2010-07-27 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc/alias-decl.git] / gcc / auto-inc-dec.c
blob04c91a246a8a17a0ca2eb6ae38d5365585c4870a
1 /* Discovery of auto-inc and auto-dec instructions.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "function.h"
35 #include "except.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "recog.h"
39 #include "expr.h"
40 #include "timevar.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "target.h"
46 /* This pass was originally removed from flow.c. However there is
47 almost nothing that remains of that code.
49 There are (4) basic forms that are matched:
51 (1) FORM_PRE_ADD
52 a <- b + c
53 ...
56 becomes
58 a <- b
59 ...
60 *(a += c) pre
63 (2) FORM_PRE_INC
64 a += c
65 ...
68 becomes
70 *(a += c) pre
73 (3) FORM_POST_ADD
75 ...
76 b <- a + c
78 (For this case to be true, b must not be assigned or used between
79 the *a and the assignment to b. B must also be a Pmode reg.)
81 becomes
83 b <- a
84 ...
85 *(b += c) post
88 (4) FORM_POST_INC
90 ...
91 a <- a + c
93 becomes
95 *(a += c) post
97 There are three types of values of c.
99 1) c is a constant equal to the width of the value being accessed by
100 the pointer. This is useful for machines that have
101 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
102 HAVE_POST_DECREMENT defined.
104 2) c is a constant not equal to the width of the value being accessed
105 by the pointer. This is useful for machines that have
106 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
108 3) c is a register. This is useful for machines that have
109 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
111 The is one special case: if a already had an offset equal to it +-
112 its width and that offset is equal to -c when the increment was
113 before the ref or +c if the increment was after the ref, then if we
114 can do the combination but switch the pre/post bit. */
116 #ifdef AUTO_INC_DEC
118 enum form
120 FORM_PRE_ADD,
121 FORM_PRE_INC,
122 FORM_POST_ADD,
123 FORM_POST_INC,
124 FORM_last
127 /* The states of the second operands of mem refs and inc insns. If no
128 second operand of the mem_ref was found, it is assumed to just be
129 ZERO. SIZE is the size of the mode accessed in the memref. The
130 ANY is used for constants that are not +-size or 0. REG is used if
131 the forms are reg1 + reg2. */
133 enum inc_state
135 INC_ZERO, /* == 0 */
136 INC_NEG_SIZE, /* == +size */
137 INC_POS_SIZE, /* == -size */
138 INC_NEG_ANY, /* == some -constant */
139 INC_POS_ANY, /* == some +constant */
140 INC_REG, /* == some register */
141 INC_last
144 /* The eight forms that pre/post inc/dec can take. */
145 enum gen_form
147 NOTHING,
148 SIMPLE_PRE_INC, /* ++size */
149 SIMPLE_POST_INC, /* size++ */
150 SIMPLE_PRE_DEC, /* --size */
151 SIMPLE_POST_DEC, /* size-- */
152 DISP_PRE, /* ++con */
153 DISP_POST, /* con++ */
154 REG_PRE, /* ++reg */
155 REG_POST /* reg++ */
158 /* Tmp mem rtx for use in cost modeling. */
159 static rtx mem_tmp;
161 static enum inc_state
162 set_inc_state (HOST_WIDE_INT val, int size)
164 if (val == 0)
165 return INC_ZERO;
166 if (val < 0)
167 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
168 else
169 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
172 /* The DECISION_TABLE that describes what form, if any, the increment
173 or decrement will take. It is a three dimensional table. The first
174 index is the type of constant or register found as the second
175 operand of the inc insn. The second index is the type of constant
176 or register found as the second operand of the memory reference (if
177 no second operand exists, 0 is used). The third index is the form
178 and location (relative to the mem reference) of inc insn. */
180 static bool initialized = false;
181 static enum gen_form decision_table[INC_last][INC_last][FORM_last];
183 static void
184 init_decision_table (void)
186 enum gen_form value;
188 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
190 /* Prefer the simple form if both are available. */
191 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
193 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
194 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
196 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
197 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
200 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
202 /* Prefer the simple form if both are available. */
203 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
205 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
206 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
208 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
209 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
212 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
214 /* Prefer the simple form if both are available. */
215 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
217 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
218 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
220 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
221 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
224 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
226 /* Prefer the simple form if both are available. */
227 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
229 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
230 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
232 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
233 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
236 if (HAVE_PRE_MODIFY_DISP)
238 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
239 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
241 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
242 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
244 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
245 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
247 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
248 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
251 if (HAVE_POST_MODIFY_DISP)
253 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
254 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
256 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
257 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
259 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
260 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
262 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
263 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
266 /* This is much simpler than the other cases because we do not look
267 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
268 and INC_NEG_REG states. Most of the use of such states would be
269 on a target that had an R1 - R2 update address form.
271 There is the remote possibility that you could also catch a = a +
272 b; *(a - b) as a postdecrement of (a + b). However, it is
273 unclear if *(a - b) would ever be generated on a machine that did
274 not have that kind of addressing mode. The IA-64 and RS6000 will
275 not do this, and I cannot speak for any other. If any
276 architecture does have an a-b update for, these cases should be
277 added. */
278 if (HAVE_PRE_MODIFY_REG)
280 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
281 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
283 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
284 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
287 if (HAVE_POST_MODIFY_REG)
289 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
290 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
293 initialized = true;
296 /* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
297 "reg_res = reg0+c". */
299 static struct inc_insn
301 rtx insn; /* The insn being parsed. */
302 rtx pat; /* The pattern of the insn. */
303 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
304 enum form form;
305 rtx reg_res;
306 rtx reg0;
307 rtx reg1;
308 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
309 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
310 } inc_insn;
313 /* Dump the parsed inc insn to FILE. */
315 static void
316 dump_inc_insn (FILE *file)
318 const char *f = ((inc_insn.form == FORM_PRE_ADD)
319 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
321 dump_insn_slim (file, inc_insn.insn);
323 switch (inc_insn.form)
325 case FORM_PRE_ADD:
326 case FORM_POST_ADD:
327 if (inc_insn.reg1_is_const)
328 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
329 f, INSN_UID (inc_insn.insn),
330 REGNO (inc_insn.reg_res),
331 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
332 else
333 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
334 f, INSN_UID (inc_insn.insn),
335 REGNO (inc_insn.reg_res),
336 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
337 break;
339 case FORM_PRE_INC:
340 case FORM_POST_INC:
341 if (inc_insn.reg1_is_const)
342 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
343 f, INSN_UID (inc_insn.insn),
344 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
345 else
346 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
347 f, INSN_UID (inc_insn.insn),
348 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
349 break;
351 default:
352 break;
357 /* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
359 static struct mem_insn
361 rtx insn; /* The insn being parsed. */
362 rtx pat; /* The pattern of the insn. */
363 rtx *mem_loc; /* The address of the field that holds the mem */
364 /* that is to be replaced. */
365 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
366 rtx reg0;
367 rtx reg1; /* This is either a reg or a const depending on
368 reg1_is_const. */
369 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
370 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
371 } mem_insn;
374 /* Dump the parsed mem insn to FILE. */
376 static void
377 dump_mem_insn (FILE *file)
379 dump_insn_slim (file, mem_insn.insn);
381 if (mem_insn.reg1_is_const)
382 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
383 INSN_UID (mem_insn.insn),
384 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
385 else
386 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
387 INSN_UID (mem_insn.insn),
388 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
392 /* The following three arrays contain pointers to instructions. They
393 are indexed by REGNO. At any point in the basic block where we are
394 looking these three arrays contain, respectively, the next insn
395 that uses REGNO, the next inc or add insn that uses REGNO and the
396 next insn that sets REGNO.
398 The arrays are not cleared when we move from block to block so
399 whenever an insn is retrieved from these arrays, it's block number
400 must be compared with the current block.
403 static rtx *reg_next_use = NULL;
404 static rtx *reg_next_inc_use = NULL;
405 static rtx *reg_next_def = NULL;
408 /* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
409 not really care about moving any other notes from the inc or add
410 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
411 does not appear that there are any other kinds of relevant notes. */
413 static void
414 move_dead_notes (rtx to_insn, rtx from_insn, rtx pattern)
416 rtx note;
417 rtx next_note;
418 rtx prev_note = NULL;
420 for (note = REG_NOTES (from_insn); note; note = next_note)
422 next_note = XEXP (note, 1);
424 if ((REG_NOTE_KIND (note) == REG_DEAD)
425 && pattern == XEXP (note, 0))
427 XEXP (note, 1) = REG_NOTES (to_insn);
428 REG_NOTES (to_insn) = note;
429 if (prev_note)
430 XEXP (prev_note, 1) = next_note;
431 else
432 REG_NOTES (from_insn) = next_note;
434 else prev_note = note;
439 /* Create a mov insn DEST_REG <- SRC_REG and insert it before
440 NEXT_INSN. */
442 static rtx
443 insert_move_insn_before (rtx next_insn, rtx dest_reg, rtx src_reg)
445 rtx insns;
447 start_sequence ();
448 emit_move_insn (dest_reg, src_reg);
449 insns = get_insns ();
450 end_sequence ();
451 emit_insn_before (insns, next_insn);
452 return insns;
456 /* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
457 increment of INC_REG. To have reached this point, the change is a
458 legitimate one from a dataflow point of view. The only questions
459 are is this a valid change to the instruction and is this a
460 profitable change to the instruction. */
462 static bool
463 attempt_change (rtx new_addr, rtx inc_reg)
465 /* There are four cases: For the two cases that involve an add
466 instruction, we are going to have to delete the add and insert a
467 mov. We are going to assume that the mov is free. This is
468 fairly early in the backend and there are a lot of opportunities
469 for removing that move later. In particular, there is the case
470 where the move may be dead, this is what dead code elimination
471 passes are for. The two cases where we have an inc insn will be
472 handled mov free. */
474 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
475 rtx mov_insn = NULL;
476 int regno;
477 rtx mem = *mem_insn.mem_loc;
478 enum machine_mode mode = GET_MODE (mem);
479 rtx new_mem;
480 int old_cost = 0;
481 int new_cost = 0;
482 bool speed = optimize_bb_for_speed_p (bb);
484 PUT_MODE (mem_tmp, mode);
485 XEXP (mem_tmp, 0) = new_addr;
487 old_cost = (rtx_cost (mem, SET, speed)
488 + rtx_cost (PATTERN (inc_insn.insn), SET, speed));
489 new_cost = rtx_cost (mem_tmp, SET, speed);
491 /* The first item of business is to see if this is profitable. */
492 if (old_cost < new_cost)
494 if (dump_file)
495 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
496 return false;
499 /* Jump thru a lot of hoops to keep the attributes up to date. We
500 do not want to call one of the change address variants that take
501 an offset even though we know the offset in many cases. These
502 assume you are changing where the address is pointing by the
503 offset. */
504 new_mem = replace_equiv_address_nv (mem, new_addr);
505 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
507 if (dump_file)
508 fprintf (dump_file, "validation failure\n");
509 return false;
512 /* From here to the end of the function we are committed to the
513 change, i.e. nothing fails. Generate any necessary movs, move
514 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
515 switch (inc_insn.form)
517 case FORM_PRE_ADD:
518 /* Replace the addition with a move. Do it at the location of
519 the addition since the operand of the addition may change
520 before the memory reference. */
521 mov_insn = insert_move_insn_before (inc_insn.insn,
522 inc_insn.reg_res, inc_insn.reg0);
523 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
525 regno = REGNO (inc_insn.reg_res);
526 reg_next_def[regno] = mov_insn;
527 reg_next_use[regno] = NULL;
528 regno = REGNO (inc_insn.reg0);
529 reg_next_use[regno] = mov_insn;
530 df_recompute_luids (bb);
531 break;
533 case FORM_POST_INC:
534 regno = REGNO (inc_insn.reg_res);
535 if (reg_next_use[regno] == reg_next_inc_use[regno])
536 reg_next_inc_use[regno] = NULL;
538 /* Fallthru. */
539 case FORM_PRE_INC:
540 regno = REGNO (inc_insn.reg_res);
541 reg_next_def[regno] = mem_insn.insn;
542 reg_next_use[regno] = NULL;
544 break;
546 case FORM_POST_ADD:
547 mov_insn = insert_move_insn_before (mem_insn.insn,
548 inc_insn.reg_res, inc_insn.reg0);
549 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
551 /* Do not move anything to the mov insn because the instruction
552 pointer for the main iteration has not yet hit that. It is
553 still pointing to the mem insn. */
554 regno = REGNO (inc_insn.reg_res);
555 reg_next_def[regno] = mem_insn.insn;
556 reg_next_use[regno] = NULL;
558 regno = REGNO (inc_insn.reg0);
559 reg_next_use[regno] = mem_insn.insn;
560 if ((reg_next_use[regno] == reg_next_inc_use[regno])
561 || (reg_next_inc_use[regno] == inc_insn.insn))
562 reg_next_inc_use[regno] = NULL;
563 df_recompute_luids (bb);
564 break;
566 case FORM_last:
567 default:
568 gcc_unreachable ();
571 if (!inc_insn.reg1_is_const)
573 regno = REGNO (inc_insn.reg1);
574 reg_next_use[regno] = mem_insn.insn;
575 if ((reg_next_use[regno] == reg_next_inc_use[regno])
576 || (reg_next_inc_use[regno] == inc_insn.insn))
577 reg_next_inc_use[regno] = NULL;
580 delete_insn (inc_insn.insn);
582 if (dump_file && mov_insn)
584 fprintf (dump_file, "inserting mov ");
585 dump_insn_slim (dump_file, mov_insn);
588 /* Record that this insn has an implicit side effect. */
589 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
591 if (dump_file)
593 fprintf (dump_file, "****success ");
594 dump_insn_slim (dump_file, mem_insn.insn);
597 return true;
601 /* Try to combine the instruction in INC_INSN with the instruction in
602 MEM_INSN. First the form is determined using the DECISION_TABLE
603 and the results of parsing the INC_INSN and the MEM_INSN.
604 Assuming the form is ok, a prototype new address is built which is
605 passed to ATTEMPT_CHANGE for final processing. */
607 static bool
608 try_merge (void)
610 enum gen_form gen_form;
611 rtx mem = *mem_insn.mem_loc;
612 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
613 inc_insn.reg_res : mem_insn.reg0;
615 /* The width of the mem being accessed. */
616 int size = GET_MODE_SIZE (GET_MODE (mem));
617 rtx last_insn = NULL;
618 enum machine_mode reg_mode = GET_MODE (inc_reg);
620 switch (inc_insn.form)
622 case FORM_PRE_ADD:
623 case FORM_PRE_INC:
624 last_insn = mem_insn.insn;
625 break;
626 case FORM_POST_INC:
627 case FORM_POST_ADD:
628 last_insn = inc_insn.insn;
629 break;
630 case FORM_last:
631 default:
632 gcc_unreachable ();
635 /* Cannot handle auto inc of the stack. */
636 if (inc_reg == stack_pointer_rtx)
638 if (dump_file)
639 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
640 return false;
643 /* Look to see if the inc register is dead after the memory
644 reference. If it is, do not do the combination. */
645 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
647 if (dump_file)
648 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
649 return false;
652 mem_insn.reg1_state = (mem_insn.reg1_is_const)
653 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
654 inc_insn.reg1_state = (inc_insn.reg1_is_const)
655 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
657 /* Now get the form that we are generating. */
658 gen_form = decision_table
659 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
661 if (dbg_cnt (auto_inc_dec) == false)
662 return false;
664 switch (gen_form)
666 default:
667 case NOTHING:
668 return false;
670 case SIMPLE_PRE_INC: /* ++size */
671 if (dump_file)
672 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
673 return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
674 break;
676 case SIMPLE_POST_INC: /* size++ */
677 if (dump_file)
678 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
679 return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
680 break;
682 case SIMPLE_PRE_DEC: /* --size */
683 if (dump_file)
684 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
685 return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
686 break;
688 case SIMPLE_POST_DEC: /* size-- */
689 if (dump_file)
690 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
691 return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
692 break;
694 case DISP_PRE: /* ++con */
695 if (dump_file)
696 fprintf (dump_file, "trying DISP_PRE\n");
697 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
698 inc_reg,
699 gen_rtx_PLUS (reg_mode,
700 inc_reg,
701 inc_insn.reg1)),
702 inc_reg);
703 break;
705 case DISP_POST: /* con++ */
706 if (dump_file)
707 fprintf (dump_file, "trying POST_DISP\n");
708 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
709 inc_reg,
710 gen_rtx_PLUS (reg_mode,
711 inc_reg,
712 inc_insn.reg1)),
713 inc_reg);
714 break;
716 case REG_PRE: /* ++reg */
717 if (dump_file)
718 fprintf (dump_file, "trying PRE_REG\n");
719 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
720 inc_reg,
721 gen_rtx_PLUS (reg_mode,
722 inc_reg,
723 inc_insn.reg1)),
724 inc_reg);
725 break;
727 case REG_POST: /* reg++ */
728 if (dump_file)
729 fprintf (dump_file, "trying POST_REG\n");
730 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
731 inc_reg,
732 gen_rtx_PLUS (reg_mode,
733 inc_reg,
734 inc_insn.reg1)),
735 inc_reg);
736 break;
740 /* Return the next insn that uses (if reg_next_use is passed in
741 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
742 REGNO in BB. */
744 static rtx
745 get_next_ref (int regno, basic_block bb, rtx *next_array)
747 rtx insn = next_array[regno];
749 /* Lazy about cleaning out the next_arrays. */
750 if (insn && BLOCK_FOR_INSN (insn) != bb)
752 next_array[regno] = NULL;
753 insn = NULL;
756 return insn;
760 /* Reverse the operands in a mem insn. */
762 static void
763 reverse_mem (void)
765 rtx tmp = mem_insn.reg1;
766 mem_insn.reg1 = mem_insn.reg0;
767 mem_insn.reg0 = tmp;
771 /* Reverse the operands in a inc insn. */
773 static void
774 reverse_inc (void)
776 rtx tmp = inc_insn.reg1;
777 inc_insn.reg1 = inc_insn.reg0;
778 inc_insn.reg0 = tmp;
782 /* Return true if INSN is of a form "a = b op c" where a and b are
783 regs. op is + if c is a reg and +|- if c is a const. Fill in
784 INC_INSN with what is found.
786 This function is called in two contexts, if BEFORE_MEM is true,
787 this is called for each insn in the basic block. If BEFORE_MEM is
788 false, it is called for the instruction in the block that uses the
789 index register for some memory reference that is currently being
790 processed. */
792 static bool
793 parse_add_or_inc (rtx insn, bool before_mem)
795 rtx pat = single_set (insn);
796 if (!pat)
797 return false;
799 /* Result must be single reg. */
800 if (!REG_P (SET_DEST (pat)))
801 return false;
803 if ((GET_CODE (SET_SRC (pat)) != PLUS)
804 && (GET_CODE (SET_SRC (pat)) != MINUS))
805 return false;
807 if (!REG_P (XEXP (SET_SRC (pat), 0)))
808 return false;
810 inc_insn.insn = insn;
811 inc_insn.pat = pat;
812 inc_insn.reg_res = SET_DEST (pat);
813 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
814 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
815 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
816 else
817 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
819 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
821 /* Process a = b + c where c is a const. */
822 inc_insn.reg1_is_const = true;
823 if (GET_CODE (SET_SRC (pat)) == PLUS)
825 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
826 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
828 else
830 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
831 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
833 return true;
835 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
836 && (REG_P (XEXP (SET_SRC (pat), 1)))
837 && GET_CODE (SET_SRC (pat)) == PLUS)
839 /* Process a = b + c where c is a reg. */
840 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
841 inc_insn.reg1_is_const = false;
843 if (inc_insn.form == FORM_PRE_INC
844 || inc_insn.form == FORM_POST_INC)
845 return true;
846 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
848 /* Reverse the two operands and turn *_ADD into *_INC since
849 a = c + a. */
850 reverse_inc ();
851 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
852 return true;
854 else
855 return true;
858 return false;
862 /* A recursive function that checks all of the mem uses in
863 ADDRESS_OF_X to see if any single one of them is compatible with
864 what has been found in inc_insn.
866 -1 is returned for success. 0 is returned if nothing was found and
867 1 is returned for failure. */
869 static int
870 find_address (rtx *address_of_x)
872 rtx x = *address_of_x;
873 enum rtx_code code = GET_CODE (x);
874 const char *const fmt = GET_RTX_FORMAT (code);
875 int i;
876 int value = 0;
877 int tem;
879 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
881 /* Match with *reg0. */
882 mem_insn.mem_loc = address_of_x;
883 mem_insn.reg0 = inc_insn.reg_res;
884 mem_insn.reg1_is_const = true;
885 mem_insn.reg1_val = 0;
886 mem_insn.reg1 = GEN_INT (0);
887 return -1;
889 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
890 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
892 rtx b = XEXP (XEXP (x, 0), 1);
893 mem_insn.mem_loc = address_of_x;
894 mem_insn.reg0 = inc_insn.reg_res;
895 mem_insn.reg1 = b;
896 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
897 if (CONST_INT_P (b))
899 /* Match with *(reg0 + reg1) where reg1 is a const. */
900 HOST_WIDE_INT val = INTVAL (b);
901 if (inc_insn.reg1_is_const
902 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
904 mem_insn.reg1_val = val;
905 return -1;
908 else if (!inc_insn.reg1_is_const
909 && rtx_equal_p (inc_insn.reg1, b))
910 /* Match with *(reg0 + reg1). */
911 return -1;
914 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
916 /* If REG occurs inside a MEM used in a bit-field reference,
917 that is unacceptable. */
918 if (find_address (&XEXP (x, 0)))
919 return 1;
922 if (x == inc_insn.reg_res)
923 return 1;
925 /* Time for some deep diving. */
926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
928 if (fmt[i] == 'e')
930 tem = find_address (&XEXP (x, i));
931 /* If this is the first use, let it go so the rest of the
932 insn can be checked. */
933 if (value == 0)
934 value = tem;
935 else if (tem != 0)
936 /* More than one match was found. */
937 return 1;
939 else if (fmt[i] == 'E')
941 int j;
942 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
944 tem = find_address (&XVECEXP (x, i, j));
945 /* If this is the first use, let it go so the rest of
946 the insn can be checked. */
947 if (value == 0)
948 value = tem;
949 else if (tem != 0)
950 /* More than one match was found. */
951 return 1;
955 return value;
958 /* Once a suitable mem reference has been found and the MEM_INSN
959 structure has been filled in, FIND_INC is called to see if there is
960 a suitable add or inc insn that follows the mem reference and
961 determine if it is suitable to merge.
963 In the case where the MEM_INSN has two registers in the reference,
964 this function may be called recursively. The first time looking
965 for an add of the first register, and if that fails, looking for an
966 add of the second register. The FIRST_TRY parameter is used to
967 only allow the parameters to be reversed once. */
969 static bool
970 find_inc (bool first_try)
972 rtx insn;
973 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
974 rtx other_insn;
975 df_ref *def_rec;
977 /* Make sure this reg appears only once in this insn. */
978 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
980 if (dump_file)
981 fprintf (dump_file, "mem count failure\n");
982 return false;
985 if (dump_file)
986 dump_mem_insn (dump_file);
988 /* Find the next use that is an inc. */
989 insn = get_next_ref (REGNO (mem_insn.reg0),
990 BLOCK_FOR_INSN (mem_insn.insn),
991 reg_next_inc_use);
992 if (!insn)
993 return false;
995 /* Even though we know the next use is an add or inc because it came
996 from the reg_next_inc_use, we must still reparse. */
997 if (!parse_add_or_inc (insn, false))
999 /* Next use was not an add. Look for one extra case. It could be
1000 that we have:
1002 *(a + b)
1003 ...= a;
1004 ...= b + a
1006 if we reverse the operands in the mem ref we would
1007 find this. Only try it once though. */
1008 if (first_try && !mem_insn.reg1_is_const)
1010 reverse_mem ();
1011 return find_inc (false);
1013 else
1014 return false;
1017 /* Need to assure that none of the operands of the inc instruction are
1018 assigned to by the mem insn. */
1019 for (def_rec = DF_INSN_DEFS (mem_insn.insn); *def_rec; def_rec++)
1021 df_ref def = *def_rec;
1022 unsigned int regno = DF_REF_REGNO (def);
1023 if ((regno == REGNO (inc_insn.reg0))
1024 || (regno == REGNO (inc_insn.reg_res)))
1026 if (dump_file)
1027 fprintf (dump_file, "inc conflicts with store failure.\n");
1028 return false;
1030 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1032 if (dump_file)
1033 fprintf (dump_file, "inc conflicts with store failure.\n");
1034 return false;
1038 if (dump_file)
1039 dump_inc_insn (dump_file);
1041 if (inc_insn.form == FORM_POST_ADD)
1043 /* Make sure that there is no insn that assigns to inc_insn.res
1044 between the mem_insn and the inc_insn. */
1045 rtx other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1046 BLOCK_FOR_INSN (mem_insn.insn),
1047 reg_next_def);
1048 if (other_insn != inc_insn.insn)
1050 if (dump_file)
1051 fprintf (dump_file,
1052 "result of add is assigned to between mem and inc insns.\n");
1053 return false;
1056 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1057 BLOCK_FOR_INSN (mem_insn.insn),
1058 reg_next_use);
1059 if (other_insn
1060 && (other_insn != inc_insn.insn)
1061 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1063 if (dump_file)
1064 fprintf (dump_file,
1065 "result of add is used between mem and inc insns.\n");
1066 return false;
1069 /* For the post_add to work, the result_reg of the inc must not be
1070 used in the mem insn since this will become the new index
1071 register. */
1072 if (reg_overlap_mentioned_p (inc_insn.reg_res, PATTERN (mem_insn.insn)))
1074 if (dump_file)
1075 fprintf (dump_file, "base reg replacement failure.\n");
1076 return false;
1080 if (mem_insn.reg1_is_const)
1082 if (mem_insn.reg1_val == 0)
1084 if (!inc_insn.reg1_is_const)
1086 /* The mem looks like *r0 and the rhs of the add has two
1087 registers. */
1088 int luid = DF_INSN_LUID (inc_insn.insn);
1089 if (inc_insn.form == FORM_POST_ADD)
1091 /* The trick is that we are not going to increment r0,
1092 we are going to increment the result of the add insn.
1093 For this trick to be correct, the result reg of
1094 the inc must be a valid addressing reg. */
1095 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1096 if (GET_MODE (inc_insn.reg_res)
1097 != targetm.addr_space.address_mode (as))
1099 if (dump_file)
1100 fprintf (dump_file, "base reg mode failure.\n");
1101 return false;
1104 /* We also need to make sure that the next use of
1105 inc result is after the inc. */
1106 other_insn
1107 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1108 if (other_insn && luid > DF_INSN_LUID (other_insn))
1109 return false;
1111 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1112 reverse_inc ();
1115 other_insn
1116 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1117 if (other_insn && luid > DF_INSN_LUID (other_insn))
1118 return false;
1121 /* Both the inc/add and the mem have a constant. Need to check
1122 that the constants are ok. */
1123 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1124 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1125 return false;
1127 else
1129 /* The mem insn is of the form *(a + b) where a and b are both
1130 regs. It may be that in order to match the add or inc we
1131 need to treat it as if it was *(b + a). It may also be that
1132 the add is of the form a + c where c does not match b and
1133 then we just abandon this. */
1135 int luid = DF_INSN_LUID (inc_insn.insn);
1136 rtx other_insn;
1138 /* Make sure this reg appears only once in this insn. */
1139 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1140 return false;
1142 if (inc_insn.form == FORM_POST_ADD)
1144 /* For this trick to be correct, the result reg of the inc
1145 must be a valid addressing reg. */
1146 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1147 if (GET_MODE (inc_insn.reg_res)
1148 != targetm.addr_space.address_mode (as))
1150 if (dump_file)
1151 fprintf (dump_file, "base reg mode failure.\n");
1152 return false;
1155 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1157 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1159 /* See comment above on find_inc (false) call. */
1160 if (first_try)
1162 reverse_mem ();
1163 return find_inc (false);
1165 else
1166 return false;
1169 /* Need to check that there are no assignments to b
1170 before the add insn. */
1171 other_insn
1172 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1173 if (other_insn && luid > DF_INSN_LUID (other_insn))
1174 return false;
1175 /* All ok for the next step. */
1177 else
1179 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1180 or else we would not have found the inc insn. */
1181 reverse_mem ();
1182 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1184 /* See comment above on find_inc (false) call. */
1185 if (first_try)
1186 return find_inc (false);
1187 else
1188 return false;
1190 /* To have gotten here know that.
1191 *(b + a)
1193 ... = (b + a)
1195 We also know that the lhs of the inc is not b or a. We
1196 need to make sure that there are no assignments to b
1197 between the mem ref and the inc. */
1199 other_insn
1200 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1201 if (other_insn && luid > DF_INSN_LUID (other_insn))
1202 return false;
1205 /* Need to check that the next use of the add result is later than
1206 add insn since this will be the reg incremented. */
1207 other_insn
1208 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1209 if (other_insn && luid > DF_INSN_LUID (other_insn))
1210 return false;
1212 else /* FORM_POST_INC. There is less to check here because we
1213 know that operands must line up. */
1215 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1216 /* See comment above on find_inc (false) call. */
1218 if (first_try)
1220 reverse_mem ();
1221 return find_inc (false);
1223 else
1224 return false;
1227 /* To have gotten here know that.
1228 *(a + b)
1230 ... = (a + b)
1232 We also know that the lhs of the inc is not b. We need to make
1233 sure that there are no assignments to b between the mem ref and
1234 the inc. */
1235 other_insn
1236 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1237 if (other_insn && luid > DF_INSN_LUID (other_insn))
1238 return false;
1242 if (inc_insn.form == FORM_POST_INC)
1244 other_insn
1245 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1246 /* When we found inc_insn, we were looking for the
1247 next add or inc, not the next insn that used the
1248 reg. Because we are going to increment the reg
1249 in this form, we need to make sure that there
1250 were no intervening uses of reg. */
1251 if (inc_insn.insn != other_insn)
1252 return false;
1255 return try_merge ();
1259 /* A recursive function that walks ADDRESS_OF_X to find all of the mem
1260 uses in pat that could be used as an auto inc or dec. It then
1261 calls FIND_INC for each one. */
1263 static bool
1264 find_mem (rtx *address_of_x)
1266 rtx x = *address_of_x;
1267 enum rtx_code code = GET_CODE (x);
1268 const char *const fmt = GET_RTX_FORMAT (code);
1269 int i;
1271 if (code == MEM && REG_P (XEXP (x, 0)))
1273 /* Match with *reg0. */
1274 mem_insn.mem_loc = address_of_x;
1275 mem_insn.reg0 = XEXP (x, 0);
1276 mem_insn.reg1_is_const = true;
1277 mem_insn.reg1_val = 0;
1278 mem_insn.reg1 = GEN_INT (0);
1279 if (find_inc (true))
1280 return true;
1282 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1283 && REG_P (XEXP (XEXP (x, 0), 0)))
1285 rtx reg1 = XEXP (XEXP (x, 0), 1);
1286 mem_insn.mem_loc = address_of_x;
1287 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1288 mem_insn.reg1 = reg1;
1289 if (CONST_INT_P (reg1))
1291 mem_insn.reg1_is_const = true;
1292 /* Match with *(reg0 + c) where c is a const. */
1293 mem_insn.reg1_val = INTVAL (reg1);
1294 if (find_inc (true))
1295 return true;
1297 else if (REG_P (reg1))
1299 /* Match with *(reg0 + reg1). */
1300 mem_insn.reg1_is_const = false;
1301 if (find_inc (true))
1302 return true;
1306 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1308 /* If REG occurs inside a MEM used in a bit-field reference,
1309 that is unacceptable. */
1310 return false;
1313 /* Time for some deep diving. */
1314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1316 if (fmt[i] == 'e')
1318 if (find_mem (&XEXP (x, i)))
1319 return true;
1321 else if (fmt[i] == 'E')
1323 int j;
1324 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1325 if (find_mem (&XVECEXP (x, i, j)))
1326 return true;
1329 return false;
1333 /* Try to combine all incs and decs by constant values with memory
1334 references in BB. */
1336 static void
1337 merge_in_block (int max_reg, basic_block bb)
1339 rtx insn;
1340 rtx curr;
1341 int success_in_block = 0;
1343 if (dump_file)
1344 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1346 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1348 unsigned int uid = INSN_UID (insn);
1349 bool insn_is_add_or_inc = true;
1351 if (!NONDEBUG_INSN_P (insn))
1352 continue;
1354 /* This continue is deliberate. We do not want the uses of the
1355 jump put into reg_next_use because it is not considered safe to
1356 combine a preincrement with a jump. */
1357 if (JUMP_P (insn))
1358 continue;
1360 if (dump_file)
1361 dump_insn_slim (dump_file, insn);
1363 /* Does this instruction increment or decrement a register? */
1364 if (parse_add_or_inc (insn, true))
1366 int regno = REGNO (inc_insn.reg_res);
1367 /* Cannot handle case where there are three separate regs
1368 before a mem ref. Too many moves would be needed to be
1369 profitable. */
1370 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1372 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1373 if (mem_insn.insn)
1375 bool ok = true;
1376 if (!inc_insn.reg1_is_const)
1378 /* We are only here if we are going to try a
1379 HAVE_*_MODIFY_REG type transformation. c is a
1380 reg and we must sure that the path from the
1381 inc_insn to the mem_insn.insn is both def and use
1382 clear of c because the inc insn is going to move
1383 into the mem_insn.insn. */
1384 int luid = DF_INSN_LUID (mem_insn.insn);
1385 rtx other_insn
1386 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1388 if (other_insn && luid > DF_INSN_LUID (other_insn))
1389 ok = false;
1391 other_insn
1392 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1394 if (other_insn && luid > DF_INSN_LUID (other_insn))
1395 ok = false;
1398 if (dump_file)
1399 dump_inc_insn (dump_file);
1401 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1403 if (dump_file)
1404 dump_mem_insn (dump_file);
1405 if (try_merge ())
1407 success_in_block++;
1408 insn_is_add_or_inc = false;
1414 else
1416 insn_is_add_or_inc = false;
1417 mem_insn.insn = insn;
1418 if (find_mem (&PATTERN (insn)))
1419 success_in_block++;
1422 /* If the inc insn was merged with a mem, the inc insn is gone
1423 and there is noting to update. */
1424 if (DF_INSN_UID_GET (uid))
1426 df_ref *def_rec;
1427 df_ref *use_rec;
1428 /* Need to update next use. */
1429 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1431 df_ref def = *def_rec;
1432 reg_next_use[DF_REF_REGNO (def)] = NULL;
1433 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1434 reg_next_def[DF_REF_REGNO (def)] = insn;
1437 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1439 df_ref use = *use_rec;
1440 reg_next_use[DF_REF_REGNO (use)] = insn;
1441 if (insn_is_add_or_inc)
1442 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1443 else
1444 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
1447 else if (dump_file)
1448 fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
1451 /* If we were successful, try again. There may have been several
1452 opportunities that were interleaved. This is rare but
1453 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1454 if (success_in_block)
1456 /* In this case, we must clear these vectors since the trick of
1457 testing if the stale insn in the block will not work. */
1458 memset (reg_next_use, 0, max_reg * sizeof(rtx));
1459 memset (reg_next_inc_use, 0, max_reg * sizeof(rtx));
1460 memset (reg_next_def, 0, max_reg * sizeof(rtx));
1461 df_recompute_luids (bb);
1462 merge_in_block (max_reg, bb);
1466 #endif
1468 static unsigned int
1469 rest_of_handle_auto_inc_dec (void)
1471 #ifdef AUTO_INC_DEC
1472 basic_block bb;
1473 int max_reg = max_reg_num ();
1475 if (!initialized)
1476 init_decision_table ();
1478 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1480 df_note_add_problem ();
1481 df_analyze ();
1483 reg_next_use = XCNEWVEC (rtx, max_reg);
1484 reg_next_inc_use = XCNEWVEC (rtx, max_reg);
1485 reg_next_def = XCNEWVEC (rtx, max_reg);
1486 FOR_EACH_BB (bb)
1487 merge_in_block (max_reg, bb);
1489 free (reg_next_use);
1490 free (reg_next_inc_use);
1491 free (reg_next_def);
1493 mem_tmp = NULL;
1494 #endif
1495 return 0;
1499 /* Discover auto-inc auto-dec instructions. */
1501 static bool
1502 gate_auto_inc_dec (void)
1504 #ifdef AUTO_INC_DEC
1505 return (optimize > 0 && flag_auto_inc_dec);
1506 #else
1507 return false;
1508 #endif
1512 struct rtl_opt_pass pass_inc_dec =
1515 RTL_PASS,
1516 "auto_inc_dec", /* name */
1517 gate_auto_inc_dec, /* gate */
1518 rest_of_handle_auto_inc_dec, /* execute */
1519 NULL, /* sub */
1520 NULL, /* next */
1521 0, /* static_pass_number */
1522 TV_AUTO_INC_DEC, /* tv_id */
1523 0, /* properties_required */
1524 0, /* properties_provided */
1525 0, /* properties_destroyed */
1526 0, /* todo_flags_start */
1527 TODO_dump_func |
1528 TODO_df_finish, /* todo_flags_finish */