Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / tree-eh.c
blob1a9e7b50e6a5021bde8bd1c91c96115c9e5f70e1
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "tree-inline.h"
34 #include "tree-iterator.h"
35 #include "tree-pass.h"
36 #include "timevar.h"
37 #include "langhooks.h"
38 #include "ggc.h"
39 #include "toplev.h"
40 #include "gimple.h"
41 #include "target.h"
43 /* In some instances a tree and a gimple need to be stored in a same table,
44 i.e. in hash tables. This is a structure to do this. */
45 typedef union {tree *tp; tree t; gimple g;} treemple;
47 /* Nonzero if we are using EH to handle cleanups. */
48 static int using_eh_for_cleanups_p = 0;
50 void
51 using_eh_for_cleanups (void)
53 using_eh_for_cleanups_p = 1;
56 /* Misc functions used in this file. */
58 /* Compare and hash for any structure which begins with a canonical
59 pointer. Assumes all pointers are interchangeable, which is sort
60 of already assumed by gcc elsewhere IIRC. */
62 static int
63 struct_ptr_eq (const void *a, const void *b)
65 const void * const * x = (const void * const *) a;
66 const void * const * y = (const void * const *) b;
67 return *x == *y;
70 static hashval_t
71 struct_ptr_hash (const void *a)
73 const void * const * x = (const void * const *) a;
74 return (size_t)*x >> 4;
78 /* Remember and lookup EH landing pad data for arbitrary statements.
79 Really this means any statement that could_throw_p. We could
80 stuff this information into the stmt_ann data structure, but:
82 (1) We absolutely rely on this information being kept until
83 we get to rtl. Once we're done with lowering here, if we lose
84 the information there's no way to recover it!
86 (2) There are many more statements that *cannot* throw as
87 compared to those that can. We should be saving some amount
88 of space by only allocating memory for those that can throw. */
90 /* Add statement T in function IFUN to landing pad NUM. */
92 void
93 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
95 struct throw_stmt_node *n;
96 void **slot;
98 gcc_assert (num != 0);
100 n = GGC_NEW (struct throw_stmt_node);
101 n->stmt = t;
102 n->lp_nr = num;
104 if (!get_eh_throw_stmt_table (ifun))
105 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
106 struct_ptr_eq,
107 ggc_free));
109 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
110 gcc_assert (!*slot);
111 *slot = n;
114 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
116 void
117 add_stmt_to_eh_lp (gimple t, int num)
119 add_stmt_to_eh_lp_fn (cfun, t, num);
122 /* Add statement T to the single EH landing pad in REGION. */
124 static void
125 record_stmt_eh_region (eh_region region, gimple t)
127 if (region == NULL)
128 return;
129 if (region->type == ERT_MUST_NOT_THROW)
130 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
131 else
133 eh_landing_pad lp = region->landing_pads;
134 if (lp == NULL)
135 lp = gen_eh_landing_pad (region);
136 else
137 gcc_assert (lp->next_lp == NULL);
138 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
143 /* Remove statement T in function IFUN from its EH landing pad. */
145 bool
146 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
148 struct throw_stmt_node dummy;
149 void **slot;
151 if (!get_eh_throw_stmt_table (ifun))
152 return false;
154 dummy.stmt = t;
155 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
156 NO_INSERT);
157 if (slot)
159 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
160 return true;
162 else
163 return false;
167 /* Remove statement T in the current function (cfun) from its
168 EH landing pad. */
170 bool
171 remove_stmt_from_eh_lp (gimple t)
173 return remove_stmt_from_eh_lp_fn (cfun, t);
176 /* Determine if statement T is inside an EH region in function IFUN.
177 Positive numbers indicate a landing pad index; negative numbers
178 indicate a MUST_NOT_THROW region index; zero indicates that the
179 statement is not recorded in the region table. */
182 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
184 struct throw_stmt_node *p, n;
186 if (ifun->eh->throw_stmt_table == NULL)
187 return 0;
189 n.stmt = t;
190 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
191 return p ? p->lp_nr : 0;
194 /* Likewise, but always use the current function. */
197 lookup_stmt_eh_lp (gimple t)
199 /* We can get called from initialized data when -fnon-call-exceptions
200 is on; prevent crash. */
201 if (!cfun)
202 return 0;
203 return lookup_stmt_eh_lp_fn (cfun, t);
206 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
207 nodes and LABEL_DECL nodes. We will use this during the second phase to
208 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
210 struct finally_tree_node
212 /* When storing a GIMPLE_TRY, we have to record a gimple. However
213 when deciding whether a GOTO to a certain LABEL_DECL (which is a
214 tree) leaves the TRY block, its necessary to record a tree in
215 this field. Thus a treemple is used. */
216 treemple child;
217 gimple parent;
220 /* Note that this table is *not* marked GTY. It is short-lived. */
221 static htab_t finally_tree;
223 static void
224 record_in_finally_tree (treemple child, gimple parent)
226 struct finally_tree_node *n;
227 void **slot;
229 n = XNEW (struct finally_tree_node);
230 n->child = child;
231 n->parent = parent;
233 slot = htab_find_slot (finally_tree, n, INSERT);
234 gcc_assert (!*slot);
235 *slot = n;
238 static void
239 collect_finally_tree (gimple stmt, gimple region);
241 /* Go through the gimple sequence. Works with collect_finally_tree to
242 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
244 static void
245 collect_finally_tree_1 (gimple_seq seq, gimple region)
247 gimple_stmt_iterator gsi;
249 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
250 collect_finally_tree (gsi_stmt (gsi), region);
253 static void
254 collect_finally_tree (gimple stmt, gimple region)
256 treemple temp;
258 switch (gimple_code (stmt))
260 case GIMPLE_LABEL:
261 temp.t = gimple_label_label (stmt);
262 record_in_finally_tree (temp, region);
263 break;
265 case GIMPLE_TRY:
266 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
268 temp.g = stmt;
269 record_in_finally_tree (temp, region);
270 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
271 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
273 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
275 collect_finally_tree_1 (gimple_try_eval (stmt), region);
276 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
278 break;
280 case GIMPLE_CATCH:
281 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
282 break;
284 case GIMPLE_EH_FILTER:
285 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
286 break;
288 default:
289 /* A type, a decl, or some kind of statement that we're not
290 interested in. Don't walk them. */
291 break;
296 /* Use the finally tree to determine if a jump from START to TARGET
297 would leave the try_finally node that START lives in. */
299 static bool
300 outside_finally_tree (treemple start, gimple target)
302 struct finally_tree_node n, *p;
306 n.child = start;
307 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
308 if (!p)
309 return true;
310 start.g = p->parent;
312 while (start.g != target);
314 return false;
317 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
318 nodes into a set of gotos, magic labels, and eh regions.
319 The eh region creation is straight-forward, but frobbing all the gotos
320 and such into shape isn't. */
322 /* The sequence into which we record all EH stuff. This will be
323 placed at the end of the function when we're all done. */
324 static gimple_seq eh_seq;
326 /* Record whether an EH region contains something that can throw,
327 indexed by EH region number. */
328 static bitmap eh_region_may_contain_throw_map;
330 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
331 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
332 The idea is to record a gimple statement for everything except for
333 the conditionals, which get their labels recorded. Since labels are
334 of type 'tree', we need this node to store both gimple and tree
335 objects. REPL_STMT is the sequence used to replace the goto/return
336 statement. CONT_STMT is used to store the statement that allows
337 the return/goto to jump to the original destination. */
339 struct goto_queue_node
341 treemple stmt;
342 gimple_seq repl_stmt;
343 gimple cont_stmt;
344 int index;
345 /* This is used when index >= 0 to indicate that stmt is a label (as
346 opposed to a goto stmt). */
347 int is_label;
350 /* State of the world while lowering. */
352 struct leh_state
354 /* What's "current" while constructing the eh region tree. These
355 correspond to variables of the same name in cfun->eh, which we
356 don't have easy access to. */
357 eh_region cur_region;
359 /* What's "current" for the purposes of __builtin_eh_pointer. For
360 a CATCH, this is the associated TRY. For an EH_FILTER, this is
361 the associated ALLOWED_EXCEPTIONS, etc. */
362 eh_region ehp_region;
364 /* Processing of TRY_FINALLY requires a bit more state. This is
365 split out into a separate structure so that we don't have to
366 copy so much when processing other nodes. */
367 struct leh_tf_state *tf;
370 struct leh_tf_state
372 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
373 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
374 this so that outside_finally_tree can reliably reference the tree used
375 in the collect_finally_tree data structures. */
376 gimple try_finally_expr;
377 gimple top_p;
379 /* While lowering a top_p usually it is expanded into multiple statements,
380 thus we need the following field to store them. */
381 gimple_seq top_p_seq;
383 /* The state outside this try_finally node. */
384 struct leh_state *outer;
386 /* The exception region created for it. */
387 eh_region region;
389 /* The goto queue. */
390 struct goto_queue_node *goto_queue;
391 size_t goto_queue_size;
392 size_t goto_queue_active;
394 /* Pointer map to help in searching goto_queue when it is large. */
395 struct pointer_map_t *goto_queue_map;
397 /* The set of unique labels seen as entries in the goto queue. */
398 VEC(tree,heap) *dest_array;
400 /* A label to be added at the end of the completed transformed
401 sequence. It will be set if may_fallthru was true *at one time*,
402 though subsequent transformations may have cleared that flag. */
403 tree fallthru_label;
405 /* True if it is possible to fall out the bottom of the try block.
406 Cleared if the fallthru is converted to a goto. */
407 bool may_fallthru;
409 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
410 bool may_return;
412 /* True if the finally block can receive an exception edge.
413 Cleared if the exception case is handled by code duplication. */
414 bool may_throw;
417 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
419 /* Search for STMT in the goto queue. Return the replacement,
420 or null if the statement isn't in the queue. */
422 #define LARGE_GOTO_QUEUE 20
424 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
426 static gimple_seq
427 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
429 unsigned int i;
430 void **slot;
432 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
434 for (i = 0; i < tf->goto_queue_active; i++)
435 if ( tf->goto_queue[i].stmt.g == stmt.g)
436 return tf->goto_queue[i].repl_stmt;
437 return NULL;
440 /* If we have a large number of entries in the goto_queue, create a
441 pointer map and use that for searching. */
443 if (!tf->goto_queue_map)
445 tf->goto_queue_map = pointer_map_create ();
446 for (i = 0; i < tf->goto_queue_active; i++)
448 slot = pointer_map_insert (tf->goto_queue_map,
449 tf->goto_queue[i].stmt.g);
450 gcc_assert (*slot == NULL);
451 *slot = &tf->goto_queue[i];
455 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
456 if (slot != NULL)
457 return (((struct goto_queue_node *) *slot)->repl_stmt);
459 return NULL;
462 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
463 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
464 then we can just splat it in, otherwise we add the new stmts immediately
465 after the GIMPLE_COND and redirect. */
467 static void
468 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
469 gimple_stmt_iterator *gsi)
471 tree label;
472 gimple_seq new_seq;
473 treemple temp;
474 location_t loc = gimple_location (gsi_stmt (*gsi));
476 temp.tp = tp;
477 new_seq = find_goto_replacement (tf, temp);
478 if (!new_seq)
479 return;
481 if (gimple_seq_singleton_p (new_seq)
482 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
484 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
485 return;
488 label = create_artificial_label (loc);
489 /* Set the new label for the GIMPLE_COND */
490 *tp = label;
492 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
493 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
496 /* The real work of replace_goto_queue. Returns with TSI updated to
497 point to the next statement. */
499 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
501 static void
502 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
503 gimple_stmt_iterator *gsi)
505 gimple_seq seq;
506 treemple temp;
507 temp.g = NULL;
509 switch (gimple_code (stmt))
511 case GIMPLE_GOTO:
512 case GIMPLE_RETURN:
513 temp.g = stmt;
514 seq = find_goto_replacement (tf, temp);
515 if (seq)
517 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
518 gsi_remove (gsi, false);
519 return;
521 break;
523 case GIMPLE_COND:
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
525 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
526 break;
528 case GIMPLE_TRY:
529 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
530 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
531 break;
532 case GIMPLE_CATCH:
533 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
534 break;
535 case GIMPLE_EH_FILTER:
536 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
537 break;
539 default:
540 /* These won't have gotos in them. */
541 break;
544 gsi_next (gsi);
547 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
549 static void
550 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
552 gimple_stmt_iterator gsi = gsi_start (seq);
554 while (!gsi_end_p (gsi))
555 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
558 /* Replace all goto queue members. */
560 static void
561 replace_goto_queue (struct leh_tf_state *tf)
563 if (tf->goto_queue_active == 0)
564 return;
565 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
578 size_t active, size;
579 struct goto_queue_node *q;
581 gcc_assert (!tf->goto_queue_map);
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
608 int index;
609 treemple temp, new_stmt;
611 if (!label)
612 return;
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
625 if (! tf->dest_array)
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
631 else
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
649 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
650 node, and if so record that fact in the goto queue associated with that
651 try_finally node. */
653 static void
654 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
656 struct leh_tf_state *tf = state->tf;
657 treemple new_stmt;
659 if (!tf)
660 return;
662 switch (gimple_code (stmt))
664 case GIMPLE_COND:
665 new_stmt.tp = gimple_op_ptr (stmt, 2);
666 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
667 new_stmt.tp = gimple_op_ptr (stmt, 3);
668 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
669 break;
670 case GIMPLE_GOTO:
671 new_stmt.g = stmt;
672 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
673 break;
675 case GIMPLE_RETURN:
676 tf->may_return = true;
677 new_stmt.g = stmt;
678 record_in_goto_queue (tf, new_stmt, -1, false);
679 break;
681 default:
682 gcc_unreachable ();
687 #ifdef ENABLE_CHECKING
688 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
689 was in fact structured, and we've not yet done jump threading, then none
690 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
692 static void
693 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
695 struct leh_tf_state *tf = state->tf;
696 size_t i, n;
698 if (!tf)
699 return;
701 n = gimple_switch_num_labels (switch_expr);
703 for (i = 0; i < n; ++i)
705 treemple temp;
706 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
707 temp.t = lab;
708 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
711 #else
712 #define verify_norecord_switch_expr(state, switch_expr)
713 #endif
715 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
716 whatever is needed to finish the return. If MOD is non-null, insert it
717 before the new branch. RETURN_VALUE_P is a cache containing a temporary
718 variable to be used in manipulating the value returned from the function. */
720 static void
721 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
722 tree *return_value_p)
724 tree ret_expr;
725 gimple x;
727 /* In the case of a return, the queue node must be a gimple statement. */
728 gcc_assert (!q->is_label);
730 ret_expr = gimple_return_retval (q->stmt.g);
732 if (ret_expr)
734 if (!*return_value_p)
735 *return_value_p = ret_expr;
736 else
737 gcc_assert (*return_value_p == ret_expr);
738 q->cont_stmt = q->stmt.g;
739 /* The nasty part about redirecting the return value is that the
740 return value itself is to be computed before the FINALLY block
741 is executed. e.g.
743 int x;
744 int foo (void)
746 x = 0;
747 try {
748 return x;
749 } finally {
750 x++;
754 should return 0, not 1. Arrange for this to happen by copying
755 computed the return value into a local temporary. This also
756 allows us to redirect multiple return statements through the
757 same destination block; whether this is a net win or not really
758 depends, I guess, but it does make generation of the switch in
759 lower_try_finally_switch easier. */
761 if (TREE_CODE (ret_expr) == RESULT_DECL)
763 if (!*return_value_p)
764 *return_value_p = ret_expr;
765 else
766 gcc_assert (*return_value_p == ret_expr);
767 q->cont_stmt = q->stmt.g;
769 else
770 gcc_unreachable ();
772 else
773 /* If we don't return a value, all return statements are the same. */
774 q->cont_stmt = q->stmt.g;
776 if (!q->repl_stmt)
777 q->repl_stmt = gimple_seq_alloc ();
779 if (mod)
780 gimple_seq_add_seq (&q->repl_stmt, mod);
782 x = gimple_build_goto (finlab);
783 gimple_seq_add_stmt (&q->repl_stmt, x);
786 /* Similar, but easier, for GIMPLE_GOTO. */
788 static void
789 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
790 struct leh_tf_state *tf)
792 gimple x;
794 gcc_assert (q->is_label);
795 if (!q->repl_stmt)
796 q->repl_stmt = gimple_seq_alloc ();
798 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
800 if (mod)
801 gimple_seq_add_seq (&q->repl_stmt, mod);
803 x = gimple_build_goto (finlab);
804 gimple_seq_add_stmt (&q->repl_stmt, x);
807 /* Emit a standard landing pad sequence into SEQ for REGION. */
809 static void
810 emit_post_landing_pad (gimple_seq *seq, eh_region region)
812 eh_landing_pad lp = region->landing_pads;
813 gimple x;
815 if (lp == NULL)
816 lp = gen_eh_landing_pad (region);
818 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
819 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
821 x = gimple_build_label (lp->post_landing_pad);
822 gimple_seq_add_stmt (seq, x);
825 /* Emit a RESX statement into SEQ for REGION. */
827 static void
828 emit_resx (gimple_seq *seq, eh_region region)
830 gimple x = gimple_build_resx (region->index);
831 gimple_seq_add_stmt (seq, x);
832 if (region->outer)
833 record_stmt_eh_region (region->outer, x);
836 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
838 static void
839 emit_eh_dispatch (gimple_seq *seq, eh_region region)
841 gimple x = gimple_build_eh_dispatch (region->index);
842 gimple_seq_add_stmt (seq, x);
845 /* Note that the current EH region may contain a throw, or a
846 call to a function which itself may contain a throw. */
848 static void
849 note_eh_region_may_contain_throw (eh_region region)
851 while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
853 bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
854 region = region->outer;
855 if (region == NULL)
856 break;
860 /* Check if REGION has been marked as containing a throw. If REGION is
861 NULL, this predicate is false. */
863 static inline bool
864 eh_region_may_contain_throw (eh_region r)
866 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
869 /* We want to transform
870 try { body; } catch { stuff; }
872 normal_seqence:
873 body;
874 over:
875 eh_seqence:
876 landing_pad:
877 stuff;
878 goto over;
880 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
881 should be placed before the second operand, or NULL. OVER is
882 an existing label that should be put at the exit, or NULL. */
884 static gimple_seq
885 frob_into_branch_around (gimple tp, eh_region region, tree over)
887 gimple x;
888 gimple_seq cleanup, result;
889 location_t loc = gimple_location (tp);
891 cleanup = gimple_try_cleanup (tp);
892 result = gimple_try_eval (tp);
894 if (region)
895 emit_post_landing_pad (&eh_seq, region);
897 if (gimple_seq_may_fallthru (cleanup))
899 if (!over)
900 over = create_artificial_label (loc);
901 x = gimple_build_goto (over);
902 gimple_seq_add_stmt (&cleanup, x);
904 gimple_seq_add_seq (&eh_seq, cleanup);
906 if (over)
908 x = gimple_build_label (over);
909 gimple_seq_add_stmt (&result, x);
911 return result;
914 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
915 Make sure to record all new labels found. */
917 static gimple_seq
918 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
920 gimple region = NULL;
921 gimple_seq new_seq;
923 new_seq = copy_gimple_seq_and_replace_locals (seq);
925 if (outer_state->tf)
926 region = outer_state->tf->try_finally_expr;
927 collect_finally_tree_1 (new_seq, region);
929 return new_seq;
932 /* A subroutine of lower_try_finally. Create a fallthru label for
933 the given try_finally state. The only tricky bit here is that
934 we have to make sure to record the label in our outer context. */
936 static tree
937 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
939 tree label = tf->fallthru_label;
940 treemple temp;
942 if (!label)
944 label = create_artificial_label (gimple_location (tf->try_finally_expr));
945 tf->fallthru_label = label;
946 if (tf->outer->tf)
948 temp.t = label;
949 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
952 return label;
955 /* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
956 returns non-null, then the language requires that the exception path out
957 of a try_finally be treated specially. To wit: the code within the
958 finally block may not itself throw an exception. We have two choices here.
959 First we can duplicate the finally block and wrap it in a must_not_throw
960 region. Second, we can generate code like
962 try {
963 finally_block;
964 } catch {
965 if (fintmp == eh_edge)
966 protect_cleanup_actions;
969 where "fintmp" is the temporary used in the switch statement generation
970 alternative considered below. For the nonce, we always choose the first
971 option.
973 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
975 static void
976 honor_protect_cleanup_actions (struct leh_state *outer_state,
977 struct leh_state *this_state,
978 struct leh_tf_state *tf)
980 tree protect_cleanup_actions;
981 gimple_stmt_iterator gsi;
982 bool finally_may_fallthru;
983 gimple_seq finally;
984 gimple x;
986 /* First check for nothing to do. */
987 if (lang_protect_cleanup_actions == NULL)
988 return;
989 protect_cleanup_actions = lang_protect_cleanup_actions ();
990 if (protect_cleanup_actions == NULL)
991 return;
993 finally = gimple_try_cleanup (tf->top_p);
994 finally_may_fallthru = gimple_seq_may_fallthru (finally);
996 /* Duplicate the FINALLY block. Only need to do this for try-finally,
997 and not for cleanups. */
998 if (this_state)
999 finally = lower_try_finally_dup_block (finally, outer_state);
1001 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1002 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1003 to be in an enclosing scope, but needs to be implemented at this level
1004 to avoid a nesting violation (see wrap_temporary_cleanups in
1005 cp/decl.c). Since it's logically at an outer level, we should call
1006 terminate before we get to it, so strip it away before adding the
1007 MUST_NOT_THROW filter. */
1008 gsi = gsi_start (finally);
1009 x = gsi_stmt (gsi);
1010 if (gimple_code (x) == GIMPLE_TRY
1011 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1012 && gimple_try_catch_is_cleanup (x))
1014 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1015 gsi_remove (&gsi, false);
1018 /* Wrap the block with protect_cleanup_actions as the action. */
1019 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1020 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1021 GIMPLE_TRY_CATCH);
1022 finally = lower_eh_must_not_throw (outer_state, x);
1024 /* Drop all of this into the exception sequence. */
1025 emit_post_landing_pad (&eh_seq, tf->region);
1026 gimple_seq_add_seq (&eh_seq, finally);
1027 if (finally_may_fallthru)
1028 emit_resx (&eh_seq, tf->region);
1030 /* Having now been handled, EH isn't to be considered with
1031 the rest of the outgoing edges. */
1032 tf->may_throw = false;
1035 /* A subroutine of lower_try_finally. We have determined that there is
1036 no fallthru edge out of the finally block. This means that there is
1037 no outgoing edge corresponding to any incoming edge. Restructure the
1038 try_finally node for this special case. */
1040 static void
1041 lower_try_finally_nofallthru (struct leh_state *state,
1042 struct leh_tf_state *tf)
1044 tree lab, return_val;
1045 gimple x;
1046 gimple_seq finally;
1047 struct goto_queue_node *q, *qe;
1049 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1051 /* We expect that tf->top_p is a GIMPLE_TRY. */
1052 finally = gimple_try_cleanup (tf->top_p);
1053 tf->top_p_seq = gimple_try_eval (tf->top_p);
1055 x = gimple_build_label (lab);
1056 gimple_seq_add_stmt (&tf->top_p_seq, x);
1058 return_val = NULL;
1059 q = tf->goto_queue;
1060 qe = q + tf->goto_queue_active;
1061 for (; q < qe; ++q)
1062 if (q->index < 0)
1063 do_return_redirection (q, lab, NULL, &return_val);
1064 else
1065 do_goto_redirection (q, lab, NULL, tf);
1067 replace_goto_queue (tf);
1069 lower_eh_constructs_1 (state, finally);
1070 gimple_seq_add_seq (&tf->top_p_seq, finally);
1072 if (tf->may_throw)
1074 emit_post_landing_pad (&eh_seq, tf->region);
1076 x = gimple_build_goto (lab);
1077 gimple_seq_add_stmt (&eh_seq, x);
1081 /* A subroutine of lower_try_finally. We have determined that there is
1082 exactly one destination of the finally block. Restructure the
1083 try_finally node for this special case. */
1085 static void
1086 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1088 struct goto_queue_node *q, *qe;
1089 gimple x;
1090 gimple_seq finally;
1091 tree finally_label;
1092 location_t loc = gimple_location (tf->try_finally_expr);
1094 finally = gimple_try_cleanup (tf->top_p);
1095 tf->top_p_seq = gimple_try_eval (tf->top_p);
1097 lower_eh_constructs_1 (state, finally);
1099 if (tf->may_throw)
1101 /* Only reachable via the exception edge. Add the given label to
1102 the head of the FINALLY block. Append a RESX at the end. */
1103 emit_post_landing_pad (&eh_seq, tf->region);
1104 gimple_seq_add_seq (&eh_seq, finally);
1105 emit_resx (&eh_seq, tf->region);
1106 return;
1109 if (tf->may_fallthru)
1111 /* Only reachable via the fallthru edge. Do nothing but let
1112 the two blocks run together; we'll fall out the bottom. */
1113 gimple_seq_add_seq (&tf->top_p_seq, finally);
1114 return;
1117 finally_label = create_artificial_label (loc);
1118 x = gimple_build_label (finally_label);
1119 gimple_seq_add_stmt (&tf->top_p_seq, x);
1121 gimple_seq_add_seq (&tf->top_p_seq, finally);
1123 q = tf->goto_queue;
1124 qe = q + tf->goto_queue_active;
1126 if (tf->may_return)
1128 /* Reachable by return expressions only. Redirect them. */
1129 tree return_val = NULL;
1130 for (; q < qe; ++q)
1131 do_return_redirection (q, finally_label, NULL, &return_val);
1132 replace_goto_queue (tf);
1134 else
1136 /* Reachable by goto expressions only. Redirect them. */
1137 for (; q < qe; ++q)
1138 do_goto_redirection (q, finally_label, NULL, tf);
1139 replace_goto_queue (tf);
1141 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1143 /* Reachable by goto to fallthru label only. Redirect it
1144 to the new label (already created, sadly), and do not
1145 emit the final branch out, or the fallthru label. */
1146 tf->fallthru_label = NULL;
1147 return;
1151 /* Place the original return/goto to the original destination
1152 immediately after the finally block. */
1153 x = tf->goto_queue[0].cont_stmt;
1154 gimple_seq_add_stmt (&tf->top_p_seq, x);
1155 maybe_record_in_goto_queue (state, x);
1158 /* A subroutine of lower_try_finally. There are multiple edges incoming
1159 and outgoing from the finally block. Implement this by duplicating the
1160 finally block for every destination. */
1162 static void
1163 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1165 gimple_seq finally;
1166 gimple_seq new_stmt;
1167 gimple_seq seq;
1168 gimple x;
1169 tree tmp;
1170 location_t tf_loc = gimple_location (tf->try_finally_expr);
1172 finally = gimple_try_cleanup (tf->top_p);
1173 tf->top_p_seq = gimple_try_eval (tf->top_p);
1174 new_stmt = NULL;
1176 if (tf->may_fallthru)
1178 seq = lower_try_finally_dup_block (finally, state);
1179 lower_eh_constructs_1 (state, seq);
1180 gimple_seq_add_seq (&new_stmt, seq);
1182 tmp = lower_try_finally_fallthru_label (tf);
1183 x = gimple_build_goto (tmp);
1184 gimple_seq_add_stmt (&new_stmt, x);
1187 if (tf->may_throw)
1189 seq = lower_try_finally_dup_block (finally, state);
1190 lower_eh_constructs_1 (state, seq);
1192 emit_post_landing_pad (&eh_seq, tf->region);
1193 gimple_seq_add_seq (&eh_seq, seq);
1194 emit_resx (&eh_seq, tf->region);
1197 if (tf->goto_queue)
1199 struct goto_queue_node *q, *qe;
1200 tree return_val = NULL;
1201 int return_index, index;
1202 struct labels_s
1204 struct goto_queue_node *q;
1205 tree label;
1206 } *labels;
1208 return_index = VEC_length (tree, tf->dest_array);
1209 labels = XCNEWVEC (struct labels_s, return_index + 1);
1211 q = tf->goto_queue;
1212 qe = q + tf->goto_queue_active;
1213 for (; q < qe; q++)
1215 index = q->index < 0 ? return_index : q->index;
1217 if (!labels[index].q)
1218 labels[index].q = q;
1221 for (index = 0; index < return_index + 1; index++)
1223 tree lab;
1225 q = labels[index].q;
1226 if (! q)
1227 continue;
1229 lab = labels[index].label
1230 = create_artificial_label (tf_loc);
1232 if (index == return_index)
1233 do_return_redirection (q, lab, NULL, &return_val);
1234 else
1235 do_goto_redirection (q, lab, NULL, tf);
1237 x = gimple_build_label (lab);
1238 gimple_seq_add_stmt (&new_stmt, x);
1240 seq = lower_try_finally_dup_block (finally, state);
1241 lower_eh_constructs_1 (state, seq);
1242 gimple_seq_add_seq (&new_stmt, seq);
1244 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1245 maybe_record_in_goto_queue (state, q->cont_stmt);
1248 for (q = tf->goto_queue; q < qe; q++)
1250 tree lab;
1252 index = q->index < 0 ? return_index : q->index;
1254 if (labels[index].q == q)
1255 continue;
1257 lab = labels[index].label;
1259 if (index == return_index)
1260 do_return_redirection (q, lab, NULL, &return_val);
1261 else
1262 do_goto_redirection (q, lab, NULL, tf);
1265 replace_goto_queue (tf);
1266 free (labels);
1269 /* Need to link new stmts after running replace_goto_queue due
1270 to not wanting to process the same goto stmts twice. */
1271 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1274 /* A subroutine of lower_try_finally. There are multiple edges incoming
1275 and outgoing from the finally block. Implement this by instrumenting
1276 each incoming edge and creating a switch statement at the end of the
1277 finally block that branches to the appropriate destination. */
1279 static void
1280 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1282 struct goto_queue_node *q, *qe;
1283 tree return_val = NULL;
1284 tree finally_tmp, finally_label;
1285 int return_index, eh_index, fallthru_index;
1286 int nlabels, ndests, j, last_case_index;
1287 tree last_case;
1288 VEC (tree,heap) *case_label_vec;
1289 gimple_seq switch_body;
1290 gimple x;
1291 tree tmp;
1292 gimple switch_stmt;
1293 gimple_seq finally;
1294 struct pointer_map_t *cont_map = NULL;
1295 /* The location of the TRY_FINALLY stmt. */
1296 location_t tf_loc = gimple_location (tf->try_finally_expr);
1297 /* The location of the finally block. */
1298 location_t finally_loc;
1300 switch_body = gimple_seq_alloc ();
1302 /* Mash the TRY block to the head of the chain. */
1303 finally = gimple_try_cleanup (tf->top_p);
1304 tf->top_p_seq = gimple_try_eval (tf->top_p);
1306 /* The location of the finally is either the last stmt in the finally
1307 block or the location of the TRY_FINALLY itself. */
1308 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1309 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1310 : tf_loc;
1312 /* Lower the finally block itself. */
1313 lower_eh_constructs_1 (state, finally);
1315 /* Prepare for switch statement generation. */
1316 nlabels = VEC_length (tree, tf->dest_array);
1317 return_index = nlabels;
1318 eh_index = return_index + tf->may_return;
1319 fallthru_index = eh_index + tf->may_throw;
1320 ndests = fallthru_index + tf->may_fallthru;
1322 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1323 finally_label = create_artificial_label (finally_loc);
1325 /* We use VEC_quick_push on case_label_vec throughout this function,
1326 since we know the size in advance and allocate precisely as muce
1327 space as needed. */
1328 case_label_vec = VEC_alloc (tree, heap, ndests);
1329 last_case = NULL;
1330 last_case_index = 0;
1332 /* Begin inserting code for getting to the finally block. Things
1333 are done in this order to correspond to the sequence the code is
1334 layed out. */
1336 if (tf->may_fallthru)
1338 x = gimple_build_assign (finally_tmp,
1339 build_int_cst (NULL, fallthru_index));
1340 gimple_seq_add_stmt (&tf->top_p_seq, x);
1342 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1343 build_int_cst (NULL, fallthru_index),
1344 NULL, create_artificial_label (tf_loc));
1345 VEC_quick_push (tree, case_label_vec, last_case);
1346 last_case_index++;
1348 x = gimple_build_label (CASE_LABEL (last_case));
1349 gimple_seq_add_stmt (&switch_body, x);
1351 tmp = lower_try_finally_fallthru_label (tf);
1352 x = gimple_build_goto (tmp);
1353 gimple_seq_add_stmt (&switch_body, x);
1356 if (tf->may_throw)
1358 emit_post_landing_pad (&eh_seq, tf->region);
1360 x = gimple_build_assign (finally_tmp,
1361 build_int_cst (NULL, eh_index));
1362 gimple_seq_add_stmt (&eh_seq, x);
1364 x = gimple_build_goto (finally_label);
1365 gimple_seq_add_stmt (&eh_seq, x);
1367 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1368 build_int_cst (NULL, eh_index),
1369 NULL, create_artificial_label (tf_loc));
1370 VEC_quick_push (tree, case_label_vec, last_case);
1371 last_case_index++;
1373 x = gimple_build_label (CASE_LABEL (last_case));
1374 gimple_seq_add_stmt (&eh_seq, x);
1375 emit_resx (&eh_seq, tf->region);
1378 x = gimple_build_label (finally_label);
1379 gimple_seq_add_stmt (&tf->top_p_seq, x);
1381 gimple_seq_add_seq (&tf->top_p_seq, finally);
1383 /* Redirect each incoming goto edge. */
1384 q = tf->goto_queue;
1385 qe = q + tf->goto_queue_active;
1386 j = last_case_index + tf->may_return;
1387 /* Prepare the assignments to finally_tmp that are executed upon the
1388 entrance through a particular edge. */
1389 for (; q < qe; ++q)
1391 gimple_seq mod;
1392 int switch_id;
1393 unsigned int case_index;
1395 mod = gimple_seq_alloc ();
1397 if (q->index < 0)
1399 x = gimple_build_assign (finally_tmp,
1400 build_int_cst (NULL, return_index));
1401 gimple_seq_add_stmt (&mod, x);
1402 do_return_redirection (q, finally_label, mod, &return_val);
1403 switch_id = return_index;
1405 else
1407 x = gimple_build_assign (finally_tmp,
1408 build_int_cst (NULL, q->index));
1409 gimple_seq_add_stmt (&mod, x);
1410 do_goto_redirection (q, finally_label, mod, tf);
1411 switch_id = q->index;
1414 case_index = j + q->index;
1415 if (VEC_length (tree, case_label_vec) <= case_index
1416 || !VEC_index (tree, case_label_vec, case_index))
1418 tree case_lab;
1419 void **slot;
1420 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1421 build_int_cst (NULL, switch_id),
1422 NULL, NULL);
1423 /* We store the cont_stmt in the pointer map, so that we can recover
1424 it in the loop below. We don't create the new label while
1425 walking the goto_queue because pointers don't offer a stable
1426 order. */
1427 if (!cont_map)
1428 cont_map = pointer_map_create ();
1429 slot = pointer_map_insert (cont_map, case_lab);
1430 *slot = q->cont_stmt;
1431 VEC_quick_push (tree, case_label_vec, case_lab);
1434 for (j = last_case_index; j < last_case_index + nlabels; j++)
1436 tree label;
1437 gimple cont_stmt;
1438 void **slot;
1440 last_case = VEC_index (tree, case_label_vec, j);
1442 gcc_assert (last_case);
1443 gcc_assert (cont_map);
1445 slot = pointer_map_contains (cont_map, last_case);
1446 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1447 placeholder, it does not store an actual label, yet. */
1448 gcc_assert (slot);
1449 cont_stmt = *(gimple *) slot;
1451 label = create_artificial_label (tf_loc);
1452 CASE_LABEL (last_case) = label;
1454 x = gimple_build_label (label);
1455 gimple_seq_add_stmt (&switch_body, x);
1456 gimple_seq_add_stmt (&switch_body, cont_stmt);
1457 maybe_record_in_goto_queue (state, cont_stmt);
1459 if (cont_map)
1460 pointer_map_destroy (cont_map);
1462 replace_goto_queue (tf);
1464 /* Make sure that the last case is the default label, as one is required.
1465 Then sort the labels, which is also required in GIMPLE. */
1466 CASE_LOW (last_case) = NULL;
1467 sort_case_labels (case_label_vec);
1469 /* Build the switch statement, setting last_case to be the default
1470 label. */
1471 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1472 case_label_vec);
1473 gimple_set_location (switch_stmt, finally_loc);
1475 /* Need to link SWITCH_STMT after running replace_goto_queue
1476 due to not wanting to process the same goto stmts twice. */
1477 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1478 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1481 /* Decide whether or not we are going to duplicate the finally block.
1482 There are several considerations.
1484 First, if this is Java, then the finally block contains code
1485 written by the user. It has line numbers associated with it,
1486 so duplicating the block means it's difficult to set a breakpoint.
1487 Since controlling code generation via -g is verboten, we simply
1488 never duplicate code without optimization.
1490 Second, we'd like to prevent egregious code growth. One way to
1491 do this is to estimate the size of the finally block, multiply
1492 that by the number of copies we'd need to make, and compare against
1493 the estimate of the size of the switch machinery we'd have to add. */
1495 static bool
1496 decide_copy_try_finally (int ndests, gimple_seq finally)
1498 int f_estimate, sw_estimate;
1500 if (!optimize)
1501 return false;
1503 /* Finally estimate N times, plus N gotos. */
1504 f_estimate = count_insns_seq (finally, &eni_size_weights);
1505 f_estimate = (f_estimate + 1) * ndests;
1507 /* Switch statement (cost 10), N variable assignments, N gotos. */
1508 sw_estimate = 10 + 2 * ndests;
1510 /* Optimize for size clearly wants our best guess. */
1511 if (optimize_function_for_size_p (cfun))
1512 return f_estimate < sw_estimate;
1514 /* ??? These numbers are completely made up so far. */
1515 if (optimize > 1)
1516 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1517 else
1518 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1522 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1523 to a sequence of labels and blocks, plus the exception region trees
1524 that record all the magic. This is complicated by the need to
1525 arrange for the FINALLY block to be executed on all exits. */
1527 static gimple_seq
1528 lower_try_finally (struct leh_state *state, gimple tp)
1530 struct leh_tf_state this_tf;
1531 struct leh_state this_state;
1532 int ndests;
1534 /* Process the try block. */
1536 memset (&this_tf, 0, sizeof (this_tf));
1537 this_tf.try_finally_expr = tp;
1538 this_tf.top_p = tp;
1539 this_tf.outer = state;
1540 if (using_eh_for_cleanups_p)
1541 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1542 else
1543 this_tf.region = NULL;
1545 this_state.cur_region = this_tf.region;
1546 this_state.ehp_region = state->ehp_region;
1547 this_state.tf = &this_tf;
1549 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1551 /* Determine if the try block is escaped through the bottom. */
1552 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1554 /* Determine if any exceptions are possible within the try block. */
1555 if (using_eh_for_cleanups_p)
1556 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1557 if (this_tf.may_throw)
1558 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1560 /* Determine how many edges (still) reach the finally block. Or rather,
1561 how many destinations are reached by the finally block. Use this to
1562 determine how we process the finally block itself. */
1564 ndests = VEC_length (tree, this_tf.dest_array);
1565 ndests += this_tf.may_fallthru;
1566 ndests += this_tf.may_return;
1567 ndests += this_tf.may_throw;
1569 /* If the FINALLY block is not reachable, dike it out. */
1570 if (ndests == 0)
1572 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1573 gimple_try_set_cleanup (tp, NULL);
1575 /* If the finally block doesn't fall through, then any destination
1576 we might try to impose there isn't reached either. There may be
1577 some minor amount of cleanup and redirection still needed. */
1578 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1579 lower_try_finally_nofallthru (state, &this_tf);
1581 /* We can easily special-case redirection to a single destination. */
1582 else if (ndests == 1)
1583 lower_try_finally_onedest (state, &this_tf);
1584 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1585 lower_try_finally_copy (state, &this_tf);
1586 else
1587 lower_try_finally_switch (state, &this_tf);
1589 /* If someone requested we add a label at the end of the transformed
1590 block, do so. */
1591 if (this_tf.fallthru_label)
1593 /* This must be reached only if ndests == 0. */
1594 gimple x = gimple_build_label (this_tf.fallthru_label);
1595 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1598 VEC_free (tree, heap, this_tf.dest_array);
1599 if (this_tf.goto_queue)
1600 free (this_tf.goto_queue);
1601 if (this_tf.goto_queue_map)
1602 pointer_map_destroy (this_tf.goto_queue_map);
1604 return this_tf.top_p_seq;
1607 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1608 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1609 exception region trees that records all the magic. */
1611 static gimple_seq
1612 lower_catch (struct leh_state *state, gimple tp)
1614 eh_region try_region = NULL;
1615 struct leh_state this_state = *state;
1616 gimple_stmt_iterator gsi;
1617 tree out_label;
1618 gimple_seq new_seq;
1619 gimple x;
1620 location_t try_catch_loc = gimple_location (tp);
1622 if (flag_exceptions)
1624 try_region = gen_eh_region_try (state->cur_region);
1625 this_state.cur_region = try_region;
1628 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1630 if (!eh_region_may_contain_throw (try_region))
1631 return gimple_try_eval (tp);
1633 new_seq = NULL;
1634 emit_eh_dispatch (&new_seq, try_region);
1635 emit_resx (&new_seq, try_region);
1637 this_state.cur_region = state->cur_region;
1638 this_state.ehp_region = try_region;
1640 out_label = NULL;
1641 for (gsi = gsi_start (gimple_try_cleanup (tp));
1642 !gsi_end_p (gsi);
1643 gsi_next (&gsi))
1645 eh_catch c;
1646 gimple gcatch;
1647 gimple_seq handler;
1649 gcatch = gsi_stmt (gsi);
1650 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1652 handler = gimple_catch_handler (gcatch);
1653 lower_eh_constructs_1 (&this_state, handler);
1655 c->label = create_artificial_label (UNKNOWN_LOCATION);
1656 x = gimple_build_label (c->label);
1657 gimple_seq_add_stmt (&new_seq, x);
1659 gimple_seq_add_seq (&new_seq, handler);
1661 if (gimple_seq_may_fallthru (new_seq))
1663 if (!out_label)
1664 out_label = create_artificial_label (try_catch_loc);
1666 x = gimple_build_goto (out_label);
1667 gimple_seq_add_stmt (&new_seq, x);
1669 if (!c->type_list)
1670 break;
1673 gimple_try_set_cleanup (tp, new_seq);
1675 return frob_into_branch_around (tp, try_region, out_label);
1678 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1679 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1680 region trees that record all the magic. */
1682 static gimple_seq
1683 lower_eh_filter (struct leh_state *state, gimple tp)
1685 struct leh_state this_state = *state;
1686 eh_region this_region = NULL;
1687 gimple inner, x;
1688 gimple_seq new_seq;
1690 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1692 if (flag_exceptions)
1694 this_region = gen_eh_region_allowed (state->cur_region,
1695 gimple_eh_filter_types (inner));
1696 this_state.cur_region = this_region;
1699 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1701 if (!eh_region_may_contain_throw (this_region))
1702 return gimple_try_eval (tp);
1704 new_seq = NULL;
1705 this_state.cur_region = state->cur_region;
1706 this_state.ehp_region = this_region;
1708 emit_eh_dispatch (&new_seq, this_region);
1709 emit_resx (&new_seq, this_region);
1711 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1712 x = gimple_build_label (this_region->u.allowed.label);
1713 gimple_seq_add_stmt (&new_seq, x);
1715 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1716 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1718 gimple_try_set_cleanup (tp, new_seq);
1720 return frob_into_branch_around (tp, this_region, NULL);
1723 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1724 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1725 plus the exception region trees that record all the magic. */
1727 static gimple_seq
1728 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1730 struct leh_state this_state = *state;
1732 if (flag_exceptions)
1734 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1735 eh_region this_region;
1737 this_region = gen_eh_region_must_not_throw (state->cur_region);
1738 this_region->u.must_not_throw.failure_decl
1739 = gimple_eh_must_not_throw_fndecl (inner);
1740 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1742 /* In order to get mangling applied to this decl, we must mark it
1743 used now. Otherwise, pass_ipa_free_lang_data won't think it
1744 needs to happen. */
1745 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1747 this_state.cur_region = this_region;
1750 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1752 return gimple_try_eval (tp);
1755 /* Implement a cleanup expression. This is similar to try-finally,
1756 except that we only execute the cleanup block for exception edges. */
1758 static gimple_seq
1759 lower_cleanup (struct leh_state *state, gimple tp)
1761 struct leh_state this_state = *state;
1762 eh_region this_region = NULL;
1763 struct leh_tf_state fake_tf;
1764 gimple_seq result;
1766 if (flag_exceptions)
1768 this_region = gen_eh_region_cleanup (state->cur_region);
1769 this_state.cur_region = this_region;
1772 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1774 if (!eh_region_may_contain_throw (this_region))
1775 return gimple_try_eval (tp);
1777 /* Build enough of a try-finally state so that we can reuse
1778 honor_protect_cleanup_actions. */
1779 memset (&fake_tf, 0, sizeof (fake_tf));
1780 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1781 fake_tf.outer = state;
1782 fake_tf.region = this_region;
1783 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1784 fake_tf.may_throw = true;
1786 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1788 if (fake_tf.may_throw)
1790 /* In this case honor_protect_cleanup_actions had nothing to do,
1791 and we should process this normally. */
1792 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1793 result = frob_into_branch_around (tp, this_region,
1794 fake_tf.fallthru_label);
1796 else
1798 /* In this case honor_protect_cleanup_actions did nearly all of
1799 the work. All we have left is to append the fallthru_label. */
1801 result = gimple_try_eval (tp);
1802 if (fake_tf.fallthru_label)
1804 gimple x = gimple_build_label (fake_tf.fallthru_label);
1805 gimple_seq_add_stmt (&result, x);
1808 return result;
1811 /* Main loop for lowering eh constructs. Also moves gsi to the next
1812 statement. */
1814 static void
1815 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1817 gimple_seq replace;
1818 gimple x;
1819 gimple stmt = gsi_stmt (*gsi);
1821 switch (gimple_code (stmt))
1823 case GIMPLE_CALL:
1825 tree fndecl = gimple_call_fndecl (stmt);
1826 tree rhs, lhs;
1828 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1829 switch (DECL_FUNCTION_CODE (fndecl))
1831 case BUILT_IN_EH_POINTER:
1832 /* The front end may have generated a call to
1833 __builtin_eh_pointer (0) within a catch region. Replace
1834 this zero argument with the current catch region number. */
1835 if (state->ehp_region)
1837 tree nr = build_int_cst (NULL, state->ehp_region->index);
1838 gimple_call_set_arg (stmt, 0, nr);
1840 else
1842 /* The user has dome something silly. Remove it. */
1843 rhs = build_int_cst (ptr_type_node, 0);
1844 goto do_replace;
1846 break;
1848 case BUILT_IN_EH_FILTER:
1849 /* ??? This should never appear, but since it's a builtin it
1850 is accessible to abuse by users. Just remove it and
1851 replace the use with the arbitrary value zero. */
1852 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1853 do_replace:
1854 lhs = gimple_call_lhs (stmt);
1855 x = gimple_build_assign (lhs, rhs);
1856 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1857 /* FALLTHRU */
1859 case BUILT_IN_EH_COPY_VALUES:
1860 /* Likewise this should not appear. Remove it. */
1861 gsi_remove (gsi, true);
1862 return;
1864 default:
1865 break;
1868 /* FALLTHRU */
1870 case GIMPLE_ASSIGN:
1871 /* If the stmt can throw use a new temporary for the assignment
1872 to a LHS. This makes sure the old value of the LHS is
1873 available on the EH edge. Only do so for statements that
1874 potentially fall thru (no noreturn calls e.g.), otherwise
1875 this new assignment might create fake fallthru regions. */
1876 if (stmt_could_throw_p (stmt)
1877 && gimple_has_lhs (stmt)
1878 && gimple_stmt_may_fallthru (stmt)
1879 && !tree_could_throw_p (gimple_get_lhs (stmt))
1880 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1882 tree lhs = gimple_get_lhs (stmt);
1883 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1884 gimple s = gimple_build_assign (lhs, tmp);
1885 gimple_set_location (s, gimple_location (stmt));
1886 gimple_set_block (s, gimple_block (stmt));
1887 gimple_set_lhs (stmt, tmp);
1888 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1889 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1890 DECL_GIMPLE_REG_P (tmp) = 1;
1891 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1893 /* Look for things that can throw exceptions, and record them. */
1894 if (state->cur_region && stmt_could_throw_p (stmt))
1896 record_stmt_eh_region (state->cur_region, stmt);
1897 note_eh_region_may_contain_throw (state->cur_region);
1899 break;
1901 case GIMPLE_COND:
1902 case GIMPLE_GOTO:
1903 case GIMPLE_RETURN:
1904 maybe_record_in_goto_queue (state, stmt);
1905 break;
1907 case GIMPLE_SWITCH:
1908 verify_norecord_switch_expr (state, stmt);
1909 break;
1911 case GIMPLE_TRY:
1912 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1913 replace = lower_try_finally (state, stmt);
1914 else
1916 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1917 if (!x)
1919 replace = gimple_try_eval (stmt);
1920 lower_eh_constructs_1 (state, replace);
1922 else
1923 switch (gimple_code (x))
1925 case GIMPLE_CATCH:
1926 replace = lower_catch (state, stmt);
1927 break;
1928 case GIMPLE_EH_FILTER:
1929 replace = lower_eh_filter (state, stmt);
1930 break;
1931 case GIMPLE_EH_MUST_NOT_THROW:
1932 replace = lower_eh_must_not_throw (state, stmt);
1933 break;
1934 default:
1935 replace = lower_cleanup (state, stmt);
1936 break;
1940 /* Remove the old stmt and insert the transformed sequence
1941 instead. */
1942 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1943 gsi_remove (gsi, true);
1945 /* Return since we don't want gsi_next () */
1946 return;
1948 default:
1949 /* A type, a decl, or some kind of statement that we're not
1950 interested in. Don't walk them. */
1951 break;
1954 gsi_next (gsi);
1957 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1959 static void
1960 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1962 gimple_stmt_iterator gsi;
1963 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1964 lower_eh_constructs_2 (state, &gsi);
1967 static unsigned int
1968 lower_eh_constructs (void)
1970 struct leh_state null_state;
1971 gimple_seq bodyp;
1973 bodyp = gimple_body (current_function_decl);
1974 if (bodyp == NULL)
1975 return 0;
1977 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1978 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1979 memset (&null_state, 0, sizeof (null_state));
1981 collect_finally_tree_1 (bodyp, NULL);
1982 lower_eh_constructs_1 (&null_state, bodyp);
1984 /* We assume there's a return statement, or something, at the end of
1985 the function, and thus ploping the EH sequence afterward won't
1986 change anything. */
1987 gcc_assert (!gimple_seq_may_fallthru (bodyp));
1988 gimple_seq_add_seq (&bodyp, eh_seq);
1990 /* We assume that since BODYP already existed, adding EH_SEQ to it
1991 didn't change its value, and we don't have to re-set the function. */
1992 gcc_assert (bodyp == gimple_body (current_function_decl));
1994 htab_delete (finally_tree);
1995 BITMAP_FREE (eh_region_may_contain_throw_map);
1996 eh_seq = NULL;
1998 /* If this function needs a language specific EH personality routine
1999 and the frontend didn't already set one do so now. */
2000 if (function_needs_eh_personality (cfun) == eh_personality_lang
2001 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2002 DECL_FUNCTION_PERSONALITY (current_function_decl)
2003 = lang_hooks.eh_personality ();
2005 return 0;
2008 struct gimple_opt_pass pass_lower_eh =
2011 GIMPLE_PASS,
2012 "eh", /* name */
2013 NULL, /* gate */
2014 lower_eh_constructs, /* execute */
2015 NULL, /* sub */
2016 NULL, /* next */
2017 0, /* static_pass_number */
2018 TV_TREE_EH, /* tv_id */
2019 PROP_gimple_lcf, /* properties_required */
2020 PROP_gimple_leh, /* properties_provided */
2021 0, /* properties_destroyed */
2022 0, /* todo_flags_start */
2023 TODO_dump_func /* todo_flags_finish */
2027 /* Create the multiple edges from an EH_DISPATCH statement to all of
2028 the possible handlers for its EH region. Return true if there's
2029 no fallthru edge; false if there is. */
2031 bool
2032 make_eh_dispatch_edges (gimple stmt)
2034 eh_region r;
2035 eh_catch c;
2036 basic_block src, dst;
2038 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2039 src = gimple_bb (stmt);
2041 switch (r->type)
2043 case ERT_TRY:
2044 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2046 dst = label_to_block (c->label);
2047 make_edge (src, dst, 0);
2049 /* A catch-all handler doesn't have a fallthru. */
2050 if (c->type_list == NULL)
2051 return false;
2053 break;
2055 case ERT_ALLOWED_EXCEPTIONS:
2056 dst = label_to_block (r->u.allowed.label);
2057 make_edge (src, dst, 0);
2058 break;
2060 default:
2061 gcc_unreachable ();
2064 return true;
2067 /* Create the single EH edge from STMT to its nearest landing pad,
2068 if there is such a landing pad within the current function. */
2070 void
2071 make_eh_edges (gimple stmt)
2073 basic_block src, dst;
2074 eh_landing_pad lp;
2075 int lp_nr;
2077 lp_nr = lookup_stmt_eh_lp (stmt);
2078 if (lp_nr <= 0)
2079 return;
2081 lp = get_eh_landing_pad_from_number (lp_nr);
2082 gcc_assert (lp != NULL);
2084 src = gimple_bb (stmt);
2085 dst = label_to_block (lp->post_landing_pad);
2086 make_edge (src, dst, EDGE_EH);
2089 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2090 do not actually perform the final edge redirection.
2092 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2093 we intend to change the destination EH region as well; this means
2094 EH_LANDING_PAD_NR must already be set on the destination block label.
2095 If false, we're being called from generic cfg manipulation code and we
2096 should preserve our place within the region tree. */
2098 static void
2099 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2101 eh_landing_pad old_lp, new_lp;
2102 basic_block old_bb;
2103 gimple throw_stmt;
2104 int old_lp_nr, new_lp_nr;
2105 tree old_label, new_label;
2106 edge_iterator ei;
2107 edge e;
2109 old_bb = edge_in->dest;
2110 old_label = gimple_block_label (old_bb);
2111 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2112 gcc_assert (old_lp_nr > 0);
2113 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2115 throw_stmt = last_stmt (edge_in->src);
2116 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2118 new_label = gimple_block_label (new_bb);
2120 /* Look for an existing region that might be using NEW_BB already. */
2121 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2122 if (new_lp_nr)
2124 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2125 gcc_assert (new_lp);
2127 /* Unless CHANGE_REGION is true, the new and old landing pad
2128 had better be associated with the same EH region. */
2129 gcc_assert (change_region || new_lp->region == old_lp->region);
2131 else
2133 new_lp = NULL;
2134 gcc_assert (!change_region);
2137 /* Notice when we redirect the last EH edge away from OLD_BB. */
2138 FOR_EACH_EDGE (e, ei, old_bb->preds)
2139 if (e != edge_in && (e->flags & EDGE_EH))
2140 break;
2142 if (new_lp)
2144 /* NEW_LP already exists. If there are still edges into OLD_LP,
2145 there's nothing to do with the EH tree. If there are no more
2146 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2147 If CHANGE_REGION is true, then our caller is expecting to remove
2148 the landing pad. */
2149 if (e == NULL && !change_region)
2150 remove_eh_landing_pad (old_lp);
2152 else
2154 /* No correct landing pad exists. If there are no more edges
2155 into OLD_LP, then we can simply re-use the existing landing pad.
2156 Otherwise, we have to create a new landing pad. */
2157 if (e == NULL)
2159 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2160 new_lp = old_lp;
2162 else
2163 new_lp = gen_eh_landing_pad (old_lp->region);
2164 new_lp->post_landing_pad = new_label;
2165 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2168 /* Maybe move the throwing statement to the new region. */
2169 if (old_lp != new_lp)
2171 remove_stmt_from_eh_lp (throw_stmt);
2172 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2176 /* Redirect EH edge E to NEW_BB. */
2178 edge
2179 redirect_eh_edge (edge edge_in, basic_block new_bb)
2181 redirect_eh_edge_1 (edge_in, new_bb, false);
2182 return ssa_redirect_edge (edge_in, new_bb);
2185 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2186 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2187 The actual edge update will happen in the caller. */
2189 void
2190 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2192 tree new_lab = gimple_block_label (new_bb);
2193 bool any_changed = false;
2194 basic_block old_bb;
2195 eh_region r;
2196 eh_catch c;
2198 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2199 switch (r->type)
2201 case ERT_TRY:
2202 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2204 old_bb = label_to_block (c->label);
2205 if (old_bb == e->dest)
2207 c->label = new_lab;
2208 any_changed = true;
2211 break;
2213 case ERT_ALLOWED_EXCEPTIONS:
2214 old_bb = label_to_block (r->u.allowed.label);
2215 gcc_assert (old_bb == e->dest);
2216 r->u.allowed.label = new_lab;
2217 any_changed = true;
2218 break;
2220 default:
2221 gcc_unreachable ();
2224 gcc_assert (any_changed);
2227 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2229 bool
2230 operation_could_trap_helper_p (enum tree_code op,
2231 bool fp_operation,
2232 bool honor_trapv,
2233 bool honor_nans,
2234 bool honor_snans,
2235 tree divisor,
2236 bool *handled)
2238 *handled = true;
2239 switch (op)
2241 case TRUNC_DIV_EXPR:
2242 case CEIL_DIV_EXPR:
2243 case FLOOR_DIV_EXPR:
2244 case ROUND_DIV_EXPR:
2245 case EXACT_DIV_EXPR:
2246 case CEIL_MOD_EXPR:
2247 case FLOOR_MOD_EXPR:
2248 case ROUND_MOD_EXPR:
2249 case TRUNC_MOD_EXPR:
2250 case RDIV_EXPR:
2251 if (honor_snans || honor_trapv)
2252 return true;
2253 if (fp_operation)
2254 return flag_trapping_math;
2255 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2256 return true;
2257 return false;
2259 case LT_EXPR:
2260 case LE_EXPR:
2261 case GT_EXPR:
2262 case GE_EXPR:
2263 case LTGT_EXPR:
2264 /* Some floating point comparisons may trap. */
2265 return honor_nans;
2267 case EQ_EXPR:
2268 case NE_EXPR:
2269 case UNORDERED_EXPR:
2270 case ORDERED_EXPR:
2271 case UNLT_EXPR:
2272 case UNLE_EXPR:
2273 case UNGT_EXPR:
2274 case UNGE_EXPR:
2275 case UNEQ_EXPR:
2276 return honor_snans;
2278 case CONVERT_EXPR:
2279 case FIX_TRUNC_EXPR:
2280 /* Conversion of floating point might trap. */
2281 return honor_nans;
2283 case NEGATE_EXPR:
2284 case ABS_EXPR:
2285 case CONJ_EXPR:
2286 /* These operations don't trap with floating point. */
2287 if (honor_trapv)
2288 return true;
2289 return false;
2291 case PLUS_EXPR:
2292 case MINUS_EXPR:
2293 case MULT_EXPR:
2294 /* Any floating arithmetic may trap. */
2295 if (fp_operation && flag_trapping_math)
2296 return true;
2297 if (honor_trapv)
2298 return true;
2299 return false;
2301 default:
2302 /* Any floating arithmetic may trap. */
2303 if (fp_operation && flag_trapping_math)
2304 return true;
2306 *handled = false;
2307 return false;
2311 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2312 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2313 type operands that may trap. If OP is a division operator, DIVISOR contains
2314 the value of the divisor. */
2316 bool
2317 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2318 tree divisor)
2320 bool honor_nans = (fp_operation && flag_trapping_math
2321 && !flag_finite_math_only);
2322 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2323 bool handled;
2325 if (TREE_CODE_CLASS (op) != tcc_comparison
2326 && TREE_CODE_CLASS (op) != tcc_unary
2327 && TREE_CODE_CLASS (op) != tcc_binary)
2328 return false;
2330 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2331 honor_nans, honor_snans, divisor,
2332 &handled);
2335 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2336 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2337 This routine expects only GIMPLE lhs or rhs input. */
2339 bool
2340 tree_could_trap_p (tree expr)
2342 enum tree_code code;
2343 bool fp_operation = false;
2344 bool honor_trapv = false;
2345 tree t, base, div = NULL_TREE;
2347 if (!expr)
2348 return false;
2350 code = TREE_CODE (expr);
2351 t = TREE_TYPE (expr);
2353 if (t)
2355 if (COMPARISON_CLASS_P (expr))
2356 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2357 else
2358 fp_operation = FLOAT_TYPE_P (t);
2359 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2362 if (TREE_CODE_CLASS (code) == tcc_binary)
2363 div = TREE_OPERAND (expr, 1);
2364 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2365 return true;
2367 restart:
2368 switch (code)
2370 case TARGET_MEM_REF:
2371 /* For TARGET_MEM_REFs use the information based on the original
2372 reference. */
2373 expr = TMR_ORIGINAL (expr);
2374 code = TREE_CODE (expr);
2375 goto restart;
2377 case COMPONENT_REF:
2378 case REALPART_EXPR:
2379 case IMAGPART_EXPR:
2380 case BIT_FIELD_REF:
2381 case VIEW_CONVERT_EXPR:
2382 case WITH_SIZE_EXPR:
2383 expr = TREE_OPERAND (expr, 0);
2384 code = TREE_CODE (expr);
2385 goto restart;
2387 case ARRAY_RANGE_REF:
2388 base = TREE_OPERAND (expr, 0);
2389 if (tree_could_trap_p (base))
2390 return true;
2391 if (TREE_THIS_NOTRAP (expr))
2392 return false;
2393 return !range_in_array_bounds_p (expr);
2395 case ARRAY_REF:
2396 base = TREE_OPERAND (expr, 0);
2397 if (tree_could_trap_p (base))
2398 return true;
2399 if (TREE_THIS_NOTRAP (expr))
2400 return false;
2401 return !in_array_bounds_p (expr);
2403 case INDIRECT_REF:
2404 case ALIGN_INDIRECT_REF:
2405 case MISALIGNED_INDIRECT_REF:
2406 return !TREE_THIS_NOTRAP (expr);
2408 case ASM_EXPR:
2409 return TREE_THIS_VOLATILE (expr);
2411 case CALL_EXPR:
2412 t = get_callee_fndecl (expr);
2413 /* Assume that calls to weak functions may trap. */
2414 if (!t || !DECL_P (t) || DECL_WEAK (t))
2415 return true;
2416 return false;
2418 default:
2419 return false;
2424 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2425 an assignment or a conditional) may throw. */
2427 static bool
2428 stmt_could_throw_1_p (gimple stmt)
2430 enum tree_code code = gimple_expr_code (stmt);
2431 bool honor_nans = false;
2432 bool honor_snans = false;
2433 bool fp_operation = false;
2434 bool honor_trapv = false;
2435 tree t;
2436 size_t i;
2437 bool handled, ret;
2439 if (TREE_CODE_CLASS (code) == tcc_comparison
2440 || TREE_CODE_CLASS (code) == tcc_unary
2441 || TREE_CODE_CLASS (code) == tcc_binary)
2443 t = gimple_expr_type (stmt);
2444 fp_operation = FLOAT_TYPE_P (t);
2445 if (fp_operation)
2447 honor_nans = flag_trapping_math && !flag_finite_math_only;
2448 honor_snans = flag_signaling_nans != 0;
2450 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2451 honor_trapv = true;
2454 /* Check if the main expression may trap. */
2455 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2456 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2457 honor_nans, honor_snans, t,
2458 &handled);
2459 if (handled)
2460 return ret;
2462 /* If the expression does not trap, see if any of the individual operands may
2463 trap. */
2464 for (i = 0; i < gimple_num_ops (stmt); i++)
2465 if (tree_could_trap_p (gimple_op (stmt, i)))
2466 return true;
2468 return false;
2472 /* Return true if statement STMT could throw an exception. */
2474 bool
2475 stmt_could_throw_p (gimple stmt)
2477 if (!flag_exceptions)
2478 return false;
2480 /* The only statements that can throw an exception are assignments,
2481 conditionals, calls, resx, and asms. */
2482 switch (gimple_code (stmt))
2484 case GIMPLE_RESX:
2485 return true;
2487 case GIMPLE_CALL:
2488 return !gimple_call_nothrow_p (stmt);
2490 case GIMPLE_ASSIGN:
2491 case GIMPLE_COND:
2492 if (!flag_non_call_exceptions)
2493 return false;
2494 return stmt_could_throw_1_p (stmt);
2496 case GIMPLE_ASM:
2497 if (!flag_non_call_exceptions)
2498 return false;
2499 return gimple_asm_volatile_p (stmt);
2501 default:
2502 return false;
2507 /* Return true if expression T could throw an exception. */
2509 bool
2510 tree_could_throw_p (tree t)
2512 if (!flag_exceptions)
2513 return false;
2514 if (TREE_CODE (t) == MODIFY_EXPR)
2516 if (flag_non_call_exceptions
2517 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2518 return true;
2519 t = TREE_OPERAND (t, 1);
2522 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2523 t = TREE_OPERAND (t, 0);
2524 if (TREE_CODE (t) == CALL_EXPR)
2525 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2526 if (flag_non_call_exceptions)
2527 return tree_could_trap_p (t);
2528 return false;
2531 /* Return true if STMT can throw an exception that is not caught within
2532 the current function (CFUN). */
2534 bool
2535 stmt_can_throw_external (gimple stmt)
2537 int lp_nr;
2539 if (!stmt_could_throw_p (stmt))
2540 return false;
2542 lp_nr = lookup_stmt_eh_lp (stmt);
2543 return lp_nr == 0;
2546 /* Return true if STMT can throw an exception that is caught within
2547 the current function (CFUN). */
2549 bool
2550 stmt_can_throw_internal (gimple stmt)
2552 int lp_nr;
2554 if (!stmt_could_throw_p (stmt))
2555 return false;
2557 lp_nr = lookup_stmt_eh_lp (stmt);
2558 return lp_nr > 0;
2561 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2562 remove any entry it might have from the EH table. Return true if
2563 any change was made. */
2565 bool
2566 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2568 if (stmt_could_throw_p (stmt))
2569 return false;
2570 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2573 /* Likewise, but always use the current function. */
2575 bool
2576 maybe_clean_eh_stmt (gimple stmt)
2578 return maybe_clean_eh_stmt_fn (cfun, stmt);
2581 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2582 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2583 in the table if it should be in there. Return TRUE if a replacement was
2584 done that my require an EH edge purge. */
2586 bool
2587 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2589 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2591 if (lp_nr != 0)
2593 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2595 if (new_stmt == old_stmt && new_stmt_could_throw)
2596 return false;
2598 remove_stmt_from_eh_lp (old_stmt);
2599 if (new_stmt_could_throw)
2601 add_stmt_to_eh_lp (new_stmt, lp_nr);
2602 return false;
2604 else
2605 return true;
2608 return false;
2611 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2612 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2613 operand is the return value of duplicate_eh_regions. */
2615 bool
2616 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2617 struct function *old_fun, gimple old_stmt,
2618 struct pointer_map_t *map, int default_lp_nr)
2620 int old_lp_nr, new_lp_nr;
2621 void **slot;
2623 if (!stmt_could_throw_p (new_stmt))
2624 return false;
2626 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2627 if (old_lp_nr == 0)
2629 if (default_lp_nr == 0)
2630 return false;
2631 new_lp_nr = default_lp_nr;
2633 else if (old_lp_nr > 0)
2635 eh_landing_pad old_lp, new_lp;
2637 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2638 slot = pointer_map_contains (map, old_lp);
2639 new_lp = (eh_landing_pad) *slot;
2640 new_lp_nr = new_lp->index;
2642 else
2644 eh_region old_r, new_r;
2646 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2647 slot = pointer_map_contains (map, old_r);
2648 new_r = (eh_region) *slot;
2649 new_lp_nr = -new_r->index;
2652 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2653 return true;
2656 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2657 and thus no remapping is required. */
2659 bool
2660 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2662 int lp_nr;
2664 if (!stmt_could_throw_p (new_stmt))
2665 return false;
2667 lp_nr = lookup_stmt_eh_lp (old_stmt);
2668 if (lp_nr == 0)
2669 return false;
2671 add_stmt_to_eh_lp (new_stmt, lp_nr);
2672 return true;
2675 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2676 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2677 this only handles handlers consisting of a single call, as that's the
2678 important case for C++: a destructor call for a particular object showing
2679 up in multiple handlers. */
2681 static bool
2682 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2684 gimple_stmt_iterator gsi;
2685 gimple ones, twos;
2686 unsigned int ai;
2688 gsi = gsi_start (oneh);
2689 if (!gsi_one_before_end_p (gsi))
2690 return false;
2691 ones = gsi_stmt (gsi);
2693 gsi = gsi_start (twoh);
2694 if (!gsi_one_before_end_p (gsi))
2695 return false;
2696 twos = gsi_stmt (gsi);
2698 if (!is_gimple_call (ones)
2699 || !is_gimple_call (twos)
2700 || gimple_call_lhs (ones)
2701 || gimple_call_lhs (twos)
2702 || gimple_call_chain (ones)
2703 || gimple_call_chain (twos)
2704 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2705 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2706 return false;
2708 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2709 if (!operand_equal_p (gimple_call_arg (ones, ai),
2710 gimple_call_arg (twos, ai), 0))
2711 return false;
2713 return true;
2716 /* Optimize
2717 try { A() } finally { try { ~B() } catch { ~A() } }
2718 try { ... } finally { ~A() }
2719 into
2720 try { A() } catch { ~B() }
2721 try { ~B() ... } finally { ~A() }
2723 This occurs frequently in C++, where A is a local variable and B is a
2724 temporary used in the initializer for A. */
2726 static void
2727 optimize_double_finally (gimple one, gimple two)
2729 gimple oneh;
2730 gimple_stmt_iterator gsi;
2732 gsi = gsi_start (gimple_try_cleanup (one));
2733 if (!gsi_one_before_end_p (gsi))
2734 return;
2736 oneh = gsi_stmt (gsi);
2737 if (gimple_code (oneh) != GIMPLE_TRY
2738 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2739 return;
2741 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2743 gimple_seq seq = gimple_try_eval (oneh);
2745 gimple_try_set_cleanup (one, seq);
2746 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2747 seq = copy_gimple_seq_and_replace_locals (seq);
2748 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2749 gimple_try_set_eval (two, seq);
2753 /* Perform EH refactoring optimizations that are simpler to do when code
2754 flow has been lowered but EH structures haven't. */
2756 static void
2757 refactor_eh_r (gimple_seq seq)
2759 gimple_stmt_iterator gsi;
2760 gimple one, two;
2762 one = NULL;
2763 two = NULL;
2764 gsi = gsi_start (seq);
2765 while (1)
2767 one = two;
2768 if (gsi_end_p (gsi))
2769 two = NULL;
2770 else
2771 two = gsi_stmt (gsi);
2772 if (one
2773 && two
2774 && gimple_code (one) == GIMPLE_TRY
2775 && gimple_code (two) == GIMPLE_TRY
2776 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2777 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2778 optimize_double_finally (one, two);
2779 if (one)
2780 switch (gimple_code (one))
2782 case GIMPLE_TRY:
2783 refactor_eh_r (gimple_try_eval (one));
2784 refactor_eh_r (gimple_try_cleanup (one));
2785 break;
2786 case GIMPLE_CATCH:
2787 refactor_eh_r (gimple_catch_handler (one));
2788 break;
2789 case GIMPLE_EH_FILTER:
2790 refactor_eh_r (gimple_eh_filter_failure (one));
2791 break;
2792 default:
2793 break;
2795 if (two)
2796 gsi_next (&gsi);
2797 else
2798 break;
2802 static unsigned
2803 refactor_eh (void)
2805 refactor_eh_r (gimple_body (current_function_decl));
2806 return 0;
2809 static bool
2810 gate_refactor_eh (void)
2812 return flag_exceptions != 0;
2815 struct gimple_opt_pass pass_refactor_eh =
2818 GIMPLE_PASS,
2819 "ehopt", /* name */
2820 gate_refactor_eh, /* gate */
2821 refactor_eh, /* execute */
2822 NULL, /* sub */
2823 NULL, /* next */
2824 0, /* static_pass_number */
2825 TV_TREE_EH, /* tv_id */
2826 PROP_gimple_lcf, /* properties_required */
2827 0, /* properties_provided */
2828 0, /* properties_destroyed */
2829 0, /* todo_flags_start */
2830 TODO_dump_func /* todo_flags_finish */
2834 /* At the end of gimple optimization, we can lower RESX. */
2836 static bool
2837 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2839 int lp_nr;
2840 eh_region src_r, dst_r;
2841 gimple_stmt_iterator gsi;
2842 gimple x;
2843 tree fn, src_nr;
2844 bool ret = false;
2846 lp_nr = lookup_stmt_eh_lp (stmt);
2847 if (lp_nr != 0)
2848 dst_r = get_eh_region_from_lp_number (lp_nr);
2849 else
2850 dst_r = NULL;
2852 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2853 gsi = gsi_last_bb (bb);
2855 if (src_r == NULL)
2857 /* We can wind up with no source region when pass_cleanup_eh shows
2858 that there are no entries into an eh region and deletes it, but
2859 then the block that contains the resx isn't removed. This can
2860 happen without optimization when the switch statement created by
2861 lower_try_finally_switch isn't simplified to remove the eh case.
2863 Resolve this by expanding the resx node to an abort. */
2865 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2866 x = gimple_build_call (fn, 0);
2867 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2869 while (EDGE_COUNT (bb->succs) > 0)
2870 remove_edge (EDGE_SUCC (bb, 0));
2872 else if (dst_r)
2874 /* When we have a destination region, we resolve this by copying
2875 the excptr and filter values into place, and changing the edge
2876 to immediately after the landing pad. */
2877 edge e;
2879 if (lp_nr < 0)
2881 basic_block new_bb;
2882 void **slot;
2883 tree lab;
2885 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2886 the failure decl into a new block, if needed. */
2887 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2889 slot = pointer_map_contains (mnt_map, dst_r);
2890 if (slot == NULL)
2892 gimple_stmt_iterator gsi2;
2894 new_bb = create_empty_bb (bb);
2895 lab = gimple_block_label (new_bb);
2896 gsi2 = gsi_start_bb (new_bb);
2898 fn = dst_r->u.must_not_throw.failure_decl;
2899 x = gimple_build_call (fn, 0);
2900 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2901 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2903 slot = pointer_map_insert (mnt_map, dst_r);
2904 *slot = lab;
2906 else
2908 lab = (tree) *slot;
2909 new_bb = label_to_block (lab);
2912 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2913 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2914 e->count = bb->count;
2915 e->probability = REG_BR_PROB_BASE;
2917 else
2919 edge_iterator ei;
2920 tree dst_nr = build_int_cst (NULL, dst_r->index);
2922 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2923 src_nr = build_int_cst (NULL, src_r->index);
2924 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2925 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2927 /* Update the flags for the outgoing edge. */
2928 e = single_succ_edge (bb);
2929 gcc_assert (e->flags & EDGE_EH);
2930 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2932 /* If there are no more EH users of the landing pad, delete it. */
2933 FOR_EACH_EDGE (e, ei, e->dest->preds)
2934 if (e->flags & EDGE_EH)
2935 break;
2936 if (e == NULL)
2938 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2939 remove_eh_landing_pad (lp);
2943 ret = true;
2945 else
2947 tree var;
2949 /* When we don't have a destination region, this exception escapes
2950 up the call chain. We resolve this by generating a call to the
2951 _Unwind_Resume library function. */
2953 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2954 with no arguments for C++ and Java. Check for that. */
2955 if (src_r->use_cxa_end_cleanup)
2957 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2958 x = gimple_build_call (fn, 0);
2959 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2961 else
2963 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2964 src_nr = build_int_cst (NULL, src_r->index);
2965 x = gimple_build_call (fn, 1, src_nr);
2966 var = create_tmp_var (ptr_type_node, NULL);
2967 var = make_ssa_name (var, x);
2968 gimple_call_set_lhs (x, var);
2969 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2971 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2972 x = gimple_build_call (fn, 1, var);
2973 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2976 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2979 gsi_remove (&gsi, true);
2981 return ret;
2984 static unsigned
2985 execute_lower_resx (void)
2987 basic_block bb;
2988 struct pointer_map_t *mnt_map;
2989 bool dominance_invalidated = false;
2990 bool any_rewritten = false;
2992 mnt_map = pointer_map_create ();
2994 FOR_EACH_BB (bb)
2996 gimple last = last_stmt (bb);
2997 if (last && is_gimple_resx (last))
2999 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3000 any_rewritten = true;
3004 pointer_map_destroy (mnt_map);
3006 if (dominance_invalidated)
3008 free_dominance_info (CDI_DOMINATORS);
3009 free_dominance_info (CDI_POST_DOMINATORS);
3012 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3015 static bool
3016 gate_lower_resx (void)
3018 return flag_exceptions != 0;
3021 struct gimple_opt_pass pass_lower_resx =
3024 GIMPLE_PASS,
3025 "resx", /* name */
3026 gate_lower_resx, /* gate */
3027 execute_lower_resx, /* execute */
3028 NULL, /* sub */
3029 NULL, /* next */
3030 0, /* static_pass_number */
3031 TV_TREE_EH, /* tv_id */
3032 PROP_gimple_lcf, /* properties_required */
3033 0, /* properties_provided */
3034 0, /* properties_destroyed */
3035 0, /* todo_flags_start */
3036 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3041 /* At the end of inlining, we can lower EH_DISPATCH. */
3043 static void
3044 lower_eh_dispatch (basic_block src, gimple stmt)
3046 gimple_stmt_iterator gsi;
3047 int region_nr;
3048 eh_region r;
3049 tree filter, fn;
3050 gimple x;
3052 region_nr = gimple_eh_dispatch_region (stmt);
3053 r = get_eh_region_from_number (region_nr);
3055 gsi = gsi_last_bb (src);
3057 switch (r->type)
3059 case ERT_TRY:
3061 VEC (tree, heap) *labels = NULL;
3062 tree default_label = NULL;
3063 eh_catch c;
3064 edge_iterator ei;
3065 edge e;
3067 /* Collect the labels for a switch. Zero the post_landing_pad
3068 field becase we'll no longer have anything keeping these labels
3069 in existance and the optimizer will be free to merge these
3070 blocks at will. */
3071 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3073 tree tp_node, flt_node, lab = c->label;
3075 c->label = NULL;
3076 tp_node = c->type_list;
3077 flt_node = c->filter_list;
3079 if (tp_node == NULL)
3081 default_label = lab;
3082 break;
3086 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3087 TREE_VALUE (flt_node), NULL, lab);
3088 VEC_safe_push (tree, heap, labels, t);
3090 tp_node = TREE_CHAIN (tp_node);
3091 flt_node = TREE_CHAIN (flt_node);
3093 while (tp_node);
3096 /* Clean up the edge flags. */
3097 FOR_EACH_EDGE (e, ei, src->succs)
3099 if (e->flags & EDGE_FALLTHRU)
3101 /* If there was no catch-all, use the fallthru edge. */
3102 if (default_label == NULL)
3103 default_label = gimple_block_label (e->dest);
3104 e->flags &= ~EDGE_FALLTHRU;
3107 gcc_assert (default_label != NULL);
3109 /* Don't generate a switch if there's only a default case.
3110 This is common in the form of try { A; } catch (...) { B; }. */
3111 if (labels == NULL)
3113 e = single_succ_edge (src);
3114 e->flags |= EDGE_FALLTHRU;
3116 else
3118 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3119 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3120 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3121 filter = make_ssa_name (filter, x);
3122 gimple_call_set_lhs (x, filter);
3123 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3125 /* Turn the default label into a default case. */
3126 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3127 NULL, NULL, default_label);
3128 sort_case_labels (labels);
3130 x = gimple_build_switch_vec (filter, default_label, labels);
3131 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3133 VEC_free (tree, heap, labels);
3136 break;
3138 case ERT_ALLOWED_EXCEPTIONS:
3140 edge b_e = BRANCH_EDGE (src);
3141 edge f_e = FALLTHRU_EDGE (src);
3143 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3144 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3145 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3146 filter = make_ssa_name (filter, x);
3147 gimple_call_set_lhs (x, filter);
3148 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3150 r->u.allowed.label = NULL;
3151 x = gimple_build_cond (EQ_EXPR, filter,
3152 build_int_cst (TREE_TYPE (filter),
3153 r->u.allowed.filter),
3154 NULL_TREE, NULL_TREE);
3155 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3157 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3158 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3160 break;
3162 default:
3163 gcc_unreachable ();
3166 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3167 gsi_remove (&gsi, true);
3170 static unsigned
3171 execute_lower_eh_dispatch (void)
3173 basic_block bb;
3174 bool any_rewritten = false;
3176 assign_filter_values ();
3178 FOR_EACH_BB (bb)
3180 gimple last = last_stmt (bb);
3181 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3183 lower_eh_dispatch (bb, last);
3184 any_rewritten = true;
3188 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3191 static bool
3192 gate_lower_eh_dispatch (void)
3194 return cfun->eh->region_tree != NULL;
3197 struct gimple_opt_pass pass_lower_eh_dispatch =
3200 GIMPLE_PASS,
3201 "ehdisp", /* name */
3202 gate_lower_eh_dispatch, /* gate */
3203 execute_lower_eh_dispatch, /* execute */
3204 NULL, /* sub */
3205 NULL, /* next */
3206 0, /* static_pass_number */
3207 TV_TREE_EH, /* tv_id */
3208 PROP_gimple_lcf, /* properties_required */
3209 0, /* properties_provided */
3210 0, /* properties_destroyed */
3211 0, /* todo_flags_start */
3212 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3216 /* Walk statements, see what regions are really referenced and remove
3217 those that are unused. */
3219 static void
3220 remove_unreachable_handlers (void)
3222 sbitmap r_reachable, lp_reachable;
3223 eh_region region;
3224 eh_landing_pad lp;
3225 basic_block bb;
3226 int lp_nr, r_nr;
3228 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3229 lp_reachable
3230 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3231 sbitmap_zero (r_reachable);
3232 sbitmap_zero (lp_reachable);
3234 FOR_EACH_BB (bb)
3236 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3238 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3240 gimple stmt = gsi_stmt (gsi);
3241 lp_nr = lookup_stmt_eh_lp (stmt);
3243 /* Negative LP numbers are MUST_NOT_THROW regions which
3244 are not considered BB enders. */
3245 if (lp_nr < 0)
3246 SET_BIT (r_reachable, -lp_nr);
3248 /* Positive LP numbers are real landing pads, are are BB enders. */
3249 else if (lp_nr > 0)
3251 gcc_assert (gsi_one_before_end_p (gsi));
3252 region = get_eh_region_from_lp_number (lp_nr);
3253 SET_BIT (r_reachable, region->index);
3254 SET_BIT (lp_reachable, lp_nr);
3259 if (dump_file)
3261 fprintf (dump_file, "Before removal of unreachable regions:\n");
3262 dump_eh_tree (dump_file, cfun);
3263 fprintf (dump_file, "Reachable regions: ");
3264 dump_sbitmap_file (dump_file, r_reachable);
3265 fprintf (dump_file, "Reachable landing pads: ");
3266 dump_sbitmap_file (dump_file, lp_reachable);
3269 for (r_nr = 1;
3270 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3271 if (region && !TEST_BIT (r_reachable, r_nr))
3273 if (dump_file)
3274 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3275 remove_eh_handler (region);
3278 for (lp_nr = 1;
3279 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3280 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3282 if (dump_file)
3283 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3284 remove_eh_landing_pad (lp);
3287 if (dump_file)
3289 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3290 dump_eh_tree (dump_file, cfun);
3291 fprintf (dump_file, "\n\n");
3294 sbitmap_free (r_reachable);
3295 sbitmap_free (lp_reachable);
3297 #ifdef ENABLE_CHECKING
3298 verify_eh_tree (cfun);
3299 #endif
3302 /* Remove regions that do not have landing pads. This assumes
3303 that remove_unreachable_handlers has already been run, and
3304 that we've just manipulated the landing pads since then. */
3306 static void
3307 remove_unreachable_handlers_no_lp (void)
3309 eh_region r;
3310 int i;
3312 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3313 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3315 if (dump_file)
3316 fprintf (dump_file, "Removing unreachable region %d\n", i);
3317 remove_eh_handler (r);
3321 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3322 optimisticaly split all sorts of edges, including EH edges. The
3323 optimization passes in between may not have needed them; if not,
3324 we should undo the split.
3326 Recognize this case by having one EH edge incoming to the BB and
3327 one normal edge outgoing; BB should be empty apart from the
3328 post_landing_pad label.
3330 Note that this is slightly different from the empty handler case
3331 handled by cleanup_empty_eh, in that the actual handler may yet
3332 have actual code but the landing pad has been separated from the
3333 handler. As such, cleanup_empty_eh relies on this transformation
3334 having been done first. */
3336 static bool
3337 unsplit_eh (eh_landing_pad lp)
3339 basic_block bb = label_to_block (lp->post_landing_pad);
3340 gimple_stmt_iterator gsi;
3341 edge e_in, e_out;
3343 /* Quickly check the edge counts on BB for singularity. */
3344 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3345 return false;
3346 e_in = EDGE_PRED (bb, 0);
3347 e_out = EDGE_SUCC (bb, 0);
3349 /* Input edge must be EH and output edge must be normal. */
3350 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3351 return false;
3353 /* The block must be empty except for the labels. */
3354 if (!gsi_end_p (gsi_after_labels (bb)))
3355 return false;
3357 /* The destination block must not already have a landing pad
3358 for a different region. */
3359 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3361 gimple stmt = gsi_stmt (gsi);
3362 tree lab;
3363 int lp_nr;
3365 if (gimple_code (stmt) != GIMPLE_LABEL)
3366 break;
3367 lab = gimple_label_label (stmt);
3368 lp_nr = EH_LANDING_PAD_NR (lab);
3369 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3370 return false;
3373 /* The new destination block must not already be a destination of
3374 the source block, lest we merge fallthru and eh edges and get
3375 all sorts of confused. */
3376 if (find_edge (e_in->src, e_out->dest))
3377 return false;
3379 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3380 thought this should have been cleaned up by a phicprop pass, but
3381 that doesn't appear to handle virtuals. Propagate by hand. */
3382 if (!gimple_seq_empty_p (phi_nodes (bb)))
3384 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3386 gimple use_stmt, phi = gsi_stmt (gsi);
3387 tree lhs = gimple_phi_result (phi);
3388 tree rhs = gimple_phi_arg_def (phi, 0);
3389 use_operand_p use_p;
3390 imm_use_iterator iter;
3392 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3394 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3395 SET_USE (use_p, rhs);
3398 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3399 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3401 remove_phi_node (&gsi, true);
3405 if (dump_file && (dump_flags & TDF_DETAILS))
3406 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3407 lp->index, e_out->dest->index);
3409 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3410 a successor edge, humor it. But do the real CFG change with the
3411 predecessor of E_OUT in order to preserve the ordering of arguments
3412 to the PHI nodes in E_OUT->DEST. */
3413 redirect_eh_edge_1 (e_in, e_out->dest, false);
3414 redirect_edge_pred (e_out, e_in->src);
3415 e_out->flags = e_in->flags;
3416 e_out->probability = e_in->probability;
3417 e_out->count = e_in->count;
3418 remove_edge (e_in);
3420 return true;
3423 /* Examine each landing pad block and see if it matches unsplit_eh. */
3425 static bool
3426 unsplit_all_eh (void)
3428 bool changed = false;
3429 eh_landing_pad lp;
3430 int i;
3432 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3433 if (lp)
3434 changed |= unsplit_eh (lp);
3436 return changed;
3439 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3440 to OLD_BB to NEW_BB; return true on success, false on failure.
3442 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3443 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3444 Virtual PHIs may be deleted and marked for renaming. */
3446 static bool
3447 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3448 edge old_bb_out, bool change_region)
3450 gimple_stmt_iterator ngsi, ogsi;
3451 edge_iterator ei;
3452 edge e;
3453 bitmap rename_virts;
3454 bitmap ophi_handled;
3456 FOR_EACH_EDGE (e, ei, old_bb->preds)
3457 redirect_edge_var_map_clear (e);
3459 ophi_handled = BITMAP_ALLOC (NULL);
3460 rename_virts = BITMAP_ALLOC (NULL);
3462 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3463 for the edges we're going to move. */
3464 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3466 gimple ophi, nphi = gsi_stmt (ngsi);
3467 tree nresult, nop;
3469 nresult = gimple_phi_result (nphi);
3470 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3472 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3473 the source ssa_name. */
3474 ophi = NULL;
3475 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3477 ophi = gsi_stmt (ogsi);
3478 if (gimple_phi_result (ophi) == nop)
3479 break;
3480 ophi = NULL;
3483 /* If we did find the corresponding PHI, copy those inputs. */
3484 if (ophi)
3486 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3487 FOR_EACH_EDGE (e, ei, old_bb->preds)
3489 location_t oloc;
3490 tree oop;
3492 if ((e->flags & EDGE_EH) == 0)
3493 continue;
3494 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3495 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3496 redirect_edge_var_map_add (e, nresult, oop, oloc);
3499 /* If we didn't find the PHI, but it's a VOP, remember to rename
3500 it later, assuming all other tests succeed. */
3501 else if (!is_gimple_reg (nresult))
3502 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3503 /* If we didn't find the PHI, and it's a real variable, we know
3504 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3505 variable is unchanged from input to the block and we can simply
3506 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3507 else
3509 location_t nloc
3510 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3511 FOR_EACH_EDGE (e, ei, old_bb->preds)
3512 redirect_edge_var_map_add (e, nresult, nop, nloc);
3516 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3517 we don't know what values from the other edges into NEW_BB to use. */
3518 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3520 gimple ophi = gsi_stmt (ogsi);
3521 tree oresult = gimple_phi_result (ophi);
3522 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3523 goto fail;
3526 /* At this point we know that the merge will succeed. Remove the PHI
3527 nodes for the virtuals that we want to rename. */
3528 if (!bitmap_empty_p (rename_virts))
3530 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3532 gimple nphi = gsi_stmt (ngsi);
3533 tree nresult = gimple_phi_result (nphi);
3534 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3536 mark_virtual_phi_result_for_renaming (nphi);
3537 remove_phi_node (&ngsi, true);
3539 else
3540 gsi_next (&ngsi);
3544 /* Finally, move the edges and update the PHIs. */
3545 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3546 if (e->flags & EDGE_EH)
3548 redirect_eh_edge_1 (e, new_bb, change_region);
3549 redirect_edge_succ (e, new_bb);
3550 flush_pending_stmts (e);
3552 else
3553 ei_next (&ei);
3555 BITMAP_FREE (ophi_handled);
3556 BITMAP_FREE (rename_virts);
3557 return true;
3559 fail:
3560 FOR_EACH_EDGE (e, ei, old_bb->preds)
3561 redirect_edge_var_map_clear (e);
3562 BITMAP_FREE (ophi_handled);
3563 BITMAP_FREE (rename_virts);
3564 return false;
3567 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3568 old region to NEW_REGION at BB. */
3570 static void
3571 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3572 eh_landing_pad lp, eh_region new_region)
3574 gimple_stmt_iterator gsi;
3575 eh_landing_pad *pp;
3577 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3578 continue;
3579 *pp = lp->next_lp;
3581 lp->region = new_region;
3582 lp->next_lp = new_region->landing_pads;
3583 new_region->landing_pads = lp;
3585 /* Delete the RESX that was matched within the empty handler block. */
3586 gsi = gsi_last_bb (bb);
3587 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3588 gsi_remove (&gsi, true);
3590 /* Clean up E_OUT for the fallthru. */
3591 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3592 e_out->probability = REG_BR_PROB_BASE;
3595 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3596 unsplitting than unsplit_eh was prepared to handle, e.g. when
3597 multiple incoming edges and phis are involved. */
3599 static bool
3600 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3602 gimple_stmt_iterator gsi;
3603 tree lab;
3605 /* We really ought not have totally lost everything following
3606 a landing pad label. Given that BB is empty, there had better
3607 be a successor. */
3608 gcc_assert (e_out != NULL);
3610 /* The destination block must not already have a landing pad
3611 for a different region. */
3612 lab = NULL;
3613 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3615 gimple stmt = gsi_stmt (gsi);
3616 int lp_nr;
3618 if (gimple_code (stmt) != GIMPLE_LABEL)
3619 break;
3620 lab = gimple_label_label (stmt);
3621 lp_nr = EH_LANDING_PAD_NR (lab);
3622 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3623 return false;
3626 /* Attempt to move the PHIs into the successor block. */
3627 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3629 if (dump_file && (dump_flags & TDF_DETAILS))
3630 fprintf (dump_file,
3631 "Unsplit EH landing pad %d to block %i "
3632 "(via cleanup_empty_eh).\n",
3633 lp->index, e_out->dest->index);
3634 return true;
3637 return false;
3640 /* Examine the block associated with LP to determine if it's an empty
3641 handler for its EH region. If so, attempt to redirect EH edges to
3642 an outer region. Return true the CFG was updated in any way. This
3643 is similar to jump forwarding, just across EH edges. */
3645 static bool
3646 cleanup_empty_eh (eh_landing_pad lp)
3648 basic_block bb = label_to_block (lp->post_landing_pad);
3649 gimple_stmt_iterator gsi;
3650 gimple resx;
3651 eh_region new_region;
3652 edge_iterator ei;
3653 edge e, e_out;
3654 bool has_non_eh_pred;
3655 int new_lp_nr;
3657 /* There can be zero or one edges out of BB. This is the quickest test. */
3658 switch (EDGE_COUNT (bb->succs))
3660 case 0:
3661 e_out = NULL;
3662 break;
3663 case 1:
3664 e_out = EDGE_SUCC (bb, 0);
3665 break;
3666 default:
3667 return false;
3669 gsi = gsi_after_labels (bb);
3671 /* Make sure to skip debug statements. */
3672 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3673 gsi_next_nondebug (&gsi);
3675 /* If the block is totally empty, look for more unsplitting cases. */
3676 if (gsi_end_p (gsi))
3677 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3679 /* The block should consist only of a single RESX statement. */
3680 resx = gsi_stmt (gsi);
3681 if (!is_gimple_resx (resx))
3682 return false;
3683 gcc_assert (gsi_one_before_end_p (gsi));
3685 /* Determine if there are non-EH edges, or resx edges into the handler. */
3686 has_non_eh_pred = false;
3687 FOR_EACH_EDGE (e, ei, bb->preds)
3688 if (!(e->flags & EDGE_EH))
3689 has_non_eh_pred = true;
3691 /* Find the handler that's outer of the empty handler by looking at
3692 where the RESX instruction was vectored. */
3693 new_lp_nr = lookup_stmt_eh_lp (resx);
3694 new_region = get_eh_region_from_lp_number (new_lp_nr);
3696 /* If there's no destination region within the current function,
3697 redirection is trivial via removing the throwing statements from
3698 the EH region, removing the EH edges, and allowing the block
3699 to go unreachable. */
3700 if (new_region == NULL)
3702 gcc_assert (e_out == NULL);
3703 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3704 if (e->flags & EDGE_EH)
3706 gimple stmt = last_stmt (e->src);
3707 remove_stmt_from_eh_lp (stmt);
3708 remove_edge (e);
3710 else
3711 ei_next (&ei);
3712 goto succeed;
3715 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3716 to handle the abort and allow the blocks to go unreachable. */
3717 if (new_region->type == ERT_MUST_NOT_THROW)
3719 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3720 if (e->flags & EDGE_EH)
3722 gimple stmt = last_stmt (e->src);
3723 remove_stmt_from_eh_lp (stmt);
3724 add_stmt_to_eh_lp (stmt, new_lp_nr);
3725 remove_edge (e);
3727 else
3728 ei_next (&ei);
3729 goto succeed;
3732 /* Try to redirect the EH edges and merge the PHIs into the destination
3733 landing pad block. If the merge succeeds, we'll already have redirected
3734 all the EH edges. The handler itself will go unreachable if there were
3735 no normal edges. */
3736 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3737 goto succeed;
3739 /* Finally, if all input edges are EH edges, then we can (potentially)
3740 reduce the number of transfers from the runtime by moving the landing
3741 pad from the original region to the new region. This is a win when
3742 we remove the last CLEANUP region along a particular exception
3743 propagation path. Since nothing changes except for the region with
3744 which the landing pad is associated, the PHI nodes do not need to be
3745 adjusted at all. */
3746 if (!has_non_eh_pred)
3748 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3749 if (dump_file && (dump_flags & TDF_DETAILS))
3750 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3751 lp->index, new_region->index);
3753 /* ??? The CFG didn't change, but we may have rendered the
3754 old EH region unreachable. Trigger a cleanup there. */
3755 return true;
3758 return false;
3760 succeed:
3761 if (dump_file && (dump_flags & TDF_DETAILS))
3762 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3763 remove_eh_landing_pad (lp);
3764 return true;
3767 /* Do a post-order traversal of the EH region tree. Examine each
3768 post_landing_pad block and see if we can eliminate it as empty. */
3770 static bool
3771 cleanup_all_empty_eh (void)
3773 bool changed = false;
3774 eh_landing_pad lp;
3775 int i;
3777 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3778 if (lp)
3779 changed |= cleanup_empty_eh (lp);
3781 return changed;
3784 /* Perform cleanups and lowering of exception handling
3785 1) cleanups regions with handlers doing nothing are optimized out
3786 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3787 3) Info about regions that are containing instructions, and regions
3788 reachable via local EH edges is collected
3789 4) Eh tree is pruned for regions no longer neccesary.
3791 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3792 Unify those that have the same failure decl and locus.
3795 static unsigned int
3796 execute_cleanup_eh (void)
3798 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3799 looking up unreachable landing pads. */
3800 remove_unreachable_handlers ();
3802 /* Watch out for the region tree vanishing due to all unreachable. */
3803 if (cfun->eh->region_tree && optimize)
3805 bool changed = false;
3807 changed |= unsplit_all_eh ();
3808 changed |= cleanup_all_empty_eh ();
3810 if (changed)
3812 free_dominance_info (CDI_DOMINATORS);
3813 free_dominance_info (CDI_POST_DOMINATORS);
3815 /* We delayed all basic block deletion, as we may have performed
3816 cleanups on EH edges while non-EH edges were still present. */
3817 delete_unreachable_blocks ();
3819 /* We manipulated the landing pads. Remove any region that no
3820 longer has a landing pad. */
3821 remove_unreachable_handlers_no_lp ();
3823 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3827 return 0;
3830 static bool
3831 gate_cleanup_eh (void)
3833 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3836 struct gimple_opt_pass pass_cleanup_eh = {
3838 GIMPLE_PASS,
3839 "ehcleanup", /* name */
3840 gate_cleanup_eh, /* gate */
3841 execute_cleanup_eh, /* execute */
3842 NULL, /* sub */
3843 NULL, /* next */
3844 0, /* static_pass_number */
3845 TV_TREE_EH, /* tv_id */
3846 PROP_gimple_lcf, /* properties_required */
3847 0, /* properties_provided */
3848 0, /* properties_destroyed */
3849 0, /* todo_flags_start */
3850 TODO_dump_func /* todo_flags_finish */
3854 /* Verify that BB containing STMT as the last statement, has precisely the
3855 edge that make_eh_edges would create. */
3857 bool
3858 verify_eh_edges (gimple stmt)
3860 basic_block bb = gimple_bb (stmt);
3861 eh_landing_pad lp = NULL;
3862 int lp_nr;
3863 edge_iterator ei;
3864 edge e, eh_edge;
3866 lp_nr = lookup_stmt_eh_lp (stmt);
3867 if (lp_nr > 0)
3868 lp = get_eh_landing_pad_from_number (lp_nr);
3870 eh_edge = NULL;
3871 FOR_EACH_EDGE (e, ei, bb->succs)
3873 if (e->flags & EDGE_EH)
3875 if (eh_edge)
3877 error ("BB %i has multiple EH edges", bb->index);
3878 return true;
3880 else
3881 eh_edge = e;
3885 if (lp == NULL)
3887 if (eh_edge)
3889 error ("BB %i can not throw but has an EH edge", bb->index);
3890 return true;
3892 return false;
3895 if (!stmt_could_throw_p (stmt))
3897 error ("BB %i last statement has incorrectly set lp", bb->index);
3898 return true;
3901 if (eh_edge == NULL)
3903 error ("BB %i is missing an EH edge", bb->index);
3904 return true;
3907 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3909 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3910 return true;
3913 return false;
3916 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3918 bool
3919 verify_eh_dispatch_edge (gimple stmt)
3921 eh_region r;
3922 eh_catch c;
3923 basic_block src, dst;
3924 bool want_fallthru = true;
3925 edge_iterator ei;
3926 edge e, fall_edge;
3928 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
3929 src = gimple_bb (stmt);
3931 FOR_EACH_EDGE (e, ei, src->succs)
3932 gcc_assert (e->aux == NULL);
3934 switch (r->type)
3936 case ERT_TRY:
3937 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3939 dst = label_to_block (c->label);
3940 e = find_edge (src, dst);
3941 if (e == NULL)
3943 error ("BB %i is missing an edge", src->index);
3944 return true;
3946 e->aux = (void *)e;
3948 /* A catch-all handler doesn't have a fallthru. */
3949 if (c->type_list == NULL)
3951 want_fallthru = false;
3952 break;
3955 break;
3957 case ERT_ALLOWED_EXCEPTIONS:
3958 dst = label_to_block (r->u.allowed.label);
3959 e = find_edge (src, dst);
3960 if (e == NULL)
3962 error ("BB %i is missing an edge", src->index);
3963 return true;
3965 e->aux = (void *)e;
3966 break;
3968 default:
3969 gcc_unreachable ();
3972 fall_edge = NULL;
3973 FOR_EACH_EDGE (e, ei, src->succs)
3975 if (e->flags & EDGE_FALLTHRU)
3977 if (fall_edge != NULL)
3979 error ("BB %i too many fallthru edges", src->index);
3980 return true;
3982 fall_edge = e;
3984 else if (e->aux)
3985 e->aux = NULL;
3986 else
3988 error ("BB %i has incorrect edge", src->index);
3989 return true;
3992 if ((fall_edge != NULL) ^ want_fallthru)
3994 error ("BB %i has incorrect fallthru edge", src->index);
3995 return true;
3998 return false;