
555 op0 = XEXP (x, 0);
557 /* There are some addresses that we cannot work on. */
558 if (!can_simplify_addr (op0))
559 return true;
561 op0 = new_op0 = targetm.delegitimize_address (op0);
562 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
563 flags | PR_CAN_APPEAR);
565 /* Dismiss transformation that we do not want to carry on. */
566 if (!valid_ops
567 || new_op0 == op0
568 || !(GET_MODE (new_op0) == GET_MODE (op0)
569 || GET_MODE (new_op0) == VOIDmode))
570 return true;
572 canonicalize_address (new_op0);
574 /* Copy propagations are always ok. Otherwise check the costs. */
575 if (!(REG_P (old_rtx) && REG_P (new_rtx))
576 && !should_replace_address (op0, new_op0, GET_MODE (x),
577 MEM_ADDR_SPACE (x),
578 flags & PR_OPTIMIZE_FOR_SPEED))
579 return true;
581 tem = replace_equiv_address_nv (x, new_op0);
584 else if (code == LO_SUM)
586 op0 = XEXP (x, 0);
587 op1 = XEXP (x, 1);
589 /* The only simplification we do attempts to remove references to op0
590 or make it constant -- in both cases, op0's invalidity will not
591 make the result invalid. */
592 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
593 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
594 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
595 return true;
597 /* (lo_sum (high x) x) -> x */
598 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
599 tem = op1;
600 else
601 tem = gen_rtx_LO_SUM (mode, op0, op1);
603 /* OP1 is likely not a legitimate address, otherwise there would have
604 been no LO_SUM. We want it to disappear if it is invalid, return
605 false in that case. */
606 return memory_address_p (mode, tem);
609 else if (code == REG)
611 if (rtx_equal_p (x, old_rtx))
613 *px = new_rtx;
614 return can_appear;
617 break;
619 default:
620 break;
623 /* No change, no trouble. */
624 if (tem == NULL_RTX)
625 return true;
627 *px = tem;
629 /* The replacement we made so far is valid, if all of the recursive
630 replacements were valid, or we could simplify everything to
631 a constant. */
632 return valid_ops || can_appear || CONSTANT_P (tem);
636 /* for_each_rtx traversal function that returns 1 if BODY points to
637 a non-constant mem. */
639 static int
640 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
642 rtx x = *body;
643 return MEM_P (x) && !MEM_READONLY_P (x);
647 /* Replace all occurrences of OLD in X with NEW and try to simplify the
648 resulting expression (in mode MODE). Return a new expression if it is
649 a constant, otherwise X.
651 Simplifications where occurrences of NEW collapse to a constant are always
652 accepted. All simplifications are accepted if NEW is a pseudo too.
653 Otherwise, we accept simplifications that have a lower or equal cost. */
655 static rtx
656 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
657 bool speed)
659 rtx tem;
660 bool collapsed;
661 int flags;
663 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
664 return NULL_RTX;
666 flags = 0;
667 if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
668 flags |= PR_CAN_APPEAR;
669 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
670 flags |= PR_HANDLE_MEM;
672 if (speed)
673 flags |= PR_OPTIMIZE_FOR_SPEED;
675 tem = x;
676 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
677 if (tem == x || !collapsed)
678 return NULL_RTX;
680 /* gen_lowpart_common will not be able to process VOIDmode entities other
681 than CONST_INTs. */
682 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
683 return NULL_RTX;
685 if (GET_MODE (tem) == VOIDmode)
686 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
687 else
688 gcc_assert (GET_MODE (tem) == mode);
690 return tem;
696 /* Return true if the register from reference REF is killed
697 between FROM to (but not including) TO. */
699 static bool
700 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
702 rtx insn;
704 for (insn = from; insn != to; insn = NEXT_INSN (insn))
706 df_ref *def_rec;
707 if (!INSN_P (insn))
708 continue;
710 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
712 df_ref def = *def_rec;
713 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
714 return true;
717 return false;
721 /* Check if the given DEF is available in INSN. This would require full
722 computation of available expressions; we check only restricted conditions:
723 - if DEF is the sole definition of its register, go ahead;
724 - in the same basic block, we check for no definitions killing the
725 definition of DEF_INSN;
726 - if USE's basic block has DEF's basic block as the sole predecessor,
727 we check if the definition is killed after DEF_INSN or before
728 TARGET_INSN insn, in their respective basic blocks. */
729 static bool
730 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
732 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
733 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
734 int regno;
735 df_ref def;
737 /* We used to have a def reaching a use that is _before_ the def,
738 with the def not dominating the use even though the use and def
739 are in the same basic block, when a register may be used
740 uninitialized in a loop. This should not happen anymore since
741 we do not use reaching definitions, but still we test for such
742 cases and assume that DEF is not available. */
743 if (def_bb == target_bb
744 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
745 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
746 return true;
748 /* Check if the reg in USE has only one definition. We already
749 know that this definition reaches use, or we wouldn't be here.
750 However, this is invalid for hard registers because if they are
751 live at the beginning of the function it does not mean that we
752 have an uninitialized access. */
753 regno = DF_REF_REGNO (use);
754 def = DF_REG_DEF_CHAIN (regno);
755 if (def
756 && DF_REF_NEXT_REG (def) == NULL
757 && regno >= FIRST_PSEUDO_REGISTER)
758 return false;
760 /* Check locally if we are in the same basic block. */
761 if (def_bb == target_bb)
762 return local_ref_killed_between_p (use, def_insn, target_insn);
764 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
765 if (single_pred_p (target_bb)
766 && single_pred (target_bb) == def_bb)
768 df_ref x;
770 /* See if USE is killed between DEF_INSN and the last insn in the
771 basic block containing DEF_INSN. */
772 x = df_bb_regno_last_def_find (def_bb, regno);
773 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
774 return true;
776 /* See if USE is killed between TARGET_INSN and the first insn in the
777 basic block containing TARGET_INSN. */
778 x = df_bb_regno_first_def_find (target_bb, regno);
779 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
780 return true;
782 return false;
785 /* Otherwise assume the worst case. */
786 return true;
790 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
791 would require full computation of available expressions;
792 we check only restricted conditions, see use_killed_between. */
793 static bool
794 all_uses_available_at (rtx def_insn, rtx target_insn)
796 df_ref *use_rec;
797 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
798 rtx def_set = single_set (def_insn);
800 gcc_assert (def_set);
802 /* If target_insn comes right after def_insn, which is very common
803 for addresses, we can use a quicker test. */
804 if (NEXT_INSN (def_insn) == target_insn
805 && REG_P (SET_DEST (def_set)))
807 rtx def_reg = SET_DEST (def_set);
809 /* If the insn uses the reg that it defines, the substitution is
810 invalid. */
811 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
813 df_ref use = *use_rec;
814 if (rtx_equal_p (DF_REF_REG (use), def_reg))
815 return false;
817 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
819 df_ref use = *use_rec;
820 if (rtx_equal_p (DF_REF_REG (use), def_reg))
821 return false;
824 else
826 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
828 /* Look at all the uses of DEF_INSN, and see if they are not
829 killed between DEF_INSN and TARGET_INSN. */
830 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
832 df_ref use = *use_rec;
833 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
834 return false;
835 if (use_killed_between (use, def_insn, target_insn))
836 return false;
838 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
840 df_ref use = *use_rec;
841 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
842 return false;
843 if (use_killed_between (use, def_insn, target_insn))
844 return false;
848 return true;
852 struct find_occurrence_data
854 rtx find;
855 rtx *retval;
858 /* Callback for for_each_rtx, used in find_occurrence.
859 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
860 if successful, or 0 to continue traversing otherwise. */
862 static int
863 find_occurrence_callback (rtx *px, void *data)
865 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
866 rtx x = *px;
867 rtx find = fod->find;
869 if (x == find)
871 fod->retval = px;
872 return 1;
875 return 0;
878 /* Return a pointer to one of the occurrences of register FIND in *PX. */
880 static rtx *
881 find_occurrence (rtx *px, rtx find)
883 struct find_occurrence_data data;
885 gcc_assert (REG_P (find)
886 || (GET_CODE (find) == SUBREG
887 && REG_P (SUBREG_REG (find))));
889 data.find = find;
890 data.retval = NULL;
891 for_each_rtx (px, find_occurrence_callback, &data);
892 return data.retval;
896 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
897 uses from USE_VEC. Find those that are present, and create new items
898 in the data flow object of the pass. Mark any new uses as having the
899 given TYPE. */
900 static void
901 update_df (rtx insn, rtx *loc, df_ref *use_rec, enum df_ref_type type,
902 int new_flags)
904 bool changed = false;
906 /* Add a use for the registers that were propagated. */
907 while (*use_rec)
909 df_ref use = *use_rec;
910 df_ref orig_use = use, new_use;
911 int width = -1;
912 int offset = -1;
913 enum machine_mode mode = VOIDmode;
914 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
915 use_rec++;
917 if (!new_loc)
918 continue;
920 if (DF_REF_FLAGS_IS_SET (orig_use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT))
922 width = DF_REF_EXTRACT_WIDTH (orig_use);
923 offset = DF_REF_EXTRACT_OFFSET (orig_use);
924 mode = DF_REF_EXTRACT_MODE (orig_use);
927 /* Add a new insn use. Use the original type, because it says if the
928 use was within a MEM. */
929 new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
930 insn, BLOCK_FOR_INSN (insn),
931 type, DF_REF_FLAGS (orig_use) | new_flags,
932 width, offset, mode);
934 /* Set up the use-def chain. */
935 gcc_assert (DF_REF_ID (new_use) == (int) VEC_length (df_ref, use_def_ref));
936 VEC_safe_push (df_ref, heap, use_def_ref, get_def_for_use (orig_use));
937 changed = true;
939 if (changed)
940 df_insn_rescan (insn);
944 /* Try substituting NEW into LOC, which originated from forward propagation
945 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
946 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
947 new insn is not recognized. Return whether the substitution was
948 performed. */
950 static bool
951 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
953 rtx insn = DF_REF_INSN (use);
954 enum df_ref_type type = DF_REF_TYPE (use);
955 int flags = DF_REF_FLAGS (use);
956 rtx set = single_set (insn);
957 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
958 int old_cost = 0;
959 bool ok;
961 /* forward_propagate_subreg may be operating on an instruction with
962 multiple sets. If so, assume the cost of the new instruction is
963 not greater than the old one. */
964 if (set)
965 old_cost = rtx_cost (SET_SRC (set), SET, speed);
966 if (dump_file)
968 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
969 print_inline_rtx (dump_file, *loc, 2);
970 fprintf (dump_file, "\n with ");
971 print_inline_rtx (dump_file, new_rtx, 2);
972 fprintf (dump_file, "\n");
975 validate_unshare_change (insn, loc, new_rtx, true);
976 if (!verify_changes (0))
978 if (dump_file)
979 fprintf (dump_file, "Changes to insn %d not recognized\n",
980 INSN_UID (insn));
981 ok = false;
984 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
985 && set
986 && rtx_cost (SET_SRC (set), SET, speed) > old_cost)
988 if (dump_file)
989 fprintf (dump_file, "Changes to insn %d not profitable\n",
990 INSN_UID (insn));
991 ok = false;
994 else
996 if (dump_file)
997 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
998 ok = true;
1001 if (ok)
1003 confirm_change_group ();
1004 num_changes++;
1006 df_ref_remove (use);
1007 if (!CONSTANT_P (new_rtx))
1009 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1010 update_df (insn, loc, DF_INSN_INFO_USES (insn_info), type, flags);
1011 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info), type, flags);
1014 else
1016 cancel_changes (0);
1018 /* Can also record a simplified value in a REG_EQUAL note,
1019 making a new one if one does not already exist. */
1020 if (set_reg_equal)
1022 if (dump_file)
1023 fprintf (dump_file, " Setting REG_EQUAL note\n");
1025 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1027 /* ??? Is this still necessary if we add the note through
1028 set_unique_reg_note? */
1029 if (!CONSTANT_P (new_rtx))
1031 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1032 update_df (insn, loc, DF_INSN_INFO_USES (insn_info),
1033 type, DF_REF_IN_NOTE);
1034 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info),
1035 type, DF_REF_IN_NOTE);
1040 return ok;
1043 /* For the given single_set INSN, containing SRC known to be a
1044 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1045 is redundant due to the register being set by a LOAD_EXTEND_OP
1046 load from memory. */
1048 static bool
1049 free_load_extend (rtx src, rtx insn)
1051 rtx reg;
1052 df_ref *use_vec;
1053 df_ref use = 0, def;
1055 reg = XEXP (src, 0);
1056 #ifdef LOAD_EXTEND_OP
1057 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1058 #endif
1059 return false;
1061 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1063 use = *use_vec;
1065 if (!DF_REF_IS_ARTIFICIAL (use)
1066 && DF_REF_TYPE (use) == DF_REF_REG_USE
1067 && DF_REF_REG (use) == reg)
1068 break;
1070 if (!use)
1071 return false;
1073 def = get_def_for_use (use);
1074 if (!def)
1075 return false;
1077 if (DF_REF_IS_ARTIFICIAL (def))
1078 return false;
1080 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1082 rtx patt = PATTERN (DF_REF_INSN (def));
1084 if (GET_CODE (patt) == SET
1085 && GET_CODE (SET_SRC (patt)) == MEM
1086 && rtx_equal_p (SET_DEST (patt), reg))
1087 return true;
1089 return false;
1092 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1094 static bool
1095 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1097 rtx use_reg = DF_REF_REG (use);
1098 rtx use_insn, src;
1100 /* Only consider subregs... */
1101 enum machine_mode use_mode = GET_MODE (use_reg);
1102 if (GET_CODE (use_reg) != SUBREG
1103 || !REG_P (SET_DEST (def_set)))
1104 return false;
1106 /* If this is a paradoxical SUBREG... */
1107 if (GET_MODE_SIZE (use_mode)
1108 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1110 /* If this is a paradoxical SUBREG, we have no idea what value the
1111 extra bits would have. However, if the operand is equivalent to
1112 a SUBREG whose operand is the same as our mode, and all the modes
1113 are within a word, we can just use the inner operand because
1114 these SUBREGs just say how to treat the register. */
1115 use_insn = DF_REF_INSN (use);
1116 src = SET_SRC (def_set);
1117 if (GET_CODE (src) == SUBREG
1118 && REG_P (SUBREG_REG (src))
1119 && GET_MODE (SUBREG_REG (src)) == use_mode
1120 && subreg_lowpart_p (src)
1121 && all_uses_available_at (def_insn, use_insn))
1122 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1123 def_insn, false);
1126 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1127 is the low part of the reg being extended then just use the inner
1128 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1129 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1130 else if (subreg_lowpart_p (use_reg))
1132 use_insn = DF_REF_INSN (use);
1133 src = SET_SRC (def_set);
1134 if ((GET_CODE (src) == ZERO_EXTEND
1135 || GET_CODE (src) == SIGN_EXTEND)
1136 && REG_P (XEXP (src, 0))
1137 && GET_MODE (XEXP (src, 0)) == use_mode
1138 && !free_load_extend (src, def_insn)
1139 && all_uses_available_at (def_insn, use_insn))
1140 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1141 def_insn, false);
1144 return false;
1147 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1149 static bool
1150 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1152 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1153 int speed_p, i;
1154 df_ref *use_vec;
1156 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1158 src = SET_SRC (def_set);
1159 use_pat = PATTERN (use_insn);
1161 /* In __asm don't replace if src might need more registers than
1162 reg, as that could increase register pressure on the __asm. */
1163 use_vec = DF_INSN_USES (def_insn);
1164 if (use_vec[0] && use_vec[1])
1165 return false;
1167 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1168 asm_operands = NULL_RTX;
1169 switch (GET_CODE (use_pat))
1171 case ASM_OPERANDS:
1172 asm_operands = use_pat;
1173 break;
1174 case SET:
1175 if (MEM_P (SET_DEST (use_pat)))
1177 loc = &SET_DEST (use_pat);
1178 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1179 if (new_rtx)
1180 validate_unshare_change (use_insn, loc, new_rtx, true);
1182 asm_operands = SET_SRC (use_pat);
1183 break;
1184 case PARALLEL:
1185 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1186 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1188 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1190 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1191 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1192 src, speed_p);
1193 if (new_rtx)
1194 validate_unshare_change (use_insn, loc, new_rtx, true);
1196 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1198 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1199 asm_operands = XVECEXP (use_pat, 0, i);
1200 break;
1201 default:
1202 gcc_unreachable ();
1205 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1206 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1208 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1209 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1210 if (new_rtx)
1211 validate_unshare_change (use_insn, loc, new_rtx, true);
1214 if (num_changes_pending () == 0 || !apply_change_group ())
1215 return false;
1217 num_changes++;
1218 return true;
1221 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1222 result. */
1224 static bool
1225 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1227 rtx use_insn = DF_REF_INSN (use);
1228 rtx use_set = single_set (use_insn);
1229 rtx src, reg, new_rtx, *loc;
1230 bool set_reg_equal;
1231 enum machine_mode mode;
1232 int asm_use = -1;
1234 if (INSN_CODE (use_insn) < 0)
1235 asm_use = asm_noperands (PATTERN (use_insn));
1237 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1238 return false;
1240 /* Do not propagate into PC, CC0, etc. */
1241 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1242 return false;
1244 /* If def and use are subreg, check if they match. */
1245 reg = DF_REF_REG (use);
1246 if (GET_CODE (reg) == SUBREG
1247 && GET_CODE (SET_DEST (def_set)) == SUBREG
1248 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
1249 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
1250 return false;
1252 /* Check if the def had a subreg, but the use has the whole reg. */
1253 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1254 return false;
1256 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1257 previous case, the optimization is possible and often useful indeed. */
1258 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1259 reg = SUBREG_REG (reg);
1261 /* Check if the substitution is valid (last, because it's the most
1262 expensive check!). */
1263 src = SET_SRC (def_set);
1264 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1265 return false;
1267 /* Check if the def is loading something from the constant pool; in this
1268 case we would undo optimization such as compress_float_constant.
1269 Still, we can set a REG_EQUAL note. */
1270 if (MEM_P (src) && MEM_READONLY_P (src))
1272 rtx x = avoid_constant_pool_reference (src);
1273 if (x != src && use_set)
1275 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1276 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1277 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1278 if (old_rtx != new_rtx)
1279 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1281 return false;
1284 if (asm_use >= 0)
1285 return forward_propagate_asm (use, def_insn, def_set, reg);
1287 /* Else try simplifying. */
1289 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1291 loc = &SET_DEST (use_set);
1292 set_reg_equal = false;
1294 else if (!use_set)
1296 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1297 set_reg_equal = false;
1299 else
1301 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1302 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1303 loc = &XEXP (note, 0);
1304 else
1305 loc = &SET_SRC (use_set);
1307 /* Do not replace an existing REG_EQUAL note if the insn is not
1308 recognized. Either we're already replacing in the note, or
1309 we'll separately try plugging the definition in the note and
1310 simplifying. */
1311 set_reg_equal = (note == NULL_RTX);
1314 if (GET_MODE (*loc) == VOIDmode)
1315 mode = GET_MODE (SET_DEST (use_set));
1316 else
1317 mode = GET_MODE (*loc);
1319 new_rtx = propagate_rtx (*loc, mode, reg, src,
1320 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1322 if (!new_rtx)
1323 return false;
1325 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1329 /* Given a use USE of an insn, if it has a single reaching
1330 definition, try to forward propagate it into that insn. */
1332 static void
1333 forward_propagate_into (df_ref use)
1335 df_ref def;
1336 rtx def_insn, def_set, use_insn;
1337 rtx parent;
1339 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1340 return;
1341 if (DF_REF_IS_ARTIFICIAL (use))
1342 return;
1344 /* Only consider uses that have a single definition. */
1345 def = get_def_for_use (use);
1346 if (!def)
1347 return;
1348 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1349 return;
1350 if (DF_REF_IS_ARTIFICIAL (def))
1351 return;
1353 /* Do not propagate loop invariant definitions inside the loop. */
1354 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1355 return;
1357 /* Check if the use is still present in the insn! */
1358 use_insn = DF_REF_INSN (use);
1359 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1360 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1361 else
1362 parent = PATTERN (use_insn);
1364 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1365 return;
1367 def_insn = DF_REF_INSN (def);
1368 if (multiple_sets (def_insn))
1369 return;
1370 def_set = single_set (def_insn);
1371 if (!def_set)
1372 return;
1374 /* Only try one kind of propagation. If two are possible, we'll
1375 do it on the following iterations. */
1376 if (!forward_propagate_and_simplify (use, def_insn, def_set))
1377 forward_propagate_subreg (use, def_insn, def_set);
1381 static void
1382 fwprop_init (void)
1384 num_changes = 0;
1385 calculate_dominance_info (CDI_DOMINATORS);
1387 /* We do not always want to propagate into loops, so we have to find
1388 loops and be careful about them. But we have to call flow_loops_find
1389 before df_analyze, because flow_loops_find may introduce new jump
1390 insns (sadly) if we are not working in cfglayout mode. */
1391 loop_optimizer_init (0);
1393 build_single_def_use_links ();
1394 df_set_flags (DF_DEFER_INSN_RESCAN);
1397 static void
1398 fwprop_done (void)
1400 loop_optimizer_finalize ();
1402 VEC_free (df_ref, heap, use_def_ref);
1403 free_dominance_info (CDI_DOMINATORS);
1404 cleanup_cfg (0);
1405 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1407 if (dump_file)
1408 fprintf (dump_file,
1409 "\nNumber of successful forward propagations: %d\n\n",
1410 num_changes);
1414 /* Main entry point. */
1416 static bool
1417 gate_fwprop (void)
1419 return optimize > 0 && flag_forward_propagate;
1422 static unsigned int
1423 fwprop (void)
1425 unsigned i;
1427 fwprop_init ();
1429 /* Go through all the uses. update_df will create new ones at the
1430 end, and we'll go through them as well.
1432 Do not forward propagate addresses into loops until after unrolling.
1433 CSE did so because it was able to fix its own mess, but we are not. */
1435 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1437 df_ref use = DF_USES_GET (i);
1438 if (use)
1439 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1440 || DF_REF_BB (use)->loop_father == NULL
1441 /* The outer most loop is not really a loop. */
1442 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1443 forward_propagate_into (use);
1446 fwprop_done ();
1447 return 0;
1450 struct rtl_opt_pass pass_rtl_fwprop =
1453 RTL_PASS,
1454 "fwprop1", /* name */
1455 gate_fwprop, /* gate */
1456 fwprop, /* execute */
1457 NULL, /* sub */
1458 NULL, /* next */
1459 0, /* static_pass_number */
1460 TV_FWPROP, /* tv_id */
1461 0, /* properties_required */
1462 0, /* properties_provided */
1463 0, /* properties_destroyed */
1464 0, /* todo_flags_start */
1465 TODO_df_finish | TODO_verify_rtl_sharing |
1466 TODO_dump_func /* todo_flags_finish */
1470 static unsigned int
1471 fwprop_addr (void)
1473 unsigned i;
1474 fwprop_init ();
1476 /* Go through all the uses. update_df will create new ones at the
1477 end, and we'll go through them as well. */
1478 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1480 df_ref use = DF_USES_GET (i);
1481 if (use)
1482 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1483 && DF_REF_BB (use)->loop_father != NULL
1484 /* The outer most loop is not really a loop. */
1485 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1486 forward_propagate_into (use);
1489 fwprop_done ();
1491 return 0;
1494 struct rtl_opt_pass pass_rtl_fwprop_addr =
1497 RTL_PASS,
1498 "fwprop2", /* name */
1499 gate_fwprop, /* gate */
1500 fwprop_addr, /* execute */
1501 NULL, /* sub */
1502 NULL, /* next */
1503 0, /* static_pass_number */
1504 TV_FWPROP, /* tv_id */
1505 0, /* properties_required */
1506 0, /* properties_provided */
1507 0, /* properties_destroyed */
1508 0, /* todo_flags_start */
1509 TODO_df_finish | TODO_verify_rtl_sharing |
1510 TODO_dump_func /* todo_flags_finish */