Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / tree-ssa-structalias.c
blob753eefee909c7808b98b4bf85d2d9bbd1d1ed80d
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "obstack.h"
27 #include "bitmap.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "tree.h"
35 #include "tree-flow.h"
36 #include "tree-inline.h"
37 #include "varray.h"
38 #include "diagnostic.h"
39 #include "toplev.h"
40 #include "gimple.h"
41 #include "hashtab.h"
42 #include "function.h"
43 #include "cgraph.h"
44 #include "tree-pass.h"
45 #include "timevar.h"
46 #include "alloc-pool.h"
47 #include "splay-tree.h"
48 #include "params.h"
49 #include "cgraph.h"
50 #include "alias.h"
51 #include "pointer-set.h"
53 /* The idea behind this analyzer is to generate set constraints from the
54 program, then solve the resulting constraints in order to generate the
55 points-to sets.
57 Set constraints are a way of modeling program analysis problems that
58 involve sets. They consist of an inclusion constraint language,
59 describing the variables (each variable is a set) and operations that
60 are involved on the variables, and a set of rules that derive facts
61 from these operations. To solve a system of set constraints, you derive
62 all possible facts under the rules, which gives you the correct sets
63 as a consequence.
65 See "Efficient Field-sensitive pointer analysis for C" by "David
66 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
67 http://citeseer.ist.psu.edu/pearce04efficient.html
69 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
70 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
71 http://citeseer.ist.psu.edu/heintze01ultrafast.html
73 There are three types of real constraint expressions, DEREF,
74 ADDRESSOF, and SCALAR. Each constraint expression consists
75 of a constraint type, a variable, and an offset.
77 SCALAR is a constraint expression type used to represent x, whether
78 it appears on the LHS or the RHS of a statement.
79 DEREF is a constraint expression type used to represent *x, whether
80 it appears on the LHS or the RHS of a statement.
81 ADDRESSOF is a constraint expression used to represent &x, whether
82 it appears on the LHS or the RHS of a statement.
84 Each pointer variable in the program is assigned an integer id, and
85 each field of a structure variable is assigned an integer id as well.
87 Structure variables are linked to their list of fields through a "next
88 field" in each variable that points to the next field in offset
89 order.
90 Each variable for a structure field has
92 1. "size", that tells the size in bits of that field.
93 2. "fullsize, that tells the size in bits of the entire structure.
94 3. "offset", that tells the offset in bits from the beginning of the
95 structure to this field.
97 Thus,
98 struct f
100 int a;
101 int b;
102 } foo;
103 int *bar;
105 looks like
107 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
108 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
109 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
112 In order to solve the system of set constraints, the following is
113 done:
115 1. Each constraint variable x has a solution set associated with it,
116 Sol(x).
118 2. Constraints are separated into direct, copy, and complex.
119 Direct constraints are ADDRESSOF constraints that require no extra
120 processing, such as P = &Q
121 Copy constraints are those of the form P = Q.
122 Complex constraints are all the constraints involving dereferences
123 and offsets (including offsetted copies).
125 3. All direct constraints of the form P = &Q are processed, such
126 that Q is added to Sol(P)
128 4. All complex constraints for a given constraint variable are stored in a
129 linked list attached to that variable's node.
131 5. A directed graph is built out of the copy constraints. Each
132 constraint variable is a node in the graph, and an edge from
133 Q to P is added for each copy constraint of the form P = Q
135 6. The graph is then walked, and solution sets are
136 propagated along the copy edges, such that an edge from Q to P
137 causes Sol(P) <- Sol(P) union Sol(Q).
139 7. As we visit each node, all complex constraints associated with
140 that node are processed by adding appropriate copy edges to the graph, or the
141 appropriate variables to the solution set.
143 8. The process of walking the graph is iterated until no solution
144 sets change.
146 Prior to walking the graph in steps 6 and 7, We perform static
147 cycle elimination on the constraint graph, as well
148 as off-line variable substitution.
150 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
151 on and turned into anything), but isn't. You can just see what offset
152 inside the pointed-to struct it's going to access.
154 TODO: Constant bounded arrays can be handled as if they were structs of the
155 same number of elements.
157 TODO: Modeling heap and incoming pointers becomes much better if we
158 add fields to them as we discover them, which we could do.
160 TODO: We could handle unions, but to be honest, it's probably not
161 worth the pain or slowdown. */
163 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
164 htab_t heapvar_for_stmt;
166 static bool use_field_sensitive = true;
167 static int in_ipa_mode = 0;
169 /* Used for predecessor bitmaps. */
170 static bitmap_obstack predbitmap_obstack;
172 /* Used for points-to sets. */
173 static bitmap_obstack pta_obstack;
175 /* Used for oldsolution members of variables. */
176 static bitmap_obstack oldpta_obstack;
178 /* Used for per-solver-iteration bitmaps. */
179 static bitmap_obstack iteration_obstack;
181 static unsigned int create_variable_info_for (tree, const char *);
182 typedef struct constraint_graph *constraint_graph_t;
183 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
185 struct constraint;
186 typedef struct constraint *constraint_t;
188 DEF_VEC_P(constraint_t);
189 DEF_VEC_ALLOC_P(constraint_t,heap);
191 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
192 if (a) \
193 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
195 static struct constraint_stats
197 unsigned int total_vars;
198 unsigned int nonpointer_vars;
199 unsigned int unified_vars_static;
200 unsigned int unified_vars_dynamic;
201 unsigned int iterations;
202 unsigned int num_edges;
203 unsigned int num_implicit_edges;
204 unsigned int points_to_sets_created;
205 } stats;
207 struct variable_info
209 /* ID of this variable */
210 unsigned int id;
212 /* True if this is a variable created by the constraint analysis, such as
213 heap variables and constraints we had to break up. */
214 unsigned int is_artificial_var : 1;
216 /* True if this is a special variable whose solution set should not be
217 changed. */
218 unsigned int is_special_var : 1;
220 /* True for variables whose size is not known or variable. */
221 unsigned int is_unknown_size_var : 1;
223 /* True for (sub-)fields that represent a whole variable. */
224 unsigned int is_full_var : 1;
226 /* True if this is a heap variable. */
227 unsigned int is_heap_var : 1;
229 /* True if this is a variable tracking a restrict pointer source. */
230 unsigned int is_restrict_var : 1;
232 /* True if this field may contain pointers. */
233 unsigned int may_have_pointers : 1;
235 /* True if this represents a global variable. */
236 unsigned int is_global_var : 1;
238 /* A link to the variable for the next field in this structure. */
239 struct variable_info *next;
241 /* Offset of this variable, in bits, from the base variable */
242 unsigned HOST_WIDE_INT offset;
244 /* Size of the variable, in bits. */
245 unsigned HOST_WIDE_INT size;
247 /* Full size of the base variable, in bits. */
248 unsigned HOST_WIDE_INT fullsize;
250 /* Name of this variable */
251 const char *name;
253 /* Tree that this variable is associated with. */
254 tree decl;
256 /* Points-to set for this variable. */
257 bitmap solution;
259 /* Old points-to set for this variable. */
260 bitmap oldsolution;
262 typedef struct variable_info *varinfo_t;
264 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
265 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
266 unsigned HOST_WIDE_INT);
267 static varinfo_t lookup_vi_for_tree (tree);
269 /* Pool of variable info structures. */
270 static alloc_pool variable_info_pool;
272 DEF_VEC_P(varinfo_t);
274 DEF_VEC_ALLOC_P(varinfo_t, heap);
276 /* Table of variable info structures for constraint variables.
277 Indexed directly by variable info id. */
278 static VEC(varinfo_t,heap) *varmap;
280 /* Return the varmap element N */
282 static inline varinfo_t
283 get_varinfo (unsigned int n)
285 return VEC_index (varinfo_t, varmap, n);
288 /* Static IDs for the special variables. */
289 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
290 escaped_id = 3, nonlocal_id = 4, callused_id = 5,
291 storedanything_id = 6, integer_id = 7 };
293 struct GTY(()) heapvar_map {
294 struct tree_map map;
295 unsigned HOST_WIDE_INT offset;
298 static int
299 heapvar_map_eq (const void *p1, const void *p2)
301 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
302 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
303 return (h1->map.base.from == h2->map.base.from
304 && h1->offset == h2->offset);
307 static unsigned int
308 heapvar_map_hash (struct heapvar_map *h)
310 return iterative_hash_host_wide_int (h->offset,
311 htab_hash_pointer (h->map.base.from));
314 /* Lookup a heap var for FROM, and return it if we find one. */
316 static tree
317 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
319 struct heapvar_map *h, in;
320 in.map.base.from = from;
321 in.offset = offset;
322 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
323 heapvar_map_hash (&in));
324 if (h)
325 return h->map.to;
326 return NULL_TREE;
329 /* Insert a mapping FROM->TO in the heap var for statement
330 hashtable. */
332 static void
333 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
335 struct heapvar_map *h;
336 void **loc;
338 h = GGC_NEW (struct heapvar_map);
339 h->map.base.from = from;
340 h->offset = offset;
341 h->map.hash = heapvar_map_hash (h);
342 h->map.to = to;
343 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
344 gcc_assert (*loc == NULL);
345 *(struct heapvar_map **) loc = h;
348 /* Return a new variable info structure consisting for a variable
349 named NAME, and using constraint graph node NODE. Append it
350 to the vector of variable info structures. */
352 static varinfo_t
353 new_var_info (tree t, const char *name)
355 unsigned index = VEC_length (varinfo_t, varmap);
356 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
358 ret->id = index;
359 ret->name = name;
360 ret->decl = t;
361 /* Vars without decl are artificial and do not have sub-variables. */
362 ret->is_artificial_var = (t == NULL_TREE);
363 ret->is_special_var = false;
364 ret->is_unknown_size_var = false;
365 ret->is_full_var = (t == NULL_TREE);
366 ret->is_heap_var = false;
367 ret->is_restrict_var = false;
368 ret->may_have_pointers = true;
369 ret->is_global_var = (t == NULL_TREE);
370 if (t && DECL_P (t))
371 ret->is_global_var = is_global_var (t);
372 ret->solution = BITMAP_ALLOC (&pta_obstack);
373 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
374 ret->next = NULL;
376 VEC_safe_push (varinfo_t, heap, varmap, ret);
378 return ret;
381 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
383 /* An expression that appears in a constraint. */
385 struct constraint_expr
387 /* Constraint type. */
388 constraint_expr_type type;
390 /* Variable we are referring to in the constraint. */
391 unsigned int var;
393 /* Offset, in bits, of this constraint from the beginning of
394 variables it ends up referring to.
396 IOW, in a deref constraint, we would deref, get the result set,
397 then add OFFSET to each member. */
398 HOST_WIDE_INT offset;
401 /* Use 0x8000... as special unknown offset. */
402 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
404 typedef struct constraint_expr ce_s;
405 DEF_VEC_O(ce_s);
406 DEF_VEC_ALLOC_O(ce_s, heap);
407 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
408 static void get_constraint_for (tree, VEC(ce_s, heap) **);
409 static void do_deref (VEC (ce_s, heap) **);
411 /* Our set constraints are made up of two constraint expressions, one
412 LHS, and one RHS.
414 As described in the introduction, our set constraints each represent an
415 operation between set valued variables.
417 struct constraint
419 struct constraint_expr lhs;
420 struct constraint_expr rhs;
423 /* List of constraints that we use to build the constraint graph from. */
425 static VEC(constraint_t,heap) *constraints;
426 static alloc_pool constraint_pool;
428 /* The constraint graph is represented as an array of bitmaps
429 containing successor nodes. */
431 struct constraint_graph
433 /* Size of this graph, which may be different than the number of
434 nodes in the variable map. */
435 unsigned int size;
437 /* Explicit successors of each node. */
438 bitmap *succs;
440 /* Implicit predecessors of each node (Used for variable
441 substitution). */
442 bitmap *implicit_preds;
444 /* Explicit predecessors of each node (Used for variable substitution). */
445 bitmap *preds;
447 /* Indirect cycle representatives, or -1 if the node has no indirect
448 cycles. */
449 int *indirect_cycles;
451 /* Representative node for a node. rep[a] == a unless the node has
452 been unified. */
453 unsigned int *rep;
455 /* Equivalence class representative for a label. This is used for
456 variable substitution. */
457 int *eq_rep;
459 /* Pointer equivalence label for a node. All nodes with the same
460 pointer equivalence label can be unified together at some point
461 (either during constraint optimization or after the constraint
462 graph is built). */
463 unsigned int *pe;
465 /* Pointer equivalence representative for a label. This is used to
466 handle nodes that are pointer equivalent but not location
467 equivalent. We can unite these once the addressof constraints
468 are transformed into initial points-to sets. */
469 int *pe_rep;
471 /* Pointer equivalence label for each node, used during variable
472 substitution. */
473 unsigned int *pointer_label;
475 /* Location equivalence label for each node, used during location
476 equivalence finding. */
477 unsigned int *loc_label;
479 /* Pointed-by set for each node, used during location equivalence
480 finding. This is pointed-by rather than pointed-to, because it
481 is constructed using the predecessor graph. */
482 bitmap *pointed_by;
484 /* Points to sets for pointer equivalence. This is *not* the actual
485 points-to sets for nodes. */
486 bitmap *points_to;
488 /* Bitmap of nodes where the bit is set if the node is a direct
489 node. Used for variable substitution. */
490 sbitmap direct_nodes;
492 /* Bitmap of nodes where the bit is set if the node is address
493 taken. Used for variable substitution. */
494 bitmap address_taken;
496 /* Vector of complex constraints for each graph node. Complex
497 constraints are those involving dereferences or offsets that are
498 not 0. */
499 VEC(constraint_t,heap) **complex;
502 static constraint_graph_t graph;
504 /* During variable substitution and the offline version of indirect
505 cycle finding, we create nodes to represent dereferences and
506 address taken constraints. These represent where these start and
507 end. */
508 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
509 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
511 /* Return the representative node for NODE, if NODE has been unioned
512 with another NODE.
513 This function performs path compression along the way to finding
514 the representative. */
516 static unsigned int
517 find (unsigned int node)
519 gcc_assert (node < graph->size);
520 if (graph->rep[node] != node)
521 return graph->rep[node] = find (graph->rep[node]);
522 return node;
525 /* Union the TO and FROM nodes to the TO nodes.
526 Note that at some point in the future, we may want to do
527 union-by-rank, in which case we are going to have to return the
528 node we unified to. */
530 static bool
531 unite (unsigned int to, unsigned int from)
533 gcc_assert (to < graph->size && from < graph->size);
534 if (to != from && graph->rep[from] != to)
536 graph->rep[from] = to;
537 return true;
539 return false;
542 /* Create a new constraint consisting of LHS and RHS expressions. */
544 static constraint_t
545 new_constraint (const struct constraint_expr lhs,
546 const struct constraint_expr rhs)
548 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
549 ret->lhs = lhs;
550 ret->rhs = rhs;
551 return ret;
554 /* Print out constraint C to FILE. */
556 static void
557 dump_constraint (FILE *file, constraint_t c)
559 if (c->lhs.type == ADDRESSOF)
560 fprintf (file, "&");
561 else if (c->lhs.type == DEREF)
562 fprintf (file, "*");
563 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
564 if (c->lhs.offset == UNKNOWN_OFFSET)
565 fprintf (file, " + UNKNOWN");
566 else if (c->lhs.offset != 0)
567 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
568 fprintf (file, " = ");
569 if (c->rhs.type == ADDRESSOF)
570 fprintf (file, "&");
571 else if (c->rhs.type == DEREF)
572 fprintf (file, "*");
573 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
574 if (c->rhs.offset == UNKNOWN_OFFSET)
575 fprintf (file, " + UNKNOWN");
576 else if (c->rhs.offset != 0)
577 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
578 fprintf (file, "\n");
582 void debug_constraint (constraint_t);
583 void debug_constraints (void);
584 void debug_constraint_graph (void);
585 void debug_solution_for_var (unsigned int);
586 void debug_sa_points_to_info (void);
588 /* Print out constraint C to stderr. */
590 void
591 debug_constraint (constraint_t c)
593 dump_constraint (stderr, c);
596 /* Print out all constraints to FILE */
598 static void
599 dump_constraints (FILE *file)
601 int i;
602 constraint_t c;
603 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
604 dump_constraint (file, c);
607 /* Print out all constraints to stderr. */
609 void
610 debug_constraints (void)
612 dump_constraints (stderr);
615 /* Print out to FILE the edge in the constraint graph that is created by
616 constraint c. The edge may have a label, depending on the type of
617 constraint that it represents. If complex1, e.g: a = *b, then the label
618 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
619 complex with an offset, e.g: a = b + 8, then the label is "+".
620 Otherwise the edge has no label. */
622 static void
623 dump_constraint_edge (FILE *file, constraint_t c)
625 if (c->rhs.type != ADDRESSOF)
627 const char *src = get_varinfo (c->rhs.var)->name;
628 const char *dst = get_varinfo (c->lhs.var)->name;
629 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
630 /* Due to preprocessing of constraints, instructions like *a = *b are
631 illegal; thus, we do not have to handle such cases. */
632 if (c->lhs.type == DEREF)
633 fprintf (file, " [ label=\"*=\" ] ;\n");
634 else if (c->rhs.type == DEREF)
635 fprintf (file, " [ label=\"=*\" ] ;\n");
636 else
638 /* We must check the case where the constraint is an offset.
639 In this case, it is treated as a complex constraint. */
640 if (c->rhs.offset != c->lhs.offset)
641 fprintf (file, " [ label=\"+\" ] ;\n");
642 else
643 fprintf (file, " ;\n");
648 /* Print the constraint graph in dot format. */
650 static void
651 dump_constraint_graph (FILE *file)
653 unsigned int i=0, size;
654 constraint_t c;
656 /* Only print the graph if it has already been initialized: */
657 if (!graph)
658 return;
660 /* Print the constraints used to produce the constraint graph. The
661 constraints will be printed as comments in the dot file: */
662 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
663 dump_constraints (file);
664 fprintf (file, "*/\n");
666 /* Prints the header of the dot file: */
667 fprintf (file, "\n\n// The constraint graph in dot format:\n");
668 fprintf (file, "strict digraph {\n");
669 fprintf (file, " node [\n shape = box\n ]\n");
670 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
671 fprintf (file, "\n // List of nodes in the constraint graph:\n");
673 /* The next lines print the nodes in the graph. In order to get the
674 number of nodes in the graph, we must choose the minimum between the
675 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
676 yet been initialized, then graph->size == 0, otherwise we must only
677 read nodes that have an entry in VEC (varinfo_t, varmap). */
678 size = VEC_length (varinfo_t, varmap);
679 size = size < graph->size ? size : graph->size;
680 for (i = 0; i < size; i++)
682 const char *name = get_varinfo (graph->rep[i])->name;
683 fprintf (file, " \"%s\" ;\n", name);
686 /* Go over the list of constraints printing the edges in the constraint
687 graph. */
688 fprintf (file, "\n // The constraint edges:\n");
689 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
690 if (c)
691 dump_constraint_edge (file, c);
693 /* Prints the tail of the dot file. By now, only the closing bracket. */
694 fprintf (file, "}\n\n\n");
697 /* Print out the constraint graph to stderr. */
699 void
700 debug_constraint_graph (void)
702 dump_constraint_graph (stderr);
705 /* SOLVER FUNCTIONS
707 The solver is a simple worklist solver, that works on the following
708 algorithm:
710 sbitmap changed_nodes = all zeroes;
711 changed_count = 0;
712 For each node that is not already collapsed:
713 changed_count++;
714 set bit in changed nodes
716 while (changed_count > 0)
718 compute topological ordering for constraint graph
720 find and collapse cycles in the constraint graph (updating
721 changed if necessary)
723 for each node (n) in the graph in topological order:
724 changed_count--;
726 Process each complex constraint associated with the node,
727 updating changed if necessary.
729 For each outgoing edge from n, propagate the solution from n to
730 the destination of the edge, updating changed as necessary.
732 } */
734 /* Return true if two constraint expressions A and B are equal. */
736 static bool
737 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
739 return a.type == b.type && a.var == b.var && a.offset == b.offset;
742 /* Return true if constraint expression A is less than constraint expression
743 B. This is just arbitrary, but consistent, in order to give them an
744 ordering. */
746 static bool
747 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
749 if (a.type == b.type)
751 if (a.var == b.var)
752 return a.offset < b.offset;
753 else
754 return a.var < b.var;
756 else
757 return a.type < b.type;
760 /* Return true if constraint A is less than constraint B. This is just
761 arbitrary, but consistent, in order to give them an ordering. */
763 static bool
764 constraint_less (const constraint_t a, const constraint_t b)
766 if (constraint_expr_less (a->lhs, b->lhs))
767 return true;
768 else if (constraint_expr_less (b->lhs, a->lhs))
769 return false;
770 else
771 return constraint_expr_less (a->rhs, b->rhs);
774 /* Return true if two constraints A and B are equal. */
776 static bool
777 constraint_equal (struct constraint a, struct constraint b)
779 return constraint_expr_equal (a.lhs, b.lhs)
780 && constraint_expr_equal (a.rhs, b.rhs);
784 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
786 static constraint_t
787 constraint_vec_find (VEC(constraint_t,heap) *vec,
788 struct constraint lookfor)
790 unsigned int place;
791 constraint_t found;
793 if (vec == NULL)
794 return NULL;
796 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
797 if (place >= VEC_length (constraint_t, vec))
798 return NULL;
799 found = VEC_index (constraint_t, vec, place);
800 if (!constraint_equal (*found, lookfor))
801 return NULL;
802 return found;
805 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
807 static void
808 constraint_set_union (VEC(constraint_t,heap) **to,
809 VEC(constraint_t,heap) **from)
811 int i;
812 constraint_t c;
814 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
816 if (constraint_vec_find (*to, *c) == NULL)
818 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
819 constraint_less);
820 VEC_safe_insert (constraint_t, heap, *to, place, c);
825 /* Expands the solution in SET to all sub-fields of variables included.
826 Union the expanded result into RESULT. */
828 static void
829 solution_set_expand (bitmap result, bitmap set)
831 bitmap_iterator bi;
832 bitmap vars = NULL;
833 unsigned j;
835 /* In a first pass record all variables we need to add all
836 sub-fields off. This avoids quadratic behavior. */
837 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
839 varinfo_t v = get_varinfo (j);
840 if (v->is_artificial_var
841 || v->is_full_var)
842 continue;
843 v = lookup_vi_for_tree (v->decl);
844 if (vars == NULL)
845 vars = BITMAP_ALLOC (NULL);
846 bitmap_set_bit (vars, v->id);
849 /* In the second pass now do the addition to the solution and
850 to speed up solving add it to the delta as well. */
851 if (vars != NULL)
853 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
855 varinfo_t v = get_varinfo (j);
856 for (; v != NULL; v = v->next)
857 bitmap_set_bit (result, v->id);
859 BITMAP_FREE (vars);
863 /* Take a solution set SET, add OFFSET to each member of the set, and
864 overwrite SET with the result when done. */
866 static void
867 solution_set_add (bitmap set, HOST_WIDE_INT offset)
869 bitmap result = BITMAP_ALLOC (&iteration_obstack);
870 unsigned int i;
871 bitmap_iterator bi;
873 /* If the offset is unknown we have to expand the solution to
874 all subfields. */
875 if (offset == UNKNOWN_OFFSET)
877 solution_set_expand (set, set);
878 return;
881 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
883 varinfo_t vi = get_varinfo (i);
885 /* If this is a variable with just one field just set its bit
886 in the result. */
887 if (vi->is_artificial_var
888 || vi->is_unknown_size_var
889 || vi->is_full_var)
890 bitmap_set_bit (result, i);
891 else
893 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
895 /* If the offset makes the pointer point to before the
896 variable use offset zero for the field lookup. */
897 if (offset < 0
898 && fieldoffset > vi->offset)
899 fieldoffset = 0;
901 if (offset != 0)
902 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
904 bitmap_set_bit (result, vi->id);
905 /* If the result is not exactly at fieldoffset include the next
906 field as well. See get_constraint_for_ptr_offset for more
907 rationale. */
908 if (vi->offset != fieldoffset
909 && vi->next != NULL)
910 bitmap_set_bit (result, vi->next->id);
914 bitmap_copy (set, result);
915 BITMAP_FREE (result);
918 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
919 process. */
921 static bool
922 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
924 if (inc == 0)
925 return bitmap_ior_into (to, from);
926 else
928 bitmap tmp;
929 bool res;
931 tmp = BITMAP_ALLOC (&iteration_obstack);
932 bitmap_copy (tmp, from);
933 solution_set_add (tmp, inc);
934 res = bitmap_ior_into (to, tmp);
935 BITMAP_FREE (tmp);
936 return res;
940 /* Insert constraint C into the list of complex constraints for graph
941 node VAR. */
943 static void
944 insert_into_complex (constraint_graph_t graph,
945 unsigned int var, constraint_t c)
947 VEC (constraint_t, heap) *complex = graph->complex[var];
948 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
949 constraint_less);
951 /* Only insert constraints that do not already exist. */
952 if (place >= VEC_length (constraint_t, complex)
953 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
954 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
958 /* Condense two variable nodes into a single variable node, by moving
959 all associated info from SRC to TO. */
961 static void
962 merge_node_constraints (constraint_graph_t graph, unsigned int to,
963 unsigned int from)
965 unsigned int i;
966 constraint_t c;
968 gcc_assert (find (from) == to);
970 /* Move all complex constraints from src node into to node */
971 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
973 /* In complex constraints for node src, we may have either
974 a = *src, and *src = a, or an offseted constraint which are
975 always added to the rhs node's constraints. */
977 if (c->rhs.type == DEREF)
978 c->rhs.var = to;
979 else if (c->lhs.type == DEREF)
980 c->lhs.var = to;
981 else
982 c->rhs.var = to;
984 constraint_set_union (&graph->complex[to], &graph->complex[from]);
985 VEC_free (constraint_t, heap, graph->complex[from]);
986 graph->complex[from] = NULL;
990 /* Remove edges involving NODE from GRAPH. */
992 static void
993 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
995 if (graph->succs[node])
996 BITMAP_FREE (graph->succs[node]);
999 /* Merge GRAPH nodes FROM and TO into node TO. */
1001 static void
1002 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1003 unsigned int from)
1005 if (graph->indirect_cycles[from] != -1)
1007 /* If we have indirect cycles with the from node, and we have
1008 none on the to node, the to node has indirect cycles from the
1009 from node now that they are unified.
1010 If indirect cycles exist on both, unify the nodes that they
1011 are in a cycle with, since we know they are in a cycle with
1012 each other. */
1013 if (graph->indirect_cycles[to] == -1)
1014 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1017 /* Merge all the successor edges. */
1018 if (graph->succs[from])
1020 if (!graph->succs[to])
1021 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1022 bitmap_ior_into (graph->succs[to],
1023 graph->succs[from]);
1026 clear_edges_for_node (graph, from);
1030 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1031 it doesn't exist in the graph already. */
1033 static void
1034 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1035 unsigned int from)
1037 if (to == from)
1038 return;
1040 if (!graph->implicit_preds[to])
1041 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1043 if (bitmap_set_bit (graph->implicit_preds[to], from))
1044 stats.num_implicit_edges++;
1047 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1048 it doesn't exist in the graph already.
1049 Return false if the edge already existed, true otherwise. */
1051 static void
1052 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1053 unsigned int from)
1055 if (!graph->preds[to])
1056 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1057 bitmap_set_bit (graph->preds[to], from);
1060 /* Add a graph edge to GRAPH, going from FROM to TO if
1061 it doesn't exist in the graph already.
1062 Return false if the edge already existed, true otherwise. */
1064 static bool
1065 add_graph_edge (constraint_graph_t graph, unsigned int to,
1066 unsigned int from)
1068 if (to == from)
1070 return false;
1072 else
1074 bool r = false;
1076 if (!graph->succs[from])
1077 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1078 if (bitmap_set_bit (graph->succs[from], to))
1080 r = true;
1081 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1082 stats.num_edges++;
1084 return r;
1089 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1091 static bool
1092 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1093 unsigned int dest)
1095 return (graph->succs[dest]
1096 && bitmap_bit_p (graph->succs[dest], src));
1099 /* Initialize the constraint graph structure to contain SIZE nodes. */
1101 static void
1102 init_graph (unsigned int size)
1104 unsigned int j;
1106 graph = XCNEW (struct constraint_graph);
1107 graph->size = size;
1108 graph->succs = XCNEWVEC (bitmap, graph->size);
1109 graph->indirect_cycles = XNEWVEC (int, graph->size);
1110 graph->rep = XNEWVEC (unsigned int, graph->size);
1111 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1112 graph->pe = XCNEWVEC (unsigned int, graph->size);
1113 graph->pe_rep = XNEWVEC (int, graph->size);
1115 for (j = 0; j < graph->size; j++)
1117 graph->rep[j] = j;
1118 graph->pe_rep[j] = -1;
1119 graph->indirect_cycles[j] = -1;
1123 /* Build the constraint graph, adding only predecessor edges right now. */
1125 static void
1126 build_pred_graph (void)
1128 int i;
1129 constraint_t c;
1130 unsigned int j;
1132 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1133 graph->preds = XCNEWVEC (bitmap, graph->size);
1134 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1135 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1136 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1137 graph->points_to = XCNEWVEC (bitmap, graph->size);
1138 graph->eq_rep = XNEWVEC (int, graph->size);
1139 graph->direct_nodes = sbitmap_alloc (graph->size);
1140 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1141 sbitmap_zero (graph->direct_nodes);
1143 for (j = 0; j < FIRST_REF_NODE; j++)
1145 if (!get_varinfo (j)->is_special_var)
1146 SET_BIT (graph->direct_nodes, j);
1149 for (j = 0; j < graph->size; j++)
1150 graph->eq_rep[j] = -1;
1152 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1153 graph->indirect_cycles[j] = -1;
1155 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1157 struct constraint_expr lhs = c->lhs;
1158 struct constraint_expr rhs = c->rhs;
1159 unsigned int lhsvar = lhs.var;
1160 unsigned int rhsvar = rhs.var;
1162 if (lhs.type == DEREF)
1164 /* *x = y. */
1165 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1166 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1168 else if (rhs.type == DEREF)
1170 /* x = *y */
1171 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1172 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1173 else
1174 RESET_BIT (graph->direct_nodes, lhsvar);
1176 else if (rhs.type == ADDRESSOF)
1178 varinfo_t v;
1180 /* x = &y */
1181 if (graph->points_to[lhsvar] == NULL)
1182 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1183 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1185 if (graph->pointed_by[rhsvar] == NULL)
1186 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1187 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1189 /* Implicitly, *x = y */
1190 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1192 /* All related variables are no longer direct nodes. */
1193 RESET_BIT (graph->direct_nodes, rhsvar);
1194 v = get_varinfo (rhsvar);
1195 if (!v->is_full_var)
1197 v = lookup_vi_for_tree (v->decl);
1200 RESET_BIT (graph->direct_nodes, v->id);
1201 v = v->next;
1203 while (v != NULL);
1205 bitmap_set_bit (graph->address_taken, rhsvar);
1207 else if (lhsvar > anything_id
1208 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1210 /* x = y */
1211 add_pred_graph_edge (graph, lhsvar, rhsvar);
1212 /* Implicitly, *x = *y */
1213 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1214 FIRST_REF_NODE + rhsvar);
1216 else if (lhs.offset != 0 || rhs.offset != 0)
1218 if (rhs.offset != 0)
1219 RESET_BIT (graph->direct_nodes, lhs.var);
1220 else if (lhs.offset != 0)
1221 RESET_BIT (graph->direct_nodes, rhs.var);
1226 /* Build the constraint graph, adding successor edges. */
1228 static void
1229 build_succ_graph (void)
1231 unsigned i, t;
1232 constraint_t c;
1234 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1236 struct constraint_expr lhs;
1237 struct constraint_expr rhs;
1238 unsigned int lhsvar;
1239 unsigned int rhsvar;
1241 if (!c)
1242 continue;
1244 lhs = c->lhs;
1245 rhs = c->rhs;
1246 lhsvar = find (lhs.var);
1247 rhsvar = find (rhs.var);
1249 if (lhs.type == DEREF)
1251 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1252 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1254 else if (rhs.type == DEREF)
1256 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1257 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1259 else if (rhs.type == ADDRESSOF)
1261 /* x = &y */
1262 gcc_assert (find (rhs.var) == rhs.var);
1263 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1265 else if (lhsvar > anything_id
1266 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1268 add_graph_edge (graph, lhsvar, rhsvar);
1272 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1273 receive pointers. */
1274 t = find (storedanything_id);
1275 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1277 if (!TEST_BIT (graph->direct_nodes, i)
1278 && get_varinfo (i)->may_have_pointers)
1279 add_graph_edge (graph, find (i), t);
1282 /* Everything stored to ANYTHING also potentially escapes. */
1283 add_graph_edge (graph, find (escaped_id), t);
1287 /* Changed variables on the last iteration. */
1288 static unsigned int changed_count;
1289 static sbitmap changed;
1291 /* Strongly Connected Component visitation info. */
1293 struct scc_info
1295 sbitmap visited;
1296 sbitmap deleted;
1297 unsigned int *dfs;
1298 unsigned int *node_mapping;
1299 int current_index;
1300 VEC(unsigned,heap) *scc_stack;
1304 /* Recursive routine to find strongly connected components in GRAPH.
1305 SI is the SCC info to store the information in, and N is the id of current
1306 graph node we are processing.
1308 This is Tarjan's strongly connected component finding algorithm, as
1309 modified by Nuutila to keep only non-root nodes on the stack.
1310 The algorithm can be found in "On finding the strongly connected
1311 connected components in a directed graph" by Esko Nuutila and Eljas
1312 Soisalon-Soininen, in Information Processing Letters volume 49,
1313 number 1, pages 9-14. */
1315 static void
1316 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1318 unsigned int i;
1319 bitmap_iterator bi;
1320 unsigned int my_dfs;
1322 SET_BIT (si->visited, n);
1323 si->dfs[n] = si->current_index ++;
1324 my_dfs = si->dfs[n];
1326 /* Visit all the successors. */
1327 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1329 unsigned int w;
1331 if (i > LAST_REF_NODE)
1332 break;
1334 w = find (i);
1335 if (TEST_BIT (si->deleted, w))
1336 continue;
1338 if (!TEST_BIT (si->visited, w))
1339 scc_visit (graph, si, w);
1341 unsigned int t = find (w);
1342 unsigned int nnode = find (n);
1343 gcc_assert (nnode == n);
1345 if (si->dfs[t] < si->dfs[nnode])
1346 si->dfs[n] = si->dfs[t];
1350 /* See if any components have been identified. */
1351 if (si->dfs[n] == my_dfs)
1353 if (VEC_length (unsigned, si->scc_stack) > 0
1354 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1356 bitmap scc = BITMAP_ALLOC (NULL);
1357 unsigned int lowest_node;
1358 bitmap_iterator bi;
1360 bitmap_set_bit (scc, n);
1362 while (VEC_length (unsigned, si->scc_stack) != 0
1363 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1365 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1367 bitmap_set_bit (scc, w);
1370 lowest_node = bitmap_first_set_bit (scc);
1371 gcc_assert (lowest_node < FIRST_REF_NODE);
1373 /* Collapse the SCC nodes into a single node, and mark the
1374 indirect cycles. */
1375 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1377 if (i < FIRST_REF_NODE)
1379 if (unite (lowest_node, i))
1380 unify_nodes (graph, lowest_node, i, false);
1382 else
1384 unite (lowest_node, i);
1385 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1389 SET_BIT (si->deleted, n);
1391 else
1392 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1395 /* Unify node FROM into node TO, updating the changed count if
1396 necessary when UPDATE_CHANGED is true. */
1398 static void
1399 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1400 bool update_changed)
1403 gcc_assert (to != from && find (to) == to);
1404 if (dump_file && (dump_flags & TDF_DETAILS))
1405 fprintf (dump_file, "Unifying %s to %s\n",
1406 get_varinfo (from)->name,
1407 get_varinfo (to)->name);
1409 if (update_changed)
1410 stats.unified_vars_dynamic++;
1411 else
1412 stats.unified_vars_static++;
1414 merge_graph_nodes (graph, to, from);
1415 merge_node_constraints (graph, to, from);
1417 /* Mark TO as changed if FROM was changed. If TO was already marked
1418 as changed, decrease the changed count. */
1420 if (update_changed && TEST_BIT (changed, from))
1422 RESET_BIT (changed, from);
1423 if (!TEST_BIT (changed, to))
1424 SET_BIT (changed, to);
1425 else
1427 gcc_assert (changed_count > 0);
1428 changed_count--;
1431 if (get_varinfo (from)->solution)
1433 /* If the solution changes because of the merging, we need to mark
1434 the variable as changed. */
1435 if (bitmap_ior_into (get_varinfo (to)->solution,
1436 get_varinfo (from)->solution))
1438 if (update_changed && !TEST_BIT (changed, to))
1440 SET_BIT (changed, to);
1441 changed_count++;
1445 BITMAP_FREE (get_varinfo (from)->solution);
1446 BITMAP_FREE (get_varinfo (from)->oldsolution);
1448 if (stats.iterations > 0)
1450 BITMAP_FREE (get_varinfo (to)->oldsolution);
1451 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1454 if (valid_graph_edge (graph, to, to))
1456 if (graph->succs[to])
1457 bitmap_clear_bit (graph->succs[to], to);
1461 /* Information needed to compute the topological ordering of a graph. */
1463 struct topo_info
1465 /* sbitmap of visited nodes. */
1466 sbitmap visited;
1467 /* Array that stores the topological order of the graph, *in
1468 reverse*. */
1469 VEC(unsigned,heap) *topo_order;
1473 /* Initialize and return a topological info structure. */
1475 static struct topo_info *
1476 init_topo_info (void)
1478 size_t size = graph->size;
1479 struct topo_info *ti = XNEW (struct topo_info);
1480 ti->visited = sbitmap_alloc (size);
1481 sbitmap_zero (ti->visited);
1482 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1483 return ti;
1487 /* Free the topological sort info pointed to by TI. */
1489 static void
1490 free_topo_info (struct topo_info *ti)
1492 sbitmap_free (ti->visited);
1493 VEC_free (unsigned, heap, ti->topo_order);
1494 free (ti);
1497 /* Visit the graph in topological order, and store the order in the
1498 topo_info structure. */
1500 static void
1501 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1502 unsigned int n)
1504 bitmap_iterator bi;
1505 unsigned int j;
1507 SET_BIT (ti->visited, n);
1509 if (graph->succs[n])
1510 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1512 if (!TEST_BIT (ti->visited, j))
1513 topo_visit (graph, ti, j);
1516 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1519 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1520 starting solution for y. */
1522 static void
1523 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1524 bitmap delta)
1526 unsigned int lhs = c->lhs.var;
1527 bool flag = false;
1528 bitmap sol = get_varinfo (lhs)->solution;
1529 unsigned int j;
1530 bitmap_iterator bi;
1531 HOST_WIDE_INT roffset = c->rhs.offset;
1533 /* Our IL does not allow this. */
1534 gcc_assert (c->lhs.offset == 0);
1536 /* If the solution of Y contains anything it is good enough to transfer
1537 this to the LHS. */
1538 if (bitmap_bit_p (delta, anything_id))
1540 flag |= bitmap_set_bit (sol, anything_id);
1541 goto done;
1544 /* If we do not know at with offset the rhs is dereferenced compute
1545 the reachability set of DELTA, conservatively assuming it is
1546 dereferenced at all valid offsets. */
1547 if (roffset == UNKNOWN_OFFSET)
1549 solution_set_expand (delta, delta);
1550 /* No further offset processing is necessary. */
1551 roffset = 0;
1554 /* For each variable j in delta (Sol(y)), add
1555 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1556 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1558 varinfo_t v = get_varinfo (j);
1559 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1560 unsigned int t;
1562 if (v->is_full_var)
1563 fieldoffset = v->offset;
1564 else if (roffset != 0)
1565 v = first_vi_for_offset (v, fieldoffset);
1566 /* If the access is outside of the variable we can ignore it. */
1567 if (!v)
1568 continue;
1572 t = find (v->id);
1574 /* Adding edges from the special vars is pointless.
1575 They don't have sets that can change. */
1576 if (get_varinfo (t)->is_special_var)
1577 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1578 /* Merging the solution from ESCAPED needlessly increases
1579 the set. Use ESCAPED as representative instead. */
1580 else if (v->id == escaped_id)
1581 flag |= bitmap_set_bit (sol, escaped_id);
1582 else if (add_graph_edge (graph, lhs, t))
1583 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1585 /* If the variable is not exactly at the requested offset
1586 we have to include the next one. */
1587 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1588 || v->next == NULL)
1589 break;
1591 v = v->next;
1592 fieldoffset = v->offset;
1594 while (1);
1597 done:
1598 /* If the LHS solution changed, mark the var as changed. */
1599 if (flag)
1601 get_varinfo (lhs)->solution = sol;
1602 if (!TEST_BIT (changed, lhs))
1604 SET_BIT (changed, lhs);
1605 changed_count++;
1610 /* Process a constraint C that represents *(x + off) = y using DELTA
1611 as the starting solution for x. */
1613 static void
1614 do_ds_constraint (constraint_t c, bitmap delta)
1616 unsigned int rhs = c->rhs.var;
1617 bitmap sol = get_varinfo (rhs)->solution;
1618 unsigned int j;
1619 bitmap_iterator bi;
1620 HOST_WIDE_INT loff = c->lhs.offset;
1622 /* Our IL does not allow this. */
1623 gcc_assert (c->rhs.offset == 0);
1625 /* If the solution of y contains ANYTHING simply use the ANYTHING
1626 solution. This avoids needlessly increasing the points-to sets. */
1627 if (bitmap_bit_p (sol, anything_id))
1628 sol = get_varinfo (find (anything_id))->solution;
1630 /* If the solution for x contains ANYTHING we have to merge the
1631 solution of y into all pointer variables which we do via
1632 STOREDANYTHING. */
1633 if (bitmap_bit_p (delta, anything_id))
1635 unsigned t = find (storedanything_id);
1636 if (add_graph_edge (graph, t, rhs))
1638 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1640 if (!TEST_BIT (changed, t))
1642 SET_BIT (changed, t);
1643 changed_count++;
1647 return;
1650 /* If we do not know at with offset the rhs is dereferenced compute
1651 the reachability set of DELTA, conservatively assuming it is
1652 dereferenced at all valid offsets. */
1653 if (loff == UNKNOWN_OFFSET)
1655 solution_set_expand (delta, delta);
1656 loff = 0;
1659 /* For each member j of delta (Sol(x)), add an edge from y to j and
1660 union Sol(y) into Sol(j) */
1661 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1663 varinfo_t v = get_varinfo (j);
1664 unsigned int t;
1665 HOST_WIDE_INT fieldoffset = v->offset + loff;
1667 /* If v is a global variable then this is an escape point. */
1668 if (v->is_global_var)
1670 t = find (escaped_id);
1671 if (add_graph_edge (graph, t, rhs)
1672 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1673 && !TEST_BIT (changed, t))
1675 SET_BIT (changed, t);
1676 changed_count++;
1680 if (v->is_special_var)
1681 continue;
1683 if (v->is_full_var)
1684 fieldoffset = v->offset;
1685 else if (loff != 0)
1686 v = first_vi_for_offset (v, fieldoffset);
1687 /* If the access is outside of the variable we can ignore it. */
1688 if (!v)
1689 continue;
1693 if (v->may_have_pointers)
1695 t = find (v->id);
1696 if (add_graph_edge (graph, t, rhs)
1697 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1698 && !TEST_BIT (changed, t))
1700 SET_BIT (changed, t);
1701 changed_count++;
1705 /* If the variable is not exactly at the requested offset
1706 we have to include the next one. */
1707 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1708 || v->next == NULL)
1709 break;
1711 v = v->next;
1712 fieldoffset = v->offset;
1714 while (1);
1718 /* Handle a non-simple (simple meaning requires no iteration),
1719 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1721 static void
1722 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1724 if (c->lhs.type == DEREF)
1726 if (c->rhs.type == ADDRESSOF)
1728 gcc_unreachable();
1730 else
1732 /* *x = y */
1733 do_ds_constraint (c, delta);
1736 else if (c->rhs.type == DEREF)
1738 /* x = *y */
1739 if (!(get_varinfo (c->lhs.var)->is_special_var))
1740 do_sd_constraint (graph, c, delta);
1742 else
1744 bitmap tmp;
1745 bitmap solution;
1746 bool flag = false;
1748 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1749 solution = get_varinfo (c->rhs.var)->solution;
1750 tmp = get_varinfo (c->lhs.var)->solution;
1752 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1754 if (flag)
1756 get_varinfo (c->lhs.var)->solution = tmp;
1757 if (!TEST_BIT (changed, c->lhs.var))
1759 SET_BIT (changed, c->lhs.var);
1760 changed_count++;
1766 /* Initialize and return a new SCC info structure. */
1768 static struct scc_info *
1769 init_scc_info (size_t size)
1771 struct scc_info *si = XNEW (struct scc_info);
1772 size_t i;
1774 si->current_index = 0;
1775 si->visited = sbitmap_alloc (size);
1776 sbitmap_zero (si->visited);
1777 si->deleted = sbitmap_alloc (size);
1778 sbitmap_zero (si->deleted);
1779 si->node_mapping = XNEWVEC (unsigned int, size);
1780 si->dfs = XCNEWVEC (unsigned int, size);
1782 for (i = 0; i < size; i++)
1783 si->node_mapping[i] = i;
1785 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1786 return si;
1789 /* Free an SCC info structure pointed to by SI */
1791 static void
1792 free_scc_info (struct scc_info *si)
1794 sbitmap_free (si->visited);
1795 sbitmap_free (si->deleted);
1796 free (si->node_mapping);
1797 free (si->dfs);
1798 VEC_free (unsigned, heap, si->scc_stack);
1799 free (si);
1803 /* Find indirect cycles in GRAPH that occur, using strongly connected
1804 components, and note them in the indirect cycles map.
1806 This technique comes from Ben Hardekopf and Calvin Lin,
1807 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1808 Lines of Code", submitted to PLDI 2007. */
1810 static void
1811 find_indirect_cycles (constraint_graph_t graph)
1813 unsigned int i;
1814 unsigned int size = graph->size;
1815 struct scc_info *si = init_scc_info (size);
1817 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1818 if (!TEST_BIT (si->visited, i) && find (i) == i)
1819 scc_visit (graph, si, i);
1821 free_scc_info (si);
1824 /* Compute a topological ordering for GRAPH, and store the result in the
1825 topo_info structure TI. */
1827 static void
1828 compute_topo_order (constraint_graph_t graph,
1829 struct topo_info *ti)
1831 unsigned int i;
1832 unsigned int size = graph->size;
1834 for (i = 0; i != size; ++i)
1835 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1836 topo_visit (graph, ti, i);
1839 /* Structure used to for hash value numbering of pointer equivalence
1840 classes. */
1842 typedef struct equiv_class_label
1844 hashval_t hashcode;
1845 unsigned int equivalence_class;
1846 bitmap labels;
1847 } *equiv_class_label_t;
1848 typedef const struct equiv_class_label *const_equiv_class_label_t;
1850 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1851 classes. */
1852 static htab_t pointer_equiv_class_table;
1854 /* A hashtable for mapping a bitmap of labels->location equivalence
1855 classes. */
1856 static htab_t location_equiv_class_table;
1858 /* Hash function for a equiv_class_label_t */
1860 static hashval_t
1861 equiv_class_label_hash (const void *p)
1863 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1864 return ecl->hashcode;
1867 /* Equality function for two equiv_class_label_t's. */
1869 static int
1870 equiv_class_label_eq (const void *p1, const void *p2)
1872 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1873 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1874 return (eql1->hashcode == eql2->hashcode
1875 && bitmap_equal_p (eql1->labels, eql2->labels));
1878 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1879 contains. */
1881 static unsigned int
1882 equiv_class_lookup (htab_t table, bitmap labels)
1884 void **slot;
1885 struct equiv_class_label ecl;
1887 ecl.labels = labels;
1888 ecl.hashcode = bitmap_hash (labels);
1890 slot = htab_find_slot_with_hash (table, &ecl,
1891 ecl.hashcode, NO_INSERT);
1892 if (!slot)
1893 return 0;
1894 else
1895 return ((equiv_class_label_t) *slot)->equivalence_class;
1899 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1900 to TABLE. */
1902 static void
1903 equiv_class_add (htab_t table, unsigned int equivalence_class,
1904 bitmap labels)
1906 void **slot;
1907 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1909 ecl->labels = labels;
1910 ecl->equivalence_class = equivalence_class;
1911 ecl->hashcode = bitmap_hash (labels);
1913 slot = htab_find_slot_with_hash (table, ecl,
1914 ecl->hashcode, INSERT);
1915 gcc_assert (!*slot);
1916 *slot = (void *) ecl;
1919 /* Perform offline variable substitution.
1921 This is a worst case quadratic time way of identifying variables
1922 that must have equivalent points-to sets, including those caused by
1923 static cycles, and single entry subgraphs, in the constraint graph.
1925 The technique is described in "Exploiting Pointer and Location
1926 Equivalence to Optimize Pointer Analysis. In the 14th International
1927 Static Analysis Symposium (SAS), August 2007." It is known as the
1928 "HU" algorithm, and is equivalent to value numbering the collapsed
1929 constraint graph including evaluating unions.
1931 The general method of finding equivalence classes is as follows:
1932 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1933 Initialize all non-REF nodes to be direct nodes.
1934 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1935 variable}
1936 For each constraint containing the dereference, we also do the same
1937 thing.
1939 We then compute SCC's in the graph and unify nodes in the same SCC,
1940 including pts sets.
1942 For each non-collapsed node x:
1943 Visit all unvisited explicit incoming edges.
1944 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1945 where y->x.
1946 Lookup the equivalence class for pts(x).
1947 If we found one, equivalence_class(x) = found class.
1948 Otherwise, equivalence_class(x) = new class, and new_class is
1949 added to the lookup table.
1951 All direct nodes with the same equivalence class can be replaced
1952 with a single representative node.
1953 All unlabeled nodes (label == 0) are not pointers and all edges
1954 involving them can be eliminated.
1955 We perform these optimizations during rewrite_constraints
1957 In addition to pointer equivalence class finding, we also perform
1958 location equivalence class finding. This is the set of variables
1959 that always appear together in points-to sets. We use this to
1960 compress the size of the points-to sets. */
1962 /* Current maximum pointer equivalence class id. */
1963 static int pointer_equiv_class;
1965 /* Current maximum location equivalence class id. */
1966 static int location_equiv_class;
1968 /* Recursive routine to find strongly connected components in GRAPH,
1969 and label it's nodes with DFS numbers. */
1971 static void
1972 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1974 unsigned int i;
1975 bitmap_iterator bi;
1976 unsigned int my_dfs;
1978 gcc_assert (si->node_mapping[n] == n);
1979 SET_BIT (si->visited, n);
1980 si->dfs[n] = si->current_index ++;
1981 my_dfs = si->dfs[n];
1983 /* Visit all the successors. */
1984 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
1986 unsigned int w = si->node_mapping[i];
1988 if (TEST_BIT (si->deleted, w))
1989 continue;
1991 if (!TEST_BIT (si->visited, w))
1992 condense_visit (graph, si, w);
1994 unsigned int t = si->node_mapping[w];
1995 unsigned int nnode = si->node_mapping[n];
1996 gcc_assert (nnode == n);
1998 if (si->dfs[t] < si->dfs[nnode])
1999 si->dfs[n] = si->dfs[t];
2003 /* Visit all the implicit predecessors. */
2004 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2006 unsigned int w = si->node_mapping[i];
2008 if (TEST_BIT (si->deleted, w))
2009 continue;
2011 if (!TEST_BIT (si->visited, w))
2012 condense_visit (graph, si, w);
2014 unsigned int t = si->node_mapping[w];
2015 unsigned int nnode = si->node_mapping[n];
2016 gcc_assert (nnode == n);
2018 if (si->dfs[t] < si->dfs[nnode])
2019 si->dfs[n] = si->dfs[t];
2023 /* See if any components have been identified. */
2024 if (si->dfs[n] == my_dfs)
2026 while (VEC_length (unsigned, si->scc_stack) != 0
2027 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2029 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2030 si->node_mapping[w] = n;
2032 if (!TEST_BIT (graph->direct_nodes, w))
2033 RESET_BIT (graph->direct_nodes, n);
2035 /* Unify our nodes. */
2036 if (graph->preds[w])
2038 if (!graph->preds[n])
2039 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2040 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2042 if (graph->implicit_preds[w])
2044 if (!graph->implicit_preds[n])
2045 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2046 bitmap_ior_into (graph->implicit_preds[n],
2047 graph->implicit_preds[w]);
2049 if (graph->points_to[w])
2051 if (!graph->points_to[n])
2052 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2053 bitmap_ior_into (graph->points_to[n],
2054 graph->points_to[w]);
2057 SET_BIT (si->deleted, n);
2059 else
2060 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2063 /* Label pointer equivalences. */
2065 static void
2066 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2068 unsigned int i;
2069 bitmap_iterator bi;
2070 SET_BIT (si->visited, n);
2072 if (!graph->points_to[n])
2073 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2075 /* Label and union our incoming edges's points to sets. */
2076 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2078 unsigned int w = si->node_mapping[i];
2079 if (!TEST_BIT (si->visited, w))
2080 label_visit (graph, si, w);
2082 /* Skip unused edges */
2083 if (w == n || graph->pointer_label[w] == 0)
2084 continue;
2086 if (graph->points_to[w])
2087 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2089 /* Indirect nodes get fresh variables. */
2090 if (!TEST_BIT (graph->direct_nodes, n))
2091 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2093 if (!bitmap_empty_p (graph->points_to[n]))
2095 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2096 graph->points_to[n]);
2097 if (!label)
2099 label = pointer_equiv_class++;
2100 equiv_class_add (pointer_equiv_class_table,
2101 label, graph->points_to[n]);
2103 graph->pointer_label[n] = label;
2107 /* Perform offline variable substitution, discovering equivalence
2108 classes, and eliminating non-pointer variables. */
2110 static struct scc_info *
2111 perform_var_substitution (constraint_graph_t graph)
2113 unsigned int i;
2114 unsigned int size = graph->size;
2115 struct scc_info *si = init_scc_info (size);
2117 bitmap_obstack_initialize (&iteration_obstack);
2118 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2119 equiv_class_label_eq, free);
2120 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2121 equiv_class_label_eq, free);
2122 pointer_equiv_class = 1;
2123 location_equiv_class = 1;
2125 /* Condense the nodes, which means to find SCC's, count incoming
2126 predecessors, and unite nodes in SCC's. */
2127 for (i = 0; i < FIRST_REF_NODE; i++)
2128 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2129 condense_visit (graph, si, si->node_mapping[i]);
2131 sbitmap_zero (si->visited);
2132 /* Actually the label the nodes for pointer equivalences */
2133 for (i = 0; i < FIRST_REF_NODE; i++)
2134 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2135 label_visit (graph, si, si->node_mapping[i]);
2137 /* Calculate location equivalence labels. */
2138 for (i = 0; i < FIRST_REF_NODE; i++)
2140 bitmap pointed_by;
2141 bitmap_iterator bi;
2142 unsigned int j;
2143 unsigned int label;
2145 if (!graph->pointed_by[i])
2146 continue;
2147 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2149 /* Translate the pointed-by mapping for pointer equivalence
2150 labels. */
2151 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2153 bitmap_set_bit (pointed_by,
2154 graph->pointer_label[si->node_mapping[j]]);
2156 /* The original pointed_by is now dead. */
2157 BITMAP_FREE (graph->pointed_by[i]);
2159 /* Look up the location equivalence label if one exists, or make
2160 one otherwise. */
2161 label = equiv_class_lookup (location_equiv_class_table,
2162 pointed_by);
2163 if (label == 0)
2165 label = location_equiv_class++;
2166 equiv_class_add (location_equiv_class_table,
2167 label, pointed_by);
2169 else
2171 if (dump_file && (dump_flags & TDF_DETAILS))
2172 fprintf (dump_file, "Found location equivalence for node %s\n",
2173 get_varinfo (i)->name);
2174 BITMAP_FREE (pointed_by);
2176 graph->loc_label[i] = label;
2180 if (dump_file && (dump_flags & TDF_DETAILS))
2181 for (i = 0; i < FIRST_REF_NODE; i++)
2183 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2184 fprintf (dump_file,
2185 "Equivalence classes for %s node id %d:%s are pointer: %d"
2186 ", location:%d\n",
2187 direct_node ? "Direct node" : "Indirect node", i,
2188 get_varinfo (i)->name,
2189 graph->pointer_label[si->node_mapping[i]],
2190 graph->loc_label[si->node_mapping[i]]);
2193 /* Quickly eliminate our non-pointer variables. */
2195 for (i = 0; i < FIRST_REF_NODE; i++)
2197 unsigned int node = si->node_mapping[i];
2199 if (graph->pointer_label[node] == 0)
2201 if (dump_file && (dump_flags & TDF_DETAILS))
2202 fprintf (dump_file,
2203 "%s is a non-pointer variable, eliminating edges.\n",
2204 get_varinfo (node)->name);
2205 stats.nonpointer_vars++;
2206 clear_edges_for_node (graph, node);
2210 return si;
2213 /* Free information that was only necessary for variable
2214 substitution. */
2216 static void
2217 free_var_substitution_info (struct scc_info *si)
2219 free_scc_info (si);
2220 free (graph->pointer_label);
2221 free (graph->loc_label);
2222 free (graph->pointed_by);
2223 free (graph->points_to);
2224 free (graph->eq_rep);
2225 sbitmap_free (graph->direct_nodes);
2226 htab_delete (pointer_equiv_class_table);
2227 htab_delete (location_equiv_class_table);
2228 bitmap_obstack_release (&iteration_obstack);
2231 /* Return an existing node that is equivalent to NODE, which has
2232 equivalence class LABEL, if one exists. Return NODE otherwise. */
2234 static unsigned int
2235 find_equivalent_node (constraint_graph_t graph,
2236 unsigned int node, unsigned int label)
2238 /* If the address version of this variable is unused, we can
2239 substitute it for anything else with the same label.
2240 Otherwise, we know the pointers are equivalent, but not the
2241 locations, and we can unite them later. */
2243 if (!bitmap_bit_p (graph->address_taken, node))
2245 gcc_assert (label < graph->size);
2247 if (graph->eq_rep[label] != -1)
2249 /* Unify the two variables since we know they are equivalent. */
2250 if (unite (graph->eq_rep[label], node))
2251 unify_nodes (graph, graph->eq_rep[label], node, false);
2252 return graph->eq_rep[label];
2254 else
2256 graph->eq_rep[label] = node;
2257 graph->pe_rep[label] = node;
2260 else
2262 gcc_assert (label < graph->size);
2263 graph->pe[node] = label;
2264 if (graph->pe_rep[label] == -1)
2265 graph->pe_rep[label] = node;
2268 return node;
2271 /* Unite pointer equivalent but not location equivalent nodes in
2272 GRAPH. This may only be performed once variable substitution is
2273 finished. */
2275 static void
2276 unite_pointer_equivalences (constraint_graph_t graph)
2278 unsigned int i;
2280 /* Go through the pointer equivalences and unite them to their
2281 representative, if they aren't already. */
2282 for (i = 0; i < FIRST_REF_NODE; i++)
2284 unsigned int label = graph->pe[i];
2285 if (label)
2287 int label_rep = graph->pe_rep[label];
2289 if (label_rep == -1)
2290 continue;
2292 label_rep = find (label_rep);
2293 if (label_rep >= 0 && unite (label_rep, find (i)))
2294 unify_nodes (graph, label_rep, i, false);
2299 /* Move complex constraints to the GRAPH nodes they belong to. */
2301 static void
2302 move_complex_constraints (constraint_graph_t graph)
2304 int i;
2305 constraint_t c;
2307 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2309 if (c)
2311 struct constraint_expr lhs = c->lhs;
2312 struct constraint_expr rhs = c->rhs;
2314 if (lhs.type == DEREF)
2316 insert_into_complex (graph, lhs.var, c);
2318 else if (rhs.type == DEREF)
2320 if (!(get_varinfo (lhs.var)->is_special_var))
2321 insert_into_complex (graph, rhs.var, c);
2323 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2324 && (lhs.offset != 0 || rhs.offset != 0))
2326 insert_into_complex (graph, rhs.var, c);
2333 /* Optimize and rewrite complex constraints while performing
2334 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2335 result of perform_variable_substitution. */
2337 static void
2338 rewrite_constraints (constraint_graph_t graph,
2339 struct scc_info *si)
2341 int i;
2342 unsigned int j;
2343 constraint_t c;
2345 for (j = 0; j < graph->size; j++)
2346 gcc_assert (find (j) == j);
2348 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2350 struct constraint_expr lhs = c->lhs;
2351 struct constraint_expr rhs = c->rhs;
2352 unsigned int lhsvar = find (lhs.var);
2353 unsigned int rhsvar = find (rhs.var);
2354 unsigned int lhsnode, rhsnode;
2355 unsigned int lhslabel, rhslabel;
2357 lhsnode = si->node_mapping[lhsvar];
2358 rhsnode = si->node_mapping[rhsvar];
2359 lhslabel = graph->pointer_label[lhsnode];
2360 rhslabel = graph->pointer_label[rhsnode];
2362 /* See if it is really a non-pointer variable, and if so, ignore
2363 the constraint. */
2364 if (lhslabel == 0)
2366 if (dump_file && (dump_flags & TDF_DETAILS))
2369 fprintf (dump_file, "%s is a non-pointer variable,"
2370 "ignoring constraint:",
2371 get_varinfo (lhs.var)->name);
2372 dump_constraint (dump_file, c);
2374 VEC_replace (constraint_t, constraints, i, NULL);
2375 continue;
2378 if (rhslabel == 0)
2380 if (dump_file && (dump_flags & TDF_DETAILS))
2383 fprintf (dump_file, "%s is a non-pointer variable,"
2384 "ignoring constraint:",
2385 get_varinfo (rhs.var)->name);
2386 dump_constraint (dump_file, c);
2388 VEC_replace (constraint_t, constraints, i, NULL);
2389 continue;
2392 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2393 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2394 c->lhs.var = lhsvar;
2395 c->rhs.var = rhsvar;
2400 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2401 part of an SCC, false otherwise. */
2403 static bool
2404 eliminate_indirect_cycles (unsigned int node)
2406 if (graph->indirect_cycles[node] != -1
2407 && !bitmap_empty_p (get_varinfo (node)->solution))
2409 unsigned int i;
2410 VEC(unsigned,heap) *queue = NULL;
2411 int queuepos;
2412 unsigned int to = find (graph->indirect_cycles[node]);
2413 bitmap_iterator bi;
2415 /* We can't touch the solution set and call unify_nodes
2416 at the same time, because unify_nodes is going to do
2417 bitmap unions into it. */
2419 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2421 if (find (i) == i && i != to)
2423 if (unite (to, i))
2424 VEC_safe_push (unsigned, heap, queue, i);
2428 for (queuepos = 0;
2429 VEC_iterate (unsigned, queue, queuepos, i);
2430 queuepos++)
2432 unify_nodes (graph, to, i, true);
2434 VEC_free (unsigned, heap, queue);
2435 return true;
2437 return false;
2440 /* Solve the constraint graph GRAPH using our worklist solver.
2441 This is based on the PW* family of solvers from the "Efficient Field
2442 Sensitive Pointer Analysis for C" paper.
2443 It works by iterating over all the graph nodes, processing the complex
2444 constraints and propagating the copy constraints, until everything stops
2445 changed. This corresponds to steps 6-8 in the solving list given above. */
2447 static void
2448 solve_graph (constraint_graph_t graph)
2450 unsigned int size = graph->size;
2451 unsigned int i;
2452 bitmap pts;
2454 changed_count = 0;
2455 changed = sbitmap_alloc (size);
2456 sbitmap_zero (changed);
2458 /* Mark all initial non-collapsed nodes as changed. */
2459 for (i = 0; i < size; i++)
2461 varinfo_t ivi = get_varinfo (i);
2462 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2463 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2464 || VEC_length (constraint_t, graph->complex[i]) > 0))
2466 SET_BIT (changed, i);
2467 changed_count++;
2471 /* Allocate a bitmap to be used to store the changed bits. */
2472 pts = BITMAP_ALLOC (&pta_obstack);
2474 while (changed_count > 0)
2476 unsigned int i;
2477 struct topo_info *ti = init_topo_info ();
2478 stats.iterations++;
2480 bitmap_obstack_initialize (&iteration_obstack);
2482 compute_topo_order (graph, ti);
2484 while (VEC_length (unsigned, ti->topo_order) != 0)
2487 i = VEC_pop (unsigned, ti->topo_order);
2489 /* If this variable is not a representative, skip it. */
2490 if (find (i) != i)
2491 continue;
2493 /* In certain indirect cycle cases, we may merge this
2494 variable to another. */
2495 if (eliminate_indirect_cycles (i) && find (i) != i)
2496 continue;
2498 /* If the node has changed, we need to process the
2499 complex constraints and outgoing edges again. */
2500 if (TEST_BIT (changed, i))
2502 unsigned int j;
2503 constraint_t c;
2504 bitmap solution;
2505 VEC(constraint_t,heap) *complex = graph->complex[i];
2506 bool solution_empty;
2508 RESET_BIT (changed, i);
2509 changed_count--;
2511 /* Compute the changed set of solution bits. */
2512 bitmap_and_compl (pts, get_varinfo (i)->solution,
2513 get_varinfo (i)->oldsolution);
2515 if (bitmap_empty_p (pts))
2516 continue;
2518 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2520 solution = get_varinfo (i)->solution;
2521 solution_empty = bitmap_empty_p (solution);
2523 /* Process the complex constraints */
2524 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2526 /* XXX: This is going to unsort the constraints in
2527 some cases, which will occasionally add duplicate
2528 constraints during unification. This does not
2529 affect correctness. */
2530 c->lhs.var = find (c->lhs.var);
2531 c->rhs.var = find (c->rhs.var);
2533 /* The only complex constraint that can change our
2534 solution to non-empty, given an empty solution,
2535 is a constraint where the lhs side is receiving
2536 some set from elsewhere. */
2537 if (!solution_empty || c->lhs.type != DEREF)
2538 do_complex_constraint (graph, c, pts);
2541 solution_empty = bitmap_empty_p (solution);
2543 if (!solution_empty)
2545 bitmap_iterator bi;
2546 unsigned eff_escaped_id = find (escaped_id);
2548 /* Propagate solution to all successors. */
2549 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2550 0, j, bi)
2552 bitmap tmp;
2553 bool flag;
2555 unsigned int to = find (j);
2556 tmp = get_varinfo (to)->solution;
2557 flag = false;
2559 /* Don't try to propagate to ourselves. */
2560 if (to == i)
2561 continue;
2563 /* If we propagate from ESCAPED use ESCAPED as
2564 placeholder. */
2565 if (i == eff_escaped_id)
2566 flag = bitmap_set_bit (tmp, escaped_id);
2567 else
2568 flag = set_union_with_increment (tmp, pts, 0);
2570 if (flag)
2572 get_varinfo (to)->solution = tmp;
2573 if (!TEST_BIT (changed, to))
2575 SET_BIT (changed, to);
2576 changed_count++;
2583 free_topo_info (ti);
2584 bitmap_obstack_release (&iteration_obstack);
2587 BITMAP_FREE (pts);
2588 sbitmap_free (changed);
2589 bitmap_obstack_release (&oldpta_obstack);
2592 /* Map from trees to variable infos. */
2593 static struct pointer_map_t *vi_for_tree;
2596 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2598 static void
2599 insert_vi_for_tree (tree t, varinfo_t vi)
2601 void **slot = pointer_map_insert (vi_for_tree, t);
2602 gcc_assert (vi);
2603 gcc_assert (*slot == NULL);
2604 *slot = vi;
2607 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2608 exist in the map, return NULL, otherwise, return the varinfo we found. */
2610 static varinfo_t
2611 lookup_vi_for_tree (tree t)
2613 void **slot = pointer_map_contains (vi_for_tree, t);
2614 if (slot == NULL)
2615 return NULL;
2617 return (varinfo_t) *slot;
2620 /* Return a printable name for DECL */
2622 static const char *
2623 alias_get_name (tree decl)
2625 const char *res = get_name (decl);
2626 char *temp;
2627 int num_printed = 0;
2629 if (res != NULL)
2630 return res;
2632 res = "NULL";
2633 if (!dump_file)
2634 return res;
2636 if (TREE_CODE (decl) == SSA_NAME)
2638 num_printed = asprintf (&temp, "%s_%u",
2639 alias_get_name (SSA_NAME_VAR (decl)),
2640 SSA_NAME_VERSION (decl));
2642 else if (DECL_P (decl))
2644 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2646 if (num_printed > 0)
2648 res = ggc_strdup (temp);
2649 free (temp);
2651 return res;
2654 /* Find the variable id for tree T in the map.
2655 If T doesn't exist in the map, create an entry for it and return it. */
2657 static varinfo_t
2658 get_vi_for_tree (tree t)
2660 void **slot = pointer_map_contains (vi_for_tree, t);
2661 if (slot == NULL)
2662 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2664 return (varinfo_t) *slot;
2667 /* Get a scalar constraint expression for a new temporary variable. */
2669 static struct constraint_expr
2670 new_scalar_tmp_constraint_exp (const char *name)
2672 struct constraint_expr tmp;
2673 varinfo_t vi;
2675 vi = new_var_info (NULL_TREE, name);
2676 vi->offset = 0;
2677 vi->size = -1;
2678 vi->fullsize = -1;
2679 vi->is_full_var = 1;
2681 tmp.var = vi->id;
2682 tmp.type = SCALAR;
2683 tmp.offset = 0;
2685 return tmp;
2688 /* Get a constraint expression vector from an SSA_VAR_P node.
2689 If address_p is true, the result will be taken its address of. */
2691 static void
2692 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2694 struct constraint_expr cexpr;
2695 varinfo_t vi;
2697 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2698 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2700 /* For parameters, get at the points-to set for the actual parm
2701 decl. */
2702 if (TREE_CODE (t) == SSA_NAME
2703 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2704 && SSA_NAME_IS_DEFAULT_DEF (t))
2706 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2707 return;
2710 vi = get_vi_for_tree (t);
2711 cexpr.var = vi->id;
2712 cexpr.type = SCALAR;
2713 cexpr.offset = 0;
2714 /* If we determine the result is "anything", and we know this is readonly,
2715 say it points to readonly memory instead. */
2716 if (cexpr.var == anything_id && TREE_READONLY (t))
2718 gcc_unreachable ();
2719 cexpr.type = ADDRESSOF;
2720 cexpr.var = readonly_id;
2723 /* If we are not taking the address of the constraint expr, add all
2724 sub-fiels of the variable as well. */
2725 if (!address_p
2726 && !vi->is_full_var)
2728 for (; vi; vi = vi->next)
2730 cexpr.var = vi->id;
2731 VEC_safe_push (ce_s, heap, *results, &cexpr);
2733 return;
2736 VEC_safe_push (ce_s, heap, *results, &cexpr);
2739 /* Process constraint T, performing various simplifications and then
2740 adding it to our list of overall constraints. */
2742 static void
2743 process_constraint (constraint_t t)
2745 struct constraint_expr rhs = t->rhs;
2746 struct constraint_expr lhs = t->lhs;
2748 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2749 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2751 /* If we didn't get any useful constraint from the lhs we get
2752 &ANYTHING as fallback from get_constraint_for. Deal with
2753 it here by turning it into *ANYTHING. */
2754 if (lhs.type == ADDRESSOF
2755 && lhs.var == anything_id)
2756 lhs.type = DEREF;
2758 /* ADDRESSOF on the lhs is invalid. */
2759 gcc_assert (lhs.type != ADDRESSOF);
2761 /* This can happen in our IR with things like n->a = *p */
2762 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2764 /* Split into tmp = *rhs, *lhs = tmp */
2765 struct constraint_expr tmplhs;
2766 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2767 process_constraint (new_constraint (tmplhs, rhs));
2768 process_constraint (new_constraint (lhs, tmplhs));
2770 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2772 /* Split into tmp = &rhs, *lhs = tmp */
2773 struct constraint_expr tmplhs;
2774 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2775 process_constraint (new_constraint (tmplhs, rhs));
2776 process_constraint (new_constraint (lhs, tmplhs));
2778 else
2780 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2781 VEC_safe_push (constraint_t, heap, constraints, t);
2785 /* Return true if T is a type that could contain pointers. */
2787 static bool
2788 type_could_have_pointers (tree type)
2790 if (POINTER_TYPE_P (type))
2791 return true;
2793 if (TREE_CODE (type) == ARRAY_TYPE)
2794 return type_could_have_pointers (TREE_TYPE (type));
2796 return AGGREGATE_TYPE_P (type);
2799 /* Return true if T is a variable of a type that could contain
2800 pointers. */
2802 static bool
2803 could_have_pointers (tree t)
2805 return type_could_have_pointers (TREE_TYPE (t));
2808 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2809 structure. */
2811 static HOST_WIDE_INT
2812 bitpos_of_field (const tree fdecl)
2815 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2816 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2817 return -1;
2819 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2820 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2824 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2825 resulting constraint expressions in *RESULTS. */
2827 static void
2828 get_constraint_for_ptr_offset (tree ptr, tree offset,
2829 VEC (ce_s, heap) **results)
2831 struct constraint_expr c;
2832 unsigned int j, n;
2833 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2835 /* If we do not do field-sensitive PTA adding offsets to pointers
2836 does not change the points-to solution. */
2837 if (!use_field_sensitive)
2839 get_constraint_for (ptr, results);
2840 return;
2843 /* If the offset is not a non-negative integer constant that fits
2844 in a HOST_WIDE_INT, we have to fall back to a conservative
2845 solution which includes all sub-fields of all pointed-to
2846 variables of ptr. */
2847 if (offset == NULL_TREE
2848 || !host_integerp (offset, 0))
2849 rhsoffset = UNKNOWN_OFFSET;
2850 else
2852 /* Make sure the bit-offset also fits. */
2853 rhsunitoffset = TREE_INT_CST_LOW (offset);
2854 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2855 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2856 rhsoffset = UNKNOWN_OFFSET;
2859 get_constraint_for (ptr, results);
2860 if (rhsoffset == 0)
2861 return;
2863 /* As we are eventually appending to the solution do not use
2864 VEC_iterate here. */
2865 n = VEC_length (ce_s, *results);
2866 for (j = 0; j < n; j++)
2868 varinfo_t curr;
2869 c = *VEC_index (ce_s, *results, j);
2870 curr = get_varinfo (c.var);
2872 if (c.type == ADDRESSOF
2873 /* If this varinfo represents a full variable just use it. */
2874 && curr->is_full_var)
2875 c.offset = 0;
2876 else if (c.type == ADDRESSOF
2877 /* If we do not know the offset add all subfields. */
2878 && rhsoffset == UNKNOWN_OFFSET)
2880 varinfo_t temp = lookup_vi_for_tree (curr->decl);
2883 struct constraint_expr c2;
2884 c2.var = temp->id;
2885 c2.type = ADDRESSOF;
2886 c2.offset = 0;
2887 if (c2.var != c.var)
2888 VEC_safe_push (ce_s, heap, *results, &c2);
2889 temp = temp->next;
2891 while (temp);
2893 else if (c.type == ADDRESSOF)
2895 varinfo_t temp;
2896 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
2898 /* Search the sub-field which overlaps with the
2899 pointed-to offset. If the result is outside of the variable
2900 we have to provide a conservative result, as the variable is
2901 still reachable from the resulting pointer (even though it
2902 technically cannot point to anything). The last and first
2903 sub-fields are such conservative results.
2904 ??? If we always had a sub-field for &object + 1 then
2905 we could represent this in a more precise way. */
2906 if (rhsoffset < 0
2907 && curr->offset < offset)
2908 offset = 0;
2909 temp = first_or_preceding_vi_for_offset (curr, offset);
2911 /* If the found variable is not exactly at the pointed to
2912 result, we have to include the next variable in the
2913 solution as well. Otherwise two increments by offset / 2
2914 do not result in the same or a conservative superset
2915 solution. */
2916 if (temp->offset != offset
2917 && temp->next != NULL)
2919 struct constraint_expr c2;
2920 c2.var = temp->next->id;
2921 c2.type = ADDRESSOF;
2922 c2.offset = 0;
2923 VEC_safe_push (ce_s, heap, *results, &c2);
2925 c.var = temp->id;
2926 c.offset = 0;
2928 else
2929 c.offset = rhsoffset;
2931 VEC_replace (ce_s, *results, j, &c);
2936 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2937 If address_p is true the result will be taken its address of. */
2939 static void
2940 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2941 bool address_p)
2943 tree orig_t = t;
2944 HOST_WIDE_INT bitsize = -1;
2945 HOST_WIDE_INT bitmaxsize = -1;
2946 HOST_WIDE_INT bitpos;
2947 tree forzero;
2948 struct constraint_expr *result;
2950 /* Some people like to do cute things like take the address of
2951 &0->a.b */
2952 forzero = t;
2953 while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
2954 forzero = TREE_OPERAND (forzero, 0);
2956 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
2958 struct constraint_expr temp;
2960 temp.offset = 0;
2961 temp.var = integer_id;
2962 temp.type = SCALAR;
2963 VEC_safe_push (ce_s, heap, *results, &temp);
2964 return;
2967 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
2969 /* Pretend to take the address of the base, we'll take care of
2970 adding the required subset of sub-fields below. */
2971 get_constraint_for_1 (t, results, true);
2972 gcc_assert (VEC_length (ce_s, *results) == 1);
2973 result = VEC_last (ce_s, *results);
2975 if (result->type == SCALAR
2976 && get_varinfo (result->var)->is_full_var)
2977 /* For single-field vars do not bother about the offset. */
2978 result->offset = 0;
2979 else if (result->type == SCALAR)
2981 /* In languages like C, you can access one past the end of an
2982 array. You aren't allowed to dereference it, so we can
2983 ignore this constraint. When we handle pointer subtraction,
2984 we may have to do something cute here. */
2986 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
2987 && bitmaxsize != 0)
2989 /* It's also not true that the constraint will actually start at the
2990 right offset, it may start in some padding. We only care about
2991 setting the constraint to the first actual field it touches, so
2992 walk to find it. */
2993 struct constraint_expr cexpr = *result;
2994 varinfo_t curr;
2995 VEC_pop (ce_s, *results);
2996 cexpr.offset = 0;
2997 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
2999 if (ranges_overlap_p (curr->offset, curr->size,
3000 bitpos, bitmaxsize))
3002 cexpr.var = curr->id;
3003 VEC_safe_push (ce_s, heap, *results, &cexpr);
3004 if (address_p)
3005 break;
3008 /* If we are going to take the address of this field then
3009 to be able to compute reachability correctly add at least
3010 the last field of the variable. */
3011 if (address_p
3012 && VEC_length (ce_s, *results) == 0)
3014 curr = get_varinfo (cexpr.var);
3015 while (curr->next != NULL)
3016 curr = curr->next;
3017 cexpr.var = curr->id;
3018 VEC_safe_push (ce_s, heap, *results, &cexpr);
3020 else
3021 /* Assert that we found *some* field there. The user couldn't be
3022 accessing *only* padding. */
3023 /* Still the user could access one past the end of an array
3024 embedded in a struct resulting in accessing *only* padding. */
3025 gcc_assert (VEC_length (ce_s, *results) >= 1
3026 || ref_contains_array_ref (orig_t));
3028 else if (bitmaxsize == 0)
3030 if (dump_file && (dump_flags & TDF_DETAILS))
3031 fprintf (dump_file, "Access to zero-sized part of variable,"
3032 "ignoring\n");
3034 else
3035 if (dump_file && (dump_flags & TDF_DETAILS))
3036 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3038 else if (result->type == DEREF)
3040 /* If we do not know exactly where the access goes say so. Note
3041 that only for non-structure accesses we know that we access
3042 at most one subfiled of any variable. */
3043 if (bitpos == -1
3044 || bitsize != bitmaxsize
3045 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3046 result->offset = UNKNOWN_OFFSET;
3047 else
3048 result->offset = bitpos;
3050 else if (result->type == ADDRESSOF)
3052 /* We can end up here for component references on a
3053 VIEW_CONVERT_EXPR <>(&foobar). */
3054 result->type = SCALAR;
3055 result->var = anything_id;
3056 result->offset = 0;
3058 else
3059 gcc_unreachable ();
3063 /* Dereference the constraint expression CONS, and return the result.
3064 DEREF (ADDRESSOF) = SCALAR
3065 DEREF (SCALAR) = DEREF
3066 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3067 This is needed so that we can handle dereferencing DEREF constraints. */
3069 static void
3070 do_deref (VEC (ce_s, heap) **constraints)
3072 struct constraint_expr *c;
3073 unsigned int i = 0;
3075 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3077 if (c->type == SCALAR)
3078 c->type = DEREF;
3079 else if (c->type == ADDRESSOF)
3080 c->type = SCALAR;
3081 else if (c->type == DEREF)
3083 struct constraint_expr tmplhs;
3084 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3085 process_constraint (new_constraint (tmplhs, *c));
3086 c->var = tmplhs.var;
3088 else
3089 gcc_unreachable ();
3093 static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
3095 /* Given a tree T, return the constraint expression for taking the
3096 address of it. */
3098 static void
3099 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3101 struct constraint_expr *c;
3102 unsigned int i;
3104 get_constraint_for_1 (t, results, true);
3106 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3108 if (c->type == DEREF)
3109 c->type = SCALAR;
3110 else
3111 c->type = ADDRESSOF;
3115 /* Given a tree T, return the constraint expression for it. */
3117 static void
3118 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3120 struct constraint_expr temp;
3122 /* x = integer is all glommed to a single variable, which doesn't
3123 point to anything by itself. That is, of course, unless it is an
3124 integer constant being treated as a pointer, in which case, we
3125 will return that this is really the addressof anything. This
3126 happens below, since it will fall into the default case. The only
3127 case we know something about an integer treated like a pointer is
3128 when it is the NULL pointer, and then we just say it points to
3129 NULL.
3131 Do not do that if -fno-delete-null-pointer-checks though, because
3132 in that case *NULL does not fail, so it _should_ alias *anything.
3133 It is not worth adding a new option or renaming the existing one,
3134 since this case is relatively obscure. */
3135 if (flag_delete_null_pointer_checks
3136 && ((TREE_CODE (t) == INTEGER_CST
3137 && integer_zerop (t))
3138 /* The only valid CONSTRUCTORs in gimple with pointer typed
3139 elements are zero-initializer. */
3140 || TREE_CODE (t) == CONSTRUCTOR))
3142 temp.var = nothing_id;
3143 temp.type = ADDRESSOF;
3144 temp.offset = 0;
3145 VEC_safe_push (ce_s, heap, *results, &temp);
3146 return;
3149 /* String constants are read-only. */
3150 if (TREE_CODE (t) == STRING_CST)
3152 temp.var = readonly_id;
3153 temp.type = SCALAR;
3154 temp.offset = 0;
3155 VEC_safe_push (ce_s, heap, *results, &temp);
3156 return;
3159 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3161 case tcc_expression:
3163 switch (TREE_CODE (t))
3165 case ADDR_EXPR:
3166 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3167 return;
3168 default:;
3170 break;
3172 case tcc_reference:
3174 switch (TREE_CODE (t))
3176 case INDIRECT_REF:
3178 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3179 do_deref (results);
3180 return;
3182 case ARRAY_REF:
3183 case ARRAY_RANGE_REF:
3184 case COMPONENT_REF:
3185 get_constraint_for_component_ref (t, results, address_p);
3186 return;
3187 case VIEW_CONVERT_EXPR:
3188 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3189 return;
3190 /* We are missing handling for TARGET_MEM_REF here. */
3191 default:;
3193 break;
3195 case tcc_exceptional:
3197 switch (TREE_CODE (t))
3199 case SSA_NAME:
3201 get_constraint_for_ssa_var (t, results, address_p);
3202 return;
3204 default:;
3206 break;
3208 case tcc_declaration:
3210 get_constraint_for_ssa_var (t, results, address_p);
3211 return;
3213 default:;
3216 /* The default fallback is a constraint from anything. */
3217 temp.type = ADDRESSOF;
3218 temp.var = anything_id;
3219 temp.offset = 0;
3220 VEC_safe_push (ce_s, heap, *results, &temp);
3223 /* Given a gimple tree T, return the constraint expression vector for it. */
3225 static void
3226 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3228 gcc_assert (VEC_length (ce_s, *results) == 0);
3230 get_constraint_for_1 (t, results, false);
3234 /* Efficiently generates constraints from all entries in *RHSC to all
3235 entries in *LHSC. */
3237 static void
3238 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3240 struct constraint_expr *lhsp, *rhsp;
3241 unsigned i, j;
3243 if (VEC_length (ce_s, lhsc) <= 1
3244 || VEC_length (ce_s, rhsc) <= 1)
3246 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3247 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3248 process_constraint (new_constraint (*lhsp, *rhsp));
3250 else
3252 struct constraint_expr tmp;
3253 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3254 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
3255 process_constraint (new_constraint (tmp, *rhsp));
3256 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3257 process_constraint (new_constraint (*lhsp, tmp));
3261 /* Handle aggregate copies by expanding into copies of the respective
3262 fields of the structures. */
3264 static void
3265 do_structure_copy (tree lhsop, tree rhsop)
3267 struct constraint_expr *lhsp, *rhsp;
3268 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3269 unsigned j;
3271 get_constraint_for (lhsop, &lhsc);
3272 get_constraint_for (rhsop, &rhsc);
3273 lhsp = VEC_index (ce_s, lhsc, 0);
3274 rhsp = VEC_index (ce_s, rhsc, 0);
3275 if (lhsp->type == DEREF
3276 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3277 || rhsp->type == DEREF)
3278 process_all_all_constraints (lhsc, rhsc);
3279 else if (lhsp->type == SCALAR
3280 && (rhsp->type == SCALAR
3281 || rhsp->type == ADDRESSOF))
3283 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3284 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3285 unsigned k = 0;
3286 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3287 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3288 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3290 varinfo_t lhsv, rhsv;
3291 rhsp = VEC_index (ce_s, rhsc, k);
3292 lhsv = get_varinfo (lhsp->var);
3293 rhsv = get_varinfo (rhsp->var);
3294 if (lhsv->may_have_pointers
3295 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3296 rhsv->offset + lhsoffset, rhsv->size))
3297 process_constraint (new_constraint (*lhsp, *rhsp));
3298 if (lhsv->offset + rhsoffset + lhsv->size
3299 > rhsv->offset + lhsoffset + rhsv->size)
3301 ++k;
3302 if (k >= VEC_length (ce_s, rhsc))
3303 break;
3305 else
3306 ++j;
3309 else
3310 gcc_unreachable ();
3312 VEC_free (ce_s, heap, lhsc);
3313 VEC_free (ce_s, heap, rhsc);
3316 /* Create a constraint ID = OP. */
3318 static void
3319 make_constraint_to (unsigned id, tree op)
3321 VEC(ce_s, heap) *rhsc = NULL;
3322 struct constraint_expr *c;
3323 struct constraint_expr includes;
3324 unsigned int j;
3326 includes.var = id;
3327 includes.offset = 0;
3328 includes.type = SCALAR;
3330 get_constraint_for (op, &rhsc);
3331 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3332 process_constraint (new_constraint (includes, *c));
3333 VEC_free (ce_s, heap, rhsc);
3336 /* Create a constraint ID = &FROM. */
3338 static void
3339 make_constraint_from (varinfo_t vi, int from)
3341 struct constraint_expr lhs, rhs;
3343 lhs.var = vi->id;
3344 lhs.offset = 0;
3345 lhs.type = SCALAR;
3347 rhs.var = from;
3348 rhs.offset = 0;
3349 rhs.type = ADDRESSOF;
3350 process_constraint (new_constraint (lhs, rhs));
3353 /* Create a constraint ID = FROM. */
3355 static void
3356 make_copy_constraint (varinfo_t vi, int from)
3358 struct constraint_expr lhs, rhs;
3360 lhs.var = vi->id;
3361 lhs.offset = 0;
3362 lhs.type = SCALAR;
3364 rhs.var = from;
3365 rhs.offset = 0;
3366 rhs.type = SCALAR;
3367 process_constraint (new_constraint (lhs, rhs));
3370 /* Make constraints necessary to make OP escape. */
3372 static void
3373 make_escape_constraint (tree op)
3375 make_constraint_to (escaped_id, op);
3378 /* Create a new artificial heap variable with NAME and make a
3379 constraint from it to LHS. Return the created variable. */
3381 static varinfo_t
3382 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3384 varinfo_t vi;
3385 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3387 if (heapvar == NULL_TREE)
3389 var_ann_t ann;
3390 heapvar = create_tmp_var_raw (ptr_type_node, name);
3391 DECL_EXTERNAL (heapvar) = 1;
3393 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3395 ann = get_var_ann (heapvar);
3396 ann->is_heapvar = 1;
3399 /* For global vars we need to add a heapvar to the list of referenced
3400 vars of a different function than it was created for originally. */
3401 if (gimple_referenced_vars (cfun))
3402 add_referenced_var (heapvar);
3404 vi = new_var_info (heapvar, name);
3405 vi->is_artificial_var = true;
3406 vi->is_heap_var = true;
3407 vi->is_unknown_size_var = true;
3408 vi->offset = 0;
3409 vi->fullsize = ~0;
3410 vi->size = ~0;
3411 vi->is_full_var = true;
3412 insert_vi_for_tree (heapvar, vi);
3414 make_constraint_from (lhs, vi->id);
3416 return vi;
3419 /* Create a new artificial heap variable with NAME and make a
3420 constraint from it to LHS. Set flags according to a tag used
3421 for tracking restrict pointers. */
3423 static void
3424 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3426 varinfo_t vi;
3427 vi = make_constraint_from_heapvar (lhs, name);
3428 vi->is_restrict_var = 1;
3429 vi->is_global_var = 0;
3430 vi->is_special_var = 1;
3431 vi->may_have_pointers = 0;
3434 /* For non-IPA mode, generate constraints necessary for a call on the
3435 RHS. */
3437 static void
3438 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3440 struct constraint_expr rhsc;
3441 unsigned i;
3443 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3445 tree arg = gimple_call_arg (stmt, i);
3447 /* Find those pointers being passed, and make sure they end up
3448 pointing to anything. */
3449 if (could_have_pointers (arg))
3450 make_escape_constraint (arg);
3453 /* The static chain escapes as well. */
3454 if (gimple_call_chain (stmt))
3455 make_escape_constraint (gimple_call_chain (stmt));
3457 /* And if we applied NRV the address of the return slot escapes as well. */
3458 if (gimple_call_return_slot_opt_p (stmt)
3459 && gimple_call_lhs (stmt) != NULL_TREE
3460 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3462 VEC(ce_s, heap) *tmpc = NULL;
3463 struct constraint_expr lhsc, *c;
3464 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3465 lhsc.var = escaped_id;
3466 lhsc.offset = 0;
3467 lhsc.type = SCALAR;
3468 for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
3469 process_constraint (new_constraint (lhsc, *c));
3470 VEC_free(ce_s, heap, tmpc);
3473 /* Regular functions return nonlocal memory. */
3474 rhsc.var = nonlocal_id;
3475 rhsc.offset = 0;
3476 rhsc.type = SCALAR;
3477 VEC_safe_push (ce_s, heap, *results, &rhsc);
3480 /* For non-IPA mode, generate constraints necessary for a call
3481 that returns a pointer and assigns it to LHS. This simply makes
3482 the LHS point to global and escaped variables. */
3484 static void
3485 handle_lhs_call (tree lhs, int flags, VEC(ce_s, heap) *rhsc)
3487 VEC(ce_s, heap) *lhsc = NULL;
3489 get_constraint_for (lhs, &lhsc);
3491 if (flags & ECF_MALLOC)
3493 varinfo_t vi;
3494 vi = make_constraint_from_heapvar (get_vi_for_tree (lhs), "HEAP");
3495 /* We delay marking allocated storage global until we know if
3496 it escapes. */
3497 DECL_EXTERNAL (vi->decl) = 0;
3498 vi->is_global_var = 0;
3500 else if (VEC_length (ce_s, rhsc) > 0)
3502 /* If the store is to a global decl make sure to
3503 add proper escape constraints. */
3504 lhs = get_base_address (lhs);
3505 if (lhs
3506 && DECL_P (lhs)
3507 && is_global_var (lhs))
3509 struct constraint_expr tmpc;
3510 tmpc.var = escaped_id;
3511 tmpc.offset = 0;
3512 tmpc.type = SCALAR;
3513 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3515 process_all_all_constraints (lhsc, rhsc);
3517 VEC_free (ce_s, heap, lhsc);
3520 /* For non-IPA mode, generate constraints necessary for a call of a
3521 const function that returns a pointer in the statement STMT. */
3523 static void
3524 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3526 struct constraint_expr rhsc;
3527 unsigned int k;
3529 /* Treat nested const functions the same as pure functions as far
3530 as the static chain is concerned. */
3531 if (gimple_call_chain (stmt))
3533 make_constraint_to (callused_id, gimple_call_chain (stmt));
3534 rhsc.var = callused_id;
3535 rhsc.offset = 0;
3536 rhsc.type = SCALAR;
3537 VEC_safe_push (ce_s, heap, *results, &rhsc);
3540 /* May return arguments. */
3541 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3543 tree arg = gimple_call_arg (stmt, k);
3545 if (could_have_pointers (arg))
3547 VEC(ce_s, heap) *argc = NULL;
3548 unsigned i;
3549 struct constraint_expr *argp;
3550 get_constraint_for (arg, &argc);
3551 for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
3552 VEC_safe_push (ce_s, heap, *results, argp);
3553 VEC_free(ce_s, heap, argc);
3557 /* May return addresses of globals. */
3558 rhsc.var = nonlocal_id;
3559 rhsc.offset = 0;
3560 rhsc.type = ADDRESSOF;
3561 VEC_safe_push (ce_s, heap, *results, &rhsc);
3564 /* For non-IPA mode, generate constraints necessary for a call to a
3565 pure function in statement STMT. */
3567 static void
3568 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3570 struct constraint_expr rhsc;
3571 unsigned i;
3572 bool need_callused = false;
3574 /* Memory reached from pointer arguments is call-used. */
3575 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3577 tree arg = gimple_call_arg (stmt, i);
3579 if (could_have_pointers (arg))
3581 make_constraint_to (callused_id, arg);
3582 need_callused = true;
3586 /* The static chain is used as well. */
3587 if (gimple_call_chain (stmt))
3589 make_constraint_to (callused_id, gimple_call_chain (stmt));
3590 need_callused = true;
3593 /* Pure functions may return callused and nonlocal memory. */
3594 if (need_callused)
3596 rhsc.var = callused_id;
3597 rhsc.offset = 0;
3598 rhsc.type = SCALAR;
3599 VEC_safe_push (ce_s, heap, *results, &rhsc);
3601 rhsc.var = nonlocal_id;
3602 rhsc.offset = 0;
3603 rhsc.type = SCALAR;
3604 VEC_safe_push (ce_s, heap, *results, &rhsc);
3607 /* Walk statement T setting up aliasing constraints according to the
3608 references found in T. This function is the main part of the
3609 constraint builder. AI points to auxiliary alias information used
3610 when building alias sets and computing alias grouping heuristics. */
3612 static void
3613 find_func_aliases (gimple origt)
3615 gimple t = origt;
3616 VEC(ce_s, heap) *lhsc = NULL;
3617 VEC(ce_s, heap) *rhsc = NULL;
3618 struct constraint_expr *c;
3620 /* Now build constraints expressions. */
3621 if (gimple_code (t) == GIMPLE_PHI)
3623 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
3625 /* Only care about pointers and structures containing
3626 pointers. */
3627 if (could_have_pointers (gimple_phi_result (t)))
3629 size_t i;
3630 unsigned int j;
3632 /* For a phi node, assign all the arguments to
3633 the result. */
3634 get_constraint_for (gimple_phi_result (t), &lhsc);
3635 for (i = 0; i < gimple_phi_num_args (t); i++)
3637 tree strippedrhs = PHI_ARG_DEF (t, i);
3639 STRIP_NOPS (strippedrhs);
3640 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
3642 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
3644 struct constraint_expr *c2;
3645 while (VEC_length (ce_s, rhsc) > 0)
3647 c2 = VEC_last (ce_s, rhsc);
3648 process_constraint (new_constraint (*c, *c2));
3649 VEC_pop (ce_s, rhsc);
3655 /* In IPA mode, we need to generate constraints to pass call
3656 arguments through their calls. There are two cases,
3657 either a GIMPLE_CALL returning a value, or just a plain
3658 GIMPLE_CALL when we are not.
3660 In non-ipa mode, we need to generate constraints for each
3661 pointer passed by address. */
3662 else if (is_gimple_call (t))
3664 tree fndecl = gimple_call_fndecl (t);
3665 if (fndecl != NULL_TREE
3666 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3667 /* ??? All builtins that are handled here need to be handled
3668 in the alias-oracle query functions explicitly! */
3669 switch (DECL_FUNCTION_CODE (fndecl))
3671 /* All the following functions return a pointer to the same object
3672 as their first argument points to. The functions do not add
3673 to the ESCAPED solution. The functions make the first argument
3674 pointed to memory point to what the second argument pointed to
3675 memory points to. */
3676 case BUILT_IN_STRCPY:
3677 case BUILT_IN_STRNCPY:
3678 case BUILT_IN_BCOPY:
3679 case BUILT_IN_MEMCPY:
3680 case BUILT_IN_MEMMOVE:
3681 case BUILT_IN_MEMPCPY:
3682 case BUILT_IN_STPCPY:
3683 case BUILT_IN_STPNCPY:
3684 case BUILT_IN_STRCAT:
3685 case BUILT_IN_STRNCAT:
3687 tree res = gimple_call_lhs (t);
3688 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
3689 == BUILT_IN_BCOPY ? 1 : 0));
3690 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
3691 == BUILT_IN_BCOPY ? 0 : 1));
3692 if (res != NULL_TREE)
3694 get_constraint_for (res, &lhsc);
3695 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
3696 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
3697 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
3698 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
3699 else
3700 get_constraint_for (dest, &rhsc);
3701 process_all_all_constraints (lhsc, rhsc);
3702 VEC_free (ce_s, heap, lhsc);
3703 VEC_free (ce_s, heap, rhsc);
3705 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
3706 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
3707 do_deref (&lhsc);
3708 do_deref (&rhsc);
3709 process_all_all_constraints (lhsc, rhsc);
3710 VEC_free (ce_s, heap, lhsc);
3711 VEC_free (ce_s, heap, rhsc);
3712 return;
3714 case BUILT_IN_MEMSET:
3716 tree res = gimple_call_lhs (t);
3717 tree dest = gimple_call_arg (t, 0);
3718 unsigned i;
3719 ce_s *lhsp;
3720 struct constraint_expr ac;
3721 if (res != NULL_TREE)
3723 get_constraint_for (res, &lhsc);
3724 get_constraint_for (dest, &rhsc);
3725 process_all_all_constraints (lhsc, rhsc);
3726 VEC_free (ce_s, heap, lhsc);
3727 VEC_free (ce_s, heap, rhsc);
3729 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
3730 do_deref (&lhsc);
3731 if (flag_delete_null_pointer_checks
3732 && integer_zerop (gimple_call_arg (t, 1)))
3734 ac.type = ADDRESSOF;
3735 ac.var = nothing_id;
3737 else
3739 ac.type = SCALAR;
3740 ac.var = integer_id;
3742 ac.offset = 0;
3743 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3744 process_constraint (new_constraint (*lhsp, ac));
3745 VEC_free (ce_s, heap, lhsc);
3746 return;
3748 /* All the following functions do not return pointers, do not
3749 modify the points-to sets of memory reachable from their
3750 arguments and do not add to the ESCAPED solution. */
3751 case BUILT_IN_SINCOS:
3752 case BUILT_IN_SINCOSF:
3753 case BUILT_IN_SINCOSL:
3754 case BUILT_IN_FREXP:
3755 case BUILT_IN_FREXPF:
3756 case BUILT_IN_FREXPL:
3757 case BUILT_IN_GAMMA_R:
3758 case BUILT_IN_GAMMAF_R:
3759 case BUILT_IN_GAMMAL_R:
3760 case BUILT_IN_LGAMMA_R:
3761 case BUILT_IN_LGAMMAF_R:
3762 case BUILT_IN_LGAMMAL_R:
3763 case BUILT_IN_MODF:
3764 case BUILT_IN_MODFF:
3765 case BUILT_IN_MODFL:
3766 case BUILT_IN_REMQUO:
3767 case BUILT_IN_REMQUOF:
3768 case BUILT_IN_REMQUOL:
3769 case BUILT_IN_FREE:
3770 return;
3771 /* printf-style functions may have hooks to set pointers to
3772 point to somewhere into the generated string. Leave them
3773 for a later excercise... */
3774 default:
3775 /* Fallthru to general call handling. */;
3777 if (!in_ipa_mode
3778 || (fndecl
3779 && !lookup_vi_for_tree (fndecl)))
3781 VEC(ce_s, heap) *rhsc = NULL;
3782 int flags = gimple_call_flags (t);
3784 /* Const functions can return their arguments and addresses
3785 of global memory but not of escaped memory. */
3786 if (flags & (ECF_CONST|ECF_NOVOPS))
3788 if (gimple_call_lhs (t)
3789 && could_have_pointers (gimple_call_lhs (t)))
3790 handle_const_call (t, &rhsc);
3792 /* Pure functions can return addresses in and of memory
3793 reachable from their arguments, but they are not an escape
3794 point for reachable memory of their arguments. */
3795 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
3796 handle_pure_call (t, &rhsc);
3797 else
3798 handle_rhs_call (t, &rhsc);
3799 if (gimple_call_lhs (t)
3800 && could_have_pointers (gimple_call_lhs (t)))
3801 handle_lhs_call (gimple_call_lhs (t), flags, rhsc);
3802 VEC_free (ce_s, heap, rhsc);
3804 else
3806 tree lhsop;
3807 varinfo_t fi;
3808 int i = 1;
3809 size_t j;
3810 tree decl;
3812 lhsop = gimple_call_lhs (t);
3813 decl = gimple_call_fndecl (t);
3815 /* If we can directly resolve the function being called, do so.
3816 Otherwise, it must be some sort of indirect expression that
3817 we should still be able to handle. */
3818 if (decl)
3819 fi = get_vi_for_tree (decl);
3820 else
3822 decl = gimple_call_fn (t);
3823 fi = get_vi_for_tree (decl);
3826 /* Assign all the passed arguments to the appropriate incoming
3827 parameters of the function. */
3828 for (j = 0; j < gimple_call_num_args (t); j++)
3830 struct constraint_expr lhs ;
3831 struct constraint_expr *rhsp;
3832 tree arg = gimple_call_arg (t, j);
3834 get_constraint_for (arg, &rhsc);
3835 if (TREE_CODE (decl) != FUNCTION_DECL)
3837 lhs.type = DEREF;
3838 lhs.var = fi->id;
3839 lhs.offset = i;
3841 else
3843 lhs.type = SCALAR;
3844 lhs.var = first_vi_for_offset (fi, i)->id;
3845 lhs.offset = 0;
3847 while (VEC_length (ce_s, rhsc) != 0)
3849 rhsp = VEC_last (ce_s, rhsc);
3850 process_constraint (new_constraint (lhs, *rhsp));
3851 VEC_pop (ce_s, rhsc);
3853 i++;
3856 /* If we are returning a value, assign it to the result. */
3857 if (lhsop)
3859 struct constraint_expr rhs;
3860 struct constraint_expr *lhsp;
3861 unsigned int j = 0;
3863 get_constraint_for (lhsop, &lhsc);
3864 if (TREE_CODE (decl) != FUNCTION_DECL)
3866 rhs.type = DEREF;
3867 rhs.var = fi->id;
3868 rhs.offset = i;
3870 else
3872 rhs.type = SCALAR;
3873 rhs.var = first_vi_for_offset (fi, i)->id;
3874 rhs.offset = 0;
3876 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3877 process_constraint (new_constraint (*lhsp, rhs));
3881 /* Otherwise, just a regular assignment statement. Only care about
3882 operations with pointer result, others are dealt with as escape
3883 points if they have pointer operands. */
3884 else if (is_gimple_assign (t)
3885 && could_have_pointers (gimple_assign_lhs (t)))
3887 /* Otherwise, just a regular assignment statement. */
3888 tree lhsop = gimple_assign_lhs (t);
3889 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
3891 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
3892 do_structure_copy (lhsop, rhsop);
3893 else
3895 struct constraint_expr temp;
3896 get_constraint_for (lhsop, &lhsc);
3898 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
3899 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
3900 gimple_assign_rhs2 (t), &rhsc);
3901 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
3902 && !(POINTER_TYPE_P (gimple_expr_type (t))
3903 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
3904 || gimple_assign_single_p (t))
3905 get_constraint_for (rhsop, &rhsc);
3906 else
3908 temp.type = ADDRESSOF;
3909 temp.var = anything_id;
3910 temp.offset = 0;
3911 VEC_safe_push (ce_s, heap, rhsc, &temp);
3913 process_all_all_constraints (lhsc, rhsc);
3915 /* If there is a store to a global variable the rhs escapes. */
3916 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
3917 && DECL_P (lhsop)
3918 && is_global_var (lhsop))
3919 make_escape_constraint (rhsop);
3920 /* If this is a conversion of a non-restrict pointer to a
3921 restrict pointer track it with a new heapvar. */
3922 else if (gimple_assign_cast_p (t)
3923 && POINTER_TYPE_P (TREE_TYPE (rhsop))
3924 && POINTER_TYPE_P (TREE_TYPE (lhsop))
3925 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
3926 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
3927 make_constraint_from_restrict (get_vi_for_tree (lhsop),
3928 "CAST_RESTRICT");
3930 /* For conversions of pointers to non-pointers the pointer escapes. */
3931 else if (gimple_assign_cast_p (t)
3932 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
3933 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
3935 make_escape_constraint (gimple_assign_rhs1 (t));
3937 /* Handle escapes through return. */
3938 else if (gimple_code (t) == GIMPLE_RETURN
3939 && gimple_return_retval (t) != NULL_TREE
3940 && could_have_pointers (gimple_return_retval (t)))
3942 make_escape_constraint (gimple_return_retval (t));
3944 /* Handle asms conservatively by adding escape constraints to everything. */
3945 else if (gimple_code (t) == GIMPLE_ASM)
3947 unsigned i, noutputs;
3948 const char **oconstraints;
3949 const char *constraint;
3950 bool allows_mem, allows_reg, is_inout;
3952 noutputs = gimple_asm_noutputs (t);
3953 oconstraints = XALLOCAVEC (const char *, noutputs);
3955 for (i = 0; i < noutputs; ++i)
3957 tree link = gimple_asm_output_op (t, i);
3958 tree op = TREE_VALUE (link);
3960 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
3961 oconstraints[i] = constraint;
3962 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
3963 &allows_reg, &is_inout);
3965 /* A memory constraint makes the address of the operand escape. */
3966 if (!allows_reg && allows_mem)
3967 make_escape_constraint (build_fold_addr_expr (op));
3969 /* The asm may read global memory, so outputs may point to
3970 any global memory. */
3971 if (op && could_have_pointers (op))
3973 VEC(ce_s, heap) *lhsc = NULL;
3974 struct constraint_expr rhsc, *lhsp;
3975 unsigned j;
3976 get_constraint_for (op, &lhsc);
3977 rhsc.var = nonlocal_id;
3978 rhsc.offset = 0;
3979 rhsc.type = SCALAR;
3980 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
3981 process_constraint (new_constraint (*lhsp, rhsc));
3982 VEC_free (ce_s, heap, lhsc);
3985 for (i = 0; i < gimple_asm_ninputs (t); ++i)
3987 tree link = gimple_asm_input_op (t, i);
3988 tree op = TREE_VALUE (link);
3990 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
3992 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
3993 &allows_mem, &allows_reg);
3995 /* A memory constraint makes the address of the operand escape. */
3996 if (!allows_reg && allows_mem)
3997 make_escape_constraint (build_fold_addr_expr (op));
3998 /* Strictly we'd only need the constraint to ESCAPED if
3999 the asm clobbers memory, otherwise using CALLUSED
4000 would be enough. */
4001 else if (op && could_have_pointers (op))
4002 make_escape_constraint (op);
4006 VEC_free (ce_s, heap, rhsc);
4007 VEC_free (ce_s, heap, lhsc);
4011 /* Find the first varinfo in the same variable as START that overlaps with
4012 OFFSET. Return NULL if we can't find one. */
4014 static varinfo_t
4015 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4017 /* If the offset is outside of the variable, bail out. */
4018 if (offset >= start->fullsize)
4019 return NULL;
4021 /* If we cannot reach offset from start, lookup the first field
4022 and start from there. */
4023 if (start->offset > offset)
4024 start = lookup_vi_for_tree (start->decl);
4026 while (start)
4028 /* We may not find a variable in the field list with the actual
4029 offset when when we have glommed a structure to a variable.
4030 In that case, however, offset should still be within the size
4031 of the variable. */
4032 if (offset >= start->offset
4033 && (offset - start->offset) < start->size)
4034 return start;
4036 start= start->next;
4039 return NULL;
4042 /* Find the first varinfo in the same variable as START that overlaps with
4043 OFFSET. If there is no such varinfo the varinfo directly preceding
4044 OFFSET is returned. */
4046 static varinfo_t
4047 first_or_preceding_vi_for_offset (varinfo_t start,
4048 unsigned HOST_WIDE_INT offset)
4050 /* If we cannot reach offset from start, lookup the first field
4051 and start from there. */
4052 if (start->offset > offset)
4053 start = lookup_vi_for_tree (start->decl);
4055 /* We may not find a variable in the field list with the actual
4056 offset when when we have glommed a structure to a variable.
4057 In that case, however, offset should still be within the size
4058 of the variable.
4059 If we got beyond the offset we look for return the field
4060 directly preceding offset which may be the last field. */
4061 while (start->next
4062 && offset >= start->offset
4063 && !((offset - start->offset) < start->size))
4064 start = start->next;
4066 return start;
4070 /* Insert the varinfo FIELD into the field list for BASE, at the front
4071 of the list. */
4073 static void
4074 insert_into_field_list (varinfo_t base, varinfo_t field)
4076 varinfo_t prev = base;
4077 varinfo_t curr = base->next;
4079 field->next = curr;
4080 prev->next = field;
4083 /* Insert the varinfo FIELD into the field list for BASE, ordered by
4084 offset. */
4086 static void
4087 insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
4089 varinfo_t prev = base;
4090 varinfo_t curr = base->next;
4092 if (curr == NULL)
4094 prev->next = field;
4095 field->next = NULL;
4097 else
4099 while (curr)
4101 if (field->offset <= curr->offset)
4102 break;
4103 prev = curr;
4104 curr = curr->next;
4106 field->next = prev->next;
4107 prev->next = field;
4111 /* This structure is used during pushing fields onto the fieldstack
4112 to track the offset of the field, since bitpos_of_field gives it
4113 relative to its immediate containing type, and we want it relative
4114 to the ultimate containing object. */
4116 struct fieldoff
4118 /* Offset from the base of the base containing object to this field. */
4119 HOST_WIDE_INT offset;
4121 /* Size, in bits, of the field. */
4122 unsigned HOST_WIDE_INT size;
4124 unsigned has_unknown_size : 1;
4126 unsigned may_have_pointers : 1;
4128 unsigned only_restrict_pointers : 1;
4130 typedef struct fieldoff fieldoff_s;
4132 DEF_VEC_O(fieldoff_s);
4133 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4135 /* qsort comparison function for two fieldoff's PA and PB */
4137 static int
4138 fieldoff_compare (const void *pa, const void *pb)
4140 const fieldoff_s *foa = (const fieldoff_s *)pa;
4141 const fieldoff_s *fob = (const fieldoff_s *)pb;
4142 unsigned HOST_WIDE_INT foasize, fobsize;
4144 if (foa->offset < fob->offset)
4145 return -1;
4146 else if (foa->offset > fob->offset)
4147 return 1;
4149 foasize = foa->size;
4150 fobsize = fob->size;
4151 if (foasize < fobsize)
4152 return -1;
4153 else if (foasize > fobsize)
4154 return 1;
4155 return 0;
4158 /* Sort a fieldstack according to the field offset and sizes. */
4159 static void
4160 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4162 qsort (VEC_address (fieldoff_s, fieldstack),
4163 VEC_length (fieldoff_s, fieldstack),
4164 sizeof (fieldoff_s),
4165 fieldoff_compare);
4168 /* Return true if V is a tree that we can have subvars for.
4169 Normally, this is any aggregate type. Also complex
4170 types which are not gimple registers can have subvars. */
4172 static inline bool
4173 var_can_have_subvars (const_tree v)
4175 /* Volatile variables should never have subvars. */
4176 if (TREE_THIS_VOLATILE (v))
4177 return false;
4179 /* Non decls or memory tags can never have subvars. */
4180 if (!DECL_P (v))
4181 return false;
4183 /* Aggregates without overlapping fields can have subvars. */
4184 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4185 return true;
4187 return false;
4190 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4191 the fields of TYPE onto fieldstack, recording their offsets along
4192 the way.
4194 OFFSET is used to keep track of the offset in this entire
4195 structure, rather than just the immediately containing structure.
4196 Returns the number of fields pushed. */
4198 static int
4199 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4200 HOST_WIDE_INT offset)
4202 tree field;
4203 int count = 0;
4205 if (TREE_CODE (type) != RECORD_TYPE)
4206 return 0;
4208 /* If the vector of fields is growing too big, bail out early.
4209 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4210 sure this fails. */
4211 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4212 return 0;
4214 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4215 if (TREE_CODE (field) == FIELD_DECL)
4217 bool push = false;
4218 int pushed = 0;
4219 HOST_WIDE_INT foff = bitpos_of_field (field);
4221 if (!var_can_have_subvars (field)
4222 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4223 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4224 push = true;
4225 else if (!(pushed = push_fields_onto_fieldstack
4226 (TREE_TYPE (field), fieldstack, offset + foff))
4227 && (DECL_SIZE (field)
4228 && !integer_zerop (DECL_SIZE (field))))
4229 /* Empty structures may have actual size, like in C++. So
4230 see if we didn't push any subfields and the size is
4231 nonzero, push the field onto the stack. */
4232 push = true;
4234 if (push)
4236 fieldoff_s *pair = NULL;
4237 bool has_unknown_size = false;
4239 if (!VEC_empty (fieldoff_s, *fieldstack))
4240 pair = VEC_last (fieldoff_s, *fieldstack);
4242 if (!DECL_SIZE (field)
4243 || !host_integerp (DECL_SIZE (field), 1))
4244 has_unknown_size = true;
4246 /* If adjacent fields do not contain pointers merge them. */
4247 if (pair
4248 && !pair->may_have_pointers
4249 && !could_have_pointers (field)
4250 && !pair->has_unknown_size
4251 && !has_unknown_size
4252 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
4254 pair = VEC_last (fieldoff_s, *fieldstack);
4255 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4257 else
4259 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4260 pair->offset = offset + foff;
4261 pair->has_unknown_size = has_unknown_size;
4262 if (!has_unknown_size)
4263 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4264 else
4265 pair->size = -1;
4266 pair->may_have_pointers = could_have_pointers (field);
4267 pair->only_restrict_pointers
4268 = (!has_unknown_size
4269 && POINTER_TYPE_P (TREE_TYPE (field))
4270 && TYPE_RESTRICT (TREE_TYPE (field)));
4271 count++;
4274 else
4275 count += pushed;
4278 return count;
4281 /* Count the number of arguments DECL has, and set IS_VARARGS to true
4282 if it is a varargs function. */
4284 static unsigned int
4285 count_num_arguments (tree decl, bool *is_varargs)
4287 unsigned int num = 0;
4288 tree t;
4290 /* Capture named arguments for K&R functions. They do not
4291 have a prototype and thus no TYPE_ARG_TYPES. */
4292 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4293 ++num;
4295 /* Check if the function has variadic arguments. */
4296 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
4297 if (TREE_VALUE (t) == void_type_node)
4298 break;
4299 if (!t)
4300 *is_varargs = true;
4302 return num;
4305 /* Creation function node for DECL, using NAME, and return the index
4306 of the variable we've created for the function. */
4308 static unsigned int
4309 create_function_info_for (tree decl, const char *name)
4311 varinfo_t vi;
4312 tree arg;
4313 unsigned int i;
4314 bool is_varargs = false;
4316 /* Create the variable info. */
4318 vi = new_var_info (decl, name);
4319 vi->offset = 0;
4320 vi->size = 1;
4321 vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
4322 insert_vi_for_tree (vi->decl, vi);
4324 stats.total_vars++;
4326 /* If it's varargs, we don't know how many arguments it has, so we
4327 can't do much. */
4328 if (is_varargs)
4330 vi->fullsize = ~0;
4331 vi->size = ~0;
4332 vi->is_unknown_size_var = true;
4333 return vi->id;
4336 arg = DECL_ARGUMENTS (decl);
4338 /* Set up variables for each argument. */
4339 for (i = 1; i < vi->fullsize; i++)
4341 varinfo_t argvi;
4342 const char *newname;
4343 char *tempname;
4344 tree argdecl = decl;
4346 if (arg)
4347 argdecl = arg;
4349 asprintf (&tempname, "%s.arg%d", name, i-1);
4350 newname = ggc_strdup (tempname);
4351 free (tempname);
4353 argvi = new_var_info (argdecl, newname);
4354 argvi->offset = i;
4355 argvi->size = 1;
4356 argvi->is_full_var = true;
4357 argvi->fullsize = vi->fullsize;
4358 insert_into_field_list_sorted (vi, argvi);
4359 stats.total_vars ++;
4360 if (arg)
4362 insert_vi_for_tree (arg, argvi);
4363 arg = TREE_CHAIN (arg);
4367 /* Create a variable for the return var. */
4368 if (DECL_RESULT (decl) != NULL
4369 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
4371 varinfo_t resultvi;
4372 const char *newname;
4373 char *tempname;
4374 tree resultdecl = decl;
4376 vi->fullsize ++;
4378 if (DECL_RESULT (decl))
4379 resultdecl = DECL_RESULT (decl);
4381 asprintf (&tempname, "%s.result", name);
4382 newname = ggc_strdup (tempname);
4383 free (tempname);
4385 resultvi = new_var_info (resultdecl, newname);
4386 resultvi->offset = i;
4387 resultvi->size = 1;
4388 resultvi->fullsize = vi->fullsize;
4389 resultvi->is_full_var = true;
4390 insert_into_field_list_sorted (vi, resultvi);
4391 stats.total_vars ++;
4392 if (DECL_RESULT (decl))
4393 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
4396 return vi->id;
4400 /* Return true if FIELDSTACK contains fields that overlap.
4401 FIELDSTACK is assumed to be sorted by offset. */
4403 static bool
4404 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
4406 fieldoff_s *fo = NULL;
4407 unsigned int i;
4408 HOST_WIDE_INT lastoffset = -1;
4410 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4412 if (fo->offset == lastoffset)
4413 return true;
4414 lastoffset = fo->offset;
4416 return false;
4419 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
4420 This will also create any varinfo structures necessary for fields
4421 of DECL. */
4423 static unsigned int
4424 create_variable_info_for (tree decl, const char *name)
4426 varinfo_t vi;
4427 tree decl_type = TREE_TYPE (decl);
4428 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
4429 VEC (fieldoff_s,heap) *fieldstack = NULL;
4431 if (var_can_have_subvars (decl) && use_field_sensitive)
4432 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
4434 /* If the variable doesn't have subvars, we may end up needing to
4435 sort the field list and create fake variables for all the
4436 fields. */
4437 vi = new_var_info (decl, name);
4438 vi->offset = 0;
4439 vi->may_have_pointers = could_have_pointers (decl);
4440 if (!declsize
4441 || !host_integerp (declsize, 1))
4443 vi->is_unknown_size_var = true;
4444 vi->fullsize = ~0;
4445 vi->size = ~0;
4447 else
4449 vi->fullsize = TREE_INT_CST_LOW (declsize);
4450 vi->size = vi->fullsize;
4453 insert_vi_for_tree (vi->decl, vi);
4454 if (vi->is_global_var
4455 && (!flag_whole_program || !in_ipa_mode)
4456 && vi->may_have_pointers)
4458 if (POINTER_TYPE_P (TREE_TYPE (decl))
4459 && TYPE_RESTRICT (TREE_TYPE (decl)))
4460 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
4461 make_copy_constraint (vi, nonlocal_id);
4464 stats.total_vars++;
4465 if (use_field_sensitive
4466 && !vi->is_unknown_size_var
4467 && var_can_have_subvars (decl)
4468 && VEC_length (fieldoff_s, fieldstack) > 1
4469 && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
4471 fieldoff_s *fo = NULL;
4472 bool notokay = false;
4473 unsigned int i;
4475 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
4477 if (fo->has_unknown_size
4478 || fo->offset < 0)
4480 notokay = true;
4481 break;
4485 /* We can't sort them if we have a field with a variable sized type,
4486 which will make notokay = true. In that case, we are going to return
4487 without creating varinfos for the fields anyway, so sorting them is a
4488 waste to boot. */
4489 if (!notokay)
4491 sort_fieldstack (fieldstack);
4492 /* Due to some C++ FE issues, like PR 22488, we might end up
4493 what appear to be overlapping fields even though they,
4494 in reality, do not overlap. Until the C++ FE is fixed,
4495 we will simply disable field-sensitivity for these cases. */
4496 notokay = check_for_overlaps (fieldstack);
4500 if (VEC_length (fieldoff_s, fieldstack) != 0)
4501 fo = VEC_index (fieldoff_s, fieldstack, 0);
4503 if (fo == NULL || notokay)
4505 vi->is_unknown_size_var = 1;
4506 vi->fullsize = ~0;
4507 vi->size = ~0;
4508 vi->is_full_var = true;
4509 VEC_free (fieldoff_s, heap, fieldstack);
4510 return vi->id;
4513 vi->size = fo->size;
4514 vi->offset = fo->offset;
4515 vi->may_have_pointers = fo->may_have_pointers;
4516 if (vi->is_global_var
4517 && (!flag_whole_program || !in_ipa_mode)
4518 && vi->may_have_pointers)
4520 if (fo->only_restrict_pointers)
4521 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
4523 for (i = VEC_length (fieldoff_s, fieldstack) - 1;
4524 i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
4525 i--)
4527 varinfo_t newvi;
4528 const char *newname = "NULL";
4529 char *tempname;
4531 if (dump_file)
4533 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
4534 "+" HOST_WIDE_INT_PRINT_DEC,
4535 vi->name, fo->offset, fo->size);
4536 newname = ggc_strdup (tempname);
4537 free (tempname);
4539 newvi = new_var_info (decl, newname);
4540 newvi->offset = fo->offset;
4541 newvi->size = fo->size;
4542 newvi->fullsize = vi->fullsize;
4543 newvi->may_have_pointers = fo->may_have_pointers;
4544 insert_into_field_list (vi, newvi);
4545 if ((newvi->is_global_var || TREE_CODE (decl) == PARM_DECL)
4546 && newvi->may_have_pointers)
4548 if (fo->only_restrict_pointers)
4549 make_constraint_from_restrict (newvi, "GLOBAL_RESTRICT");
4550 if (newvi->is_global_var && !in_ipa_mode)
4551 make_copy_constraint (newvi, nonlocal_id);
4554 stats.total_vars++;
4557 else
4558 vi->is_full_var = true;
4560 VEC_free (fieldoff_s, heap, fieldstack);
4562 return vi->id;
4565 /* Print out the points-to solution for VAR to FILE. */
4567 static void
4568 dump_solution_for_var (FILE *file, unsigned int var)
4570 varinfo_t vi = get_varinfo (var);
4571 unsigned int i;
4572 bitmap_iterator bi;
4574 if (find (var) != var)
4576 varinfo_t vipt = get_varinfo (find (var));
4577 fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
4579 else
4581 fprintf (file, "%s = { ", vi->name);
4582 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4584 fprintf (file, "%s ", get_varinfo (i)->name);
4586 fprintf (file, "}\n");
4590 /* Print the points-to solution for VAR to stdout. */
4592 void
4593 debug_solution_for_var (unsigned int var)
4595 dump_solution_for_var (stdout, var);
4598 /* Create varinfo structures for all of the variables in the
4599 function for intraprocedural mode. */
4601 static void
4602 intra_create_variable_infos (void)
4604 tree t;
4606 /* For each incoming pointer argument arg, create the constraint ARG
4607 = NONLOCAL or a dummy variable if flag_argument_noalias is set. */
4608 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
4610 varinfo_t p;
4612 if (!could_have_pointers (t))
4613 continue;
4615 /* For restrict qualified pointers to objects passed by
4616 reference build a real representative for the pointed-to object. */
4617 if (DECL_BY_REFERENCE (t)
4618 && POINTER_TYPE_P (TREE_TYPE (t))
4619 && TYPE_RESTRICT (TREE_TYPE (t)))
4621 struct constraint_expr lhsc, rhsc;
4622 varinfo_t vi;
4623 tree heapvar = heapvar_lookup (t, 0);
4624 if (heapvar == NULL_TREE)
4626 var_ann_t ann;
4627 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
4628 "PARM_NOALIAS");
4629 DECL_EXTERNAL (heapvar) = 1;
4630 heapvar_insert (t, 0, heapvar);
4631 ann = get_var_ann (heapvar);
4632 ann->is_heapvar = 1;
4634 if (gimple_referenced_vars (cfun))
4635 add_referenced_var (heapvar);
4636 lhsc.var = get_vi_for_tree (t)->id;
4637 lhsc.type = SCALAR;
4638 lhsc.offset = 0;
4639 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
4640 rhsc.type = ADDRESSOF;
4641 rhsc.offset = 0;
4642 process_constraint (new_constraint (lhsc, rhsc));
4643 vi->is_restrict_var = 1;
4644 continue;
4647 for (p = get_vi_for_tree (t); p; p = p->next)
4648 if (p->may_have_pointers)
4649 make_constraint_from (p, nonlocal_id);
4650 if (POINTER_TYPE_P (TREE_TYPE (t))
4651 && TYPE_RESTRICT (TREE_TYPE (t)))
4652 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
4655 /* Add a constraint for a result decl that is passed by reference. */
4656 if (DECL_RESULT (cfun->decl)
4657 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
4659 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
4661 for (p = result_vi; p; p = p->next)
4662 make_constraint_from (p, nonlocal_id);
4665 /* Add a constraint for the incoming static chain parameter. */
4666 if (cfun->static_chain_decl != NULL_TREE)
4668 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
4670 for (p = chain_vi; p; p = p->next)
4671 make_constraint_from (p, nonlocal_id);
4675 /* Structure used to put solution bitmaps in a hashtable so they can
4676 be shared among variables with the same points-to set. */
4678 typedef struct shared_bitmap_info
4680 bitmap pt_vars;
4681 hashval_t hashcode;
4682 } *shared_bitmap_info_t;
4683 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
4685 static htab_t shared_bitmap_table;
4687 /* Hash function for a shared_bitmap_info_t */
4689 static hashval_t
4690 shared_bitmap_hash (const void *p)
4692 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
4693 return bi->hashcode;
4696 /* Equality function for two shared_bitmap_info_t's. */
4698 static int
4699 shared_bitmap_eq (const void *p1, const void *p2)
4701 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
4702 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
4703 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
4706 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
4707 existing instance if there is one, NULL otherwise. */
4709 static bitmap
4710 shared_bitmap_lookup (bitmap pt_vars)
4712 void **slot;
4713 struct shared_bitmap_info sbi;
4715 sbi.pt_vars = pt_vars;
4716 sbi.hashcode = bitmap_hash (pt_vars);
4718 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
4719 sbi.hashcode, NO_INSERT);
4720 if (!slot)
4721 return NULL;
4722 else
4723 return ((shared_bitmap_info_t) *slot)->pt_vars;
4727 /* Add a bitmap to the shared bitmap hashtable. */
4729 static void
4730 shared_bitmap_add (bitmap pt_vars)
4732 void **slot;
4733 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
4735 sbi->pt_vars = pt_vars;
4736 sbi->hashcode = bitmap_hash (pt_vars);
4738 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
4739 sbi->hashcode, INSERT);
4740 gcc_assert (!*slot);
4741 *slot = (void *) sbi;
4745 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
4747 static void
4748 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
4750 unsigned int i;
4751 bitmap_iterator bi;
4753 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4755 varinfo_t vi = get_varinfo (i);
4757 /* The only artificial variables that are allowed in a may-alias
4758 set are heap variables. */
4759 if (vi->is_artificial_var && !vi->is_heap_var)
4760 continue;
4762 if (TREE_CODE (vi->decl) == VAR_DECL
4763 || TREE_CODE (vi->decl) == PARM_DECL
4764 || TREE_CODE (vi->decl) == RESULT_DECL)
4766 /* Add the decl to the points-to set. Note that the points-to
4767 set contains global variables. */
4768 bitmap_set_bit (into, DECL_UID (vi->decl));
4769 if (vi->is_global_var)
4770 pt->vars_contains_global = true;
4776 /* Compute the points-to solution *PT for the variable VI. */
4778 static void
4779 find_what_var_points_to (varinfo_t vi, struct pt_solution *pt)
4781 unsigned int i;
4782 bitmap_iterator bi;
4783 bitmap finished_solution;
4784 bitmap result;
4786 memset (pt, 0, sizeof (struct pt_solution));
4788 /* This variable may have been collapsed, let's get the real
4789 variable. */
4790 vi = get_varinfo (find (vi->id));
4792 /* Translate artificial variables into SSA_NAME_PTR_INFO
4793 attributes. */
4794 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
4796 varinfo_t vi = get_varinfo (i);
4798 if (vi->is_artificial_var)
4800 if (vi->id == nothing_id)
4801 pt->null = 1;
4802 else if (vi->id == escaped_id)
4803 pt->escaped = 1;
4804 else if (vi->id == callused_id)
4805 gcc_unreachable ();
4806 else if (vi->id == nonlocal_id)
4807 pt->nonlocal = 1;
4808 else if (vi->is_heap_var)
4809 /* We represent heapvars in the points-to set properly. */
4811 else if (vi->id == readonly_id)
4812 /* Nobody cares. */
4814 else if (vi->id == anything_id
4815 || vi->id == integer_id)
4816 pt->anything = 1;
4818 if (vi->is_restrict_var)
4819 pt->vars_contains_restrict = true;
4822 /* Instead of doing extra work, simply do not create
4823 elaborate points-to information for pt_anything pointers. */
4824 if (pt->anything
4825 && (vi->is_artificial_var
4826 || !pt->vars_contains_restrict))
4827 return;
4829 /* Share the final set of variables when possible. */
4830 finished_solution = BITMAP_GGC_ALLOC ();
4831 stats.points_to_sets_created++;
4833 set_uids_in_ptset (finished_solution, vi->solution, pt);
4834 result = shared_bitmap_lookup (finished_solution);
4835 if (!result)
4837 shared_bitmap_add (finished_solution);
4838 pt->vars = finished_solution;
4840 else
4842 pt->vars = result;
4843 bitmap_clear (finished_solution);
4847 /* Given a pointer variable P, fill in its points-to set. */
4849 static void
4850 find_what_p_points_to (tree p)
4852 struct ptr_info_def *pi;
4853 tree lookup_p = p;
4854 varinfo_t vi;
4856 /* For parameters, get at the points-to set for the actual parm
4857 decl. */
4858 if (TREE_CODE (p) == SSA_NAME
4859 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
4860 && SSA_NAME_IS_DEFAULT_DEF (p))
4861 lookup_p = SSA_NAME_VAR (p);
4863 vi = lookup_vi_for_tree (lookup_p);
4864 if (!vi)
4865 return;
4867 pi = get_ptr_info (p);
4868 find_what_var_points_to (vi, &pi->pt);
4872 /* Query statistics for points-to solutions. */
4874 static struct {
4875 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
4876 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
4877 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
4878 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
4879 } pta_stats;
4881 void
4882 dump_pta_stats (FILE *s)
4884 fprintf (s, "\nPTA query stats:\n");
4885 fprintf (s, " pt_solution_includes: "
4886 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
4887 HOST_WIDE_INT_PRINT_DEC" queries\n",
4888 pta_stats.pt_solution_includes_no_alias,
4889 pta_stats.pt_solution_includes_no_alias
4890 + pta_stats.pt_solution_includes_may_alias);
4891 fprintf (s, " pt_solutions_intersect: "
4892 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
4893 HOST_WIDE_INT_PRINT_DEC" queries\n",
4894 pta_stats.pt_solutions_intersect_no_alias,
4895 pta_stats.pt_solutions_intersect_no_alias
4896 + pta_stats.pt_solutions_intersect_may_alias);
4900 /* Reset the points-to solution *PT to a conservative default
4901 (point to anything). */
4903 void
4904 pt_solution_reset (struct pt_solution *pt)
4906 memset (pt, 0, sizeof (struct pt_solution));
4907 pt->anything = true;
4910 /* Set the points-to solution *PT to point only to the variables
4911 in VARS. */
4913 void
4914 pt_solution_set (struct pt_solution *pt, bitmap vars)
4916 bitmap_iterator bi;
4917 unsigned i;
4919 memset (pt, 0, sizeof (struct pt_solution));
4920 pt->vars = vars;
4921 EXECUTE_IF_SET_IN_BITMAP (vars, 0, i, bi)
4923 tree var = referenced_var_lookup (i);
4924 if (is_global_var (var))
4926 pt->vars_contains_global = true;
4927 break;
4932 /* Return true if the points-to solution *PT is empty. */
4934 static bool
4935 pt_solution_empty_p (struct pt_solution *pt)
4937 if (pt->anything
4938 || pt->nonlocal)
4939 return false;
4941 if (pt->vars
4942 && !bitmap_empty_p (pt->vars))
4943 return false;
4945 /* If the solution includes ESCAPED, check if that is empty. */
4946 if (pt->escaped
4947 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
4948 return false;
4950 return true;
4953 /* Return true if the points-to solution *PT includes global memory. */
4955 bool
4956 pt_solution_includes_global (struct pt_solution *pt)
4958 if (pt->anything
4959 || pt->nonlocal
4960 || pt->vars_contains_global)
4961 return true;
4963 if (pt->escaped)
4964 return pt_solution_includes_global (&cfun->gimple_df->escaped);
4966 return false;
4969 /* Return true if the points-to solution *PT includes the variable
4970 declaration DECL. */
4972 static bool
4973 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
4975 if (pt->anything)
4976 return true;
4978 if (pt->nonlocal
4979 && is_global_var (decl))
4980 return true;
4982 if (pt->vars
4983 && bitmap_bit_p (pt->vars, DECL_UID (decl)))
4984 return true;
4986 /* If the solution includes ESCAPED, check it. */
4987 if (pt->escaped
4988 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
4989 return true;
4991 return false;
4994 bool
4995 pt_solution_includes (struct pt_solution *pt, const_tree decl)
4997 bool res = pt_solution_includes_1 (pt, decl);
4998 if (res)
4999 ++pta_stats.pt_solution_includes_may_alias;
5000 else
5001 ++pta_stats.pt_solution_includes_no_alias;
5002 return res;
5005 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5006 intersection. */
5008 static bool
5009 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5011 if (pt1->anything || pt2->anything)
5012 return true;
5014 /* If either points to unknown global memory and the other points to
5015 any global memory they alias. */
5016 if ((pt1->nonlocal
5017 && (pt2->nonlocal
5018 || pt2->vars_contains_global))
5019 || (pt2->nonlocal
5020 && pt1->vars_contains_global))
5021 return true;
5023 /* Check the escaped solution if required. */
5024 if ((pt1->escaped || pt2->escaped)
5025 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5027 /* If both point to escaped memory and that solution
5028 is not empty they alias. */
5029 if (pt1->escaped && pt2->escaped)
5030 return true;
5032 /* If either points to escaped memory see if the escaped solution
5033 intersects with the other. */
5034 if ((pt1->escaped
5035 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5036 || (pt2->escaped
5037 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5038 return true;
5041 /* Now both pointers alias if their points-to solution intersects. */
5042 return (pt1->vars
5043 && pt2->vars
5044 && bitmap_intersect_p (pt1->vars, pt2->vars));
5047 bool
5048 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5050 bool res = pt_solutions_intersect_1 (pt1, pt2);
5051 if (res)
5052 ++pta_stats.pt_solutions_intersect_may_alias;
5053 else
5054 ++pta_stats.pt_solutions_intersect_no_alias;
5055 return res;
5058 /* Return true if both points-to solutions PT1 and PT2 for two restrict
5059 qualified pointers are possibly based on the same pointer. */
5061 bool
5062 pt_solutions_same_restrict_base (struct pt_solution *pt1,
5063 struct pt_solution *pt2)
5065 /* If we deal with points-to solutions of two restrict qualified
5066 pointers solely rely on the pointed-to variable bitmap intersection.
5067 For two pointers that are based on each other the bitmaps will
5068 intersect. */
5069 if (pt1->vars_contains_restrict
5070 && pt2->vars_contains_restrict)
5072 gcc_assert (pt1->vars && pt2->vars);
5073 return bitmap_intersect_p (pt1->vars, pt2->vars);
5076 return true;
5080 /* Dump points-to information to OUTFILE. */
5082 static void
5083 dump_sa_points_to_info (FILE *outfile)
5085 unsigned int i;
5087 fprintf (outfile, "\nPoints-to sets\n\n");
5089 if (dump_flags & TDF_STATS)
5091 fprintf (outfile, "Stats:\n");
5092 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
5093 fprintf (outfile, "Non-pointer vars: %d\n",
5094 stats.nonpointer_vars);
5095 fprintf (outfile, "Statically unified vars: %d\n",
5096 stats.unified_vars_static);
5097 fprintf (outfile, "Dynamically unified vars: %d\n",
5098 stats.unified_vars_dynamic);
5099 fprintf (outfile, "Iterations: %d\n", stats.iterations);
5100 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
5101 fprintf (outfile, "Number of implicit edges: %d\n",
5102 stats.num_implicit_edges);
5105 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
5106 dump_solution_for_var (outfile, i);
5110 /* Debug points-to information to stderr. */
5112 void
5113 debug_sa_points_to_info (void)
5115 dump_sa_points_to_info (stderr);
5119 /* Initialize the always-existing constraint variables for NULL
5120 ANYTHING, READONLY, and INTEGER */
5122 static void
5123 init_base_vars (void)
5125 struct constraint_expr lhs, rhs;
5126 varinfo_t var_anything;
5127 varinfo_t var_nothing;
5128 varinfo_t var_readonly;
5129 varinfo_t var_escaped;
5130 varinfo_t var_nonlocal;
5131 varinfo_t var_callused;
5132 varinfo_t var_storedanything;
5133 varinfo_t var_integer;
5135 /* Create the NULL variable, used to represent that a variable points
5136 to NULL. */
5137 var_nothing = new_var_info (NULL_TREE, "NULL");
5138 gcc_assert (var_nothing->id == nothing_id);
5139 var_nothing->is_artificial_var = 1;
5140 var_nothing->offset = 0;
5141 var_nothing->size = ~0;
5142 var_nothing->fullsize = ~0;
5143 var_nothing->is_special_var = 1;
5145 /* Create the ANYTHING variable, used to represent that a variable
5146 points to some unknown piece of memory. */
5147 var_anything = new_var_info (NULL_TREE, "ANYTHING");
5148 gcc_assert (var_anything->id == anything_id);
5149 var_anything->is_artificial_var = 1;
5150 var_anything->size = ~0;
5151 var_anything->offset = 0;
5152 var_anything->next = NULL;
5153 var_anything->fullsize = ~0;
5154 var_anything->is_special_var = 1;
5156 /* Anything points to anything. This makes deref constraints just
5157 work in the presence of linked list and other p = *p type loops,
5158 by saying that *ANYTHING = ANYTHING. */
5159 lhs.type = SCALAR;
5160 lhs.var = anything_id;
5161 lhs.offset = 0;
5162 rhs.type = ADDRESSOF;
5163 rhs.var = anything_id;
5164 rhs.offset = 0;
5166 /* This specifically does not use process_constraint because
5167 process_constraint ignores all anything = anything constraints, since all
5168 but this one are redundant. */
5169 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
5171 /* Create the READONLY variable, used to represent that a variable
5172 points to readonly memory. */
5173 var_readonly = new_var_info (NULL_TREE, "READONLY");
5174 gcc_assert (var_readonly->id == readonly_id);
5175 var_readonly->is_artificial_var = 1;
5176 var_readonly->offset = 0;
5177 var_readonly->size = ~0;
5178 var_readonly->fullsize = ~0;
5179 var_readonly->next = NULL;
5180 var_readonly->is_special_var = 1;
5182 /* readonly memory points to anything, in order to make deref
5183 easier. In reality, it points to anything the particular
5184 readonly variable can point to, but we don't track this
5185 separately. */
5186 lhs.type = SCALAR;
5187 lhs.var = readonly_id;
5188 lhs.offset = 0;
5189 rhs.type = ADDRESSOF;
5190 rhs.var = readonly_id; /* FIXME */
5191 rhs.offset = 0;
5192 process_constraint (new_constraint (lhs, rhs));
5194 /* Create the ESCAPED variable, used to represent the set of escaped
5195 memory. */
5196 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
5197 gcc_assert (var_escaped->id == escaped_id);
5198 var_escaped->is_artificial_var = 1;
5199 var_escaped->offset = 0;
5200 var_escaped->size = ~0;
5201 var_escaped->fullsize = ~0;
5202 var_escaped->is_special_var = 0;
5204 /* Create the NONLOCAL variable, used to represent the set of nonlocal
5205 memory. */
5206 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
5207 gcc_assert (var_nonlocal->id == nonlocal_id);
5208 var_nonlocal->is_artificial_var = 1;
5209 var_nonlocal->offset = 0;
5210 var_nonlocal->size = ~0;
5211 var_nonlocal->fullsize = ~0;
5212 var_nonlocal->is_special_var = 1;
5214 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
5215 lhs.type = SCALAR;
5216 lhs.var = escaped_id;
5217 lhs.offset = 0;
5218 rhs.type = DEREF;
5219 rhs.var = escaped_id;
5220 rhs.offset = 0;
5221 process_constraint (new_constraint (lhs, rhs));
5223 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
5224 whole variable escapes. */
5225 lhs.type = SCALAR;
5226 lhs.var = escaped_id;
5227 lhs.offset = 0;
5228 rhs.type = SCALAR;
5229 rhs.var = escaped_id;
5230 rhs.offset = UNKNOWN_OFFSET;
5231 process_constraint (new_constraint (lhs, rhs));
5233 /* *ESCAPED = NONLOCAL. This is true because we have to assume
5234 everything pointed to by escaped points to what global memory can
5235 point to. */
5236 lhs.type = DEREF;
5237 lhs.var = escaped_id;
5238 lhs.offset = 0;
5239 rhs.type = SCALAR;
5240 rhs.var = nonlocal_id;
5241 rhs.offset = 0;
5242 process_constraint (new_constraint (lhs, rhs));
5244 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
5245 global memory may point to global memory and escaped memory. */
5246 lhs.type = SCALAR;
5247 lhs.var = nonlocal_id;
5248 lhs.offset = 0;
5249 rhs.type = ADDRESSOF;
5250 rhs.var = nonlocal_id;
5251 rhs.offset = 0;
5252 process_constraint (new_constraint (lhs, rhs));
5253 rhs.type = ADDRESSOF;
5254 rhs.var = escaped_id;
5255 rhs.offset = 0;
5256 process_constraint (new_constraint (lhs, rhs));
5258 /* Create the CALLUSED variable, used to represent the set of call-used
5259 memory. */
5260 var_callused = new_var_info (NULL_TREE, "CALLUSED");
5261 gcc_assert (var_callused->id == callused_id);
5262 var_callused->is_artificial_var = 1;
5263 var_callused->offset = 0;
5264 var_callused->size = ~0;
5265 var_callused->fullsize = ~0;
5266 var_callused->is_special_var = 0;
5268 /* CALLUSED = *CALLUSED, because call-used is may-deref'd at calls, etc. */
5269 lhs.type = SCALAR;
5270 lhs.var = callused_id;
5271 lhs.offset = 0;
5272 rhs.type = DEREF;
5273 rhs.var = callused_id;
5274 rhs.offset = 0;
5275 process_constraint (new_constraint (lhs, rhs));
5277 /* CALLUSED = CALLUSED + UNKNOWN, because if a sub-field is call-used the
5278 whole variable is call-used. */
5279 lhs.type = SCALAR;
5280 lhs.var = callused_id;
5281 lhs.offset = 0;
5282 rhs.type = SCALAR;
5283 rhs.var = callused_id;
5284 rhs.offset = UNKNOWN_OFFSET;
5285 process_constraint (new_constraint (lhs, rhs));
5287 /* Create the STOREDANYTHING variable, used to represent the set of
5288 variables stored to *ANYTHING. */
5289 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
5290 gcc_assert (var_storedanything->id == storedanything_id);
5291 var_storedanything->is_artificial_var = 1;
5292 var_storedanything->offset = 0;
5293 var_storedanything->size = ~0;
5294 var_storedanything->fullsize = ~0;
5295 var_storedanything->is_special_var = 0;
5297 /* Create the INTEGER variable, used to represent that a variable points
5298 to what an INTEGER "points to". */
5299 var_integer = new_var_info (NULL_TREE, "INTEGER");
5300 gcc_assert (var_integer->id == integer_id);
5301 var_integer->is_artificial_var = 1;
5302 var_integer->size = ~0;
5303 var_integer->fullsize = ~0;
5304 var_integer->offset = 0;
5305 var_integer->next = NULL;
5306 var_integer->is_special_var = 1;
5308 /* INTEGER = ANYTHING, because we don't know where a dereference of
5309 a random integer will point to. */
5310 lhs.type = SCALAR;
5311 lhs.var = integer_id;
5312 lhs.offset = 0;
5313 rhs.type = ADDRESSOF;
5314 rhs.var = anything_id;
5315 rhs.offset = 0;
5316 process_constraint (new_constraint (lhs, rhs));
5319 /* Initialize things necessary to perform PTA */
5321 static void
5322 init_alias_vars (void)
5324 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
5326 bitmap_obstack_initialize (&pta_obstack);
5327 bitmap_obstack_initialize (&oldpta_obstack);
5328 bitmap_obstack_initialize (&predbitmap_obstack);
5330 constraint_pool = create_alloc_pool ("Constraint pool",
5331 sizeof (struct constraint), 30);
5332 variable_info_pool = create_alloc_pool ("Variable info pool",
5333 sizeof (struct variable_info), 30);
5334 constraints = VEC_alloc (constraint_t, heap, 8);
5335 varmap = VEC_alloc (varinfo_t, heap, 8);
5336 vi_for_tree = pointer_map_create ();
5338 memset (&stats, 0, sizeof (stats));
5339 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
5340 shared_bitmap_eq, free);
5341 init_base_vars ();
5344 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
5345 predecessor edges. */
5347 static void
5348 remove_preds_and_fake_succs (constraint_graph_t graph)
5350 unsigned int i;
5352 /* Clear the implicit ref and address nodes from the successor
5353 lists. */
5354 for (i = 0; i < FIRST_REF_NODE; i++)
5356 if (graph->succs[i])
5357 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
5358 FIRST_REF_NODE * 2);
5361 /* Free the successor list for the non-ref nodes. */
5362 for (i = FIRST_REF_NODE; i < graph->size; i++)
5364 if (graph->succs[i])
5365 BITMAP_FREE (graph->succs[i]);
5368 /* Now reallocate the size of the successor list as, and blow away
5369 the predecessor bitmaps. */
5370 graph->size = VEC_length (varinfo_t, varmap);
5371 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
5373 free (graph->implicit_preds);
5374 graph->implicit_preds = NULL;
5375 free (graph->preds);
5376 graph->preds = NULL;
5377 bitmap_obstack_release (&predbitmap_obstack);
5380 /* Initialize the heapvar for statement mapping. */
5382 static void
5383 init_alias_heapvars (void)
5385 if (!heapvar_for_stmt)
5386 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
5387 NULL);
5390 /* Delete the heapvar for statement mapping. */
5392 void
5393 delete_alias_heapvars (void)
5395 if (heapvar_for_stmt)
5396 htab_delete (heapvar_for_stmt);
5397 heapvar_for_stmt = NULL;
5400 /* Solve the constraint set. */
5402 static void
5403 solve_constraints (void)
5405 struct scc_info *si;
5407 if (dump_file)
5409 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
5410 dump_constraints (dump_file);
5413 if (dump_file)
5414 fprintf (dump_file,
5415 "\nCollapsing static cycles and doing variable "
5416 "substitution\n");
5418 init_graph (VEC_length (varinfo_t, varmap) * 2);
5420 if (dump_file)
5421 fprintf (dump_file, "Building predecessor graph\n");
5422 build_pred_graph ();
5424 if (dump_file)
5425 fprintf (dump_file, "Detecting pointer and location "
5426 "equivalences\n");
5427 si = perform_var_substitution (graph);
5429 if (dump_file)
5430 fprintf (dump_file, "Rewriting constraints and unifying "
5431 "variables\n");
5432 rewrite_constraints (graph, si);
5434 build_succ_graph ();
5435 free_var_substitution_info (si);
5437 if (dump_file && (dump_flags & TDF_GRAPH))
5438 dump_constraint_graph (dump_file);
5440 move_complex_constraints (graph);
5442 if (dump_file)
5443 fprintf (dump_file, "Uniting pointer but not location equivalent "
5444 "variables\n");
5445 unite_pointer_equivalences (graph);
5447 if (dump_file)
5448 fprintf (dump_file, "Finding indirect cycles\n");
5449 find_indirect_cycles (graph);
5451 /* Implicit nodes and predecessors are no longer necessary at this
5452 point. */
5453 remove_preds_and_fake_succs (graph);
5455 if (dump_file)
5456 fprintf (dump_file, "Solving graph\n");
5458 solve_graph (graph);
5460 if (dump_file)
5461 dump_sa_points_to_info (dump_file);
5464 /* Create points-to sets for the current function. See the comments
5465 at the start of the file for an algorithmic overview. */
5467 static void
5468 compute_points_to_sets (void)
5470 basic_block bb;
5471 unsigned i;
5472 varinfo_t vi;
5474 timevar_push (TV_TREE_PTA);
5476 init_alias_vars ();
5477 init_alias_heapvars ();
5479 intra_create_variable_infos ();
5481 /* Now walk all statements and derive aliases. */
5482 FOR_EACH_BB (bb)
5484 gimple_stmt_iterator gsi;
5486 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5488 gimple phi = gsi_stmt (gsi);
5490 if (is_gimple_reg (gimple_phi_result (phi)))
5491 find_func_aliases (phi);
5494 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5496 gimple stmt = gsi_stmt (gsi);
5498 find_func_aliases (stmt);
5502 /* From the constraints compute the points-to sets. */
5503 solve_constraints ();
5505 /* Compute the points-to sets for ESCAPED and CALLUSED used for
5506 call-clobber analysis. */
5507 find_what_var_points_to (get_varinfo (escaped_id),
5508 &cfun->gimple_df->escaped);
5509 find_what_var_points_to (get_varinfo (callused_id),
5510 &cfun->gimple_df->callused);
5512 /* Make sure the ESCAPED solution (which is used as placeholder in
5513 other solutions) does not reference itself. This simplifies
5514 points-to solution queries. */
5515 cfun->gimple_df->escaped.escaped = 0;
5517 /* Mark escaped HEAP variables as global. */
5518 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
5519 if (vi->is_heap_var
5520 && !vi->is_restrict_var
5521 && !vi->is_global_var)
5522 DECL_EXTERNAL (vi->decl) = vi->is_global_var
5523 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
5525 /* Compute the points-to sets for pointer SSA_NAMEs. */
5526 for (i = 0; i < num_ssa_names; ++i)
5528 tree ptr = ssa_name (i);
5529 if (ptr
5530 && POINTER_TYPE_P (TREE_TYPE (ptr)))
5531 find_what_p_points_to (ptr);
5534 timevar_pop (TV_TREE_PTA);
5538 /* Delete created points-to sets. */
5540 static void
5541 delete_points_to_sets (void)
5543 unsigned int i;
5545 htab_delete (shared_bitmap_table);
5546 if (dump_file && (dump_flags & TDF_STATS))
5547 fprintf (dump_file, "Points to sets created:%d\n",
5548 stats.points_to_sets_created);
5550 pointer_map_destroy (vi_for_tree);
5551 bitmap_obstack_release (&pta_obstack);
5552 VEC_free (constraint_t, heap, constraints);
5554 for (i = 0; i < graph->size; i++)
5555 VEC_free (constraint_t, heap, graph->complex[i]);
5556 free (graph->complex);
5558 free (graph->rep);
5559 free (graph->succs);
5560 free (graph->pe);
5561 free (graph->pe_rep);
5562 free (graph->indirect_cycles);
5563 free (graph);
5565 VEC_free (varinfo_t, heap, varmap);
5566 free_alloc_pool (variable_info_pool);
5567 free_alloc_pool (constraint_pool);
5571 /* Compute points-to information for every SSA_NAME pointer in the
5572 current function and compute the transitive closure of escaped
5573 variables to re-initialize the call-clobber states of local variables. */
5575 unsigned int
5576 compute_may_aliases (void)
5578 /* For each pointer P_i, determine the sets of variables that P_i may
5579 point-to. Compute the reachability set of escaped and call-used
5580 variables. */
5581 compute_points_to_sets ();
5583 /* Debugging dumps. */
5584 if (dump_file)
5586 dump_alias_info (dump_file);
5588 if (dump_flags & TDF_DETAILS)
5589 dump_referenced_vars (dump_file);
5592 /* Deallocate memory used by aliasing data structures and the internal
5593 points-to solution. */
5594 delete_points_to_sets ();
5596 gcc_assert (!need_ssa_update_p (cfun));
5598 return 0;
5601 static bool
5602 gate_tree_pta (void)
5604 return flag_tree_pta;
5607 /* A dummy pass to cause points-to information to be computed via
5608 TODO_rebuild_alias. */
5610 struct gimple_opt_pass pass_build_alias =
5613 GIMPLE_PASS,
5614 "alias", /* name */
5615 gate_tree_pta, /* gate */
5616 NULL, /* execute */
5617 NULL, /* sub */
5618 NULL, /* next */
5619 0, /* static_pass_number */
5620 TV_NONE, /* tv_id */
5621 PROP_cfg | PROP_ssa, /* properties_required */
5622 0, /* properties_provided */
5623 0, /* properties_destroyed */
5624 0, /* todo_flags_start */
5625 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
5629 /* A dummy pass to cause points-to information to be computed via
5630 TODO_rebuild_alias. */
5632 struct gimple_opt_pass pass_build_ealias =
5635 GIMPLE_PASS,
5636 "ealias", /* name */
5637 gate_tree_pta, /* gate */
5638 NULL, /* execute */
5639 NULL, /* sub */
5640 NULL, /* next */
5641 0, /* static_pass_number */
5642 TV_NONE, /* tv_id */
5643 PROP_cfg | PROP_ssa, /* properties_required */
5644 0, /* properties_provided */
5645 0, /* properties_destroyed */
5646 0, /* todo_flags_start */
5647 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
5652 /* Return true if we should execute IPA PTA. */
5653 static bool
5654 gate_ipa_pta (void)
5656 return (optimize
5657 && flag_ipa_pta
5658 /* Don't bother doing anything if the program has errors. */
5659 && !(errorcount || sorrycount));
5662 /* Execute the driver for IPA PTA. */
5663 static unsigned int
5664 ipa_pta_execute (void)
5666 struct cgraph_node *node;
5668 in_ipa_mode = 1;
5670 init_alias_heapvars ();
5671 init_alias_vars ();
5673 /* Build the constraints. */
5674 for (node = cgraph_nodes; node; node = node->next)
5676 /* Nodes without a body are not interesting. Especially do not
5677 visit clones at this point for now - we get duplicate decls
5678 there for inline clones at least. */
5679 if (!gimple_has_body_p (node->decl)
5680 || node->clone_of)
5681 continue;
5683 /* It does not make sense to have graph edges into or out of
5684 externally visible functions. There is no extra information
5685 we can gather from them. */
5686 if (node->local.externally_visible)
5687 continue;
5689 create_function_info_for (node->decl,
5690 cgraph_node_name (node));
5693 for (node = cgraph_nodes; node; node = node->next)
5695 struct function *func;
5696 basic_block bb;
5697 tree old_func_decl;
5699 /* Nodes without a body are not interesting. */
5700 if (!gimple_has_body_p (node->decl)
5701 || node->clone_of)
5702 continue;
5704 if (dump_file)
5705 fprintf (dump_file,
5706 "Generating constraints for %s\n",
5707 cgraph_node_name (node));
5709 func = DECL_STRUCT_FUNCTION (node->decl);
5710 old_func_decl = current_function_decl;
5711 push_cfun (func);
5712 current_function_decl = node->decl;
5714 /* For externally visible functions use local constraints for
5715 their arguments. For local functions we see all callers
5716 and thus do not need initial constraints for parameters. */
5717 if (node->local.externally_visible)
5718 intra_create_variable_infos ();
5720 /* Build constriants for the function body. */
5721 FOR_EACH_BB_FN (bb, func)
5723 gimple_stmt_iterator gsi;
5725 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
5726 gsi_next (&gsi))
5728 gimple phi = gsi_stmt (gsi);
5730 if (is_gimple_reg (gimple_phi_result (phi)))
5731 find_func_aliases (phi);
5734 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5736 gimple stmt = gsi_stmt (gsi);
5738 find_func_aliases (stmt);
5742 current_function_decl = old_func_decl;
5743 pop_cfun ();
5746 /* From the constraints compute the points-to sets. */
5747 solve_constraints ();
5749 delete_points_to_sets ();
5751 in_ipa_mode = 0;
5753 return 0;
5756 struct simple_ipa_opt_pass pass_ipa_pta =
5759 SIMPLE_IPA_PASS,
5760 "pta", /* name */
5761 gate_ipa_pta, /* gate */
5762 ipa_pta_execute, /* execute */
5763 NULL, /* sub */
5764 NULL, /* next */
5765 0, /* static_pass_number */
5766 TV_IPA_PTA, /* tv_id */
5767 0, /* properties_required */
5768 0, /* properties_provided */
5769 0, /* properties_destroyed */
5770 0, /* todo_flags_start */
5771 TODO_update_ssa /* todo_flags_finish */
5776 #include "gt-tree-ssa-structalias.h"