Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / sel-sched-ir.c
blobe864eb40c7a048f7e9fe0bec52eab53e037ba6f2
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_remove_loop_preheader (void);
157 static bool insn_is_the_only_one_in_bb_p (insn_t);
158 static void create_initial_data_sets (basic_block);
160 static void free_av_set (basic_block);
161 static void invalidate_av_set (basic_block);
162 static void extend_insn_data (void);
163 static void sel_init_new_insn (insn_t, int);
164 static void finish_insns (void);
166 /* Various list functions. */
168 /* Copy an instruction list L. */
169 ilist_t
170 ilist_copy (ilist_t l)
172 ilist_t head = NULL, *tailp = &head;
174 while (l)
176 ilist_add (tailp, ILIST_INSN (l));
177 tailp = &ILIST_NEXT (*tailp);
178 l = ILIST_NEXT (l);
181 return head;
184 /* Invert an instruction list L. */
185 ilist_t
186 ilist_invert (ilist_t l)
188 ilist_t res = NULL;
190 while (l)
192 ilist_add (&res, ILIST_INSN (l));
193 l = ILIST_NEXT (l);
196 return res;
199 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
200 void
201 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
203 bnd_t bnd;
205 _list_add (lp);
206 bnd = BLIST_BND (*lp);
208 BND_TO (bnd) = to;
209 BND_PTR (bnd) = ptr;
210 BND_AV (bnd) = NULL;
211 BND_AV1 (bnd) = NULL;
212 BND_DC (bnd) = dc;
215 /* Remove the list note pointed to by LP. */
216 void
217 blist_remove (blist_t *lp)
219 bnd_t b = BLIST_BND (*lp);
221 av_set_clear (&BND_AV (b));
222 av_set_clear (&BND_AV1 (b));
223 ilist_clear (&BND_PTR (b));
225 _list_remove (lp);
228 /* Init a fence tail L. */
229 void
230 flist_tail_init (flist_tail_t l)
232 FLIST_TAIL_HEAD (l) = NULL;
233 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236 /* Try to find fence corresponding to INSN in L. */
237 fence_t
238 flist_lookup (flist_t l, insn_t insn)
240 while (l)
242 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
243 return FLIST_FENCE (l);
245 l = FLIST_NEXT (l);
248 return NULL;
251 /* Init the fields of F before running fill_insns. */
252 static void
253 init_fence_for_scheduling (fence_t f)
255 FENCE_BNDS (f) = NULL;
256 FENCE_PROCESSED_P (f) = false;
257 FENCE_SCHEDULED_P (f) = false;
260 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
261 static void
262 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
263 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
264 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
265 int cycle, int cycle_issued_insns,
266 bool starts_cycle_p, bool after_stall_p)
268 fence_t f;
270 _list_add (lp);
271 f = FLIST_FENCE (*lp);
273 FENCE_INSN (f) = insn;
275 gcc_assert (state != NULL);
276 FENCE_STATE (f) = state;
278 FENCE_CYCLE (f) = cycle;
279 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
280 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
281 FENCE_AFTER_STALL_P (f) = after_stall_p;
283 gcc_assert (dc != NULL);
284 FENCE_DC (f) = dc;
286 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
287 FENCE_TC (f) = tc;
289 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
290 FENCE_EXECUTING_INSNS (f) = executing_insns;
291 FENCE_READY_TICKS (f) = ready_ticks;
292 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
293 FENCE_SCHED_NEXT (f) = sched_next;
295 init_fence_for_scheduling (f);
298 /* Remove the head node of the list pointed to by LP. */
299 static void
300 flist_remove (flist_t *lp)
302 if (FENCE_INSN (FLIST_FENCE (*lp)))
303 fence_clear (FLIST_FENCE (*lp));
304 _list_remove (lp);
307 /* Clear the fence list pointed to by LP. */
308 void
309 flist_clear (flist_t *lp)
311 while (*lp)
312 flist_remove (lp);
315 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
316 void
317 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
319 def_t d;
321 _list_add (dl);
322 d = DEF_LIST_DEF (*dl);
324 d->orig_insn = original_insn;
325 d->crosses_call = crosses_call;
329 /* Functions to work with target contexts. */
331 /* Bulk target context. It is convenient for debugging purposes to ensure
332 that there are no uninitialized (null) target contexts. */
333 static tc_t bulk_tc = (tc_t) 1;
335 /* Target hooks wrappers. In the future we can provide some default
336 implementations for them. */
338 /* Allocate a store for the target context. */
339 static tc_t
340 alloc_target_context (void)
342 return (targetm.sched.alloc_sched_context
343 ? targetm.sched.alloc_sched_context () : bulk_tc);
346 /* Init target context TC.
347 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
348 Overwise, copy current backend context to TC. */
349 static void
350 init_target_context (tc_t tc, bool clean_p)
352 if (targetm.sched.init_sched_context)
353 targetm.sched.init_sched_context (tc, clean_p);
356 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
357 int init_target_context (). */
358 tc_t
359 create_target_context (bool clean_p)
361 tc_t tc = alloc_target_context ();
363 init_target_context (tc, clean_p);
364 return tc;
367 /* Copy TC to the current backend context. */
368 void
369 set_target_context (tc_t tc)
371 if (targetm.sched.set_sched_context)
372 targetm.sched.set_sched_context (tc);
375 /* TC is about to be destroyed. Free any internal data. */
376 static void
377 clear_target_context (tc_t tc)
379 if (targetm.sched.clear_sched_context)
380 targetm.sched.clear_sched_context (tc);
383 /* Clear and free it. */
384 static void
385 delete_target_context (tc_t tc)
387 clear_target_context (tc);
389 if (targetm.sched.free_sched_context)
390 targetm.sched.free_sched_context (tc);
393 /* Make a copy of FROM in TO.
394 NB: May be this should be a hook. */
395 static void
396 copy_target_context (tc_t to, tc_t from)
398 tc_t tmp = create_target_context (false);
400 set_target_context (from);
401 init_target_context (to, false);
403 set_target_context (tmp);
404 delete_target_context (tmp);
407 /* Create a copy of TC. */
408 static tc_t
409 create_copy_of_target_context (tc_t tc)
411 tc_t copy = alloc_target_context ();
413 copy_target_context (copy, tc);
415 return copy;
418 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
419 is the same as in init_target_context (). */
420 void
421 reset_target_context (tc_t tc, bool clean_p)
423 clear_target_context (tc);
424 init_target_context (tc, clean_p);
427 /* Functions to work with dependence contexts.
428 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence
429 context. It accumulates information about processed insns to decide if
430 current insn is dependent on the processed ones. */
432 /* Make a copy of FROM in TO. */
433 static void
434 copy_deps_context (deps_t to, deps_t from)
436 init_deps (to, false);
437 deps_join (to, from);
440 /* Allocate store for dep context. */
441 static deps_t
442 alloc_deps_context (void)
444 return XNEW (struct deps);
447 /* Allocate and initialize dep context. */
448 static deps_t
449 create_deps_context (void)
451 deps_t dc = alloc_deps_context ();
453 init_deps (dc, false);
454 return dc;
457 /* Create a copy of FROM. */
458 static deps_t
459 create_copy_of_deps_context (deps_t from)
461 deps_t to = alloc_deps_context ();
463 copy_deps_context (to, from);
464 return to;
467 /* Clean up internal data of DC. */
468 static void
469 clear_deps_context (deps_t dc)
471 free_deps (dc);
474 /* Clear and free DC. */
475 static void
476 delete_deps_context (deps_t dc)
478 clear_deps_context (dc);
479 free (dc);
482 /* Clear and init DC. */
483 static void
484 reset_deps_context (deps_t dc)
486 clear_deps_context (dc);
487 init_deps (dc, false);
490 /* This structure describes the dependence analysis hooks for advancing
491 dependence context. */
492 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
494 NULL,
496 NULL, /* start_insn */
497 NULL, /* finish_insn */
498 NULL, /* start_lhs */
499 NULL, /* finish_lhs */
500 NULL, /* start_rhs */
501 NULL, /* finish_rhs */
502 haifa_note_reg_set,
503 haifa_note_reg_clobber,
504 haifa_note_reg_use,
505 NULL, /* note_mem_dep */
506 NULL, /* note_dep */
508 0, 0, 0
511 /* Process INSN and add its impact on DC. */
512 void
513 advance_deps_context (deps_t dc, insn_t insn)
515 sched_deps_info = &advance_deps_context_sched_deps_info;
516 deps_analyze_insn (dc, insn);
520 /* Functions to work with DFA states. */
522 /* Allocate store for a DFA state. */
523 static state_t
524 state_alloc (void)
526 return xmalloc (dfa_state_size);
529 /* Allocate and initialize DFA state. */
530 static state_t
531 state_create (void)
533 state_t state = state_alloc ();
535 state_reset (state);
536 advance_state (state);
537 return state;
540 /* Free DFA state. */
541 static void
542 state_free (state_t state)
544 free (state);
547 /* Make a copy of FROM in TO. */
548 static void
549 state_copy (state_t to, state_t from)
551 memcpy (to, from, dfa_state_size);
554 /* Create a copy of FROM. */
555 static state_t
556 state_create_copy (state_t from)
558 state_t to = state_alloc ();
560 state_copy (to, from);
561 return to;
565 /* Functions to work with fences. */
567 /* Clear the fence. */
568 static void
569 fence_clear (fence_t f)
571 state_t s = FENCE_STATE (f);
572 deps_t dc = FENCE_DC (f);
573 void *tc = FENCE_TC (f);
575 ilist_clear (&FENCE_BNDS (f));
577 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
578 || (s == NULL && dc == NULL && tc == NULL));
580 if (s != NULL)
581 free (s);
583 if (dc != NULL)
584 delete_deps_context (dc);
586 if (tc != NULL)
587 delete_target_context (tc);
588 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
589 free (FENCE_READY_TICKS (f));
590 FENCE_READY_TICKS (f) = NULL;
593 /* Init a list of fences with successors of OLD_FENCE. */
594 void
595 init_fences (insn_t old_fence)
597 insn_t succ;
598 succ_iterator si;
599 bool first = true;
600 int ready_ticks_size = get_max_uid () + 1;
602 FOR_EACH_SUCC_1 (succ, si, old_fence,
603 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
606 if (first)
607 first = false;
608 else
609 gcc_assert (flag_sel_sched_pipelining_outer_loops);
611 flist_add (&fences, succ,
612 state_create (),
613 create_deps_context () /* dc */,
614 create_target_context (true) /* tc */,
615 NULL_RTX /* last_scheduled_insn */,
616 NULL, /* executing_insns */
617 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
618 ready_ticks_size,
619 NULL_RTX /* sched_next */,
620 1 /* cycle */, 0 /* cycle_issued_insns */,
621 1 /* starts_cycle_p */, 0 /* after_stall_p */);
625 /* Merges two fences (filling fields of fence F with resulting values) by
626 following rules: 1) state, target context and last scheduled insn are
627 propagated from fallthrough edge if it is available;
628 2) deps context and cycle is propagated from more probable edge;
629 3) all other fields are set to corresponding constant values.
631 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
632 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P
633 are the corresponding fields of the second fence. */
634 static void
635 merge_fences (fence_t f, insn_t insn,
636 state_t state, deps_t dc, void *tc,
637 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, bool after_stall_p)
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
656 state_reset (FENCE_STATE (f));
657 state_free (state);
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 VEC_free (rtx, gc, executing_insns);
670 free (ready_ticks);
671 if (FENCE_EXECUTING_INSNS (f))
672 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
673 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
674 if (FENCE_READY_TICKS (f))
675 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 else
679 edge edge_old = NULL, edge_new = NULL;
680 edge candidate;
681 succ_iterator si;
682 insn_t succ;
684 /* Find fallthrough edge. */
685 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
686 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
688 if (!candidate
689 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
690 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 /* No fallthrough edge leading to basic block of INSN. */
693 state_reset (FENCE_STATE (f));
694 state_free (state);
696 reset_target_context (FENCE_TC (f), true);
697 delete_target_context (tc);
699 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 else
702 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
704 /* Would be weird if same insn is successor of several fallthrough
705 edges. */
706 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
707 != BLOCK_FOR_INSN (last_scheduled_insn_old));
709 state_free (FENCE_STATE (f));
710 FENCE_STATE (f) = state;
712 delete_target_context (FENCE_TC (f));
713 FENCE_TC (f) = tc;
715 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
717 else
719 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
720 state_free (state);
721 delete_target_context (tc);
723 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
724 != BLOCK_FOR_INSN (last_scheduled_insn));
727 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
728 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
729 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
731 if (succ == insn)
733 /* No same successor allowed from several edges. */
734 gcc_assert (!edge_old);
735 edge_old = si.e1;
738 /* Find edge of second predecessor (last_scheduled_insn->insn). */
739 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
742 if (succ == insn)
744 /* No same successor allowed from several edges. */
745 gcc_assert (!edge_new);
746 edge_new = si.e1;
750 /* Check if we can choose most probable predecessor. */
751 if (edge_old == NULL || edge_new == NULL)
753 reset_deps_context (FENCE_DC (f));
754 delete_deps_context (dc);
755 VEC_free (rtx, gc, executing_insns);
756 free (ready_ticks);
758 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
759 if (FENCE_EXECUTING_INSNS (f))
760 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
761 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
762 if (FENCE_READY_TICKS (f))
763 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
765 else
766 if (edge_new->probability > edge_old->probability)
768 delete_deps_context (FENCE_DC (f));
769 FENCE_DC (f) = dc;
770 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
771 FENCE_EXECUTING_INSNS (f) = executing_insns;
772 free (FENCE_READY_TICKS (f));
773 FENCE_READY_TICKS (f) = ready_ticks;
774 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
775 FENCE_CYCLE (f) = cycle;
777 else
779 /* Leave DC and CYCLE untouched. */
780 delete_deps_context (dc);
781 VEC_free (rtx, gc, executing_insns);
782 free (ready_ticks);
786 /* Fill remaining invariant fields. */
787 if (after_stall_p)
788 FENCE_AFTER_STALL_P (f) = 1;
790 FENCE_ISSUED_INSNS (f) = 0;
791 FENCE_STARTS_CYCLE_P (f) = 1;
792 FENCE_SCHED_NEXT (f) = NULL;
795 /* Add a new fence to NEW_FENCES list, initializing it from all
796 other parameters. */
797 static void
798 add_to_fences (flist_tail_t new_fences, insn_t insn,
799 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
800 VEC(rtx, gc) *executing_insns, int *ready_ticks,
801 int ready_ticks_size, rtx sched_next, int cycle,
802 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p)
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
806 if (! f)
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
809 last_scheduled_insn, executing_insns, ready_ticks,
810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811 starts_cycle_p, after_stall_p);
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
816 else
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
820 sched_next, cycle, after_stall_p);
824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825 void
826 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
831 old = FLIST_FENCE (old_fences);
832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
839 old->sched_next, old->cycle,
840 old->after_stall_p);
842 else
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
849 FENCE_INSN (old) = NULL;
852 /* Add a new fence to NEW_FENCES list and initialize most of its data
853 as a clean one. */
854 void
855 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
857 int ready_ticks_size = get_max_uid () + 1;
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
862 NULL_RTX, NULL,
863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864 NULL_RTX, FENCE_CYCLE (fence) + 1,
865 0, 1, FENCE_AFTER_STALL_P (fence));
868 /* Add a new fence to NEW_FENCES list and initialize all of its data
869 from FENCE and SUCC. */
870 void
871 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
873 int * new_ready_ticks
874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
882 FENCE_LAST_SCHEDULED_INSN (fence),
883 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
889 FENCE_STARTS_CYCLE_P (fence),
890 FENCE_AFTER_STALL_P (fence));
894 /* Functions to work with regset and nop pools. */
896 /* Returns the new regset from pool. It might have some of the bits set
897 from the previous usage. */
898 regset
899 get_regset_from_pool (void)
901 regset rs;
903 if (regset_pool.n != 0)
904 rs = regset_pool.v[--regset_pool.n];
905 else
906 /* We need to create the regset. */
908 rs = ALLOC_REG_SET (&reg_obstack);
910 if (regset_pool.nn == regset_pool.ss)
911 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
912 (regset_pool.ss = 2 * regset_pool.ss + 1));
913 regset_pool.vv[regset_pool.nn++] = rs;
916 regset_pool.diff++;
918 return rs;
921 /* Same as above, but returns the empty regset. */
922 regset
923 get_clear_regset_from_pool (void)
925 regset rs = get_regset_from_pool ();
927 CLEAR_REG_SET (rs);
928 return rs;
931 /* Return regset RS to the pool for future use. */
932 void
933 return_regset_to_pool (regset rs)
935 regset_pool.diff--;
937 if (regset_pool.n == regset_pool.s)
938 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
939 (regset_pool.s = 2 * regset_pool.s + 1));
940 regset_pool.v[regset_pool.n++] = rs;
943 #ifdef ENABLE_CHECKING
944 /* This is used as a qsort callback for sorting regset pool stacks.
945 X and XX are addresses of two regsets. They are never equal. */
946 static int
947 cmp_v_in_regset_pool (const void *x, const void *xx)
949 return *((const regset *) x) - *((const regset *) xx);
951 #endif
953 /* Free the regset pool possibly checking for memory leaks. */
954 void
955 free_regset_pool (void)
957 #ifdef ENABLE_CHECKING
959 regset *v = regset_pool.v;
960 int i = 0;
961 int n = regset_pool.n;
963 regset *vv = regset_pool.vv;
964 int ii = 0;
965 int nn = regset_pool.nn;
967 int diff = 0;
969 gcc_assert (n <= nn);
971 /* Sort both vectors so it will be possible to compare them. */
972 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
973 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
975 while (ii < nn)
977 if (v[i] == vv[ii])
978 i++;
979 else
980 /* VV[II] was lost. */
981 diff++;
983 ii++;
986 gcc_assert (diff == regset_pool.diff);
988 #endif
990 /* If not true - we have a memory leak. */
991 gcc_assert (regset_pool.diff == 0);
993 while (regset_pool.n)
995 --regset_pool.n;
996 FREE_REG_SET (regset_pool.v[regset_pool.n]);
999 free (regset_pool.v);
1000 regset_pool.v = NULL;
1001 regset_pool.s = 0;
1003 free (regset_pool.vv);
1004 regset_pool.vv = NULL;
1005 regset_pool.nn = 0;
1006 regset_pool.ss = 0;
1008 regset_pool.diff = 0;
1012 /* Functions to work with nop pools. NOP insns are used as temporary
1013 placeholders of the insns being scheduled to allow correct update of
1014 the data sets. When update is finished, NOPs are deleted. */
1016 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1017 nops sel-sched generates. */
1018 static vinsn_t nop_vinsn = NULL;
1020 /* Emit a nop before INSN, taking it from pool. */
1021 insn_t
1022 get_nop_from_pool (insn_t insn)
1024 insn_t nop;
1025 bool old_p = nop_pool.n != 0;
1026 int flags;
1028 if (old_p)
1029 nop = nop_pool.v[--nop_pool.n];
1030 else
1031 nop = nop_pattern;
1033 nop = emit_insn_before (nop, insn);
1035 if (old_p)
1036 flags = INSN_INIT_TODO_SSID;
1037 else
1038 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1040 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1041 sel_init_new_insn (nop, flags);
1043 return nop;
1046 /* Remove NOP from the instruction stream and return it to the pool. */
1047 void
1048 return_nop_to_pool (insn_t nop, bool full_tidying)
1050 gcc_assert (INSN_IN_STREAM_P (nop));
1051 sel_remove_insn (nop, false, full_tidying);
1053 if (nop_pool.n == nop_pool.s)
1054 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1055 (nop_pool.s = 2 * nop_pool.s + 1));
1056 nop_pool.v[nop_pool.n++] = nop;
1059 /* Free the nop pool. */
1060 void
1061 free_nop_pool (void)
1063 nop_pool.n = 0;
1064 nop_pool.s = 0;
1065 free (nop_pool.v);
1066 nop_pool.v = NULL;
1070 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1071 The callback is given two rtxes XX and YY and writes the new rtxes
1072 to NX and NY in case some needs to be skipped. */
1073 static int
1074 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1076 const_rtx x = *xx;
1077 const_rtx y = *yy;
1079 if (GET_CODE (x) == UNSPEC
1080 && (targetm.sched.skip_rtx_p == NULL
1081 || targetm.sched.skip_rtx_p (x)))
1083 *nx = XVECEXP (x, 0, 0);
1084 *ny = CONST_CAST_RTX (y);
1085 return 1;
1088 if (GET_CODE (y) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (y)))
1092 *nx = CONST_CAST_RTX (x);
1093 *ny = XVECEXP (y, 0, 0);
1094 return 1;
1097 return 0;
1100 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1101 to support ia64 speculation. When changes are needed, new rtx X and new mode
1102 NMODE are written, and the callback returns true. */
1103 static int
1104 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1105 rtx *nx, enum machine_mode* nmode)
1107 if (GET_CODE (x) == UNSPEC
1108 && targetm.sched.skip_rtx_p
1109 && targetm.sched.skip_rtx_p (x))
1111 *nx = XVECEXP (x, 0 ,0);
1112 *nmode = VOIDmode;
1113 return 1;
1116 return 0;
1119 /* Returns LHS and RHS are ok to be scheduled separately. */
1120 static bool
1121 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1123 if (lhs == NULL || rhs == NULL)
1124 return false;
1126 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1127 to use reg, if const can be used. Moreover, scheduling const as rhs may
1128 lead to mode mismatch cause consts don't have modes but they could be
1129 merged from branches where the same const used in different modes. */
1130 if (CONSTANT_P (rhs))
1131 return false;
1133 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1134 if (COMPARISON_P (rhs))
1135 return false;
1137 /* Do not allow single REG to be an rhs. */
1138 if (REG_P (rhs))
1139 return false;
1141 /* See comment at find_used_regs_1 (*1) for explanation of this
1142 restriction. */
1143 /* FIXME: remove this later. */
1144 if (MEM_P (lhs))
1145 return false;
1147 /* This will filter all tricky things like ZERO_EXTRACT etc.
1148 For now we don't handle it. */
1149 if (!REG_P (lhs) && !MEM_P (lhs))
1150 return false;
1152 return true;
1155 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1156 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1157 used e.g. for insns from recovery blocks. */
1158 static void
1159 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1161 hash_rtx_callback_function hrcf;
1162 int insn_class;
1164 VINSN_INSN_RTX (vi) = insn;
1165 VINSN_COUNT (vi) = 0;
1166 vi->cost = -1;
1168 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1169 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1170 else
1171 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1173 /* Hash vinsn depending on whether it is separable or not. */
1174 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1175 if (VINSN_SEPARABLE_P (vi))
1177 rtx rhs = VINSN_RHS (vi);
1179 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1180 NULL, NULL, false, hrcf);
1181 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1182 VOIDmode, NULL, NULL,
1183 false, hrcf);
1185 else
1187 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1188 NULL, NULL, false, hrcf);
1189 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1192 insn_class = haifa_classify_insn (insn);
1193 if (insn_class >= 2
1194 && (!targetm.sched.get_insn_spec_ds
1195 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1196 == 0)))
1197 VINSN_MAY_TRAP_P (vi) = true;
1198 else
1199 VINSN_MAY_TRAP_P (vi) = false;
1202 /* Indicate that VI has become the part of an rtx object. */
1203 void
1204 vinsn_attach (vinsn_t vi)
1206 /* Assert that VI is not pending for deletion. */
1207 gcc_assert (VINSN_INSN_RTX (vi));
1209 VINSN_COUNT (vi)++;
1212 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1213 VINSN_TYPE (VI). */
1214 static vinsn_t
1215 vinsn_create (insn_t insn, bool force_unique_p)
1217 vinsn_t vi = XCNEW (struct vinsn_def);
1219 vinsn_init (vi, insn, force_unique_p);
1220 return vi;
1223 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1224 the copy. */
1225 vinsn_t
1226 vinsn_copy (vinsn_t vi, bool reattach_p)
1228 rtx copy;
1229 bool unique = VINSN_UNIQUE_P (vi);
1230 vinsn_t new_vi;
1232 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1233 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1234 if (reattach_p)
1236 vinsn_detach (vi);
1237 vinsn_attach (new_vi);
1240 return new_vi;
1243 /* Delete the VI vinsn and free its data. */
1244 static void
1245 vinsn_delete (vinsn_t vi)
1247 gcc_assert (VINSN_COUNT (vi) == 0);
1249 return_regset_to_pool (VINSN_REG_SETS (vi));
1250 return_regset_to_pool (VINSN_REG_USES (vi));
1251 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1253 free (vi);
1256 /* Indicate that VI is no longer a part of some rtx object.
1257 Remove VI if it is no longer needed. */
1258 void
1259 vinsn_detach (vinsn_t vi)
1261 gcc_assert (VINSN_COUNT (vi) > 0);
1263 if (--VINSN_COUNT (vi) == 0)
1264 vinsn_delete (vi);
1267 /* Returns TRUE if VI is a branch. */
1268 bool
1269 vinsn_cond_branch_p (vinsn_t vi)
1271 insn_t insn;
1273 if (!VINSN_UNIQUE_P (vi))
1274 return false;
1276 insn = VINSN_INSN_RTX (vi);
1277 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1278 return false;
1280 return control_flow_insn_p (insn);
1283 /* Return latency of INSN. */
1284 static int
1285 sel_insn_rtx_cost (rtx insn)
1287 int cost;
1289 /* A USE insn, or something else we don't need to
1290 understand. We can't pass these directly to
1291 result_ready_cost or insn_default_latency because it will
1292 trigger a fatal error for unrecognizable insns. */
1293 if (recog_memoized (insn) < 0)
1294 cost = 0;
1295 else
1297 cost = insn_default_latency (insn);
1299 if (cost < 0)
1300 cost = 0;
1303 return cost;
1306 /* Return the cost of the VI.
1307 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1309 sel_vinsn_cost (vinsn_t vi)
1311 int cost = vi->cost;
1313 if (cost < 0)
1315 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1316 vi->cost = cost;
1319 return cost;
1323 /* Functions for insn emitting. */
1325 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1326 EXPR and SEQNO. */
1327 insn_t
1328 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1330 insn_t new_insn;
1332 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1334 new_insn = emit_insn_after (pattern, after);
1335 set_insn_init (expr, NULL, seqno);
1336 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1338 return new_insn;
1341 /* Force newly generated vinsns to be unique. */
1342 static bool init_insn_force_unique_p = false;
1344 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1345 initialize its data from EXPR and SEQNO. */
1346 insn_t
1347 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1348 insn_t after)
1350 insn_t insn;
1352 gcc_assert (!init_insn_force_unique_p);
1354 init_insn_force_unique_p = true;
1355 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1356 CANT_MOVE (insn) = 1;
1357 init_insn_force_unique_p = false;
1359 return insn;
1362 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1363 take it as a new vinsn instead of EXPR's vinsn.
1364 We simplify insns later, after scheduling region in
1365 simplify_changed_insns. */
1366 insn_t
1367 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1368 insn_t after)
1370 expr_t emit_expr;
1371 insn_t insn;
1372 int flags;
1374 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1375 seqno);
1376 insn = EXPR_INSN_RTX (emit_expr);
1377 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1379 flags = INSN_INIT_TODO_SSID;
1380 if (INSN_LUID (insn) == 0)
1381 flags |= INSN_INIT_TODO_LUID;
1382 sel_init_new_insn (insn, flags);
1384 return insn;
1387 /* Move insn from EXPR after AFTER. */
1388 insn_t
1389 sel_move_insn (expr_t expr, int seqno, insn_t after)
1391 insn_t insn = EXPR_INSN_RTX (expr);
1392 basic_block bb = BLOCK_FOR_INSN (after);
1393 insn_t next = NEXT_INSN (after);
1395 /* Assert that in move_op we disconnected this insn properly. */
1396 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1397 PREV_INSN (insn) = after;
1398 NEXT_INSN (insn) = next;
1400 NEXT_INSN (after) = insn;
1401 PREV_INSN (next) = insn;
1403 /* Update links from insn to bb and vice versa. */
1404 df_insn_change_bb (insn, bb);
1405 if (BB_END (bb) == after)
1406 BB_END (bb) = insn;
1408 prepare_insn_expr (insn, seqno);
1409 return insn;
1413 /* Functions to work with right-hand sides. */
1415 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1416 VECT and return true when found. Use NEW_VINSN for comparison only when
1417 COMPARE_VINSNS is true. Write to INDP the index on which
1418 the search has stopped, such that inserting the new element at INDP will
1419 retain VECT's sort order. */
1420 static bool
1421 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1422 unsigned uid, vinsn_t new_vinsn,
1423 bool compare_vinsns, int *indp)
1425 expr_history_def *arr;
1426 int i, j, len = VEC_length (expr_history_def, vect);
1428 if (len == 0)
1430 *indp = 0;
1431 return false;
1434 arr = VEC_address (expr_history_def, vect);
1435 i = 0, j = len - 1;
1437 while (i <= j)
1439 unsigned auid = arr[i].uid;
1440 vinsn_t avinsn = arr[i].new_expr_vinsn;
1442 if (auid == uid
1443 /* When undoing transformation on a bookkeeping copy, the new vinsn
1444 may not be exactly equal to the one that is saved in the vector.
1445 This is because the insn whose copy we're checking was possibly
1446 substituted itself. */
1447 && (! compare_vinsns
1448 || vinsn_equal_p (avinsn, new_vinsn)))
1450 *indp = i;
1451 return true;
1453 else if (auid > uid)
1454 break;
1455 i++;
1458 *indp = i;
1459 return false;
1462 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1463 the position found or -1, if no such value is in vector.
1464 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1466 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1467 vinsn_t new_vinsn, bool originators_p)
1469 int ind;
1471 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1472 false, &ind))
1473 return ind;
1475 if (INSN_ORIGINATORS (insn) && originators_p)
1477 unsigned uid;
1478 bitmap_iterator bi;
1480 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1481 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1482 return ind;
1485 return -1;
1488 /* Insert new element in a sorted history vector pointed to by PVECT,
1489 if it is not there already. The element is searched using
1490 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1491 the history of a transformation. */
1492 void
1493 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1494 unsigned uid, enum local_trans_type type,
1495 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1496 ds_t spec_ds)
1498 VEC(expr_history_def, heap) *vect = *pvect;
1499 expr_history_def temp;
1500 bool res;
1501 int ind;
1503 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1505 if (res)
1507 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1509 /* It is possible that speculation types of expressions that were
1510 propagated through different paths will be different here. In this
1511 case, merge the status to get the correct check later. */
1512 if (phist->spec_ds != spec_ds)
1513 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1514 return;
1517 temp.uid = uid;
1518 temp.old_expr_vinsn = old_expr_vinsn;
1519 temp.new_expr_vinsn = new_expr_vinsn;
1520 temp.spec_ds = spec_ds;
1521 temp.type = type;
1523 vinsn_attach (old_expr_vinsn);
1524 vinsn_attach (new_expr_vinsn);
1525 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1526 *pvect = vect;
1529 /* Free history vector PVECT. */
1530 static void
1531 free_history_vect (VEC (expr_history_def, heap) **pvect)
1533 unsigned i;
1534 expr_history_def *phist;
1536 if (! *pvect)
1537 return;
1539 for (i = 0;
1540 VEC_iterate (expr_history_def, *pvect, i, phist);
1541 i++)
1543 vinsn_detach (phist->old_expr_vinsn);
1544 vinsn_detach (phist->new_expr_vinsn);
1547 VEC_free (expr_history_def, heap, *pvect);
1548 *pvect = NULL;
1552 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1553 bool
1554 vinsn_equal_p (vinsn_t x, vinsn_t y)
1556 rtx_equal_p_callback_function repcf;
1558 if (x == y)
1559 return true;
1561 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1562 return false;
1564 if (VINSN_HASH (x) != VINSN_HASH (y))
1565 return false;
1567 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1568 if (VINSN_SEPARABLE_P (x))
1570 /* Compare RHSes of VINSNs. */
1571 gcc_assert (VINSN_RHS (x));
1572 gcc_assert (VINSN_RHS (y));
1574 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1577 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1581 /* Functions for working with expressions. */
1583 /* Initialize EXPR. */
1584 static void
1585 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1586 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1587 ds_t spec_to_check_ds, int orig_sched_cycle,
1588 VEC(expr_history_def, heap) *history, bool target_available,
1589 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1590 bool cant_move)
1592 vinsn_attach (vi);
1594 EXPR_VINSN (expr) = vi;
1595 EXPR_SPEC (expr) = spec;
1596 EXPR_USEFULNESS (expr) = use;
1597 EXPR_PRIORITY (expr) = priority;
1598 EXPR_PRIORITY_ADJ (expr) = 0;
1599 EXPR_SCHED_TIMES (expr) = sched_times;
1600 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1601 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1602 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1603 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1605 if (history)
1606 EXPR_HISTORY_OF_CHANGES (expr) = history;
1607 else
1608 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1610 EXPR_TARGET_AVAILABLE (expr) = target_available;
1611 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1612 EXPR_WAS_RENAMED (expr) = was_renamed;
1613 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1614 EXPR_CANT_MOVE (expr) = cant_move;
1617 /* Make a copy of the expr FROM into the expr TO. */
1618 void
1619 copy_expr (expr_t to, expr_t from)
1621 VEC(expr_history_def, heap) *temp = NULL;
1623 if (EXPR_HISTORY_OF_CHANGES (from))
1625 unsigned i;
1626 expr_history_def *phist;
1628 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1629 for (i = 0;
1630 VEC_iterate (expr_history_def, temp, i, phist);
1631 i++)
1633 vinsn_attach (phist->old_expr_vinsn);
1634 vinsn_attach (phist->new_expr_vinsn);
1638 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1639 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1640 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1641 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1642 EXPR_ORIG_SCHED_CYCLE (from), temp,
1643 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1644 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1645 EXPR_CANT_MOVE (from));
1648 /* Same, but the final expr will not ever be in av sets, so don't copy
1649 "uninteresting" data such as bitmap cache. */
1650 void
1651 copy_expr_onside (expr_t to, expr_t from)
1653 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1654 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1655 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1656 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1657 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1658 EXPR_CANT_MOVE (from));
1661 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1662 initializing new insns. */
1663 static void
1664 prepare_insn_expr (insn_t insn, int seqno)
1666 expr_t expr = INSN_EXPR (insn);
1667 ds_t ds;
1669 INSN_SEQNO (insn) = seqno;
1670 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1671 EXPR_SPEC (expr) = 0;
1672 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1673 EXPR_WAS_SUBSTITUTED (expr) = 0;
1674 EXPR_WAS_RENAMED (expr) = 0;
1675 EXPR_TARGET_AVAILABLE (expr) = 1;
1676 INSN_LIVE_VALID_P (insn) = false;
1678 /* ??? If this expression is speculative, make its dependence
1679 as weak as possible. We can filter this expression later
1680 in process_spec_exprs, because we do not distinguish
1681 between the status we got during compute_av_set and the
1682 existing status. To be fixed. */
1683 ds = EXPR_SPEC_DONE_DS (expr);
1684 if (ds)
1685 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1687 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1690 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1691 is non-null when expressions are merged from different successors at
1692 a split point. */
1693 static void
1694 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1696 if (EXPR_TARGET_AVAILABLE (to) < 0
1697 || EXPR_TARGET_AVAILABLE (from) < 0)
1698 EXPR_TARGET_AVAILABLE (to) = -1;
1699 else
1701 /* We try to detect the case when one of the expressions
1702 can only be reached through another one. In this case,
1703 we can do better. */
1704 if (split_point == NULL)
1706 int toind, fromind;
1708 toind = EXPR_ORIG_BB_INDEX (to);
1709 fromind = EXPR_ORIG_BB_INDEX (from);
1711 if (toind && toind == fromind)
1712 /* Do nothing -- everything is done in
1713 merge_with_other_exprs. */
1715 else
1716 EXPR_TARGET_AVAILABLE (to) = -1;
1718 else
1719 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1723 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1724 is non-null when expressions are merged from different successors at
1725 a split point. */
1726 static void
1727 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1729 ds_t old_to_ds, old_from_ds;
1731 old_to_ds = EXPR_SPEC_DONE_DS (to);
1732 old_from_ds = EXPR_SPEC_DONE_DS (from);
1734 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1735 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1736 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1738 /* When merging e.g. control & data speculative exprs, or a control
1739 speculative with a control&data speculative one, we really have
1740 to change vinsn too. Also, when speculative status is changed,
1741 we also need to record this as a transformation in expr's history. */
1742 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1744 old_to_ds = ds_get_speculation_types (old_to_ds);
1745 old_from_ds = ds_get_speculation_types (old_from_ds);
1747 if (old_to_ds != old_from_ds)
1749 ds_t record_ds;
1751 /* When both expressions are speculative, we need to change
1752 the vinsn first. */
1753 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1755 int res;
1757 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1758 gcc_assert (res >= 0);
1761 if (split_point != NULL)
1763 /* Record the change with proper status. */
1764 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1765 record_ds &= ~(old_to_ds & SPECULATIVE);
1766 record_ds &= ~(old_from_ds & SPECULATIVE);
1768 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1769 INSN_UID (split_point), TRANS_SPECULATION,
1770 EXPR_VINSN (from), EXPR_VINSN (to),
1771 record_ds);
1778 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1779 this is done along different paths. */
1780 void
1781 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1783 int i;
1784 expr_history_def *phist;
1786 /* For now, we just set the spec of resulting expr to be minimum of the specs
1787 of merged exprs. */
1788 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1789 EXPR_SPEC (to) = EXPR_SPEC (from);
1791 if (split_point)
1792 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1793 else
1794 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1795 EXPR_USEFULNESS (from));
1797 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1798 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1800 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1801 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1803 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1804 EXPR_ORIG_BB_INDEX (to) = 0;
1806 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1807 EXPR_ORIG_SCHED_CYCLE (from));
1809 /* We keep this vector sorted. */
1810 for (i = 0;
1811 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1812 i, phist);
1813 i++)
1814 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1815 phist->uid, phist->type,
1816 phist->old_expr_vinsn, phist->new_expr_vinsn,
1817 phist->spec_ds);
1819 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1820 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1821 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1823 update_target_availability (to, from, split_point);
1824 update_speculative_bits (to, from, split_point);
1827 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1828 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1829 are merged from different successors at a split point. */
1830 void
1831 merge_expr (expr_t to, expr_t from, insn_t split_point)
1833 vinsn_t to_vi = EXPR_VINSN (to);
1834 vinsn_t from_vi = EXPR_VINSN (from);
1836 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1838 /* Make sure that speculative pattern is propagated into exprs that
1839 have non-speculative one. This will provide us with consistent
1840 speculative bits and speculative patterns inside expr. */
1841 if (EXPR_SPEC_DONE_DS (to) == 0
1842 && EXPR_SPEC_DONE_DS (from) != 0)
1843 change_vinsn_in_expr (to, EXPR_VINSN (from));
1845 merge_expr_data (to, from, split_point);
1846 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1849 /* Clear the information of this EXPR. */
1850 void
1851 clear_expr (expr_t expr)
1854 vinsn_detach (EXPR_VINSN (expr));
1855 EXPR_VINSN (expr) = NULL;
1857 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1860 /* For a given LV_SET, mark EXPR having unavailable target register. */
1861 static void
1862 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1864 if (EXPR_SEPARABLE_P (expr))
1866 if (REG_P (EXPR_LHS (expr))
1867 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1869 /* If it's an insn like r1 = use (r1, ...), and it exists in
1870 different forms in each of the av_sets being merged, we can't say
1871 whether original destination register is available or not.
1872 However, this still works if destination register is not used
1873 in the original expression: if the branch at which LV_SET we're
1874 looking here is not actually 'other branch' in sense that same
1875 expression is available through it (but it can't be determined
1876 at computation stage because of transformations on one of the
1877 branches), it still won't affect the availability.
1878 Liveness of a register somewhere on a code motion path means
1879 it's either read somewhere on a codemotion path, live on
1880 'other' branch, live at the point immediately following
1881 the original operation, or is read by the original operation.
1882 The latter case is filtered out in the condition below.
1883 It still doesn't cover the case when register is defined and used
1884 somewhere within the code motion path, and in this case we could
1885 miss a unifying code motion along both branches using a renamed
1886 register, but it won't affect a code correctness since upon
1887 an actual code motion a bookkeeping code would be generated. */
1888 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1889 REGNO (EXPR_LHS (expr))))
1890 EXPR_TARGET_AVAILABLE (expr) = -1;
1891 else
1892 EXPR_TARGET_AVAILABLE (expr) = false;
1895 else
1897 unsigned regno;
1898 reg_set_iterator rsi;
1900 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1901 0, regno, rsi)
1902 if (bitmap_bit_p (lv_set, regno))
1904 EXPR_TARGET_AVAILABLE (expr) = false;
1905 break;
1908 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1909 0, regno, rsi)
1910 if (bitmap_bit_p (lv_set, regno))
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1913 break;
1918 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1919 or dependence status have changed, 2 when also the target register
1920 became unavailable, 0 if nothing had to be changed. */
1922 speculate_expr (expr_t expr, ds_t ds)
1924 int res;
1925 rtx orig_insn_rtx;
1926 rtx spec_pat;
1927 ds_t target_ds, current_ds;
1929 /* Obtain the status we need to put on EXPR. */
1930 target_ds = (ds & SPECULATIVE);
1931 current_ds = EXPR_SPEC_DONE_DS (expr);
1932 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1934 orig_insn_rtx = EXPR_INSN_RTX (expr);
1936 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1938 switch (res)
1940 case 0:
1941 EXPR_SPEC_DONE_DS (expr) = ds;
1942 return current_ds != ds ? 1 : 0;
1944 case 1:
1946 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1947 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1949 change_vinsn_in_expr (expr, spec_vinsn);
1950 EXPR_SPEC_DONE_DS (expr) = ds;
1951 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1953 /* Do not allow clobbering the address register of speculative
1954 insns. */
1955 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1956 expr_dest_regno (expr)))
1958 EXPR_TARGET_AVAILABLE (expr) = false;
1959 return 2;
1962 return 1;
1965 case -1:
1966 return -1;
1968 default:
1969 gcc_unreachable ();
1970 return -1;
1974 /* Return a destination register, if any, of EXPR. */
1976 expr_dest_reg (expr_t expr)
1978 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1980 if (dest != NULL_RTX && REG_P (dest))
1981 return dest;
1983 return NULL_RTX;
1986 /* Returns the REGNO of the R's destination. */
1987 unsigned
1988 expr_dest_regno (expr_t expr)
1990 rtx dest = expr_dest_reg (expr);
1992 gcc_assert (dest != NULL_RTX);
1993 return REGNO (dest);
1996 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
1997 AV_SET having unavailable target register. */
1998 void
1999 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2001 expr_t expr;
2002 av_set_iterator avi;
2004 FOR_EACH_EXPR (expr, avi, join_set)
2005 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2006 set_unavailable_target_for_expr (expr, lv_set);
2010 /* Av set functions. */
2012 /* Add a new element to av set SETP.
2013 Return the element added. */
2014 static av_set_t
2015 av_set_add_element (av_set_t *setp)
2017 /* Insert at the beginning of the list. */
2018 _list_add (setp);
2019 return *setp;
2022 /* Add EXPR to SETP. */
2023 void
2024 av_set_add (av_set_t *setp, expr_t expr)
2026 av_set_t elem;
2028 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2029 elem = av_set_add_element (setp);
2030 copy_expr (_AV_SET_EXPR (elem), expr);
2033 /* Same, but do not copy EXPR. */
2034 static void
2035 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2037 av_set_t elem;
2039 elem = av_set_add_element (setp);
2040 *_AV_SET_EXPR (elem) = *expr;
2043 /* Remove expr pointed to by IP from the av_set. */
2044 void
2045 av_set_iter_remove (av_set_iterator *ip)
2047 clear_expr (_AV_SET_EXPR (*ip->lp));
2048 _list_iter_remove (ip);
2051 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2052 sense of vinsn_equal_p function. Return NULL if no such expr is
2053 in SET was found. */
2054 expr_t
2055 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2057 expr_t expr;
2058 av_set_iterator i;
2060 FOR_EACH_EXPR (expr, i, set)
2061 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2062 return expr;
2063 return NULL;
2066 /* Same, but also remove the EXPR found. */
2067 static expr_t
2068 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2070 expr_t expr;
2071 av_set_iterator i;
2073 FOR_EACH_EXPR_1 (expr, i, setp)
2074 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2076 _list_iter_remove_nofree (&i);
2077 return expr;
2079 return NULL;
2082 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2083 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2084 Returns NULL if no such expr is in SET was found. */
2085 static expr_t
2086 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2088 expr_t cur_expr;
2089 av_set_iterator i;
2091 FOR_EACH_EXPR (cur_expr, i, set)
2093 if (cur_expr == expr)
2094 continue;
2095 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2096 return cur_expr;
2099 return NULL;
2102 /* If other expression is already in AVP, remove one of them. */
2103 expr_t
2104 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2106 expr_t expr2;
2108 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2109 if (expr2 != NULL)
2111 /* Reset target availability on merge, since taking it only from one
2112 of the exprs would be controversial for different code. */
2113 EXPR_TARGET_AVAILABLE (expr2) = -1;
2114 EXPR_USEFULNESS (expr2) = 0;
2116 merge_expr (expr2, expr, NULL);
2118 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2119 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2121 av_set_iter_remove (ip);
2122 return expr2;
2125 return expr;
2128 /* Return true if there is an expr that correlates to VI in SET. */
2129 bool
2130 av_set_is_in_p (av_set_t set, vinsn_t vi)
2132 return av_set_lookup (set, vi) != NULL;
2135 /* Return a copy of SET. */
2136 av_set_t
2137 av_set_copy (av_set_t set)
2139 expr_t expr;
2140 av_set_iterator i;
2141 av_set_t res = NULL;
2143 FOR_EACH_EXPR (expr, i, set)
2144 av_set_add (&res, expr);
2146 return res;
2149 /* Join two av sets that do not have common elements by attaching second set
2150 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2151 _AV_SET_NEXT of first set's last element). */
2152 static void
2153 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2155 gcc_assert (*to_tailp == NULL);
2156 *to_tailp = *fromp;
2157 *fromp = NULL;
2160 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2161 pointed to by FROMP afterwards. */
2162 void
2163 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2165 expr_t expr1;
2166 av_set_iterator i;
2168 /* Delete from TOP all exprs, that present in FROMP. */
2169 FOR_EACH_EXPR_1 (expr1, i, top)
2171 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2173 if (expr2)
2175 merge_expr (expr2, expr1, insn);
2176 av_set_iter_remove (&i);
2180 join_distinct_sets (i.lp, fromp);
2183 /* Same as above, but also update availability of target register in
2184 TOP judging by TO_LV_SET and FROM_LV_SET. */
2185 void
2186 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2187 regset from_lv_set, insn_t insn)
2189 expr_t expr1;
2190 av_set_iterator i;
2191 av_set_t *to_tailp, in_both_set = NULL;
2193 /* Delete from TOP all expres, that present in FROMP. */
2194 FOR_EACH_EXPR_1 (expr1, i, top)
2196 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2198 if (expr2)
2200 /* It may be that the expressions have different destination
2201 registers, in which case we need to check liveness here. */
2202 if (EXPR_SEPARABLE_P (expr1))
2204 int regno1 = (REG_P (EXPR_LHS (expr1))
2205 ? (int) expr_dest_regno (expr1) : -1);
2206 int regno2 = (REG_P (EXPR_LHS (expr2))
2207 ? (int) expr_dest_regno (expr2) : -1);
2209 /* ??? We don't have a way to check restrictions for
2210 *other* register on the current path, we did it only
2211 for the current target register. Give up. */
2212 if (regno1 != regno2)
2213 EXPR_TARGET_AVAILABLE (expr2) = -1;
2215 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2216 EXPR_TARGET_AVAILABLE (expr2) = -1;
2218 merge_expr (expr2, expr1, insn);
2219 av_set_add_nocopy (&in_both_set, expr2);
2220 av_set_iter_remove (&i);
2222 else
2223 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2224 FROM_LV_SET. */
2225 set_unavailable_target_for_expr (expr1, from_lv_set);
2227 to_tailp = i.lp;
2229 /* These expressions are not present in TOP. Check liveness
2230 restrictions on TO_LV_SET. */
2231 FOR_EACH_EXPR (expr1, i, *fromp)
2232 set_unavailable_target_for_expr (expr1, to_lv_set);
2234 join_distinct_sets (i.lp, &in_both_set);
2235 join_distinct_sets (to_tailp, fromp);
2238 /* Clear av_set pointed to by SETP. */
2239 void
2240 av_set_clear (av_set_t *setp)
2242 expr_t expr;
2243 av_set_iterator i;
2245 FOR_EACH_EXPR_1 (expr, i, setp)
2246 av_set_iter_remove (&i);
2248 gcc_assert (*setp == NULL);
2251 /* Leave only one non-speculative element in the SETP. */
2252 void
2253 av_set_leave_one_nonspec (av_set_t *setp)
2255 expr_t expr;
2256 av_set_iterator i;
2257 bool has_one_nonspec = false;
2259 /* Keep all speculative exprs, and leave one non-speculative
2260 (the first one). */
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2263 if (!EXPR_SPEC_DONE_DS (expr))
2265 if (has_one_nonspec)
2266 av_set_iter_remove (&i);
2267 else
2268 has_one_nonspec = true;
2273 /* Return the N'th element of the SET. */
2274 expr_t
2275 av_set_element (av_set_t set, int n)
2277 expr_t expr;
2278 av_set_iterator i;
2280 FOR_EACH_EXPR (expr, i, set)
2281 if (n-- == 0)
2282 return expr;
2284 gcc_unreachable ();
2285 return NULL;
2288 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2289 void
2290 av_set_substract_cond_branches (av_set_t *avp)
2292 av_set_iterator i;
2293 expr_t expr;
2295 FOR_EACH_EXPR_1 (expr, i, avp)
2296 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2297 av_set_iter_remove (&i);
2300 /* Multiplies usefulness attribute of each member of av-set *AVP by
2301 value PROB / ALL_PROB. */
2302 void
2303 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2305 av_set_iterator i;
2306 expr_t expr;
2308 FOR_EACH_EXPR (expr, i, av)
2309 EXPR_USEFULNESS (expr) = (all_prob
2310 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2311 : 0);
2314 /* Leave in AVP only those expressions, which are present in AV,
2315 and return it. */
2316 void
2317 av_set_intersect (av_set_t *avp, av_set_t av)
2319 av_set_iterator i;
2320 expr_t expr;
2322 FOR_EACH_EXPR_1 (expr, i, avp)
2323 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2324 av_set_iter_remove (&i);
2329 /* Dependence hooks to initialize insn data. */
2331 /* This is used in hooks callable from dependence analysis when initializing
2332 instruction's data. */
2333 static struct
2335 /* Where the dependence was found (lhs/rhs). */
2336 deps_where_t where;
2338 /* The actual data object to initialize. */
2339 idata_t id;
2341 /* True when the insn should not be made clonable. */
2342 bool force_unique_p;
2344 /* True when insn should be treated as of type USE, i.e. never renamed. */
2345 bool force_use_p;
2346 } deps_init_id_data;
2349 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2350 clonable. */
2351 static void
2352 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2354 int type;
2356 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2357 That clonable insns which can be separated into lhs and rhs have type SET.
2358 Other clonable insns have type USE. */
2359 type = GET_CODE (insn);
2361 /* Only regular insns could be cloned. */
2362 if (type == INSN && !force_unique_p)
2363 type = SET;
2364 else if (type == JUMP_INSN && simplejump_p (insn))
2365 type = PC;
2366 else if (type == DEBUG_INSN)
2367 type = !force_unique_p ? USE : INSN;
2369 IDATA_TYPE (id) = type;
2370 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2371 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2372 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2375 /* Start initializing insn data. */
2376 static void
2377 deps_init_id_start_insn (insn_t insn)
2379 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2381 setup_id_for_insn (deps_init_id_data.id, insn,
2382 deps_init_id_data.force_unique_p);
2383 deps_init_id_data.where = DEPS_IN_INSN;
2386 /* Start initializing lhs data. */
2387 static void
2388 deps_init_id_start_lhs (rtx lhs)
2390 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2391 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2393 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2395 IDATA_LHS (deps_init_id_data.id) = lhs;
2396 deps_init_id_data.where = DEPS_IN_LHS;
2400 /* Finish initializing lhs data. */
2401 static void
2402 deps_init_id_finish_lhs (void)
2404 deps_init_id_data.where = DEPS_IN_INSN;
2407 /* Note a set of REGNO. */
2408 static void
2409 deps_init_id_note_reg_set (int regno)
2411 haifa_note_reg_set (regno);
2413 if (deps_init_id_data.where == DEPS_IN_RHS)
2414 deps_init_id_data.force_use_p = true;
2416 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2417 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2419 #ifdef STACK_REGS
2420 /* Make instructions that set stack registers to be ineligible for
2421 renaming to avoid issues with find_used_regs. */
2422 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2423 deps_init_id_data.force_use_p = true;
2424 #endif
2427 /* Note a clobber of REGNO. */
2428 static void
2429 deps_init_id_note_reg_clobber (int regno)
2431 haifa_note_reg_clobber (regno);
2433 if (deps_init_id_data.where == DEPS_IN_RHS)
2434 deps_init_id_data.force_use_p = true;
2436 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2437 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2440 /* Note a use of REGNO. */
2441 static void
2442 deps_init_id_note_reg_use (int regno)
2444 haifa_note_reg_use (regno);
2446 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2447 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2450 /* Start initializing rhs data. */
2451 static void
2452 deps_init_id_start_rhs (rtx rhs)
2454 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2456 /* And there was no sel_deps_reset_to_insn (). */
2457 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2459 IDATA_RHS (deps_init_id_data.id) = rhs;
2460 deps_init_id_data.where = DEPS_IN_RHS;
2464 /* Finish initializing rhs data. */
2465 static void
2466 deps_init_id_finish_rhs (void)
2468 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2469 || deps_init_id_data.where == DEPS_IN_INSN);
2470 deps_init_id_data.where = DEPS_IN_INSN;
2473 /* Finish initializing insn data. */
2474 static void
2475 deps_init_id_finish_insn (void)
2477 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2479 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2481 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2482 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2484 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2485 || deps_init_id_data.force_use_p)
2487 /* This should be a USE, as we don't want to schedule its RHS
2488 separately. However, we still want to have them recorded
2489 for the purposes of substitution. That's why we don't
2490 simply call downgrade_to_use () here. */
2491 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2492 gcc_assert (!lhs == !rhs);
2494 IDATA_TYPE (deps_init_id_data.id) = USE;
2498 deps_init_id_data.where = DEPS_IN_NOWHERE;
2501 /* This is dependence info used for initializing insn's data. */
2502 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2504 /* This initializes most of the static part of the above structure. */
2505 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2507 NULL,
2509 deps_init_id_start_insn,
2510 deps_init_id_finish_insn,
2511 deps_init_id_start_lhs,
2512 deps_init_id_finish_lhs,
2513 deps_init_id_start_rhs,
2514 deps_init_id_finish_rhs,
2515 deps_init_id_note_reg_set,
2516 deps_init_id_note_reg_clobber,
2517 deps_init_id_note_reg_use,
2518 NULL, /* note_mem_dep */
2519 NULL, /* note_dep */
2521 0, /* use_cselib */
2522 0, /* use_deps_list */
2523 0 /* generate_spec_deps */
2526 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2527 we don't actually need information about lhs and rhs. */
2528 static void
2529 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2531 rtx pat = PATTERN (insn);
2533 if (NONJUMP_INSN_P (insn)
2534 && GET_CODE (pat) == SET
2535 && !force_unique_p)
2537 IDATA_RHS (id) = SET_SRC (pat);
2538 IDATA_LHS (id) = SET_DEST (pat);
2540 else
2541 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2544 /* Possibly downgrade INSN to USE. */
2545 static void
2546 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2548 bool must_be_use = false;
2549 unsigned uid = INSN_UID (insn);
2550 df_ref *rec;
2551 rtx lhs = IDATA_LHS (id);
2552 rtx rhs = IDATA_RHS (id);
2554 /* We downgrade only SETs. */
2555 if (IDATA_TYPE (id) != SET)
2556 return;
2558 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2560 IDATA_TYPE (id) = USE;
2561 return;
2564 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2566 df_ref def = *rec;
2568 if (DF_REF_INSN (def)
2569 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2570 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2572 must_be_use = true;
2573 break;
2576 #ifdef STACK_REGS
2577 /* Make instructions that set stack registers to be ineligible for
2578 renaming to avoid issues with find_used_regs. */
2579 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2581 must_be_use = true;
2582 break;
2584 #endif
2587 if (must_be_use)
2588 IDATA_TYPE (id) = USE;
2591 /* Setup register sets describing INSN in ID. */
2592 static void
2593 setup_id_reg_sets (idata_t id, insn_t insn)
2595 unsigned uid = INSN_UID (insn);
2596 df_ref *rec;
2597 regset tmp = get_clear_regset_from_pool ();
2599 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2601 df_ref def = *rec;
2602 unsigned int regno = DF_REF_REGNO (def);
2604 /* Post modifies are treated like clobbers by sched-deps.c. */
2605 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2606 | DF_REF_PRE_POST_MODIFY)))
2607 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2608 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2610 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2612 #ifdef STACK_REGS
2613 /* For stack registers, treat writes to them as writes
2614 to the first one to be consistent with sched-deps.c. */
2615 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2616 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2617 #endif
2619 /* Mark special refs that generate read/write def pair. */
2620 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2621 || regno == STACK_POINTER_REGNUM)
2622 bitmap_set_bit (tmp, regno);
2625 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2627 df_ref use = *rec;
2628 unsigned int regno = DF_REF_REGNO (use);
2630 /* When these refs are met for the first time, skip them, as
2631 these uses are just counterparts of some defs. */
2632 if (bitmap_bit_p (tmp, regno))
2633 bitmap_clear_bit (tmp, regno);
2634 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2636 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2638 #ifdef STACK_REGS
2639 /* For stack registers, treat reads from them as reads from
2640 the first one to be consistent with sched-deps.c. */
2641 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2642 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2643 #endif
2647 return_regset_to_pool (tmp);
2650 /* Initialize instruction data for INSN in ID using DF's data. */
2651 static void
2652 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2654 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2656 setup_id_for_insn (id, insn, force_unique_p);
2657 setup_id_lhs_rhs (id, insn, force_unique_p);
2659 if (INSN_NOP_P (insn))
2660 return;
2662 maybe_downgrade_id_to_use (id, insn);
2663 setup_id_reg_sets (id, insn);
2666 /* Initialize instruction data for INSN in ID. */
2667 static void
2668 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2670 struct deps _dc, *dc = &_dc;
2672 deps_init_id_data.where = DEPS_IN_NOWHERE;
2673 deps_init_id_data.id = id;
2674 deps_init_id_data.force_unique_p = force_unique_p;
2675 deps_init_id_data.force_use_p = false;
2677 init_deps (dc, false);
2679 memcpy (&deps_init_id_sched_deps_info,
2680 &const_deps_init_id_sched_deps_info,
2681 sizeof (deps_init_id_sched_deps_info));
2683 if (spec_info != NULL)
2684 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2686 sched_deps_info = &deps_init_id_sched_deps_info;
2688 deps_analyze_insn (dc, insn);
2690 free_deps (dc);
2692 deps_init_id_data.id = NULL;
2697 /* Implement hooks for collecting fundamental insn properties like if insn is
2698 an ASM or is within a SCHED_GROUP. */
2700 /* True when a "one-time init" data for INSN was already inited. */
2701 static bool
2702 first_time_insn_init (insn_t insn)
2704 return INSN_LIVE (insn) == NULL;
2707 /* Hash an entry in a transformed_insns hashtable. */
2708 static hashval_t
2709 hash_transformed_insns (const void *p)
2711 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2714 /* Compare the entries in a transformed_insns hashtable. */
2715 static int
2716 eq_transformed_insns (const void *p, const void *q)
2718 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2719 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2721 if (INSN_UID (i1) == INSN_UID (i2))
2722 return 1;
2723 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2726 /* Free an entry in a transformed_insns hashtable. */
2727 static void
2728 free_transformed_insns (void *p)
2730 struct transformed_insns *pti = (struct transformed_insns *) p;
2732 vinsn_detach (pti->vinsn_old);
2733 vinsn_detach (pti->vinsn_new);
2734 free (pti);
2737 /* Init the s_i_d data for INSN which should be inited just once, when
2738 we first see the insn. */
2739 static void
2740 init_first_time_insn_data (insn_t insn)
2742 /* This should not be set if this is the first time we init data for
2743 insn. */
2744 gcc_assert (first_time_insn_init (insn));
2746 /* These are needed for nops too. */
2747 INSN_LIVE (insn) = get_regset_from_pool ();
2748 INSN_LIVE_VALID_P (insn) = false;
2750 if (!INSN_NOP_P (insn))
2752 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2753 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2754 INSN_TRANSFORMED_INSNS (insn)
2755 = htab_create (16, hash_transformed_insns,
2756 eq_transformed_insns, free_transformed_insns);
2757 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2761 /* Free almost all above data for INSN that is scheduled already.
2762 Used for extra-large basic blocks. */
2763 void
2764 free_data_for_scheduled_insn (insn_t insn)
2766 gcc_assert (! first_time_insn_init (insn));
2768 if (! INSN_ANALYZED_DEPS (insn))
2769 return;
2771 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2772 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2773 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2775 /* This is allocated only for bookkeeping insns. */
2776 if (INSN_ORIGINATORS (insn))
2777 BITMAP_FREE (INSN_ORIGINATORS (insn));
2778 free_deps (&INSN_DEPS_CONTEXT (insn));
2780 INSN_ANALYZED_DEPS (insn) = NULL;
2782 /* Clear the readonly flag so we would ICE when trying to recalculate
2783 the deps context (as we believe that it should not happen). */
2784 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2787 /* Free the same data as above for INSN. */
2788 static void
2789 free_first_time_insn_data (insn_t insn)
2791 gcc_assert (! first_time_insn_init (insn));
2793 free_data_for_scheduled_insn (insn);
2794 return_regset_to_pool (INSN_LIVE (insn));
2795 INSN_LIVE (insn) = NULL;
2796 INSN_LIVE_VALID_P (insn) = false;
2799 /* Initialize region-scope data structures for basic blocks. */
2800 static void
2801 init_global_and_expr_for_bb (basic_block bb)
2803 if (sel_bb_empty_p (bb))
2804 return;
2806 invalidate_av_set (bb);
2809 /* Data for global dependency analysis (to initialize CANT_MOVE and
2810 SCHED_GROUP_P). */
2811 static struct
2813 /* Previous insn. */
2814 insn_t prev_insn;
2815 } init_global_data;
2817 /* Determine if INSN is in the sched_group, is an asm or should not be
2818 cloned. After that initialize its expr. */
2819 static void
2820 init_global_and_expr_for_insn (insn_t insn)
2822 if (LABEL_P (insn))
2823 return;
2825 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2827 init_global_data.prev_insn = NULL_RTX;
2828 return;
2831 gcc_assert (INSN_P (insn));
2833 if (SCHED_GROUP_P (insn))
2834 /* Setup a sched_group. */
2836 insn_t prev_insn = init_global_data.prev_insn;
2838 if (prev_insn)
2839 INSN_SCHED_NEXT (prev_insn) = insn;
2841 init_global_data.prev_insn = insn;
2843 else
2844 init_global_data.prev_insn = NULL_RTX;
2846 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2847 || asm_noperands (PATTERN (insn)) >= 0)
2848 /* Mark INSN as an asm. */
2849 INSN_ASM_P (insn) = true;
2852 bool force_unique_p;
2853 ds_t spec_done_ds;
2855 /* Certain instructions cannot be cloned. */
2856 if (CANT_MOVE (insn)
2857 || INSN_ASM_P (insn)
2858 || SCHED_GROUP_P (insn)
2859 || prologue_epilogue_contains (insn)
2860 /* Exception handling insns are always unique. */
2861 || (flag_non_call_exceptions && can_throw_internal (insn))
2862 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2863 || control_flow_insn_p (insn))
2864 force_unique_p = true;
2865 else
2866 force_unique_p = false;
2868 if (targetm.sched.get_insn_spec_ds)
2870 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2871 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2873 else
2874 spec_done_ds = 0;
2876 /* Initialize INSN's expr. */
2877 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2878 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2879 spec_done_ds, 0, 0, NULL, true, false, false, false,
2880 CANT_MOVE (insn));
2883 init_first_time_insn_data (insn);
2886 /* Scan the region and initialize instruction data for basic blocks BBS. */
2887 void
2888 sel_init_global_and_expr (bb_vec_t bbs)
2890 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2891 const struct sched_scan_info_def ssi =
2893 NULL, /* extend_bb */
2894 init_global_and_expr_for_bb, /* init_bb */
2895 extend_insn_data, /* extend_insn */
2896 init_global_and_expr_for_insn /* init_insn */
2899 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2902 /* Finalize region-scope data structures for basic blocks. */
2903 static void
2904 finish_global_and_expr_for_bb (basic_block bb)
2906 av_set_clear (&BB_AV_SET (bb));
2907 BB_AV_LEVEL (bb) = 0;
2910 /* Finalize INSN's data. */
2911 static void
2912 finish_global_and_expr_insn (insn_t insn)
2914 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2915 return;
2917 gcc_assert (INSN_P (insn));
2919 if (INSN_LUID (insn) > 0)
2921 free_first_time_insn_data (insn);
2922 INSN_WS_LEVEL (insn) = 0;
2923 CANT_MOVE (insn) = 0;
2925 /* We can no longer assert this, as vinsns of this insn could be
2926 easily live in other insn's caches. This should be changed to
2927 a counter-like approach among all vinsns. */
2928 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2929 clear_expr (INSN_EXPR (insn));
2933 /* Finalize per instruction data for the whole region. */
2934 void
2935 sel_finish_global_and_expr (void)
2938 bb_vec_t bbs;
2939 int i;
2941 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2943 for (i = 0; i < current_nr_blocks; i++)
2944 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2946 /* Clear AV_SETs and INSN_EXPRs. */
2948 const struct sched_scan_info_def ssi =
2950 NULL, /* extend_bb */
2951 finish_global_and_expr_for_bb, /* init_bb */
2952 NULL, /* extend_insn */
2953 finish_global_and_expr_insn /* init_insn */
2956 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2959 VEC_free (basic_block, heap, bbs);
2962 finish_insns ();
2966 /* In the below hooks, we merely calculate whether or not a dependence
2967 exists, and in what part of insn. However, we will need more data
2968 when we'll start caching dependence requests. */
2970 /* Container to hold information for dependency analysis. */
2971 static struct
2973 deps_t dc;
2975 /* A variable to track which part of rtx we are scanning in
2976 sched-deps.c: sched_analyze_insn (). */
2977 deps_where_t where;
2979 /* Current producer. */
2980 insn_t pro;
2982 /* Current consumer. */
2983 vinsn_t con;
2985 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2986 X is from { INSN, LHS, RHS }. */
2987 ds_t has_dep_p[DEPS_IN_NOWHERE];
2988 } has_dependence_data;
2990 /* Start analyzing dependencies of INSN. */
2991 static void
2992 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
2994 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
2996 has_dependence_data.where = DEPS_IN_INSN;
2999 /* Finish analyzing dependencies of an insn. */
3000 static void
3001 has_dependence_finish_insn (void)
3003 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3005 has_dependence_data.where = DEPS_IN_NOWHERE;
3008 /* Start analyzing dependencies of LHS. */
3009 static void
3010 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3012 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3014 if (VINSN_LHS (has_dependence_data.con) != NULL)
3015 has_dependence_data.where = DEPS_IN_LHS;
3018 /* Finish analyzing dependencies of an lhs. */
3019 static void
3020 has_dependence_finish_lhs (void)
3022 has_dependence_data.where = DEPS_IN_INSN;
3025 /* Start analyzing dependencies of RHS. */
3026 static void
3027 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3029 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3031 if (VINSN_RHS (has_dependence_data.con) != NULL)
3032 has_dependence_data.where = DEPS_IN_RHS;
3035 /* Start analyzing dependencies of an rhs. */
3036 static void
3037 has_dependence_finish_rhs (void)
3039 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3040 || has_dependence_data.where == DEPS_IN_INSN);
3042 has_dependence_data.where = DEPS_IN_INSN;
3045 /* Note a set of REGNO. */
3046 static void
3047 has_dependence_note_reg_set (int regno)
3049 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3051 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3052 VINSN_INSN_RTX
3053 (has_dependence_data.con)))
3055 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3057 if (reg_last->sets != NULL
3058 || reg_last->clobbers != NULL)
3059 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3061 if (reg_last->uses)
3062 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3066 /* Note a clobber of REGNO. */
3067 static void
3068 has_dependence_note_reg_clobber (int regno)
3070 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3072 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3073 VINSN_INSN_RTX
3074 (has_dependence_data.con)))
3076 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3078 if (reg_last->sets)
3079 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3081 if (reg_last->uses)
3082 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3086 /* Note a use of REGNO. */
3087 static void
3088 has_dependence_note_reg_use (int regno)
3090 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3092 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3093 VINSN_INSN_RTX
3094 (has_dependence_data.con)))
3096 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3098 if (reg_last->sets)
3099 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3101 if (reg_last->clobbers)
3102 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3104 /* Handle BE_IN_SPEC. */
3105 if (reg_last->uses)
3107 ds_t pro_spec_checked_ds;
3109 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3110 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3112 if (pro_spec_checked_ds != 0)
3113 /* Merge BE_IN_SPEC bits into *DSP. */
3114 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3115 NULL_RTX, NULL_RTX);
3120 /* Note a memory dependence. */
3121 static void
3122 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3123 rtx pending_mem ATTRIBUTE_UNUSED,
3124 insn_t pending_insn ATTRIBUTE_UNUSED,
3125 ds_t ds ATTRIBUTE_UNUSED)
3127 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3128 VINSN_INSN_RTX (has_dependence_data.con)))
3130 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3132 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3136 /* Note a dependence. */
3137 static void
3138 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3139 ds_t ds ATTRIBUTE_UNUSED)
3141 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3142 VINSN_INSN_RTX (has_dependence_data.con)))
3144 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3146 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3150 /* Mark the insn as having a hard dependence that prevents speculation. */
3151 void
3152 sel_mark_hard_insn (rtx insn)
3154 int i;
3156 /* Only work when we're in has_dependence_p mode.
3157 ??? This is a hack, this should actually be a hook. */
3158 if (!has_dependence_data.dc || !has_dependence_data.pro)
3159 return;
3161 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3162 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3164 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3165 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3168 /* This structure holds the hooks for the dependency analysis used when
3169 actually processing dependencies in the scheduler. */
3170 static struct sched_deps_info_def has_dependence_sched_deps_info;
3172 /* This initializes most of the fields of the above structure. */
3173 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3175 NULL,
3177 has_dependence_start_insn,
3178 has_dependence_finish_insn,
3179 has_dependence_start_lhs,
3180 has_dependence_finish_lhs,
3181 has_dependence_start_rhs,
3182 has_dependence_finish_rhs,
3183 has_dependence_note_reg_set,
3184 has_dependence_note_reg_clobber,
3185 has_dependence_note_reg_use,
3186 has_dependence_note_mem_dep,
3187 has_dependence_note_dep,
3189 0, /* use_cselib */
3190 0, /* use_deps_list */
3191 0 /* generate_spec_deps */
3194 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3195 static void
3196 setup_has_dependence_sched_deps_info (void)
3198 memcpy (&has_dependence_sched_deps_info,
3199 &const_has_dependence_sched_deps_info,
3200 sizeof (has_dependence_sched_deps_info));
3202 if (spec_info != NULL)
3203 has_dependence_sched_deps_info.generate_spec_deps = 1;
3205 sched_deps_info = &has_dependence_sched_deps_info;
3208 /* Remove all dependences found and recorded in has_dependence_data array. */
3209 void
3210 sel_clear_has_dependence (void)
3212 int i;
3214 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3215 has_dependence_data.has_dep_p[i] = 0;
3218 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3219 to the dependence information array in HAS_DEP_PP. */
3220 ds_t
3221 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3223 int i;
3224 ds_t ds;
3225 struct deps *dc;
3227 if (INSN_SIMPLEJUMP_P (pred))
3228 /* Unconditional jump is just a transfer of control flow.
3229 Ignore it. */
3230 return false;
3232 dc = &INSN_DEPS_CONTEXT (pred);
3234 /* We init this field lazily. */
3235 if (dc->reg_last == NULL)
3236 init_deps_reg_last (dc);
3238 if (!dc->readonly)
3240 has_dependence_data.pro = NULL;
3241 /* Initialize empty dep context with information about PRED. */
3242 advance_deps_context (dc, pred);
3243 dc->readonly = 1;
3246 has_dependence_data.where = DEPS_IN_NOWHERE;
3247 has_dependence_data.pro = pred;
3248 has_dependence_data.con = EXPR_VINSN (expr);
3249 has_dependence_data.dc = dc;
3251 sel_clear_has_dependence ();
3253 /* Now catch all dependencies that would be generated between PRED and
3254 INSN. */
3255 setup_has_dependence_sched_deps_info ();
3256 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3257 has_dependence_data.dc = NULL;
3259 /* When a barrier was found, set DEPS_IN_INSN bits. */
3260 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3261 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3262 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3263 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3265 /* Do not allow stores to memory to move through checks. Currently
3266 we don't move this to sched-deps.c as the check doesn't have
3267 obvious places to which this dependence can be attached.
3268 FIMXE: this should go to a hook. */
3269 if (EXPR_LHS (expr)
3270 && MEM_P (EXPR_LHS (expr))
3271 && sel_insn_is_speculation_check (pred))
3272 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3274 *has_dep_pp = has_dependence_data.has_dep_p;
3275 ds = 0;
3276 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3277 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3278 NULL_RTX, NULL_RTX);
3280 return ds;
3284 /* Dependence hooks implementation that checks dependence latency constraints
3285 on the insns being scheduled. The entry point for these routines is
3286 tick_check_p predicate. */
3288 static struct
3290 /* An expr we are currently checking. */
3291 expr_t expr;
3293 /* A minimal cycle for its scheduling. */
3294 int cycle;
3296 /* Whether we have seen a true dependence while checking. */
3297 bool seen_true_dep_p;
3298 } tick_check_data;
3300 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3301 on PRO with status DS and weight DW. */
3302 static void
3303 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3305 expr_t con_expr = tick_check_data.expr;
3306 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3308 if (con_insn != pro_insn)
3310 enum reg_note dt;
3311 int tick;
3313 if (/* PROducer was removed from above due to pipelining. */
3314 !INSN_IN_STREAM_P (pro_insn)
3315 /* Or PROducer was originally on the next iteration regarding the
3316 CONsumer. */
3317 || (INSN_SCHED_TIMES (pro_insn)
3318 - EXPR_SCHED_TIMES (con_expr)) > 1)
3319 /* Don't count this dependence. */
3320 return;
3322 dt = ds_to_dt (ds);
3323 if (dt == REG_DEP_TRUE)
3324 tick_check_data.seen_true_dep_p = true;
3326 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3329 dep_def _dep, *dep = &_dep;
3331 init_dep (dep, pro_insn, con_insn, dt);
3333 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3336 /* When there are several kinds of dependencies between pro and con,
3337 only REG_DEP_TRUE should be taken into account. */
3338 if (tick > tick_check_data.cycle
3339 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3340 tick_check_data.cycle = tick;
3344 /* An implementation of note_dep hook. */
3345 static void
3346 tick_check_note_dep (insn_t pro, ds_t ds)
3348 tick_check_dep_with_dw (pro, ds, 0);
3351 /* An implementation of note_mem_dep hook. */
3352 static void
3353 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3355 dw_t dw;
3357 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3358 ? estimate_dep_weak (mem1, mem2)
3359 : 0);
3361 tick_check_dep_with_dw (pro, ds, dw);
3364 /* This structure contains hooks for dependence analysis used when determining
3365 whether an insn is ready for scheduling. */
3366 static struct sched_deps_info_def tick_check_sched_deps_info =
3368 NULL,
3370 NULL,
3371 NULL,
3372 NULL,
3373 NULL,
3374 NULL,
3375 NULL,
3376 haifa_note_reg_set,
3377 haifa_note_reg_clobber,
3378 haifa_note_reg_use,
3379 tick_check_note_mem_dep,
3380 tick_check_note_dep,
3382 0, 0, 0
3385 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3386 scheduled. Return 0 if all data from producers in DC is ready. */
3388 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3390 int cycles_left;
3391 /* Initialize variables. */
3392 tick_check_data.expr = expr;
3393 tick_check_data.cycle = 0;
3394 tick_check_data.seen_true_dep_p = false;
3395 sched_deps_info = &tick_check_sched_deps_info;
3397 gcc_assert (!dc->readonly);
3398 dc->readonly = 1;
3399 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3400 dc->readonly = 0;
3402 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3404 return cycles_left >= 0 ? cycles_left : 0;
3408 /* Functions to work with insns. */
3410 /* Returns true if LHS of INSN is the same as DEST of an insn
3411 being moved. */
3412 bool
3413 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3415 rtx lhs = INSN_LHS (insn);
3417 if (lhs == NULL || dest == NULL)
3418 return false;
3420 return rtx_equal_p (lhs, dest);
3423 /* Return s_i_d entry of INSN. Callable from debugger. */
3424 sel_insn_data_def
3425 insn_sid (insn_t insn)
3427 return *SID (insn);
3430 /* True when INSN is a speculative check. We can tell this by looking
3431 at the data structures of the selective scheduler, not by examining
3432 the pattern. */
3433 bool
3434 sel_insn_is_speculation_check (rtx insn)
3436 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3439 /* Extracts machine mode MODE and destination location DST_LOC
3440 for given INSN. */
3441 void
3442 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3444 rtx pat = PATTERN (insn);
3446 gcc_assert (dst_loc);
3447 gcc_assert (GET_CODE (pat) == SET);
3449 *dst_loc = SET_DEST (pat);
3451 gcc_assert (*dst_loc);
3452 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3454 if (mode)
3455 *mode = GET_MODE (*dst_loc);
3458 /* Returns true when moving through JUMP will result in bookkeeping
3459 creation. */
3460 bool
3461 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3463 insn_t succ;
3464 succ_iterator si;
3466 FOR_EACH_SUCC (succ, si, jump)
3467 if (sel_num_cfg_preds_gt_1 (succ))
3468 return true;
3470 return false;
3473 /* Return 'true' if INSN is the only one in its basic block. */
3474 static bool
3475 insn_is_the_only_one_in_bb_p (insn_t insn)
3477 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3480 #ifdef ENABLE_CHECKING
3481 /* Check that the region we're scheduling still has at most one
3482 backedge. */
3483 static void
3484 verify_backedges (void)
3486 if (pipelining_p)
3488 int i, n = 0;
3489 edge e;
3490 edge_iterator ei;
3492 for (i = 0; i < current_nr_blocks; i++)
3493 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3494 if (in_current_region_p (e->dest)
3495 && BLOCK_TO_BB (e->dest->index) < i)
3496 n++;
3498 gcc_assert (n <= 1);
3501 #endif
3504 /* Functions to work with control flow. */
3506 /* Tidy the possibly empty block BB. */
3507 bool
3508 maybe_tidy_empty_bb (basic_block bb)
3510 basic_block succ_bb, pred_bb;
3511 edge e;
3512 edge_iterator ei;
3513 bool rescan_p;
3515 /* Keep empty bb only if this block immediately precedes EXIT and
3516 has incoming non-fallthrough edge. Otherwise remove it. */
3517 if (!sel_bb_empty_p (bb)
3518 || (single_succ_p (bb)
3519 && single_succ (bb) == EXIT_BLOCK_PTR
3520 && (!single_pred_p (bb)
3521 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU))))
3522 return false;
3524 /* Do not attempt to redirect complex edges. */
3525 FOR_EACH_EDGE (e, ei, bb->preds)
3526 if (e->flags & EDGE_COMPLEX)
3527 return false;
3529 free_data_sets (bb);
3531 /* Do not delete BB if it has more than one successor.
3532 That can occur when we moving a jump. */
3533 if (!single_succ_p (bb))
3535 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3536 sel_merge_blocks (bb->prev_bb, bb);
3537 return true;
3540 succ_bb = single_succ (bb);
3541 rescan_p = true;
3542 pred_bb = NULL;
3544 /* Redirect all non-fallthru edges to the next bb. */
3545 while (rescan_p)
3547 rescan_p = false;
3549 FOR_EACH_EDGE (e, ei, bb->preds)
3551 pred_bb = e->src;
3553 if (!(e->flags & EDGE_FALLTHRU))
3555 sel_redirect_edge_and_branch (e, succ_bb);
3556 rescan_p = true;
3557 break;
3562 /* If it is possible - merge BB with its predecessor. */
3563 if (can_merge_blocks_p (bb->prev_bb, bb))
3564 sel_merge_blocks (bb->prev_bb, bb);
3565 else
3566 /* Otherwise this is a block without fallthru predecessor.
3567 Just delete it. */
3569 gcc_assert (pred_bb != NULL);
3571 move_bb_info (pred_bb, bb);
3572 remove_empty_bb (bb, true);
3575 #ifdef ENABLE_CHECKING
3576 verify_backedges ();
3577 #endif
3579 return true;
3582 /* Tidy the control flow after we have removed original insn from
3583 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3584 is true, also try to optimize control flow on non-empty blocks. */
3585 bool
3586 tidy_control_flow (basic_block xbb, bool full_tidying)
3588 bool changed = true;
3589 insn_t first, last;
3591 /* First check whether XBB is empty. */
3592 changed = maybe_tidy_empty_bb (xbb);
3593 if (changed || !full_tidying)
3594 return changed;
3596 /* Check if there is a unnecessary jump after insn left. */
3597 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3598 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3599 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3601 if (sel_remove_insn (BB_END (xbb), false, false))
3602 return true;
3603 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3606 first = sel_bb_head (xbb);
3607 last = sel_bb_end (xbb);
3608 if (MAY_HAVE_DEBUG_INSNS)
3610 if (first != last && DEBUG_INSN_P (first))
3612 first = NEXT_INSN (first);
3613 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3615 if (first != last && DEBUG_INSN_P (last))
3617 last = PREV_INSN (last);
3618 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3620 /* Check if there is an unnecessary jump in previous basic block leading
3621 to next basic block left after removing INSN from stream.
3622 If it is so, remove that jump and redirect edge to current
3623 basic block (where there was INSN before deletion). This way
3624 when NOP will be deleted several instructions later with its
3625 basic block we will not get a jump to next instruction, which
3626 can be harmful. */
3627 if (first == last
3628 && !sel_bb_empty_p (xbb)
3629 && INSN_NOP_P (last)
3630 /* Flow goes fallthru from current block to the next. */
3631 && EDGE_COUNT (xbb->succs) == 1
3632 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3633 /* When successor is an EXIT block, it may not be the next block. */
3634 && single_succ (xbb) != EXIT_BLOCK_PTR
3635 /* And unconditional jump in previous basic block leads to
3636 next basic block of XBB and this jump can be safely removed. */
3637 && in_current_region_p (xbb->prev_bb)
3638 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3639 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3640 /* Also this jump is not at the scheduling boundary. */
3641 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3643 /* Clear data structures of jump - jump itself will be removed
3644 by sel_redirect_edge_and_branch. */
3645 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3646 sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3647 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3649 /* It can turn out that after removing unused jump, basic block
3650 that contained that jump, becomes empty too. In such case
3651 remove it too. */
3652 if (sel_bb_empty_p (xbb->prev_bb))
3653 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3656 return changed;
3659 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3660 do not delete insn's data, because it will be later re-emitted.
3661 Return true if we have removed some blocks afterwards. */
3662 bool
3663 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3665 basic_block bb = BLOCK_FOR_INSN (insn);
3667 gcc_assert (INSN_IN_STREAM_P (insn));
3669 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3671 expr_t expr;
3672 av_set_iterator i;
3674 /* When we remove a debug insn that is head of a BB, it remains
3675 in the AV_SET of the block, but it shouldn't. */
3676 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3677 if (EXPR_INSN_RTX (expr) == insn)
3679 av_set_iter_remove (&i);
3680 break;
3684 if (only_disconnect)
3686 insn_t prev = PREV_INSN (insn);
3687 insn_t next = NEXT_INSN (insn);
3688 basic_block bb = BLOCK_FOR_INSN (insn);
3690 NEXT_INSN (prev) = next;
3691 PREV_INSN (next) = prev;
3693 if (BB_HEAD (bb) == insn)
3695 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3696 BB_HEAD (bb) = prev;
3698 if (BB_END (bb) == insn)
3699 BB_END (bb) = prev;
3701 else
3703 remove_insn (insn);
3704 clear_expr (INSN_EXPR (insn));
3707 /* It is necessary to null this fields before calling add_insn (). */
3708 PREV_INSN (insn) = NULL_RTX;
3709 NEXT_INSN (insn) = NULL_RTX;
3711 return tidy_control_flow (bb, full_tidying);
3714 /* Estimate number of the insns in BB. */
3715 static int
3716 sel_estimate_number_of_insns (basic_block bb)
3718 int res = 0;
3719 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3721 for (; insn != next_tail; insn = NEXT_INSN (insn))
3722 if (NONDEBUG_INSN_P (insn))
3723 res++;
3725 return res;
3728 /* We don't need separate luids for notes or labels. */
3729 static int
3730 sel_luid_for_non_insn (rtx x)
3732 gcc_assert (NOTE_P (x) || LABEL_P (x));
3734 return -1;
3737 /* Return seqno of the only predecessor of INSN. */
3738 static int
3739 get_seqno_of_a_pred (insn_t insn)
3741 int seqno;
3743 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3745 if (!sel_bb_head_p (insn))
3746 seqno = INSN_SEQNO (PREV_INSN (insn));
3747 else
3749 basic_block bb = BLOCK_FOR_INSN (insn);
3751 if (single_pred_p (bb)
3752 && !in_current_region_p (single_pred (bb)))
3754 /* We can have preds outside a region when splitting edges
3755 for pipelining of an outer loop. Use succ instead.
3756 There should be only one of them. */
3757 insn_t succ = NULL;
3758 succ_iterator si;
3759 bool first = true;
3761 gcc_assert (flag_sel_sched_pipelining_outer_loops
3762 && current_loop_nest);
3763 FOR_EACH_SUCC_1 (succ, si, insn,
3764 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3766 gcc_assert (first);
3767 first = false;
3770 gcc_assert (succ != NULL);
3771 seqno = INSN_SEQNO (succ);
3773 else
3775 insn_t *preds;
3776 int n;
3778 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3779 gcc_assert (n == 1);
3781 seqno = INSN_SEQNO (preds[0]);
3783 free (preds);
3787 return seqno;
3790 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3791 with positive seqno exist. */
3793 get_seqno_by_preds (rtx insn)
3795 basic_block bb = BLOCK_FOR_INSN (insn);
3796 rtx tmp = insn, head = BB_HEAD (bb);
3797 insn_t *preds;
3798 int n, i, seqno;
3800 while (tmp != head)
3801 if (INSN_P (tmp))
3802 return INSN_SEQNO (tmp);
3803 else
3804 tmp = PREV_INSN (tmp);
3806 cfg_preds (bb, &preds, &n);
3807 for (i = 0, seqno = -1; i < n; i++)
3808 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3810 return seqno;
3815 /* Extend pass-scope data structures for basic blocks. */
3816 void
3817 sel_extend_global_bb_info (void)
3819 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3820 last_basic_block);
3823 /* Extend region-scope data structures for basic blocks. */
3824 static void
3825 extend_region_bb_info (void)
3827 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3828 last_basic_block);
3831 /* Extend all data structures to fit for all basic blocks. */
3832 static void
3833 extend_bb_info (void)
3835 sel_extend_global_bb_info ();
3836 extend_region_bb_info ();
3839 /* Finalize pass-scope data structures for basic blocks. */
3840 void
3841 sel_finish_global_bb_info (void)
3843 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3846 /* Finalize region-scope data structures for basic blocks. */
3847 static void
3848 finish_region_bb_info (void)
3850 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3854 /* Data for each insn in current region. */
3855 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3857 /* A vector for the insns we've emitted. */
3858 static insn_vec_t new_insns = NULL;
3860 /* Extend data structures for insns from current region. */
3861 static void
3862 extend_insn_data (void)
3864 int reserve;
3866 sched_extend_target ();
3867 sched_deps_init (false);
3869 /* Extend data structures for insns from current region. */
3870 reserve = (sched_max_luid + 1
3871 - VEC_length (sel_insn_data_def, s_i_d));
3872 if (reserve > 0
3873 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3875 int size;
3877 if (sched_max_luid / 2 > 1024)
3878 size = sched_max_luid + 1024;
3879 else
3880 size = 3 * sched_max_luid / 2;
3883 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3887 /* Finalize data structures for insns from current region. */
3888 static void
3889 finish_insns (void)
3891 unsigned i;
3893 /* Clear here all dependence contexts that may have left from insns that were
3894 removed during the scheduling. */
3895 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3897 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3899 if (sid_entry->live)
3900 return_regset_to_pool (sid_entry->live);
3901 if (sid_entry->analyzed_deps)
3903 BITMAP_FREE (sid_entry->analyzed_deps);
3904 BITMAP_FREE (sid_entry->found_deps);
3905 htab_delete (sid_entry->transformed_insns);
3906 free_deps (&sid_entry->deps_context);
3908 if (EXPR_VINSN (&sid_entry->expr))
3910 clear_expr (&sid_entry->expr);
3912 /* Also, clear CANT_MOVE bit here, because we really don't want it
3913 to be passed to the next region. */
3914 CANT_MOVE_BY_LUID (i) = 0;
3918 VEC_free (sel_insn_data_def, heap, s_i_d);
3921 /* A proxy to pass initialization data to init_insn (). */
3922 static sel_insn_data_def _insn_init_ssid;
3923 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3925 /* If true create a new vinsn. Otherwise use the one from EXPR. */
3926 static bool insn_init_create_new_vinsn_p;
3928 /* Set all necessary data for initialization of the new insn[s]. */
3929 static expr_t
3930 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3932 expr_t x = &insn_init_ssid->expr;
3934 copy_expr_onside (x, expr);
3935 if (vi != NULL)
3937 insn_init_create_new_vinsn_p = false;
3938 change_vinsn_in_expr (x, vi);
3940 else
3941 insn_init_create_new_vinsn_p = true;
3943 insn_init_ssid->seqno = seqno;
3944 return x;
3947 /* Init data for INSN. */
3948 static void
3949 init_insn_data (insn_t insn)
3951 expr_t expr;
3952 sel_insn_data_t ssid = insn_init_ssid;
3954 /* The fields mentioned below are special and hence are not being
3955 propagated to the new insns. */
3956 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
3957 && !ssid->after_stall_p && ssid->sched_cycle == 0);
3958 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
3960 expr = INSN_EXPR (insn);
3961 copy_expr (expr, &ssid->expr);
3962 prepare_insn_expr (insn, ssid->seqno);
3964 if (insn_init_create_new_vinsn_p)
3965 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
3967 if (first_time_insn_init (insn))
3968 init_first_time_insn_data (insn);
3971 /* This is used to initialize spurious jumps generated by
3972 sel_redirect_edge (). */
3973 static void
3974 init_simplejump_data (insn_t insn)
3976 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
3977 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
3978 false, true);
3979 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
3980 init_first_time_insn_data (insn);
3983 /* Perform deferred initialization of insns. This is used to process
3984 a new jump that may be created by redirect_edge. */
3985 void
3986 sel_init_new_insn (insn_t insn, int flags)
3988 /* We create data structures for bb when the first insn is emitted in it. */
3989 if (INSN_P (insn)
3990 && INSN_IN_STREAM_P (insn)
3991 && insn_is_the_only_one_in_bb_p (insn))
3993 extend_bb_info ();
3994 create_initial_data_sets (BLOCK_FOR_INSN (insn));
3997 if (flags & INSN_INIT_TODO_LUID)
3998 sched_init_luids (NULL, NULL, NULL, insn);
4000 if (flags & INSN_INIT_TODO_SSID)
4002 extend_insn_data ();
4003 init_insn_data (insn);
4004 clear_expr (&insn_init_ssid->expr);
4007 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4009 extend_insn_data ();
4010 init_simplejump_data (insn);
4013 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4014 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4018 /* Functions to init/finish work with lv sets. */
4020 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4021 static void
4022 init_lv_set (basic_block bb)
4024 gcc_assert (!BB_LV_SET_VALID_P (bb));
4026 BB_LV_SET (bb) = get_regset_from_pool ();
4027 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4028 BB_LV_SET_VALID_P (bb) = true;
4031 /* Copy liveness information to BB from FROM_BB. */
4032 static void
4033 copy_lv_set_from (basic_block bb, basic_block from_bb)
4035 gcc_assert (!BB_LV_SET_VALID_P (bb));
4037 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4038 BB_LV_SET_VALID_P (bb) = true;
4041 /* Initialize lv set of all bb headers. */
4042 void
4043 init_lv_sets (void)
4045 basic_block bb;
4047 /* Initialize of LV sets. */
4048 FOR_EACH_BB (bb)
4049 init_lv_set (bb);
4051 /* Don't forget EXIT_BLOCK. */
4052 init_lv_set (EXIT_BLOCK_PTR);
4055 /* Release lv set of HEAD. */
4056 static void
4057 free_lv_set (basic_block bb)
4059 gcc_assert (BB_LV_SET (bb) != NULL);
4061 return_regset_to_pool (BB_LV_SET (bb));
4062 BB_LV_SET (bb) = NULL;
4063 BB_LV_SET_VALID_P (bb) = false;
4066 /* Finalize lv sets of all bb headers. */
4067 void
4068 free_lv_sets (void)
4070 basic_block bb;
4072 /* Don't forget EXIT_BLOCK. */
4073 free_lv_set (EXIT_BLOCK_PTR);
4075 /* Free LV sets. */
4076 FOR_EACH_BB (bb)
4077 if (BB_LV_SET (bb))
4078 free_lv_set (bb);
4081 /* Initialize an invalid AV_SET for BB.
4082 This set will be updated next time compute_av () process BB. */
4083 static void
4084 invalidate_av_set (basic_block bb)
4086 gcc_assert (BB_AV_LEVEL (bb) <= 0
4087 && BB_AV_SET (bb) == NULL);
4089 BB_AV_LEVEL (bb) = -1;
4092 /* Create initial data sets for BB (they will be invalid). */
4093 static void
4094 create_initial_data_sets (basic_block bb)
4096 if (BB_LV_SET (bb))
4097 BB_LV_SET_VALID_P (bb) = false;
4098 else
4099 BB_LV_SET (bb) = get_regset_from_pool ();
4100 invalidate_av_set (bb);
4103 /* Free av set of BB. */
4104 static void
4105 free_av_set (basic_block bb)
4107 av_set_clear (&BB_AV_SET (bb));
4108 BB_AV_LEVEL (bb) = 0;
4111 /* Free data sets of BB. */
4112 void
4113 free_data_sets (basic_block bb)
4115 free_lv_set (bb);
4116 free_av_set (bb);
4119 /* Exchange lv sets of TO and FROM. */
4120 static void
4121 exchange_lv_sets (basic_block to, basic_block from)
4124 regset to_lv_set = BB_LV_SET (to);
4126 BB_LV_SET (to) = BB_LV_SET (from);
4127 BB_LV_SET (from) = to_lv_set;
4131 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4133 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4134 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4139 /* Exchange av sets of TO and FROM. */
4140 static void
4141 exchange_av_sets (basic_block to, basic_block from)
4144 av_set_t to_av_set = BB_AV_SET (to);
4146 BB_AV_SET (to) = BB_AV_SET (from);
4147 BB_AV_SET (from) = to_av_set;
4151 int to_av_level = BB_AV_LEVEL (to);
4153 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4154 BB_AV_LEVEL (from) = to_av_level;
4158 /* Exchange data sets of TO and FROM. */
4159 void
4160 exchange_data_sets (basic_block to, basic_block from)
4162 exchange_lv_sets (to, from);
4163 exchange_av_sets (to, from);
4166 /* Copy data sets of FROM to TO. */
4167 void
4168 copy_data_sets (basic_block to, basic_block from)
4170 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4171 gcc_assert (BB_AV_SET (to) == NULL);
4173 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4174 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4176 if (BB_AV_SET_VALID_P (from))
4178 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4180 if (BB_LV_SET_VALID_P (from))
4182 gcc_assert (BB_LV_SET (to) != NULL);
4183 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4187 /* Return an av set for INSN, if any. */
4188 av_set_t
4189 get_av_set (insn_t insn)
4191 av_set_t av_set;
4193 gcc_assert (AV_SET_VALID_P (insn));
4195 if (sel_bb_head_p (insn))
4196 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4197 else
4198 av_set = NULL;
4200 return av_set;
4203 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4205 get_av_level (insn_t insn)
4207 int av_level;
4209 gcc_assert (INSN_P (insn));
4211 if (sel_bb_head_p (insn))
4212 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4213 else
4214 av_level = INSN_WS_LEVEL (insn);
4216 return av_level;
4221 /* Variables to work with control-flow graph. */
4223 /* The basic block that already has been processed by the sched_data_update (),
4224 but hasn't been in sel_add_bb () yet. */
4225 static VEC (basic_block, heap) *last_added_blocks = NULL;
4227 /* A pool for allocating successor infos. */
4228 static struct
4230 /* A stack for saving succs_info structures. */
4231 struct succs_info *stack;
4233 /* Its size. */
4234 int size;
4236 /* Top of the stack. */
4237 int top;
4239 /* Maximal value of the top. */
4240 int max_top;
4241 } succs_info_pool;
4243 /* Functions to work with control-flow graph. */
4245 /* Return basic block note of BB. */
4246 insn_t
4247 sel_bb_head (basic_block bb)
4249 insn_t head;
4251 if (bb == EXIT_BLOCK_PTR)
4253 gcc_assert (exit_insn != NULL_RTX);
4254 head = exit_insn;
4256 else
4258 insn_t note;
4260 note = bb_note (bb);
4261 head = next_nonnote_insn (note);
4263 if (head && BLOCK_FOR_INSN (head) != bb)
4264 head = NULL_RTX;
4267 return head;
4270 /* Return true if INSN is a basic block header. */
4271 bool
4272 sel_bb_head_p (insn_t insn)
4274 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4277 /* Return last insn of BB. */
4278 insn_t
4279 sel_bb_end (basic_block bb)
4281 if (sel_bb_empty_p (bb))
4282 return NULL_RTX;
4284 gcc_assert (bb != EXIT_BLOCK_PTR);
4286 return BB_END (bb);
4289 /* Return true if INSN is the last insn in its basic block. */
4290 bool
4291 sel_bb_end_p (insn_t insn)
4293 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4296 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4297 bool
4298 sel_bb_empty_p (basic_block bb)
4300 return sel_bb_head (bb) == NULL;
4303 /* True when BB belongs to the current scheduling region. */
4304 bool
4305 in_current_region_p (basic_block bb)
4307 if (bb->index < NUM_FIXED_BLOCKS)
4308 return false;
4310 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4313 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4314 basic_block
4315 fallthru_bb_of_jump (rtx jump)
4317 if (!JUMP_P (jump))
4318 return NULL;
4320 if (any_uncondjump_p (jump))
4321 return single_succ (BLOCK_FOR_INSN (jump));
4323 if (!any_condjump_p (jump))
4324 return NULL;
4326 /* A basic block that ends with a conditional jump may still have one successor
4327 (and be followed by a barrier), we are not interested. */
4328 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4329 return NULL;
4331 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4334 /* Remove all notes from BB. */
4335 static void
4336 init_bb (basic_block bb)
4338 remove_notes (bb_note (bb), BB_END (bb));
4339 BB_NOTE_LIST (bb) = note_list;
4342 void
4343 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4345 const struct sched_scan_info_def ssi =
4347 extend_bb_info, /* extend_bb */
4348 init_bb, /* init_bb */
4349 NULL, /* extend_insn */
4350 NULL /* init_insn */
4353 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4356 /* Restore other notes for the whole region. */
4357 static void
4358 sel_restore_other_notes (void)
4360 int bb;
4362 for (bb = 0; bb < current_nr_blocks; bb++)
4364 basic_block first, last;
4366 first = EBB_FIRST_BB (bb);
4367 last = EBB_LAST_BB (bb)->next_bb;
4371 note_list = BB_NOTE_LIST (first);
4372 restore_other_notes (NULL, first);
4373 BB_NOTE_LIST (first) = NULL_RTX;
4375 first = first->next_bb;
4377 while (first != last);
4381 /* Free per-bb data structures. */
4382 void
4383 sel_finish_bbs (void)
4385 sel_restore_other_notes ();
4387 /* Remove current loop preheader from this loop. */
4388 if (current_loop_nest)
4389 sel_remove_loop_preheader ();
4391 finish_region_bb_info ();
4394 /* Return true if INSN has a single successor of type FLAGS. */
4395 bool
4396 sel_insn_has_single_succ_p (insn_t insn, int flags)
4398 insn_t succ;
4399 succ_iterator si;
4400 bool first_p = true;
4402 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4404 if (first_p)
4405 first_p = false;
4406 else
4407 return false;
4410 return true;
4413 /* Allocate successor's info. */
4414 static struct succs_info *
4415 alloc_succs_info (void)
4417 if (succs_info_pool.top == succs_info_pool.max_top)
4419 int i;
4421 if (++succs_info_pool.max_top >= succs_info_pool.size)
4422 gcc_unreachable ();
4424 i = ++succs_info_pool.top;
4425 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4426 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4427 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4429 else
4430 succs_info_pool.top++;
4432 return &succs_info_pool.stack[succs_info_pool.top];
4435 /* Free successor's info. */
4436 void
4437 free_succs_info (struct succs_info * sinfo)
4439 gcc_assert (succs_info_pool.top >= 0
4440 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4441 succs_info_pool.top--;
4443 /* Clear stale info. */
4444 VEC_block_remove (rtx, sinfo->succs_ok,
4445 0, VEC_length (rtx, sinfo->succs_ok));
4446 VEC_block_remove (rtx, sinfo->succs_other,
4447 0, VEC_length (rtx, sinfo->succs_other));
4448 VEC_block_remove (int, sinfo->probs_ok,
4449 0, VEC_length (int, sinfo->probs_ok));
4450 sinfo->all_prob = 0;
4451 sinfo->succs_ok_n = 0;
4452 sinfo->all_succs_n = 0;
4455 /* Compute successor info for INSN. FLAGS are the flags passed
4456 to the FOR_EACH_SUCC_1 iterator. */
4457 struct succs_info *
4458 compute_succs_info (insn_t insn, short flags)
4460 succ_iterator si;
4461 insn_t succ;
4462 struct succs_info *sinfo = alloc_succs_info ();
4464 /* Traverse *all* successors and decide what to do with each. */
4465 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4467 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4468 perform code motion through inner loops. */
4469 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4471 if (current_flags & flags)
4473 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4474 VEC_safe_push (int, heap, sinfo->probs_ok,
4475 /* FIXME: Improve calculation when skipping
4476 inner loop to exits. */
4477 (si.bb_end
4478 ? si.e1->probability
4479 : REG_BR_PROB_BASE));
4480 sinfo->succs_ok_n++;
4482 else
4483 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4485 /* Compute all_prob. */
4486 if (!si.bb_end)
4487 sinfo->all_prob = REG_BR_PROB_BASE;
4488 else
4489 sinfo->all_prob += si.e1->probability;
4491 sinfo->all_succs_n++;
4494 return sinfo;
4497 /* Return the predecessors of BB in PREDS and their number in N.
4498 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4499 static void
4500 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4502 edge e;
4503 edge_iterator ei;
4505 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4507 FOR_EACH_EDGE (e, ei, bb->preds)
4509 basic_block pred_bb = e->src;
4510 insn_t bb_end = BB_END (pred_bb);
4512 /* ??? This code is not supposed to walk out of a region. */
4513 gcc_assert (in_current_region_p (pred_bb));
4515 if (sel_bb_empty_p (pred_bb))
4516 cfg_preds_1 (pred_bb, preds, n, size);
4517 else
4519 if (*n == *size)
4520 *preds = XRESIZEVEC (insn_t, *preds,
4521 (*size = 2 * *size + 1));
4522 (*preds)[(*n)++] = bb_end;
4526 gcc_assert (*n != 0);
4529 /* Find all predecessors of BB and record them in PREDS and their number
4530 in N. Empty blocks are skipped, and only normal (forward in-region)
4531 edges are processed. */
4532 static void
4533 cfg_preds (basic_block bb, insn_t **preds, int *n)
4535 int size = 0;
4537 *preds = NULL;
4538 *n = 0;
4539 cfg_preds_1 (bb, preds, n, &size);
4542 /* Returns true if we are moving INSN through join point. */
4543 bool
4544 sel_num_cfg_preds_gt_1 (insn_t insn)
4546 basic_block bb;
4548 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4549 return false;
4551 bb = BLOCK_FOR_INSN (insn);
4553 while (1)
4555 if (EDGE_COUNT (bb->preds) > 1)
4556 return true;
4558 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4559 bb = EDGE_PRED (bb, 0)->src;
4561 if (!sel_bb_empty_p (bb))
4562 break;
4565 return false;
4568 /* Returns true when BB should be the end of an ebb. Adapted from the
4569 code in sched-ebb.c. */
4570 bool
4571 bb_ends_ebb_p (basic_block bb)
4573 basic_block next_bb = bb_next_bb (bb);
4574 edge e;
4575 edge_iterator ei;
4577 if (next_bb == EXIT_BLOCK_PTR
4578 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4579 || (LABEL_P (BB_HEAD (next_bb))
4580 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4581 Work around that. */
4582 && !single_pred_p (next_bb)))
4583 return true;
4585 if (!in_current_region_p (next_bb))
4586 return true;
4588 FOR_EACH_EDGE (e, ei, bb->succs)
4589 if ((e->flags & EDGE_FALLTHRU) != 0)
4591 gcc_assert (e->dest == next_bb);
4593 return false;
4596 return true;
4599 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4600 successor of INSN. */
4601 bool
4602 in_same_ebb_p (insn_t insn, insn_t succ)
4604 basic_block ptr = BLOCK_FOR_INSN (insn);
4606 for(;;)
4608 if (ptr == BLOCK_FOR_INSN (succ))
4609 return true;
4611 if (bb_ends_ebb_p (ptr))
4612 return false;
4614 ptr = bb_next_bb (ptr);
4617 gcc_unreachable ();
4618 return false;
4621 /* Recomputes the reverse topological order for the function and
4622 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4623 modified appropriately. */
4624 static void
4625 recompute_rev_top_order (void)
4627 int *postorder;
4628 int n_blocks, i;
4630 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4632 rev_top_order_index_len = last_basic_block;
4633 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4634 rev_top_order_index_len);
4637 postorder = XNEWVEC (int, n_basic_blocks);
4639 n_blocks = post_order_compute (postorder, true, false);
4640 gcc_assert (n_basic_blocks == n_blocks);
4642 /* Build reverse function: for each basic block with BB->INDEX == K
4643 rev_top_order_index[K] is it's reverse topological sort number. */
4644 for (i = 0; i < n_blocks; i++)
4646 gcc_assert (postorder[i] < rev_top_order_index_len);
4647 rev_top_order_index[postorder[i]] = i;
4650 free (postorder);
4653 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4654 void
4655 clear_outdated_rtx_info (basic_block bb)
4657 rtx insn;
4659 FOR_BB_INSNS (bb, insn)
4660 if (INSN_P (insn))
4662 SCHED_GROUP_P (insn) = 0;
4663 INSN_AFTER_STALL_P (insn) = 0;
4664 INSN_SCHED_TIMES (insn) = 0;
4665 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4667 /* We cannot use the changed caches, as previously we could ignore
4668 the LHS dependence due to enabled renaming and transform
4669 the expression, and currently we'll be unable to do this. */
4670 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4674 /* Add BB_NOTE to the pool of available basic block notes. */
4675 static void
4676 return_bb_to_pool (basic_block bb)
4678 rtx note = bb_note (bb);
4680 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4681 && bb->aux == NULL);
4683 /* It turns out that current cfg infrastructure does not support
4684 reuse of basic blocks. Don't bother for now. */
4685 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4688 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4689 static rtx
4690 get_bb_note_from_pool (void)
4692 if (VEC_empty (rtx, bb_note_pool))
4693 return NULL_RTX;
4694 else
4696 rtx note = VEC_pop (rtx, bb_note_pool);
4698 PREV_INSN (note) = NULL_RTX;
4699 NEXT_INSN (note) = NULL_RTX;
4701 return note;
4705 /* Free bb_note_pool. */
4706 void
4707 free_bb_note_pool (void)
4709 VEC_free (rtx, heap, bb_note_pool);
4712 /* Setup scheduler pool and successor structure. */
4713 void
4714 alloc_sched_pools (void)
4716 int succs_size;
4718 succs_size = MAX_WS + 1;
4719 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4720 succs_info_pool.size = succs_size;
4721 succs_info_pool.top = -1;
4722 succs_info_pool.max_top = -1;
4724 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4725 sizeof (struct _list_node), 500);
4728 /* Free the pools. */
4729 void
4730 free_sched_pools (void)
4732 int i;
4734 free_alloc_pool (sched_lists_pool);
4735 gcc_assert (succs_info_pool.top == -1);
4736 for (i = 0; i < succs_info_pool.max_top; i++)
4738 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4739 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4740 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4742 free (succs_info_pool.stack);
4746 /* Returns a position in RGN where BB can be inserted retaining
4747 topological order. */
4748 static int
4749 find_place_to_insert_bb (basic_block bb, int rgn)
4751 bool has_preds_outside_rgn = false;
4752 edge e;
4753 edge_iterator ei;
4755 /* Find whether we have preds outside the region. */
4756 FOR_EACH_EDGE (e, ei, bb->preds)
4757 if (!in_current_region_p (e->src))
4759 has_preds_outside_rgn = true;
4760 break;
4763 /* Recompute the top order -- needed when we have > 1 pred
4764 and in case we don't have preds outside. */
4765 if (flag_sel_sched_pipelining_outer_loops
4766 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4768 int i, bbi = bb->index, cur_bbi;
4770 recompute_rev_top_order ();
4771 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4773 cur_bbi = BB_TO_BLOCK (i);
4774 if (rev_top_order_index[bbi]
4775 < rev_top_order_index[cur_bbi])
4776 break;
4779 /* We skipped the right block, so we increase i. We accomodate
4780 it for increasing by step later, so we decrease i. */
4781 return (i + 1) - 1;
4783 else if (has_preds_outside_rgn)
4785 /* This is the case when we generate an extra empty block
4786 to serve as region head during pipelining. */
4787 e = EDGE_SUCC (bb, 0);
4788 gcc_assert (EDGE_COUNT (bb->succs) == 1
4789 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4790 && (BLOCK_TO_BB (e->dest->index) == 0));
4791 return -1;
4794 /* We don't have preds outside the region. We should have
4795 the only pred, because the multiple preds case comes from
4796 the pipelining of outer loops, and that is handled above.
4797 Just take the bbi of this single pred. */
4798 if (EDGE_COUNT (bb->succs) > 0)
4800 int pred_bbi;
4802 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4804 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4805 return BLOCK_TO_BB (pred_bbi);
4807 else
4808 /* BB has no successors. It is safe to put it in the end. */
4809 return current_nr_blocks - 1;
4812 /* Deletes an empty basic block freeing its data. */
4813 static void
4814 delete_and_free_basic_block (basic_block bb)
4816 gcc_assert (sel_bb_empty_p (bb));
4818 if (BB_LV_SET (bb))
4819 free_lv_set (bb);
4821 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4823 /* Can't assert av_set properties because we use sel_aremove_bb
4824 when removing loop preheader from the region. At the point of
4825 removing the preheader we already have deallocated sel_region_bb_info. */
4826 gcc_assert (BB_LV_SET (bb) == NULL
4827 && !BB_LV_SET_VALID_P (bb)
4828 && BB_AV_LEVEL (bb) == 0
4829 && BB_AV_SET (bb) == NULL);
4831 delete_basic_block (bb);
4834 /* Add BB to the current region and update the region data. */
4835 static void
4836 add_block_to_current_region (basic_block bb)
4838 int i, pos, bbi = -2, rgn;
4840 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4841 bbi = find_place_to_insert_bb (bb, rgn);
4842 bbi += 1;
4843 pos = RGN_BLOCKS (rgn) + bbi;
4845 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4846 && ebb_head[bbi] == pos);
4848 /* Make a place for the new block. */
4849 extend_regions ();
4851 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4852 BLOCK_TO_BB (rgn_bb_table[i])++;
4854 memmove (rgn_bb_table + pos + 1,
4855 rgn_bb_table + pos,
4856 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4858 /* Initialize data for BB. */
4859 rgn_bb_table[pos] = bb->index;
4860 BLOCK_TO_BB (bb->index) = bbi;
4861 CONTAINING_RGN (bb->index) = rgn;
4863 RGN_NR_BLOCKS (rgn)++;
4865 for (i = rgn + 1; i <= nr_regions; i++)
4866 RGN_BLOCKS (i)++;
4869 /* Remove BB from the current region and update the region data. */
4870 static void
4871 remove_bb_from_region (basic_block bb)
4873 int i, pos, bbi = -2, rgn;
4875 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4876 bbi = BLOCK_TO_BB (bb->index);
4877 pos = RGN_BLOCKS (rgn) + bbi;
4879 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4880 && ebb_head[bbi] == pos);
4882 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4883 BLOCK_TO_BB (rgn_bb_table[i])--;
4885 memmove (rgn_bb_table + pos,
4886 rgn_bb_table + pos + 1,
4887 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4889 RGN_NR_BLOCKS (rgn)--;
4890 for (i = rgn + 1; i <= nr_regions; i++)
4891 RGN_BLOCKS (i)--;
4894 /* Add BB to the current region and update all data. If BB is NULL, add all
4895 blocks from last_added_blocks vector. */
4896 static void
4897 sel_add_bb (basic_block bb)
4899 /* Extend luids so that new notes will receive zero luids. */
4900 sched_init_luids (NULL, NULL, NULL, NULL);
4901 sched_init_bbs ();
4902 sel_init_bbs (last_added_blocks, NULL);
4904 /* When bb is passed explicitly, the vector should contain
4905 the only element that equals to bb; otherwise, the vector
4906 should not be NULL. */
4907 gcc_assert (last_added_blocks != NULL);
4909 if (bb != NULL)
4911 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4912 && VEC_index (basic_block,
4913 last_added_blocks, 0) == bb);
4914 add_block_to_current_region (bb);
4916 /* We associate creating/deleting data sets with the first insn
4917 appearing / disappearing in the bb. */
4918 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4919 create_initial_data_sets (bb);
4921 VEC_free (basic_block, heap, last_added_blocks);
4923 else
4924 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4926 int i;
4927 basic_block temp_bb = NULL;
4929 for (i = 0;
4930 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
4932 add_block_to_current_region (bb);
4933 temp_bb = bb;
4936 /* We need to fetch at least one bb so we know the region
4937 to update. */
4938 gcc_assert (temp_bb != NULL);
4939 bb = temp_bb;
4941 VEC_free (basic_block, heap, last_added_blocks);
4944 rgn_setup_region (CONTAINING_RGN (bb->index));
4947 /* Remove BB from the current region and update all data.
4948 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
4949 static void
4950 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
4952 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
4954 remove_bb_from_region (bb);
4955 return_bb_to_pool (bb);
4956 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4958 if (remove_from_cfg_p)
4959 delete_and_free_basic_block (bb);
4961 rgn_setup_region (CONTAINING_RGN (bb->index));
4964 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
4965 static void
4966 move_bb_info (basic_block merge_bb, basic_block empty_bb)
4968 gcc_assert (in_current_region_p (merge_bb));
4970 concat_note_lists (BB_NOTE_LIST (empty_bb),
4971 &BB_NOTE_LIST (merge_bb));
4972 BB_NOTE_LIST (empty_bb) = NULL_RTX;
4976 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
4977 EMPTY_BB's note lists into its predecessor instead of putting them
4978 into the successor. When REMOVE_FROM_CFG_P is true, also remove
4979 the empty block. */
4980 void
4981 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
4982 bool remove_from_cfg_p)
4984 basic_block merge_bb;
4986 gcc_assert (sel_bb_empty_p (empty_bb));
4988 if (merge_up_p)
4990 merge_bb = empty_bb->prev_bb;
4991 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
4992 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
4994 else
4996 edge e;
4997 edge_iterator ei;
4999 merge_bb = bb_next_bb (empty_bb);
5001 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
5002 successor block. */
5003 for (ei = ei_start (empty_bb->preds);
5004 (e = ei_safe_edge (ei)); )
5006 if (! (e->flags & EDGE_FALLTHRU))
5007 sel_redirect_edge_and_branch (e, merge_bb);
5008 else
5009 ei_next (&ei);
5012 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
5013 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
5016 move_bb_info (merge_bb, empty_bb);
5017 remove_empty_bb (empty_bb, remove_from_cfg_p);
5020 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5021 region, but keep it in CFG. */
5022 static void
5023 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5025 /* The block should contain just a note or a label.
5026 We try to check whether it is unused below. */
5027 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5028 || LABEL_P (BB_HEAD (empty_bb)));
5030 /* If basic block has predecessors or successors, redirect them. */
5031 if (remove_from_cfg_p
5032 && (EDGE_COUNT (empty_bb->preds) > 0
5033 || EDGE_COUNT (empty_bb->succs) > 0))
5035 basic_block pred;
5036 basic_block succ;
5038 /* We need to init PRED and SUCC before redirecting edges. */
5039 if (EDGE_COUNT (empty_bb->preds) > 0)
5041 edge e;
5043 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5045 e = EDGE_PRED (empty_bb, 0);
5046 gcc_assert (e->src == empty_bb->prev_bb
5047 && (e->flags & EDGE_FALLTHRU));
5049 pred = empty_bb->prev_bb;
5051 else
5052 pred = NULL;
5054 if (EDGE_COUNT (empty_bb->succs) > 0)
5056 /* We do not check fallthruness here as above, because
5057 after removing a jump the edge may actually be not fallthru. */
5058 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5059 succ = EDGE_SUCC (empty_bb, 0)->dest;
5061 else
5062 succ = NULL;
5064 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5066 edge e = EDGE_PRED (empty_bb, 0);
5068 if (e->flags & EDGE_FALLTHRU)
5069 redirect_edge_succ_nodup (e, succ);
5070 else
5071 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5074 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5076 edge e = EDGE_SUCC (empty_bb, 0);
5078 if (find_edge (pred, e->dest) == NULL)
5079 redirect_edge_pred (e, pred);
5083 /* Finish removing. */
5084 sel_remove_bb (empty_bb, remove_from_cfg_p);
5087 /* An implementation of create_basic_block hook, which additionally updates
5088 per-bb data structures. */
5089 static basic_block
5090 sel_create_basic_block (void *headp, void *endp, basic_block after)
5092 basic_block new_bb;
5093 insn_t new_bb_note;
5095 gcc_assert (flag_sel_sched_pipelining_outer_loops
5096 || last_added_blocks == NULL);
5098 new_bb_note = get_bb_note_from_pool ();
5100 if (new_bb_note == NULL_RTX)
5101 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5102 else
5104 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5105 new_bb_note, after);
5106 new_bb->aux = NULL;
5109 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5111 return new_bb;
5114 /* Implement sched_init_only_bb (). */
5115 static void
5116 sel_init_only_bb (basic_block bb, basic_block after)
5118 gcc_assert (after == NULL);
5120 extend_regions ();
5121 rgn_make_new_region_out_of_new_block (bb);
5124 /* Update the latch when we've splitted or merged it from FROM block to TO.
5125 This should be checked for all outer loops, too. */
5126 static void
5127 change_loops_latches (basic_block from, basic_block to)
5129 gcc_assert (from != to);
5131 if (current_loop_nest)
5133 struct loop *loop;
5135 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5136 if (considered_for_pipelining_p (loop) && loop->latch == from)
5138 gcc_assert (loop == current_loop_nest);
5139 loop->latch = to;
5140 gcc_assert (loop_latch_edge (loop));
5145 /* Splits BB on two basic blocks, adding it to the region and extending
5146 per-bb data structures. Returns the newly created bb. */
5147 static basic_block
5148 sel_split_block (basic_block bb, rtx after)
5150 basic_block new_bb;
5151 insn_t insn;
5153 new_bb = sched_split_block_1 (bb, after);
5154 sel_add_bb (new_bb);
5156 /* This should be called after sel_add_bb, because this uses
5157 CONTAINING_RGN for the new block, which is not yet initialized.
5158 FIXME: this function may be a no-op now. */
5159 change_loops_latches (bb, new_bb);
5161 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5162 FOR_BB_INSNS (new_bb, insn)
5163 if (INSN_P (insn))
5164 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5166 if (sel_bb_empty_p (bb))
5168 gcc_assert (!sel_bb_empty_p (new_bb));
5170 /* NEW_BB has data sets that need to be updated and BB holds
5171 data sets that should be removed. Exchange these data sets
5172 so that we won't lose BB's valid data sets. */
5173 exchange_data_sets (new_bb, bb);
5174 free_data_sets (bb);
5177 if (!sel_bb_empty_p (new_bb)
5178 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5179 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5181 return new_bb;
5184 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5185 Otherwise returns NULL. */
5186 static rtx
5187 check_for_new_jump (basic_block bb, int prev_max_uid)
5189 rtx end;
5191 end = sel_bb_end (bb);
5192 if (end && INSN_UID (end) >= prev_max_uid)
5193 return end;
5194 return NULL;
5197 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5198 New means having UID at least equal to PREV_MAX_UID. */
5199 static rtx
5200 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5202 rtx jump;
5204 /* Return immediately if no new insns were emitted. */
5205 if (get_max_uid () == prev_max_uid)
5206 return NULL;
5208 /* Now check both blocks for new jumps. It will ever be only one. */
5209 if ((jump = check_for_new_jump (from, prev_max_uid)))
5210 return jump;
5212 if (jump_bb != NULL
5213 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5214 return jump;
5215 return NULL;
5218 /* Splits E and adds the newly created basic block to the current region.
5219 Returns this basic block. */
5220 basic_block
5221 sel_split_edge (edge e)
5223 basic_block new_bb, src, other_bb = NULL;
5224 int prev_max_uid;
5225 rtx jump;
5227 src = e->src;
5228 prev_max_uid = get_max_uid ();
5229 new_bb = split_edge (e);
5231 if (flag_sel_sched_pipelining_outer_loops
5232 && current_loop_nest)
5234 int i;
5235 basic_block bb;
5237 /* Some of the basic blocks might not have been added to the loop.
5238 Add them here, until this is fixed in force_fallthru. */
5239 for (i = 0;
5240 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5241 if (!bb->loop_father)
5243 add_bb_to_loop (bb, e->dest->loop_father);
5245 gcc_assert (!other_bb && (new_bb->index != bb->index));
5246 other_bb = bb;
5250 /* Add all last_added_blocks to the region. */
5251 sel_add_bb (NULL);
5253 jump = find_new_jump (src, new_bb, prev_max_uid);
5254 if (jump)
5255 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5257 /* Put the correct lv set on this block. */
5258 if (other_bb && !sel_bb_empty_p (other_bb))
5259 compute_live (sel_bb_head (other_bb));
5261 return new_bb;
5264 /* Implement sched_create_empty_bb (). */
5265 static basic_block
5266 sel_create_empty_bb (basic_block after)
5268 basic_block new_bb;
5270 new_bb = sched_create_empty_bb_1 (after);
5272 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5273 later. */
5274 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5275 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5277 VEC_free (basic_block, heap, last_added_blocks);
5278 return new_bb;
5281 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5282 will be splitted to insert a check. */
5283 basic_block
5284 sel_create_recovery_block (insn_t orig_insn)
5286 basic_block first_bb, second_bb, recovery_block;
5287 basic_block before_recovery = NULL;
5288 rtx jump;
5290 first_bb = BLOCK_FOR_INSN (orig_insn);
5291 if (sel_bb_end_p (orig_insn))
5293 /* Avoid introducing an empty block while splitting. */
5294 gcc_assert (single_succ_p (first_bb));
5295 second_bb = single_succ (first_bb);
5297 else
5298 second_bb = sched_split_block (first_bb, orig_insn);
5300 recovery_block = sched_create_recovery_block (&before_recovery);
5301 if (before_recovery)
5302 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5304 gcc_assert (sel_bb_empty_p (recovery_block));
5305 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5306 if (current_loops != NULL)
5307 add_bb_to_loop (recovery_block, first_bb->loop_father);
5309 sel_add_bb (recovery_block);
5311 jump = BB_END (recovery_block);
5312 gcc_assert (sel_bb_head (recovery_block) == jump);
5313 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5315 return recovery_block;
5318 /* Merge basic block B into basic block A. */
5319 void
5320 sel_merge_blocks (basic_block a, basic_block b)
5322 sel_remove_empty_bb (b, true, false);
5323 merge_blocks (a, b);
5325 change_loops_latches (b, a);
5328 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5329 data structures for possibly created bb and insns. Returns the newly
5330 added bb or NULL, when a bb was not needed. */
5331 void
5332 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5334 basic_block jump_bb, src;
5335 int prev_max_uid;
5336 rtx jump;
5338 gcc_assert (!sel_bb_empty_p (e->src));
5340 src = e->src;
5341 prev_max_uid = get_max_uid ();
5342 jump_bb = redirect_edge_and_branch_force (e, to);
5344 if (jump_bb != NULL)
5345 sel_add_bb (jump_bb);
5347 /* This function could not be used to spoil the loop structure by now,
5348 thus we don't care to update anything. But check it to be sure. */
5349 if (current_loop_nest
5350 && pipelining_p)
5351 gcc_assert (loop_latch_edge (current_loop_nest));
5353 jump = find_new_jump (src, jump_bb, prev_max_uid);
5354 if (jump)
5355 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5358 /* A wrapper for redirect_edge_and_branch. */
5359 void
5360 sel_redirect_edge_and_branch (edge e, basic_block to)
5362 bool latch_edge_p;
5363 basic_block src;
5364 int prev_max_uid;
5365 rtx jump;
5366 edge redirected;
5368 latch_edge_p = (pipelining_p
5369 && current_loop_nest
5370 && e == loop_latch_edge (current_loop_nest));
5372 src = e->src;
5373 prev_max_uid = get_max_uid ();
5375 redirected = redirect_edge_and_branch (e, to);
5377 gcc_assert (redirected && last_added_blocks == NULL);
5379 /* When we've redirected a latch edge, update the header. */
5380 if (latch_edge_p)
5382 current_loop_nest->header = to;
5383 gcc_assert (loop_latch_edge (current_loop_nest));
5386 jump = find_new_jump (src, NULL, prev_max_uid);
5387 if (jump)
5388 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5391 /* This variable holds the cfg hooks used by the selective scheduler. */
5392 static struct cfg_hooks sel_cfg_hooks;
5394 /* Register sel-sched cfg hooks. */
5395 void
5396 sel_register_cfg_hooks (void)
5398 sched_split_block = sel_split_block;
5400 orig_cfg_hooks = get_cfg_hooks ();
5401 sel_cfg_hooks = orig_cfg_hooks;
5403 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5405 set_cfg_hooks (sel_cfg_hooks);
5407 sched_init_only_bb = sel_init_only_bb;
5408 sched_split_block = sel_split_block;
5409 sched_create_empty_bb = sel_create_empty_bb;
5412 /* Unregister sel-sched cfg hooks. */
5413 void
5414 sel_unregister_cfg_hooks (void)
5416 sched_create_empty_bb = NULL;
5417 sched_split_block = NULL;
5418 sched_init_only_bb = NULL;
5420 set_cfg_hooks (orig_cfg_hooks);
5424 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5425 LABEL is where this jump should be directed. */
5427 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5429 rtx insn_rtx;
5431 gcc_assert (!INSN_P (pattern));
5433 start_sequence ();
5435 if (label == NULL_RTX)
5436 insn_rtx = emit_insn (pattern);
5437 else if (DEBUG_INSN_P (label))
5438 insn_rtx = emit_debug_insn (pattern);
5439 else
5441 insn_rtx = emit_jump_insn (pattern);
5442 JUMP_LABEL (insn_rtx) = label;
5443 ++LABEL_NUSES (label);
5446 end_sequence ();
5448 sched_init_luids (NULL, NULL, NULL, NULL);
5449 sched_extend_target ();
5450 sched_deps_init (false);
5452 /* Initialize INSN_CODE now. */
5453 recog_memoized (insn_rtx);
5454 return insn_rtx;
5457 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5458 must not be clonable. */
5459 vinsn_t
5460 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5462 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5464 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5465 return vinsn_create (insn_rtx, force_unique_p);
5468 /* Create a copy of INSN_RTX. */
5470 create_copy_of_insn_rtx (rtx insn_rtx)
5472 rtx res;
5474 if (DEBUG_INSN_P (insn_rtx))
5475 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5476 insn_rtx);
5478 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5480 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5481 NULL_RTX);
5482 return res;
5485 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5486 void
5487 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5489 vinsn_detach (EXPR_VINSN (expr));
5491 EXPR_VINSN (expr) = new_vinsn;
5492 vinsn_attach (new_vinsn);
5495 /* Helpers for global init. */
5496 /* This structure is used to be able to call existing bundling mechanism
5497 and calculate insn priorities. */
5498 static struct haifa_sched_info sched_sel_haifa_sched_info =
5500 NULL, /* init_ready_list */
5501 NULL, /* can_schedule_ready_p */
5502 NULL, /* schedule_more_p */
5503 NULL, /* new_ready */
5504 NULL, /* rgn_rank */
5505 sel_print_insn, /* rgn_print_insn */
5506 contributes_to_priority,
5507 NULL, /* insn_finishes_block_p */
5509 NULL, NULL,
5510 NULL, NULL,
5511 0, 0,
5513 NULL, /* add_remove_insn */
5514 NULL, /* begin_schedule_ready */
5515 NULL, /* advance_target_bb */
5516 SEL_SCHED | NEW_BBS
5519 /* Setup special insns used in the scheduler. */
5520 void
5521 setup_nop_and_exit_insns (void)
5523 gcc_assert (nop_pattern == NULL_RTX
5524 && exit_insn == NULL_RTX);
5526 nop_pattern = gen_nop ();
5528 start_sequence ();
5529 emit_insn (nop_pattern);
5530 exit_insn = get_insns ();
5531 end_sequence ();
5532 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5535 /* Free special insns used in the scheduler. */
5536 void
5537 free_nop_and_exit_insns (void)
5539 exit_insn = NULL_RTX;
5540 nop_pattern = NULL_RTX;
5543 /* Setup a special vinsn used in new insns initialization. */
5544 void
5545 setup_nop_vinsn (void)
5547 nop_vinsn = vinsn_create (exit_insn, false);
5548 vinsn_attach (nop_vinsn);
5551 /* Free a special vinsn used in new insns initialization. */
5552 void
5553 free_nop_vinsn (void)
5555 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5556 vinsn_detach (nop_vinsn);
5557 nop_vinsn = NULL;
5560 /* Call a set_sched_flags hook. */
5561 void
5562 sel_set_sched_flags (void)
5564 /* ??? This means that set_sched_flags were called, and we decided to
5565 support speculation. However, set_sched_flags also modifies flags
5566 on current_sched_info, doing this only at global init. And we
5567 sometimes change c_s_i later. So put the correct flags again. */
5568 if (spec_info && targetm.sched.set_sched_flags)
5569 targetm.sched.set_sched_flags (spec_info);
5572 /* Setup pointers to global sched info structures. */
5573 void
5574 sel_setup_sched_infos (void)
5576 rgn_setup_common_sched_info ();
5578 memcpy (&sel_common_sched_info, common_sched_info,
5579 sizeof (sel_common_sched_info));
5581 sel_common_sched_info.fix_recovery_cfg = NULL;
5582 sel_common_sched_info.add_block = NULL;
5583 sel_common_sched_info.estimate_number_of_insns
5584 = sel_estimate_number_of_insns;
5585 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5586 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5588 common_sched_info = &sel_common_sched_info;
5590 current_sched_info = &sched_sel_haifa_sched_info;
5591 current_sched_info->sched_max_insns_priority =
5592 get_rgn_sched_max_insns_priority ();
5594 sel_set_sched_flags ();
5598 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5599 *BB_ORD_INDEX after that is increased. */
5600 static void
5601 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5603 RGN_NR_BLOCKS (rgn) += 1;
5604 RGN_DONT_CALC_DEPS (rgn) = 0;
5605 RGN_HAS_REAL_EBB (rgn) = 0;
5606 CONTAINING_RGN (bb->index) = rgn;
5607 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5608 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5609 (*bb_ord_index)++;
5611 /* FIXME: it is true only when not scheduling ebbs. */
5612 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5615 /* Functions to support pipelining of outer loops. */
5617 /* Creates a new empty region and returns it's number. */
5618 static int
5619 sel_create_new_region (void)
5621 int new_rgn_number = nr_regions;
5623 RGN_NR_BLOCKS (new_rgn_number) = 0;
5625 /* FIXME: This will work only when EBBs are not created. */
5626 if (new_rgn_number != 0)
5627 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5628 RGN_NR_BLOCKS (new_rgn_number - 1);
5629 else
5630 RGN_BLOCKS (new_rgn_number) = 0;
5632 /* Set the blocks of the next region so the other functions may
5633 calculate the number of blocks in the region. */
5634 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5635 RGN_NR_BLOCKS (new_rgn_number);
5637 nr_regions++;
5639 return new_rgn_number;
5642 /* If X has a smaller topological sort number than Y, returns -1;
5643 if greater, returns 1. */
5644 static int
5645 bb_top_order_comparator (const void *x, const void *y)
5647 basic_block bb1 = *(const basic_block *) x;
5648 basic_block bb2 = *(const basic_block *) y;
5650 gcc_assert (bb1 == bb2
5651 || rev_top_order_index[bb1->index]
5652 != rev_top_order_index[bb2->index]);
5654 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5655 bbs with greater number should go earlier. */
5656 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5657 return -1;
5658 else
5659 return 1;
5662 /* Create a region for LOOP and return its number. If we don't want
5663 to pipeline LOOP, return -1. */
5664 static int
5665 make_region_from_loop (struct loop *loop)
5667 unsigned int i;
5668 int new_rgn_number = -1;
5669 struct loop *inner;
5671 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5672 int bb_ord_index = 0;
5673 basic_block *loop_blocks;
5674 basic_block preheader_block;
5676 if (loop->num_nodes
5677 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5678 return -1;
5680 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5681 for (inner = loop->inner; inner; inner = inner->inner)
5682 if (flow_bb_inside_loop_p (inner, loop->latch))
5683 return -1;
5685 loop->ninsns = num_loop_insns (loop);
5686 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5687 return -1;
5689 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5691 for (i = 0; i < loop->num_nodes; i++)
5692 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5694 free (loop_blocks);
5695 return -1;
5698 preheader_block = loop_preheader_edge (loop)->src;
5699 gcc_assert (preheader_block);
5700 gcc_assert (loop_blocks[0] == loop->header);
5702 new_rgn_number = sel_create_new_region ();
5704 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5705 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5707 for (i = 0; i < loop->num_nodes; i++)
5709 /* Add only those blocks that haven't been scheduled in the inner loop.
5710 The exception is the basic blocks with bookkeeping code - they should
5711 be added to the region (and they actually don't belong to the loop
5712 body, but to the region containing that loop body). */
5714 gcc_assert (new_rgn_number >= 0);
5716 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5718 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5719 new_rgn_number);
5720 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5724 free (loop_blocks);
5725 MARK_LOOP_FOR_PIPELINING (loop);
5727 return new_rgn_number;
5730 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5731 void
5732 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5734 unsigned int i;
5735 int new_rgn_number = -1;
5736 basic_block bb;
5738 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5739 int bb_ord_index = 0;
5741 new_rgn_number = sel_create_new_region ();
5743 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5745 gcc_assert (new_rgn_number >= 0);
5747 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5750 VEC_free (basic_block, heap, *loop_blocks);
5751 gcc_assert (*loop_blocks == NULL);
5755 /* Create region(s) from loop nest LOOP, such that inner loops will be
5756 pipelined before outer loops. Returns true when a region for LOOP
5757 is created. */
5758 static bool
5759 make_regions_from_loop_nest (struct loop *loop)
5761 struct loop *cur_loop;
5762 int rgn_number;
5764 /* Traverse all inner nodes of the loop. */
5765 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5766 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5767 return false;
5769 /* At this moment all regular inner loops should have been pipelined.
5770 Try to create a region from this loop. */
5771 rgn_number = make_region_from_loop (loop);
5773 if (rgn_number < 0)
5774 return false;
5776 VEC_safe_push (loop_p, heap, loop_nests, loop);
5777 return true;
5780 /* Initalize data structures needed. */
5781 void
5782 sel_init_pipelining (void)
5784 /* Collect loop information to be used in outer loops pipelining. */
5785 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5786 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5787 | LOOPS_HAVE_RECORDED_EXITS
5788 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5789 current_loop_nest = NULL;
5791 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5792 sbitmap_zero (bbs_in_loop_rgns);
5794 recompute_rev_top_order ();
5797 /* Returns a struct loop for region RGN. */
5798 loop_p
5799 get_loop_nest_for_rgn (unsigned int rgn)
5801 /* Regions created with extend_rgns don't have corresponding loop nests,
5802 because they don't represent loops. */
5803 if (rgn < VEC_length (loop_p, loop_nests))
5804 return VEC_index (loop_p, loop_nests, rgn);
5805 else
5806 return NULL;
5809 /* True when LOOP was included into pipelining regions. */
5810 bool
5811 considered_for_pipelining_p (struct loop *loop)
5813 if (loop_depth (loop) == 0)
5814 return false;
5816 /* Now, the loop could be too large or irreducible. Check whether its
5817 region is in LOOP_NESTS.
5818 We determine the region number of LOOP as the region number of its
5819 latch. We can't use header here, because this header could be
5820 just removed preheader and it will give us the wrong region number.
5821 Latch can't be used because it could be in the inner loop too. */
5822 if (LOOP_MARKED_FOR_PIPELINING_P (loop) && pipelining_p)
5824 int rgn = CONTAINING_RGN (loop->latch->index);
5826 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5827 return true;
5830 return false;
5833 /* Makes regions from the rest of the blocks, after loops are chosen
5834 for pipelining. */
5835 static void
5836 make_regions_from_the_rest (void)
5838 int cur_rgn_blocks;
5839 int *loop_hdr;
5840 int i;
5842 basic_block bb;
5843 edge e;
5844 edge_iterator ei;
5845 int *degree;
5847 /* Index in rgn_bb_table where to start allocating new regions. */
5848 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5850 /* Make regions from all the rest basic blocks - those that don't belong to
5851 any loop or belong to irreducible loops. Prepare the data structures
5852 for extend_rgns. */
5854 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5855 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5856 loop. */
5857 loop_hdr = XNEWVEC (int, last_basic_block);
5858 degree = XCNEWVEC (int, last_basic_block);
5861 /* For each basic block that belongs to some loop assign the number
5862 of innermost loop it belongs to. */
5863 for (i = 0; i < last_basic_block; i++)
5864 loop_hdr[i] = -1;
5866 FOR_EACH_BB (bb)
5868 if (bb->loop_father && !bb->loop_father->num == 0
5869 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5870 loop_hdr[bb->index] = bb->loop_father->num;
5873 /* For each basic block degree is calculated as the number of incoming
5874 edges, that are going out of bbs that are not yet scheduled.
5875 The basic blocks that are scheduled have degree value of zero. */
5876 FOR_EACH_BB (bb)
5878 degree[bb->index] = 0;
5880 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5882 FOR_EACH_EDGE (e, ei, bb->preds)
5883 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5884 degree[bb->index]++;
5886 else
5887 degree[bb->index] = -1;
5890 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5892 /* Any block that did not end up in a region is placed into a region
5893 by itself. */
5894 FOR_EACH_BB (bb)
5895 if (degree[bb->index] >= 0)
5897 rgn_bb_table[cur_rgn_blocks] = bb->index;
5898 RGN_NR_BLOCKS (nr_regions) = 1;
5899 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5900 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5901 RGN_HAS_REAL_EBB (nr_regions) = 0;
5902 CONTAINING_RGN (bb->index) = nr_regions++;
5903 BLOCK_TO_BB (bb->index) = 0;
5906 free (degree);
5907 free (loop_hdr);
5910 /* Free data structures used in pipelining of loops. */
5911 void sel_finish_pipelining (void)
5913 loop_iterator li;
5914 struct loop *loop;
5916 /* Release aux fields so we don't free them later by mistake. */
5917 FOR_EACH_LOOP (li, loop, 0)
5918 loop->aux = NULL;
5920 loop_optimizer_finalize ();
5922 VEC_free (loop_p, heap, loop_nests);
5924 free (rev_top_order_index);
5925 rev_top_order_index = NULL;
5928 /* This function replaces the find_rgns when
5929 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
5930 void
5931 sel_find_rgns (void)
5933 sel_init_pipelining ();
5934 extend_regions ();
5936 if (current_loops)
5938 loop_p loop;
5939 loop_iterator li;
5941 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
5942 ? LI_FROM_INNERMOST
5943 : LI_ONLY_INNERMOST))
5944 make_regions_from_loop_nest (loop);
5947 /* Make regions from all the rest basic blocks and schedule them.
5948 These blocks include blocks that don't belong to any loop or belong
5949 to irreducible loops. */
5950 make_regions_from_the_rest ();
5952 /* We don't need bbs_in_loop_rgns anymore. */
5953 sbitmap_free (bbs_in_loop_rgns);
5954 bbs_in_loop_rgns = NULL;
5957 /* Adds the preheader blocks from previous loop to current region taking
5958 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
5959 This function is only used with -fsel-sched-pipelining-outer-loops. */
5960 void
5961 sel_add_loop_preheaders (void)
5963 int i;
5964 basic_block bb;
5965 VEC(basic_block, heap) *preheader_blocks
5966 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
5968 for (i = 0;
5969 VEC_iterate (basic_block, preheader_blocks, i, bb);
5970 i++)
5971 sel_add_bb (bb);
5973 VEC_free (basic_block, heap, preheader_blocks);
5976 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
5977 Please note that the function should also work when pipelining_p is
5978 false, because it is used when deciding whether we should or should
5979 not reschedule pipelined code. */
5980 bool
5981 sel_is_loop_preheader_p (basic_block bb)
5983 if (current_loop_nest)
5985 struct loop *outer;
5987 if (preheader_removed)
5988 return false;
5990 /* Preheader is the first block in the region. */
5991 if (BLOCK_TO_BB (bb->index) == 0)
5992 return true;
5994 /* We used to find a preheader with the topological information.
5995 Check that the above code is equivalent to what we did before. */
5997 if (in_current_region_p (current_loop_nest->header))
5998 gcc_assert (!(BLOCK_TO_BB (bb->index)
5999 < BLOCK_TO_BB (current_loop_nest->header->index)));
6001 /* Support the situation when the latch block of outer loop
6002 could be from here. */
6003 for (outer = loop_outer (current_loop_nest);
6004 outer;
6005 outer = loop_outer (outer))
6006 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6007 gcc_unreachable ();
6010 return false;
6013 /* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
6014 bool
6015 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
6017 basic_block jump_bb = BLOCK_FOR_INSN (jump);
6019 /* It is not jump, jump with side-effects or jump can lead to several
6020 basic blocks. */
6021 if (!onlyjump_p (jump)
6022 || !any_uncondjump_p (jump))
6023 return false;
6025 /* Several outgoing edges, abnormal edge or destination of jump is
6026 not DEST_BB. */
6027 if (EDGE_COUNT (jump_bb->succs) != 1
6028 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
6029 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6030 return false;
6032 /* If not anything of the upper. */
6033 return true;
6036 /* Removes the loop preheader from the current region and saves it in
6037 PREHEADER_BLOCKS of the father loop, so they will be added later to
6038 region that represents an outer loop. */
6039 static void
6040 sel_remove_loop_preheader (void)
6042 int i, old_len;
6043 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6044 basic_block bb;
6045 bool all_empty_p = true;
6046 VEC(basic_block, heap) *preheader_blocks
6047 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6049 gcc_assert (current_loop_nest);
6050 old_len = VEC_length (basic_block, preheader_blocks);
6052 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6053 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6055 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6057 /* If the basic block belongs to region, but doesn't belong to
6058 corresponding loop, then it should be a preheader. */
6059 if (sel_is_loop_preheader_p (bb))
6061 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6062 if (BB_END (bb) != bb_note (bb))
6063 all_empty_p = false;
6067 /* Remove these blocks only after iterating over the whole region. */
6068 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6069 i >= old_len;
6070 i--)
6072 bb = VEC_index (basic_block, preheader_blocks, i);
6073 sel_remove_bb (bb, false);
6076 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6078 if (!all_empty_p)
6079 /* Immediately create new region from preheader. */
6080 make_region_from_loop_preheader (&preheader_blocks);
6081 else
6083 /* If all preheader blocks are empty - dont create new empty region.
6084 Instead, remove them completely. */
6085 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6087 edge e;
6088 edge_iterator ei;
6089 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6091 /* Redirect all incoming edges to next basic block. */
6092 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6094 if (! (e->flags & EDGE_FALLTHRU))
6095 redirect_edge_and_branch (e, bb->next_bb);
6096 else
6097 redirect_edge_succ (e, bb->next_bb);
6099 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6100 delete_and_free_basic_block (bb);
6102 /* Check if after deleting preheader there is a nonconditional
6103 jump in PREV_BB that leads to the next basic block NEXT_BB.
6104 If it is so - delete this jump and clear data sets of its
6105 basic block if it becomes empty. */
6106 if (next_bb->prev_bb == prev_bb
6107 && prev_bb != ENTRY_BLOCK_PTR
6108 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6110 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6111 if (BB_END (prev_bb) == bb_note (prev_bb))
6112 free_data_sets (prev_bb);
6116 VEC_free (basic_block, heap, preheader_blocks);
6118 else
6119 /* Store preheader within the father's loop structure. */
6120 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6121 preheader_blocks);
6123 #endif