2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / convert.c
blob48f3f944c714d09672c8ef7f49ccd9d6769d304f
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "diagnostic-core.h"
34 #include "toplev.h"
35 #include "langhooks.h"
37 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 location_t loc = EXPR_LOCATION (expr);
45 if (TREE_TYPE (expr) == type)
46 return expr;
48 /* Propagate overflow to the NULL pointer. */
49 if (integer_zerop (expr))
50 return force_fit_type_double (type, double_int_zero, 0,
51 TREE_OVERFLOW (expr));
53 switch (TREE_CODE (TREE_TYPE (expr)))
55 case POINTER_TYPE:
56 case REFERENCE_TYPE:
58 /* If the pointers point to different address spaces, conversion needs
59 to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
60 addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
61 addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
63 if (to_as == from_as)
64 return fold_build1_loc (loc, NOP_EXPR, type, expr);
65 else
66 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr);
69 case INTEGER_TYPE:
70 case ENUMERAL_TYPE:
71 case BOOLEAN_TYPE:
73 /* If the input precision differs from the target pointer type
74 precision, first convert the input expression to an integer type of
75 the target precision. Some targets, e.g. VMS, need several pointer
76 sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
77 unsigned int pprec = TYPE_PRECISION (type);
78 unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
80 if (eprec != pprec)
81 expr = fold_build1_loc (loc, NOP_EXPR,
82 lang_hooks.types.type_for_size (pprec, 0),
83 expr);
86 return fold_build1_loc (loc, CONVERT_EXPR, type, expr);
88 default:
89 error ("cannot convert to a pointer type");
90 return convert_to_pointer (type, integer_zero_node);
94 /* Avoid any floating point extensions from EXP. */
95 tree
96 strip_float_extensions (tree exp)
98 tree sub, expt, subt;
100 /* For floating point constant look up the narrowest type that can hold
101 it properly and handle it like (type)(narrowest_type)constant.
102 This way we can optimize for instance a=a*2.0 where "a" is float
103 but 2.0 is double constant. */
104 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
106 REAL_VALUE_TYPE orig;
107 tree type = NULL;
109 orig = TREE_REAL_CST (exp);
110 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
111 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
112 type = float_type_node;
113 else if (TYPE_PRECISION (TREE_TYPE (exp))
114 > TYPE_PRECISION (double_type_node)
115 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
116 type = double_type_node;
117 if (type)
118 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
121 if (!CONVERT_EXPR_P (exp))
122 return exp;
124 sub = TREE_OPERAND (exp, 0);
125 subt = TREE_TYPE (sub);
126 expt = TREE_TYPE (exp);
128 if (!FLOAT_TYPE_P (subt))
129 return exp;
131 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
132 return exp;
134 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
135 return exp;
137 return strip_float_extensions (sub);
141 /* Convert EXPR to some floating-point type TYPE.
143 EXPR must be float, fixed-point, integer, or enumeral;
144 in other cases error is called. */
146 tree
147 convert_to_real (tree type, tree expr)
149 enum built_in_function fcode = builtin_mathfn_code (expr);
150 tree itype = TREE_TYPE (expr);
152 /* Disable until we figure out how to decide whether the functions are
153 present in runtime. */
154 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
155 if (optimize
156 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
157 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
159 switch (fcode)
161 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
162 CASE_MATHFN (COSH)
163 CASE_MATHFN (EXP)
164 CASE_MATHFN (EXP10)
165 CASE_MATHFN (EXP2)
166 CASE_MATHFN (EXPM1)
167 CASE_MATHFN (GAMMA)
168 CASE_MATHFN (J0)
169 CASE_MATHFN (J1)
170 CASE_MATHFN (LGAMMA)
171 CASE_MATHFN (POW10)
172 CASE_MATHFN (SINH)
173 CASE_MATHFN (TGAMMA)
174 CASE_MATHFN (Y0)
175 CASE_MATHFN (Y1)
176 /* The above functions may set errno differently with float
177 input or output so this transformation is not safe with
178 -fmath-errno. */
179 if (flag_errno_math)
180 break;
181 CASE_MATHFN (ACOS)
182 CASE_MATHFN (ACOSH)
183 CASE_MATHFN (ASIN)
184 CASE_MATHFN (ASINH)
185 CASE_MATHFN (ATAN)
186 CASE_MATHFN (ATANH)
187 CASE_MATHFN (CBRT)
188 CASE_MATHFN (COS)
189 CASE_MATHFN (ERF)
190 CASE_MATHFN (ERFC)
191 CASE_MATHFN (FABS)
192 CASE_MATHFN (LOG)
193 CASE_MATHFN (LOG10)
194 CASE_MATHFN (LOG2)
195 CASE_MATHFN (LOG1P)
196 CASE_MATHFN (LOGB)
197 CASE_MATHFN (SIN)
198 CASE_MATHFN (SQRT)
199 CASE_MATHFN (TAN)
200 CASE_MATHFN (TANH)
201 #undef CASE_MATHFN
203 tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
204 tree newtype = type;
206 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
207 the both as the safe type for operation. */
208 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
209 newtype = TREE_TYPE (arg0);
211 /* Be careful about integer to fp conversions.
212 These may overflow still. */
213 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
214 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
215 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
216 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
218 tree fn = mathfn_built_in (newtype, fcode);
220 if (fn)
222 tree arg = fold (convert_to_real (newtype, arg0));
223 expr = build_call_expr (fn, 1, arg);
224 if (newtype == type)
225 return expr;
229 default:
230 break;
233 if (optimize
234 && (((fcode == BUILT_IN_FLOORL
235 || fcode == BUILT_IN_CEILL
236 || fcode == BUILT_IN_ROUNDL
237 || fcode == BUILT_IN_RINTL
238 || fcode == BUILT_IN_TRUNCL
239 || fcode == BUILT_IN_NEARBYINTL)
240 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
241 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
242 || ((fcode == BUILT_IN_FLOOR
243 || fcode == BUILT_IN_CEIL
244 || fcode == BUILT_IN_ROUND
245 || fcode == BUILT_IN_RINT
246 || fcode == BUILT_IN_TRUNC
247 || fcode == BUILT_IN_NEARBYINT)
248 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
250 tree fn = mathfn_built_in (type, fcode);
252 if (fn)
254 tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
256 /* Make sure (type)arg0 is an extension, otherwise we could end up
257 changing (float)floor(double d) into floorf((float)d), which is
258 incorrect because (float)d uses round-to-nearest and can round
259 up to the next integer. */
260 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
261 return build_call_expr (fn, 1, fold (convert_to_real (type, arg)));
265 /* Propagate the cast into the operation. */
266 if (itype != type && FLOAT_TYPE_P (type))
267 switch (TREE_CODE (expr))
269 /* Convert (float)-x into -(float)x. This is safe for
270 round-to-nearest rounding mode. */
271 case ABS_EXPR:
272 case NEGATE_EXPR:
273 if (!flag_rounding_math
274 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
275 return build1 (TREE_CODE (expr), type,
276 fold (convert_to_real (type,
277 TREE_OPERAND (expr, 0))));
278 break;
279 /* Convert (outertype)((innertype0)a+(innertype1)b)
280 into ((newtype)a+(newtype)b) where newtype
281 is the widest mode from all of these. */
282 case PLUS_EXPR:
283 case MINUS_EXPR:
284 case MULT_EXPR:
285 case RDIV_EXPR:
287 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
288 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
290 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
291 && FLOAT_TYPE_P (TREE_TYPE (arg1))
292 && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
294 tree newtype = type;
296 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
297 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode
298 || TYPE_MODE (type) == SDmode)
299 newtype = dfloat32_type_node;
300 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
301 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode
302 || TYPE_MODE (type) == DDmode)
303 newtype = dfloat64_type_node;
304 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
305 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode
306 || TYPE_MODE (type) == TDmode)
307 newtype = dfloat128_type_node;
308 if (newtype == dfloat32_type_node
309 || newtype == dfloat64_type_node
310 || newtype == dfloat128_type_node)
312 expr = build2 (TREE_CODE (expr), newtype,
313 fold (convert_to_real (newtype, arg0)),
314 fold (convert_to_real (newtype, arg1)));
315 if (newtype == type)
316 return expr;
317 break;
320 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
321 newtype = TREE_TYPE (arg0);
322 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
323 newtype = TREE_TYPE (arg1);
324 /* Sometimes this transformation is safe (cannot
325 change results through affecting double rounding
326 cases) and sometimes it is not. If NEWTYPE is
327 wider than TYPE, e.g. (float)((long double)double
328 + (long double)double) converted to
329 (float)(double + double), the transformation is
330 unsafe regardless of the details of the types
331 involved; double rounding can arise if the result
332 of NEWTYPE arithmetic is a NEWTYPE value half way
333 between two representable TYPE values but the
334 exact value is sufficiently different (in the
335 right direction) for this difference to be
336 visible in ITYPE arithmetic. If NEWTYPE is the
337 same as TYPE, however, the transformation may be
338 safe depending on the types involved: it is safe
339 if the ITYPE has strictly more than twice as many
340 mantissa bits as TYPE, can represent infinities
341 and NaNs if the TYPE can, and has sufficient
342 exponent range for the product or ratio of two
343 values representable in the TYPE to be within the
344 range of normal values of ITYPE. */
345 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
346 && (flag_unsafe_math_optimizations
347 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
348 && real_can_shorten_arithmetic (TYPE_MODE (itype),
349 TYPE_MODE (type))
350 && !excess_precision_type (newtype))))
352 expr = build2 (TREE_CODE (expr), newtype,
353 fold (convert_to_real (newtype, arg0)),
354 fold (convert_to_real (newtype, arg1)));
355 if (newtype == type)
356 return expr;
360 break;
361 default:
362 break;
365 switch (TREE_CODE (TREE_TYPE (expr)))
367 case REAL_TYPE:
368 /* Ignore the conversion if we don't need to store intermediate
369 results and neither type is a decimal float. */
370 return build1 ((flag_float_store
371 || DECIMAL_FLOAT_TYPE_P (type)
372 || DECIMAL_FLOAT_TYPE_P (itype))
373 ? CONVERT_EXPR : NOP_EXPR, type, expr);
375 case INTEGER_TYPE:
376 case ENUMERAL_TYPE:
377 case BOOLEAN_TYPE:
378 return build1 (FLOAT_EXPR, type, expr);
380 case FIXED_POINT_TYPE:
381 return build1 (FIXED_CONVERT_EXPR, type, expr);
383 case COMPLEX_TYPE:
384 return convert (type,
385 fold_build1 (REALPART_EXPR,
386 TREE_TYPE (TREE_TYPE (expr)), expr));
388 case POINTER_TYPE:
389 case REFERENCE_TYPE:
390 error ("pointer value used where a floating point value was expected");
391 return convert_to_real (type, integer_zero_node);
393 default:
394 error ("aggregate value used where a float was expected");
395 return convert_to_real (type, integer_zero_node);
399 /* Convert EXPR to some integer (or enum) type TYPE.
401 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
402 fixed-point or vector; in other cases error is called.
404 The result of this is always supposed to be a newly created tree node
405 not in use in any existing structure. */
407 tree
408 convert_to_integer (tree type, tree expr)
410 enum tree_code ex_form = TREE_CODE (expr);
411 tree intype = TREE_TYPE (expr);
412 unsigned int inprec = TYPE_PRECISION (intype);
413 unsigned int outprec = TYPE_PRECISION (type);
415 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
416 be. Consider `enum E = { a, b = (enum E) 3 };'. */
417 if (!COMPLETE_TYPE_P (type))
419 error ("conversion to incomplete type");
420 return error_mark_node;
423 /* Convert e.g. (long)round(d) -> lround(d). */
424 /* If we're converting to char, we may encounter differing behavior
425 between converting from double->char vs double->long->char.
426 We're in "undefined" territory but we prefer to be conservative,
427 so only proceed in "unsafe" math mode. */
428 if (optimize
429 && (flag_unsafe_math_optimizations
430 || (long_integer_type_node
431 && outprec >= TYPE_PRECISION (long_integer_type_node))))
433 tree s_expr = strip_float_extensions (expr);
434 tree s_intype = TREE_TYPE (s_expr);
435 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
436 tree fn = 0;
438 switch (fcode)
440 CASE_FLT_FN (BUILT_IN_CEIL):
441 /* Only convert in ISO C99 mode. */
442 if (!TARGET_C99_FUNCTIONS)
443 break;
444 if (outprec < TYPE_PRECISION (long_integer_type_node)
445 || (outprec == TYPE_PRECISION (long_integer_type_node)
446 && !TYPE_UNSIGNED (type)))
447 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
448 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
449 && !TYPE_UNSIGNED (type))
450 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
451 break;
453 CASE_FLT_FN (BUILT_IN_FLOOR):
454 /* Only convert in ISO C99 mode. */
455 if (!TARGET_C99_FUNCTIONS)
456 break;
457 if (outprec < TYPE_PRECISION (long_integer_type_node)
458 || (outprec == TYPE_PRECISION (long_integer_type_node)
459 && !TYPE_UNSIGNED (type)))
460 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
461 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
462 && !TYPE_UNSIGNED (type))
463 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
464 break;
466 CASE_FLT_FN (BUILT_IN_ROUND):
467 if (outprec < TYPE_PRECISION (long_integer_type_node)
468 || (outprec == TYPE_PRECISION (long_integer_type_node)
469 && !TYPE_UNSIGNED (type)))
470 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
471 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
472 && !TYPE_UNSIGNED (type))
473 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
474 break;
476 CASE_FLT_FN (BUILT_IN_NEARBYINT):
477 /* Only convert nearbyint* if we can ignore math exceptions. */
478 if (flag_trapping_math)
479 break;
480 /* ... Fall through ... */
481 CASE_FLT_FN (BUILT_IN_RINT):
482 if (outprec < TYPE_PRECISION (long_integer_type_node)
483 || (outprec == TYPE_PRECISION (long_integer_type_node)
484 && !TYPE_UNSIGNED (type)))
485 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
486 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
487 && !TYPE_UNSIGNED (type))
488 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
489 break;
491 CASE_FLT_FN (BUILT_IN_TRUNC):
492 return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0));
494 default:
495 break;
498 if (fn)
500 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
501 return convert_to_integer (type, newexpr);
505 /* Convert (int)logb(d) -> ilogb(d). */
506 if (optimize
507 && flag_unsafe_math_optimizations
508 && !flag_trapping_math && !flag_errno_math && flag_finite_math_only
509 && integer_type_node
510 && (outprec > TYPE_PRECISION (integer_type_node)
511 || (outprec == TYPE_PRECISION (integer_type_node)
512 && !TYPE_UNSIGNED (type))))
514 tree s_expr = strip_float_extensions (expr);
515 tree s_intype = TREE_TYPE (s_expr);
516 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
517 tree fn = 0;
519 switch (fcode)
521 CASE_FLT_FN (BUILT_IN_LOGB):
522 fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
523 break;
525 default:
526 break;
529 if (fn)
531 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
532 return convert_to_integer (type, newexpr);
536 switch (TREE_CODE (intype))
538 case POINTER_TYPE:
539 case REFERENCE_TYPE:
540 if (integer_zerop (expr))
541 return build_int_cst (type, 0);
543 /* Convert to an unsigned integer of the correct width first, and from
544 there widen/truncate to the required type. Some targets support the
545 coexistence of multiple valid pointer sizes, so fetch the one we need
546 from the type. */
547 expr = fold_build1 (CONVERT_EXPR,
548 lang_hooks.types.type_for_size
549 (TYPE_PRECISION (intype), 0),
550 expr);
551 return fold_convert (type, expr);
553 case INTEGER_TYPE:
554 case ENUMERAL_TYPE:
555 case BOOLEAN_TYPE:
556 case OFFSET_TYPE:
557 /* If this is a logical operation, which just returns 0 or 1, we can
558 change the type of the expression. */
560 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
562 expr = copy_node (expr);
563 TREE_TYPE (expr) = type;
564 return expr;
567 /* If we are widening the type, put in an explicit conversion.
568 Similarly if we are not changing the width. After this, we know
569 we are truncating EXPR. */
571 else if (outprec >= inprec)
573 enum tree_code code;
574 tree tem;
576 /* If the precision of the EXPR's type is K bits and the
577 destination mode has more bits, and the sign is changing,
578 it is not safe to use a NOP_EXPR. For example, suppose
579 that EXPR's type is a 3-bit unsigned integer type, the
580 TYPE is a 3-bit signed integer type, and the machine mode
581 for the types is 8-bit QImode. In that case, the
582 conversion necessitates an explicit sign-extension. In
583 the signed-to-unsigned case the high-order bits have to
584 be cleared. */
585 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
586 && (TYPE_PRECISION (TREE_TYPE (expr))
587 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
588 code = CONVERT_EXPR;
589 else
590 code = NOP_EXPR;
592 tem = fold_unary (code, type, expr);
593 if (tem)
594 return tem;
596 tem = build1 (code, type, expr);
597 TREE_NO_WARNING (tem) = 1;
598 return tem;
601 /* If TYPE is an enumeral type or a type with a precision less
602 than the number of bits in its mode, do the conversion to the
603 type corresponding to its mode, then do a nop conversion
604 to TYPE. */
605 else if (TREE_CODE (type) == ENUMERAL_TYPE
606 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
607 return build1 (NOP_EXPR, type,
608 convert (lang_hooks.types.type_for_mode
609 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
610 expr));
612 /* Here detect when we can distribute the truncation down past some
613 arithmetic. For example, if adding two longs and converting to an
614 int, we can equally well convert both to ints and then add.
615 For the operations handled here, such truncation distribution
616 is always safe.
617 It is desirable in these cases:
618 1) when truncating down to full-word from a larger size
619 2) when truncating takes no work.
620 3) when at least one operand of the arithmetic has been extended
621 (as by C's default conversions). In this case we need two conversions
622 if we do the arithmetic as already requested, so we might as well
623 truncate both and then combine. Perhaps that way we need only one.
625 Note that in general we cannot do the arithmetic in a type
626 shorter than the desired result of conversion, even if the operands
627 are both extended from a shorter type, because they might overflow
628 if combined in that type. The exceptions to this--the times when
629 two narrow values can be combined in their narrow type even to
630 make a wider result--are handled by "shorten" in build_binary_op. */
632 switch (ex_form)
634 case RSHIFT_EXPR:
635 /* We can pass truncation down through right shifting
636 when the shift count is a nonpositive constant. */
637 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
638 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
639 goto trunc1;
640 break;
642 case LSHIFT_EXPR:
643 /* We can pass truncation down through left shifting
644 when the shift count is a nonnegative constant and
645 the target type is unsigned. */
646 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
647 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
648 && TYPE_UNSIGNED (type)
649 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
651 /* If shift count is less than the width of the truncated type,
652 really shift. */
653 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
654 /* In this case, shifting is like multiplication. */
655 goto trunc1;
656 else
658 /* If it is >= that width, result is zero.
659 Handling this with trunc1 would give the wrong result:
660 (int) ((long long) a << 32) is well defined (as 0)
661 but (int) a << 32 is undefined and would get a
662 warning. */
664 tree t = build_int_cst (type, 0);
666 /* If the original expression had side-effects, we must
667 preserve it. */
668 if (TREE_SIDE_EFFECTS (expr))
669 return build2 (COMPOUND_EXPR, type, expr, t);
670 else
671 return t;
674 break;
676 case TRUNC_DIV_EXPR:
678 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
679 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
681 /* Don't distribute unless the output precision is at least as big
682 as the actual inputs and it has the same signedness. */
683 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
684 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
685 /* If signedness of arg0 and arg1 don't match,
686 we can't necessarily find a type to compare them in. */
687 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
688 == TYPE_UNSIGNED (TREE_TYPE (arg1)))
689 /* Do not change the sign of the division. */
690 && (TYPE_UNSIGNED (TREE_TYPE (expr))
691 == TYPE_UNSIGNED (TREE_TYPE (arg0)))
692 /* Either require unsigned division or a division by
693 a constant that is not -1. */
694 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
695 || (TREE_CODE (arg1) == INTEGER_CST
696 && !integer_all_onesp (arg1))))
697 goto trunc1;
698 break;
701 case MAX_EXPR:
702 case MIN_EXPR:
703 case MULT_EXPR:
705 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
706 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
708 /* Don't distribute unless the output precision is at least as big
709 as the actual inputs. Otherwise, the comparison of the
710 truncated values will be wrong. */
711 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
712 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
713 /* If signedness of arg0 and arg1 don't match,
714 we can't necessarily find a type to compare them in. */
715 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
716 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
717 goto trunc1;
718 break;
721 case PLUS_EXPR:
722 case MINUS_EXPR:
723 case BIT_AND_EXPR:
724 case BIT_IOR_EXPR:
725 case BIT_XOR_EXPR:
726 trunc1:
728 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
729 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
731 if (outprec >= BITS_PER_WORD
732 || TRULY_NOOP_TRUNCATION (outprec, inprec)
733 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
734 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
736 /* Do the arithmetic in type TYPEX,
737 then convert result to TYPE. */
738 tree typex = type;
740 /* Can't do arithmetic in enumeral types
741 so use an integer type that will hold the values. */
742 if (TREE_CODE (typex) == ENUMERAL_TYPE)
743 typex = lang_hooks.types.type_for_size
744 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
746 /* But now perhaps TYPEX is as wide as INPREC.
747 In that case, do nothing special here.
748 (Otherwise would recurse infinitely in convert. */
749 if (TYPE_PRECISION (typex) != inprec)
751 /* Don't do unsigned arithmetic where signed was wanted,
752 or vice versa.
753 Exception: if both of the original operands were
754 unsigned then we can safely do the work as unsigned.
755 Exception: shift operations take their type solely
756 from the first argument.
757 Exception: the LSHIFT_EXPR case above requires that
758 we perform this operation unsigned lest we produce
759 signed-overflow undefinedness.
760 And we may need to do it as unsigned
761 if we truncate to the original size. */
762 if (TYPE_UNSIGNED (TREE_TYPE (expr))
763 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
764 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
765 || ex_form == LSHIFT_EXPR
766 || ex_form == RSHIFT_EXPR
767 || ex_form == LROTATE_EXPR
768 || ex_form == RROTATE_EXPR))
769 || ex_form == LSHIFT_EXPR
770 /* If we have !flag_wrapv, and either ARG0 or
771 ARG1 is of a signed type, we have to do
772 PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
773 type in case the operation in outprec precision
774 could overflow. Otherwise, we would introduce
775 signed-overflow undefinedness. */
776 || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
777 || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
778 && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
779 > outprec)
780 || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
781 > outprec))
782 && (ex_form == PLUS_EXPR
783 || ex_form == MINUS_EXPR
784 || ex_form == MULT_EXPR)))
785 typex = unsigned_type_for (typex);
786 else
787 typex = signed_type_for (typex);
788 return convert (type,
789 fold_build2 (ex_form, typex,
790 convert (typex, arg0),
791 convert (typex, arg1)));
795 break;
797 case NEGATE_EXPR:
798 case BIT_NOT_EXPR:
799 /* This is not correct for ABS_EXPR,
800 since we must test the sign before truncation. */
802 tree typex;
804 /* Don't do unsigned arithmetic where signed was wanted,
805 or vice versa. */
806 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
807 typex = unsigned_type_for (type);
808 else
809 typex = signed_type_for (type);
810 return convert (type,
811 fold_build1 (ex_form, typex,
812 convert (typex,
813 TREE_OPERAND (expr, 0))));
816 case NOP_EXPR:
817 /* Don't introduce a
818 "can't convert between vector values of different size" error. */
819 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
820 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
821 != GET_MODE_SIZE (TYPE_MODE (type))))
822 break;
823 /* If truncating after truncating, might as well do all at once.
824 If truncating after extending, we may get rid of wasted work. */
825 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
827 case COND_EXPR:
828 /* It is sometimes worthwhile to push the narrowing down through
829 the conditional and never loses. A COND_EXPR may have a throw
830 as one operand, which then has void type. Just leave void
831 operands as they are. */
832 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
833 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
834 ? TREE_OPERAND (expr, 1)
835 : convert (type, TREE_OPERAND (expr, 1)),
836 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
837 ? TREE_OPERAND (expr, 2)
838 : convert (type, TREE_OPERAND (expr, 2)));
840 default:
841 break;
844 return build1 (CONVERT_EXPR, type, expr);
846 case REAL_TYPE:
847 return build1 (FIX_TRUNC_EXPR, type, expr);
849 case FIXED_POINT_TYPE:
850 return build1 (FIXED_CONVERT_EXPR, type, expr);
852 case COMPLEX_TYPE:
853 return convert (type,
854 fold_build1 (REALPART_EXPR,
855 TREE_TYPE (TREE_TYPE (expr)), expr));
857 case VECTOR_TYPE:
858 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
860 error ("can't convert between vector values of different size");
861 return error_mark_node;
863 return build1 (VIEW_CONVERT_EXPR, type, expr);
865 default:
866 error ("aggregate value used where an integer was expected");
867 return convert (type, integer_zero_node);
871 /* Convert EXPR to the complex type TYPE in the usual ways. */
873 tree
874 convert_to_complex (tree type, tree expr)
876 tree subtype = TREE_TYPE (type);
878 switch (TREE_CODE (TREE_TYPE (expr)))
880 case REAL_TYPE:
881 case FIXED_POINT_TYPE:
882 case INTEGER_TYPE:
883 case ENUMERAL_TYPE:
884 case BOOLEAN_TYPE:
885 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
886 convert (subtype, integer_zero_node));
888 case COMPLEX_TYPE:
890 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
892 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
893 return expr;
894 else if (TREE_CODE (expr) == COMPLEX_EXPR)
895 return fold_build2 (COMPLEX_EXPR, type,
896 convert (subtype, TREE_OPERAND (expr, 0)),
897 convert (subtype, TREE_OPERAND (expr, 1)));
898 else
900 expr = save_expr (expr);
901 return
902 fold_build2 (COMPLEX_EXPR, type,
903 convert (subtype,
904 fold_build1 (REALPART_EXPR,
905 TREE_TYPE (TREE_TYPE (expr)),
906 expr)),
907 convert (subtype,
908 fold_build1 (IMAGPART_EXPR,
909 TREE_TYPE (TREE_TYPE (expr)),
910 expr)));
914 case POINTER_TYPE:
915 case REFERENCE_TYPE:
916 error ("pointer value used where a complex was expected");
917 return convert_to_complex (type, integer_zero_node);
919 default:
920 error ("aggregate value used where a complex was expected");
921 return convert_to_complex (type, integer_zero_node);
925 /* Convert EXPR to the vector type TYPE in the usual ways. */
927 tree
928 convert_to_vector (tree type, tree expr)
930 switch (TREE_CODE (TREE_TYPE (expr)))
932 case INTEGER_TYPE:
933 case VECTOR_TYPE:
934 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
936 error ("can't convert between vector values of different size");
937 return error_mark_node;
939 return build1 (VIEW_CONVERT_EXPR, type, expr);
941 default:
942 error ("can't convert value to a vector");
943 return error_mark_node;
947 /* Convert EXPR to some fixed-point type TYPE.
949 EXPR must be fixed-point, float, integer, or enumeral;
950 in other cases error is called. */
952 tree
953 convert_to_fixed (tree type, tree expr)
955 if (integer_zerop (expr))
957 tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
958 return fixed_zero_node;
960 else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
962 tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
963 return fixed_one_node;
966 switch (TREE_CODE (TREE_TYPE (expr)))
968 case FIXED_POINT_TYPE:
969 case INTEGER_TYPE:
970 case ENUMERAL_TYPE:
971 case BOOLEAN_TYPE:
972 case REAL_TYPE:
973 return build1 (FIXED_CONVERT_EXPR, type, expr);
975 case COMPLEX_TYPE:
976 return convert (type,
977 fold_build1 (REALPART_EXPR,
978 TREE_TYPE (TREE_TYPE (expr)), expr));
980 default:
981 error ("aggregate value used where a fixed-point was expected");
982 return error_mark_node;