Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / recog.c
blob810270625a26c6c2a650b48fecbd58be03cc71a1
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "basic-block.h"
41 #include "output.h"
42 #include "reload.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 #include "df.h"
48 #ifndef STACK_PUSH_CODE
49 #ifdef STACK_GROWS_DOWNWARD
50 #define STACK_PUSH_CODE PRE_DEC
51 #else
52 #define STACK_PUSH_CODE PRE_INC
53 #endif
54 #endif
56 #ifndef STACK_POP_CODE
57 #ifdef STACK_GROWS_DOWNWARD
58 #define STACK_POP_CODE POST_INC
59 #else
60 #define STACK_POP_CODE POST_DEC
61 #endif
62 #endif
64 #ifndef HAVE_ATTR_enabled
65 static inline bool
66 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
68 return true;
70 #endif
72 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
73 static void validate_replace_src_1 (rtx *, void *);
74 static rtx split_insn (rtx);
76 /* Nonzero means allow operands to be volatile.
77 This should be 0 if you are generating rtl, such as if you are calling
78 the functions in optabs.c and expmed.c (most of the time).
79 This should be 1 if all valid insns need to be recognized,
80 such as in reginfo.c and final.c and reload.c.
82 init_recog and init_recog_no_volatile are responsible for setting this. */
84 int volatile_ok;
86 struct recog_data recog_data;
88 /* Contains a vector of operand_alternative structures for every operand.
89 Set up by preprocess_constraints. */
90 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
92 /* On return from `constrain_operands', indicate which alternative
93 was satisfied. */
95 int which_alternative;
97 /* Nonzero after end of reload pass.
98 Set to 1 or 0 by toplev.c.
99 Controls the significance of (SUBREG (MEM)). */
101 int reload_completed;
103 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
104 int epilogue_completed;
106 /* Initialize data used by the function `recog'.
107 This must be called once in the compilation of a function
108 before any insn recognition may be done in the function. */
110 void
111 init_recog_no_volatile (void)
113 volatile_ok = 0;
116 void
117 init_recog (void)
119 volatile_ok = 1;
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (rtx x)
129 int noperands;
130 rtx *operands;
131 const char **constraints;
132 int i;
134 /* Post-reload, be more strict with things. */
135 if (reload_completed)
137 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
138 extract_insn (make_insn_raw (x));
139 constrain_operands (1);
140 return which_alternative >= 0;
143 noperands = asm_noperands (x);
144 if (noperands < 0)
145 return 0;
146 if (noperands == 0)
147 return 1;
149 operands = XALLOCAVEC (rtx, noperands);
150 constraints = XALLOCAVEC (const char *, noperands);
152 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
154 for (i = 0; i < noperands; i++)
156 const char *c = constraints[i];
157 if (c[0] == '%')
158 c++;
159 if (! asm_operand_ok (operands[i], c, constraints))
160 return 0;
163 return 1;
166 /* Static data for the next two routines. */
168 typedef struct change_t
170 rtx object;
171 int old_code;
172 rtx *loc;
173 rtx old;
174 bool unshare;
175 } change_t;
177 static change_t *changes;
178 static int changes_allocated;
180 static int num_changes = 0;
182 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
183 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
184 the change is simply made.
186 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
187 will be called with the address and mode as parameters. If OBJECT is
188 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189 the change in place.
191 IN_GROUP is nonzero if this is part of a group of changes that must be
192 performed as a group. In that case, the changes will be stored. The
193 function `apply_change_group' will validate and apply the changes.
195 If IN_GROUP is zero, this is a single change. Try to recognize the insn
196 or validate the memory reference with the change applied. If the result
197 is not valid for the machine, suppress the change and return zero.
198 Otherwise, perform the change and return 1. */
200 static bool
201 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
203 rtx old = *loc;
205 if (old == new_rtx || rtx_equal_p (old, new_rtx))
206 return 1;
208 gcc_assert (in_group != 0 || num_changes == 0);
210 *loc = new_rtx;
212 /* Save the information describing this change. */
213 if (num_changes >= changes_allocated)
215 if (changes_allocated == 0)
216 /* This value allows for repeated substitutions inside complex
217 indexed addresses, or changes in up to 5 insns. */
218 changes_allocated = MAX_RECOG_OPERANDS * 5;
219 else
220 changes_allocated *= 2;
222 changes = XRESIZEVEC (change_t, changes, changes_allocated);
225 changes[num_changes].object = object;
226 changes[num_changes].loc = loc;
227 changes[num_changes].old = old;
228 changes[num_changes].unshare = unshare;
230 if (object && !MEM_P (object))
232 /* Set INSN_CODE to force rerecognition of insn. Save old code in
233 case invalid. */
234 changes[num_changes].old_code = INSN_CODE (object);
235 INSN_CODE (object) = -1;
238 num_changes++;
240 /* If we are making a group of changes, return 1. Otherwise, validate the
241 change group we made. */
243 if (in_group)
244 return 1;
245 else
246 return apply_change_group ();
249 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
250 UNSHARE to false. */
252 bool
253 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
255 return validate_change_1 (object, loc, new_rtx, in_group, false);
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to true. */
261 bool
262 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
264 return validate_change_1 (object, loc, new_rtx, in_group, true);
268 /* Keep X canonicalized if some changes have made it non-canonical; only
269 modifies the operands of X, not (for example) its code. Simplifications
270 are not the job of this routine.
272 Return true if anything was changed. */
273 bool
274 canonicalize_change_group (rtx insn, rtx x)
276 if (COMMUTATIVE_P (x)
277 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
279 /* Oops, the caller has made X no longer canonical.
280 Let's redo the changes in the correct order. */
281 rtx tem = XEXP (x, 0);
282 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
283 validate_change (insn, &XEXP (x, 1), tem, 1);
284 return true;
286 else
287 return false;
291 /* This subroutine of apply_change_group verifies whether the changes to INSN
292 were valid; i.e. whether INSN can still be recognized. */
295 insn_invalid_p (rtx insn)
297 rtx pat = PATTERN (insn);
298 int num_clobbers = 0;
299 /* If we are before reload and the pattern is a SET, see if we can add
300 clobbers. */
301 int icode = recog (pat, insn,
302 (GET_CODE (pat) == SET
303 && ! reload_completed && ! reload_in_progress)
304 ? &num_clobbers : 0);
305 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
308 /* If this is an asm and the operand aren't legal, then fail. Likewise if
309 this is not an asm and the insn wasn't recognized. */
310 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
311 || (!is_asm && icode < 0))
312 return 1;
314 /* If we have to add CLOBBERs, fail if we have to add ones that reference
315 hard registers since our callers can't know if they are live or not.
316 Otherwise, add them. */
317 if (num_clobbers > 0)
319 rtx newpat;
321 if (added_clobbers_hard_reg_p (icode))
322 return 1;
324 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
325 XVECEXP (newpat, 0, 0) = pat;
326 add_clobbers (newpat, icode);
327 PATTERN (insn) = pat = newpat;
330 /* After reload, verify that all constraints are satisfied. */
331 if (reload_completed)
333 extract_insn (insn);
335 if (! constrain_operands (1))
336 return 1;
339 INSN_CODE (insn) = icode;
340 return 0;
343 /* Return number of changes made and not validated yet. */
345 num_changes_pending (void)
347 return num_changes;
350 /* Tentatively apply the changes numbered NUM and up.
351 Return 1 if all changes are valid, zero otherwise. */
354 verify_changes (int num)
356 int i;
357 rtx last_validated = NULL_RTX;
359 /* The changes have been applied and all INSN_CODEs have been reset to force
360 rerecognition.
362 The changes are valid if we aren't given an object, or if we are
363 given a MEM and it still is a valid address, or if this is in insn
364 and it is recognized. In the latter case, if reload has completed,
365 we also require that the operands meet the constraints for
366 the insn. */
368 for (i = num; i < num_changes; i++)
370 rtx object = changes[i].object;
372 /* If there is no object to test or if it is the same as the one we
373 already tested, ignore it. */
374 if (object == 0 || object == last_validated)
375 continue;
377 if (MEM_P (object))
379 if (! memory_address_addr_space_p (GET_MODE (object),
380 XEXP (object, 0),
381 MEM_ADDR_SPACE (object)))
382 break;
384 else if (REG_P (changes[i].old)
385 && asm_noperands (PATTERN (object)) > 0
386 && REG_EXPR (changes[i].old) != NULL_TREE
387 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
388 && DECL_REGISTER (REG_EXPR (changes[i].old)))
390 /* Don't allow changes of hard register operands to inline
391 assemblies if they have been defined as register asm ("x"). */
392 break;
394 else if (DEBUG_INSN_P (object))
395 continue;
396 else if (insn_invalid_p (object))
398 rtx pat = PATTERN (object);
400 /* Perhaps we couldn't recognize the insn because there were
401 extra CLOBBERs at the end. If so, try to re-recognize
402 without the last CLOBBER (later iterations will cause each of
403 them to be eliminated, in turn). But don't do this if we
404 have an ASM_OPERAND. */
405 if (GET_CODE (pat) == PARALLEL
406 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
407 && asm_noperands (PATTERN (object)) < 0)
409 rtx newpat;
411 if (XVECLEN (pat, 0) == 2)
412 newpat = XVECEXP (pat, 0, 0);
413 else
415 int j;
417 newpat
418 = gen_rtx_PARALLEL (VOIDmode,
419 rtvec_alloc (XVECLEN (pat, 0) - 1));
420 for (j = 0; j < XVECLEN (newpat, 0); j++)
421 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
424 /* Add a new change to this group to replace the pattern
425 with this new pattern. Then consider this change
426 as having succeeded. The change we added will
427 cause the entire call to fail if things remain invalid.
429 Note that this can lose if a later change than the one
430 we are processing specified &XVECEXP (PATTERN (object), 0, X)
431 but this shouldn't occur. */
433 validate_change (object, &PATTERN (object), newpat, 1);
434 continue;
436 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
437 || GET_CODE (pat) == VAR_LOCATION)
438 /* If this insn is a CLOBBER or USE, it is always valid, but is
439 never recognized. */
440 continue;
441 else
442 break;
444 last_validated = object;
447 return (i == num_changes);
450 /* A group of changes has previously been issued with validate_change
451 and verified with verify_changes. Call df_insn_rescan for each of
452 the insn changed and clear num_changes. */
454 void
455 confirm_change_group (void)
457 int i;
458 rtx last_object = NULL;
460 for (i = 0; i < num_changes; i++)
462 rtx object = changes[i].object;
464 if (changes[i].unshare)
465 *changes[i].loc = copy_rtx (*changes[i].loc);
467 /* Avoid unnecessary rescanning when multiple changes to same instruction
468 are made. */
469 if (object)
471 if (object != last_object && last_object && INSN_P (last_object))
472 df_insn_rescan (last_object);
473 last_object = object;
477 if (last_object && INSN_P (last_object))
478 df_insn_rescan (last_object);
479 num_changes = 0;
482 /* Apply a group of changes previously issued with `validate_change'.
483 If all changes are valid, call confirm_change_group and return 1,
484 otherwise, call cancel_changes and return 0. */
487 apply_change_group (void)
489 if (verify_changes (0))
491 confirm_change_group ();
492 return 1;
494 else
496 cancel_changes (0);
497 return 0;
502 /* Return the number of changes so far in the current group. */
505 num_validated_changes (void)
507 return num_changes;
510 /* Retract the changes numbered NUM and up. */
512 void
513 cancel_changes (int num)
515 int i;
517 /* Back out all the changes. Do this in the opposite order in which
518 they were made. */
519 for (i = num_changes - 1; i >= num; i--)
521 *changes[i].loc = changes[i].old;
522 if (changes[i].object && !MEM_P (changes[i].object))
523 INSN_CODE (changes[i].object) = changes[i].old_code;
525 num_changes = num;
528 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
529 rtx. */
531 static void
532 simplify_while_replacing (rtx *loc, rtx to, rtx object,
533 enum machine_mode op0_mode)
535 rtx x = *loc;
536 enum rtx_code code = GET_CODE (x);
537 rtx new_rtx;
539 if (SWAPPABLE_OPERANDS_P (x)
540 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
542 validate_unshare_change (object, loc,
543 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
544 : swap_condition (code),
545 GET_MODE (x), XEXP (x, 1),
546 XEXP (x, 0)), 1);
547 x = *loc;
548 code = GET_CODE (x);
551 switch (code)
553 case PLUS:
554 /* If we have a PLUS whose second operand is now a CONST_INT, use
555 simplify_gen_binary to try to simplify it.
556 ??? We may want later to remove this, once simplification is
557 separated from this function. */
558 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
559 validate_change (object, loc,
560 simplify_gen_binary
561 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
562 break;
563 case MINUS:
564 if (CONST_INT_P (XEXP (x, 1))
565 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
566 validate_change (object, loc,
567 simplify_gen_binary
568 (PLUS, GET_MODE (x), XEXP (x, 0),
569 simplify_gen_unary (NEG,
570 GET_MODE (x), XEXP (x, 1),
571 GET_MODE (x))), 1);
572 break;
573 case ZERO_EXTEND:
574 case SIGN_EXTEND:
575 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
577 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
578 op0_mode);
579 /* If any of the above failed, substitute in something that
580 we know won't be recognized. */
581 if (!new_rtx)
582 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
583 validate_change (object, loc, new_rtx, 1);
585 break;
586 case SUBREG:
587 /* All subregs possible to simplify should be simplified. */
588 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
589 SUBREG_BYTE (x));
591 /* Subregs of VOIDmode operands are incorrect. */
592 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
593 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
594 if (new_rtx)
595 validate_change (object, loc, new_rtx, 1);
596 break;
597 case ZERO_EXTRACT:
598 case SIGN_EXTRACT:
599 /* If we are replacing a register with memory, try to change the memory
600 to be the mode required for memory in extract operations (this isn't
601 likely to be an insertion operation; if it was, nothing bad will
602 happen, we might just fail in some cases). */
604 if (MEM_P (XEXP (x, 0))
605 && CONST_INT_P (XEXP (x, 1))
606 && CONST_INT_P (XEXP (x, 2))
607 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
608 && !MEM_VOLATILE_P (XEXP (x, 0)))
610 enum machine_mode wanted_mode = VOIDmode;
611 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
612 int pos = INTVAL (XEXP (x, 2));
614 if (GET_CODE (x) == ZERO_EXTRACT)
616 enum machine_mode new_mode
617 = mode_for_extraction (EP_extzv, 1);
618 if (new_mode != MAX_MACHINE_MODE)
619 wanted_mode = new_mode;
621 else if (GET_CODE (x) == SIGN_EXTRACT)
623 enum machine_mode new_mode
624 = mode_for_extraction (EP_extv, 1);
625 if (new_mode != MAX_MACHINE_MODE)
626 wanted_mode = new_mode;
629 /* If we have a narrower mode, we can do something. */
630 if (wanted_mode != VOIDmode
631 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
633 int offset = pos / BITS_PER_UNIT;
634 rtx newmem;
636 /* If the bytes and bits are counted differently, we
637 must adjust the offset. */
638 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
639 offset =
640 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
641 offset);
643 pos %= GET_MODE_BITSIZE (wanted_mode);
645 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
647 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
648 validate_change (object, &XEXP (x, 0), newmem, 1);
652 break;
654 default:
655 break;
659 /* Replace every occurrence of FROM in X with TO. Mark each change with
660 validate_change passing OBJECT. */
662 static void
663 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
664 bool simplify)
666 int i, j;
667 const char *fmt;
668 rtx x = *loc;
669 enum rtx_code code;
670 enum machine_mode op0_mode = VOIDmode;
671 int prev_changes = num_changes;
673 if (!x)
674 return;
676 code = GET_CODE (x);
677 fmt = GET_RTX_FORMAT (code);
678 if (fmt[0] == 'e')
679 op0_mode = GET_MODE (XEXP (x, 0));
681 /* X matches FROM if it is the same rtx or they are both referring to the
682 same register in the same mode. Avoid calling rtx_equal_p unless the
683 operands look similar. */
685 if (x == from
686 || (REG_P (x) && REG_P (from)
687 && GET_MODE (x) == GET_MODE (from)
688 && REGNO (x) == REGNO (from))
689 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
690 && rtx_equal_p (x, from)))
692 validate_unshare_change (object, loc, to, 1);
693 return;
696 /* Call ourself recursively to perform the replacements.
697 We must not replace inside already replaced expression, otherwise we
698 get infinite recursion for replacements like (reg X)->(subreg (reg X))
699 done by regmove, so we must special case shared ASM_OPERANDS. */
701 if (GET_CODE (x) == PARALLEL)
703 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
705 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
706 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
708 /* Verify that operands are really shared. */
709 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
710 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
711 (x, 0, j))));
712 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
713 from, to, object, simplify);
715 else
716 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
717 simplify);
720 else
721 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
723 if (fmt[i] == 'e')
724 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
725 else if (fmt[i] == 'E')
726 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
727 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
728 simplify);
731 /* If we didn't substitute, there is nothing more to do. */
732 if (num_changes == prev_changes)
733 return;
735 /* Allow substituted expression to have different mode. This is used by
736 regmove to change mode of pseudo register. */
737 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
738 op0_mode = GET_MODE (XEXP (x, 0));
740 /* Do changes needed to keep rtx consistent. Don't do any other
741 simplifications, as it is not our job. */
742 if (simplify)
743 simplify_while_replacing (loc, to, object, op0_mode);
746 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
747 with TO. After all changes have been made, validate by seeing
748 if INSN is still valid. */
751 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
753 validate_replace_rtx_1 (loc, from, to, insn, true);
754 return apply_change_group ();
757 /* Try replacing every occurrence of FROM in INSN with TO. After all
758 changes have been made, validate by seeing if INSN is still valid. */
761 validate_replace_rtx (rtx from, rtx to, rtx insn)
763 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
764 return apply_change_group ();
767 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
768 is a part of INSN. After all changes have been made, validate by seeing if
769 INSN is still valid.
770 validate_replace_rtx (from, to, insn) is equivalent to
771 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
774 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
776 validate_replace_rtx_1 (where, from, to, insn, true);
777 return apply_change_group ();
780 /* Same as above, but do not simplify rtx afterwards. */
782 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
783 rtx insn)
785 validate_replace_rtx_1 (where, from, to, insn, false);
786 return apply_change_group ();
790 /* Try replacing every occurrence of FROM in INSN with TO. */
792 void
793 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
795 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
798 /* Function called by note_uses to replace used subexpressions. */
799 struct validate_replace_src_data
801 rtx from; /* Old RTX */
802 rtx to; /* New RTX */
803 rtx insn; /* Insn in which substitution is occurring. */
806 static void
807 validate_replace_src_1 (rtx *x, void *data)
809 struct validate_replace_src_data *d
810 = (struct validate_replace_src_data *) data;
812 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
815 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
816 SET_DESTs. */
818 void
819 validate_replace_src_group (rtx from, rtx to, rtx insn)
821 struct validate_replace_src_data d;
823 d.from = from;
824 d.to = to;
825 d.insn = insn;
826 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
829 /* Try simplify INSN.
830 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
831 pattern and return true if something was simplified. */
833 bool
834 validate_simplify_insn (rtx insn)
836 int i;
837 rtx pat = NULL;
838 rtx newpat = NULL;
840 pat = PATTERN (insn);
842 if (GET_CODE (pat) == SET)
844 newpat = simplify_rtx (SET_SRC (pat));
845 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
846 validate_change (insn, &SET_SRC (pat), newpat, 1);
847 newpat = simplify_rtx (SET_DEST (pat));
848 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
849 validate_change (insn, &SET_DEST (pat), newpat, 1);
851 else if (GET_CODE (pat) == PARALLEL)
852 for (i = 0; i < XVECLEN (pat, 0); i++)
854 rtx s = XVECEXP (pat, 0, i);
856 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
858 newpat = simplify_rtx (SET_SRC (s));
859 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
860 validate_change (insn, &SET_SRC (s), newpat, 1);
861 newpat = simplify_rtx (SET_DEST (s));
862 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
863 validate_change (insn, &SET_DEST (s), newpat, 1);
866 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
869 #ifdef HAVE_cc0
870 /* Return 1 if the insn using CC0 set by INSN does not contain
871 any ordered tests applied to the condition codes.
872 EQ and NE tests do not count. */
875 next_insn_tests_no_inequality (rtx insn)
877 rtx next = next_cc0_user (insn);
879 /* If there is no next insn, we have to take the conservative choice. */
880 if (next == 0)
881 return 0;
883 return (INSN_P (next)
884 && ! inequality_comparisons_p (PATTERN (next)));
886 #endif
888 /* Return 1 if OP is a valid general operand for machine mode MODE.
889 This is either a register reference, a memory reference,
890 or a constant. In the case of a memory reference, the address
891 is checked for general validity for the target machine.
893 Register and memory references must have mode MODE in order to be valid,
894 but some constants have no machine mode and are valid for any mode.
896 If MODE is VOIDmode, OP is checked for validity for whatever mode
897 it has.
899 The main use of this function is as a predicate in match_operand
900 expressions in the machine description.
902 For an explanation of this function's behavior for registers of
903 class NO_REGS, see the comment for `register_operand'. */
906 general_operand (rtx op, enum machine_mode mode)
908 enum rtx_code code = GET_CODE (op);
910 if (mode == VOIDmode)
911 mode = GET_MODE (op);
913 /* Don't accept CONST_INT or anything similar
914 if the caller wants something floating. */
915 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
916 && GET_MODE_CLASS (mode) != MODE_INT
917 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
918 return 0;
920 if (CONST_INT_P (op)
921 && mode != VOIDmode
922 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
923 return 0;
925 if (CONSTANT_P (op))
926 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
927 || mode == VOIDmode)
928 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
929 && LEGITIMATE_CONSTANT_P (op));
931 /* Except for certain constants with VOIDmode, already checked for,
932 OP's mode must match MODE if MODE specifies a mode. */
934 if (GET_MODE (op) != mode)
935 return 0;
937 if (code == SUBREG)
939 rtx sub = SUBREG_REG (op);
941 #ifdef INSN_SCHEDULING
942 /* On machines that have insn scheduling, we want all memory
943 reference to be explicit, so outlaw paradoxical SUBREGs.
944 However, we must allow them after reload so that they can
945 get cleaned up by cleanup_subreg_operands. */
946 if (!reload_completed && MEM_P (sub)
947 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
948 return 0;
949 #endif
950 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
951 may result in incorrect reference. We should simplify all valid
952 subregs of MEM anyway. But allow this after reload because we
953 might be called from cleanup_subreg_operands.
955 ??? This is a kludge. */
956 if (!reload_completed && SUBREG_BYTE (op) != 0
957 && MEM_P (sub))
958 return 0;
960 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
961 create such rtl, and we must reject it. */
962 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
963 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
964 return 0;
966 op = sub;
967 code = GET_CODE (op);
970 if (code == REG)
971 /* A register whose class is NO_REGS is not a general operand. */
972 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
973 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
975 if (code == MEM)
977 rtx y = XEXP (op, 0);
979 if (! volatile_ok && MEM_VOLATILE_P (op))
980 return 0;
982 /* Use the mem's mode, since it will be reloaded thus. */
983 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
984 return 1;
987 return 0;
990 /* Return 1 if OP is a valid memory address for a memory reference
991 of mode MODE.
993 The main use of this function is as a predicate in match_operand
994 expressions in the machine description. */
997 address_operand (rtx op, enum machine_mode mode)
999 return memory_address_p (mode, op);
1002 /* Return 1 if OP is a register reference of mode MODE.
1003 If MODE is VOIDmode, accept a register in any mode.
1005 The main use of this function is as a predicate in match_operand
1006 expressions in the machine description.
1008 As a special exception, registers whose class is NO_REGS are
1009 not accepted by `register_operand'. The reason for this change
1010 is to allow the representation of special architecture artifacts
1011 (such as a condition code register) without extending the rtl
1012 definitions. Since registers of class NO_REGS cannot be used
1013 as registers in any case where register classes are examined,
1014 it is most consistent to keep this function from accepting them. */
1017 register_operand (rtx op, enum machine_mode mode)
1019 if (GET_MODE (op) != mode && mode != VOIDmode)
1020 return 0;
1022 if (GET_CODE (op) == SUBREG)
1024 rtx sub = SUBREG_REG (op);
1026 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1027 because it is guaranteed to be reloaded into one.
1028 Just make sure the MEM is valid in itself.
1029 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1030 but currently it does result from (SUBREG (REG)...) where the
1031 reg went on the stack.) */
1032 if (! reload_completed && MEM_P (sub))
1033 return general_operand (op, mode);
1035 #ifdef CANNOT_CHANGE_MODE_CLASS
1036 if (REG_P (sub)
1037 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1038 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1039 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1040 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1041 return 0;
1042 #endif
1044 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1045 create such rtl, and we must reject it. */
1046 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1047 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1048 return 0;
1050 op = sub;
1053 /* We don't consider registers whose class is NO_REGS
1054 to be a register operand. */
1055 return (REG_P (op)
1056 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1057 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1060 /* Return 1 for a register in Pmode; ignore the tested mode. */
1063 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1065 return register_operand (op, Pmode);
1068 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1069 or a hard register. */
1072 scratch_operand (rtx op, enum machine_mode mode)
1074 if (GET_MODE (op) != mode && mode != VOIDmode)
1075 return 0;
1077 return (GET_CODE (op) == SCRATCH
1078 || (REG_P (op)
1079 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1082 /* Return 1 if OP is a valid immediate operand for mode MODE.
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1088 immediate_operand (rtx op, enum machine_mode mode)
1090 /* Don't accept CONST_INT or anything similar
1091 if the caller wants something floating. */
1092 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1093 && GET_MODE_CLASS (mode) != MODE_INT
1094 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1095 return 0;
1097 if (CONST_INT_P (op)
1098 && mode != VOIDmode
1099 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1100 return 0;
1102 return (CONSTANT_P (op)
1103 && (GET_MODE (op) == mode || mode == VOIDmode
1104 || GET_MODE (op) == VOIDmode)
1105 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1106 && LEGITIMATE_CONSTANT_P (op));
1109 /* Returns 1 if OP is an operand that is a CONST_INT. */
1112 const_int_operand (rtx op, enum machine_mode mode)
1114 if (!CONST_INT_P (op))
1115 return 0;
1117 if (mode != VOIDmode
1118 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1119 return 0;
1121 return 1;
1124 /* Returns 1 if OP is an operand that is a constant integer or constant
1125 floating-point number. */
1128 const_double_operand (rtx op, enum machine_mode mode)
1130 /* Don't accept CONST_INT or anything similar
1131 if the caller wants something floating. */
1132 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1133 && GET_MODE_CLASS (mode) != MODE_INT
1134 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1135 return 0;
1137 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1138 && (mode == VOIDmode || GET_MODE (op) == mode
1139 || GET_MODE (op) == VOIDmode));
1142 /* Return 1 if OP is a general operand that is not an immediate operand. */
1145 nonimmediate_operand (rtx op, enum machine_mode mode)
1147 return (general_operand (op, mode) && ! CONSTANT_P (op));
1150 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1153 nonmemory_operand (rtx op, enum machine_mode mode)
1155 if (CONSTANT_P (op))
1157 /* Don't accept CONST_INT or anything similar
1158 if the caller wants something floating. */
1159 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1160 && GET_MODE_CLASS (mode) != MODE_INT
1161 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1162 return 0;
1164 if (CONST_INT_P (op)
1165 && mode != VOIDmode
1166 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1167 return 0;
1169 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1170 || mode == VOIDmode)
1171 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1172 && LEGITIMATE_CONSTANT_P (op));
1175 if (GET_MODE (op) != mode && mode != VOIDmode)
1176 return 0;
1178 if (GET_CODE (op) == SUBREG)
1180 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1181 because it is guaranteed to be reloaded into one.
1182 Just make sure the MEM is valid in itself.
1183 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1184 but currently it does result from (SUBREG (REG)...) where the
1185 reg went on the stack.) */
1186 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1187 return general_operand (op, mode);
1188 op = SUBREG_REG (op);
1191 /* We don't consider registers whose class is NO_REGS
1192 to be a register operand. */
1193 return (REG_P (op)
1194 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1195 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1198 /* Return 1 if OP is a valid operand that stands for pushing a
1199 value of mode MODE onto the stack.
1201 The main use of this function is as a predicate in match_operand
1202 expressions in the machine description. */
1205 push_operand (rtx op, enum machine_mode mode)
1207 unsigned int rounded_size = GET_MODE_SIZE (mode);
1209 #ifdef PUSH_ROUNDING
1210 rounded_size = PUSH_ROUNDING (rounded_size);
1211 #endif
1213 if (!MEM_P (op))
1214 return 0;
1216 if (mode != VOIDmode && GET_MODE (op) != mode)
1217 return 0;
1219 op = XEXP (op, 0);
1221 if (rounded_size == GET_MODE_SIZE (mode))
1223 if (GET_CODE (op) != STACK_PUSH_CODE)
1224 return 0;
1226 else
1228 if (GET_CODE (op) != PRE_MODIFY
1229 || GET_CODE (XEXP (op, 1)) != PLUS
1230 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1231 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1232 #ifdef STACK_GROWS_DOWNWARD
1233 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1234 #else
1235 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1236 #endif
1238 return 0;
1241 return XEXP (op, 0) == stack_pointer_rtx;
1244 /* Return 1 if OP is a valid operand that stands for popping a
1245 value of mode MODE off the stack.
1247 The main use of this function is as a predicate in match_operand
1248 expressions in the machine description. */
1251 pop_operand (rtx op, enum machine_mode mode)
1253 if (!MEM_P (op))
1254 return 0;
1256 if (mode != VOIDmode && GET_MODE (op) != mode)
1257 return 0;
1259 op = XEXP (op, 0);
1261 if (GET_CODE (op) != STACK_POP_CODE)
1262 return 0;
1264 return XEXP (op, 0) == stack_pointer_rtx;
1267 /* Return 1 if ADDR is a valid memory address
1268 for mode MODE in address space AS. */
1271 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1272 rtx addr, addr_space_t as)
1274 #ifdef GO_IF_LEGITIMATE_ADDRESS
1275 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1276 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1277 return 0;
1279 win:
1280 return 1;
1281 #else
1282 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1283 #endif
1286 /* Return 1 if OP is a valid memory reference with mode MODE,
1287 including a valid address.
1289 The main use of this function is as a predicate in match_operand
1290 expressions in the machine description. */
1293 memory_operand (rtx op, enum machine_mode mode)
1295 rtx inner;
1297 if (! reload_completed)
1298 /* Note that no SUBREG is a memory operand before end of reload pass,
1299 because (SUBREG (MEM...)) forces reloading into a register. */
1300 return MEM_P (op) && general_operand (op, mode);
1302 if (mode != VOIDmode && GET_MODE (op) != mode)
1303 return 0;
1305 inner = op;
1306 if (GET_CODE (inner) == SUBREG)
1307 inner = SUBREG_REG (inner);
1309 return (MEM_P (inner) && general_operand (op, mode));
1312 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1313 that is, a memory reference whose address is a general_operand. */
1316 indirect_operand (rtx op, enum machine_mode mode)
1318 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1319 if (! reload_completed
1320 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1322 int offset = SUBREG_BYTE (op);
1323 rtx inner = SUBREG_REG (op);
1325 if (mode != VOIDmode && GET_MODE (op) != mode)
1326 return 0;
1328 /* The only way that we can have a general_operand as the resulting
1329 address is if OFFSET is zero and the address already is an operand
1330 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1331 operand. */
1333 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1334 || (GET_CODE (XEXP (inner, 0)) == PLUS
1335 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1336 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1337 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1340 return (MEM_P (op)
1341 && memory_operand (op, mode)
1342 && general_operand (XEXP (op, 0), Pmode));
1345 /* Return 1 if this is an ordered comparison operator (not including
1346 ORDERED and UNORDERED). */
1349 ordered_comparison_operator (rtx op, enum machine_mode mode)
1351 if (mode != VOIDmode && GET_MODE (op) != mode)
1352 return false;
1353 switch (GET_CODE (op))
1355 case EQ:
1356 case NE:
1357 case LT:
1358 case LTU:
1359 case LE:
1360 case LEU:
1361 case GT:
1362 case GTU:
1363 case GE:
1364 case GEU:
1365 return true;
1366 default:
1367 return false;
1371 /* Return 1 if this is a comparison operator. This allows the use of
1372 MATCH_OPERATOR to recognize all the branch insns. */
1375 comparison_operator (rtx op, enum machine_mode mode)
1377 return ((mode == VOIDmode || GET_MODE (op) == mode)
1378 && COMPARISON_P (op));
1381 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1384 extract_asm_operands (rtx body)
1386 rtx tmp;
1387 switch (GET_CODE (body))
1389 case ASM_OPERANDS:
1390 return body;
1392 case SET:
1393 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1394 tmp = SET_SRC (body);
1395 if (GET_CODE (tmp) == ASM_OPERANDS)
1396 return tmp;
1397 break;
1399 case PARALLEL:
1400 tmp = XVECEXP (body, 0, 0);
1401 if (GET_CODE (tmp) == ASM_OPERANDS)
1402 return tmp;
1403 if (GET_CODE (tmp) == SET)
1405 tmp = SET_SRC (tmp);
1406 if (GET_CODE (tmp) == ASM_OPERANDS)
1407 return tmp;
1409 break;
1411 default:
1412 break;
1414 return NULL;
1417 /* If BODY is an insn body that uses ASM_OPERANDS,
1418 return the number of operands (both input and output) in the insn.
1419 Otherwise return -1. */
1422 asm_noperands (const_rtx body)
1424 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1425 int n_sets = 0;
1427 if (asm_op == NULL)
1428 return -1;
1430 if (GET_CODE (body) == SET)
1431 n_sets = 1;
1432 else if (GET_CODE (body) == PARALLEL)
1434 int i;
1435 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1437 /* Multiple output operands, or 1 output plus some clobbers:
1438 body is
1439 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1440 /* Count backwards through CLOBBERs to determine number of SETs. */
1441 for (i = XVECLEN (body, 0); i > 0; i--)
1443 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1444 break;
1445 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1446 return -1;
1449 /* N_SETS is now number of output operands. */
1450 n_sets = i;
1452 /* Verify that all the SETs we have
1453 came from a single original asm_operands insn
1454 (so that invalid combinations are blocked). */
1455 for (i = 0; i < n_sets; i++)
1457 rtx elt = XVECEXP (body, 0, i);
1458 if (GET_CODE (elt) != SET)
1459 return -1;
1460 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1461 return -1;
1462 /* If these ASM_OPERANDS rtx's came from different original insns
1463 then they aren't allowed together. */
1464 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1465 != ASM_OPERANDS_INPUT_VEC (asm_op))
1466 return -1;
1469 else
1471 /* 0 outputs, but some clobbers:
1472 body is [(asm_operands ...) (clobber (reg ...))...]. */
1473 /* Make sure all the other parallel things really are clobbers. */
1474 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1475 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1476 return -1;
1480 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1481 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1484 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1485 copy its operands (both input and output) into the vector OPERANDS,
1486 the locations of the operands within the insn into the vector OPERAND_LOCS,
1487 and the constraints for the operands into CONSTRAINTS.
1488 Write the modes of the operands into MODES.
1489 Return the assembler-template.
1491 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1492 we don't store that info. */
1494 const char *
1495 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1496 const char **constraints, enum machine_mode *modes,
1497 location_t *loc)
1499 int nbase = 0, n, i;
1500 rtx asmop;
1502 switch (GET_CODE (body))
1504 case ASM_OPERANDS:
1505 /* Zero output asm: BODY is (asm_operands ...). */
1506 asmop = body;
1507 break;
1509 case SET:
1510 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1511 asmop = SET_SRC (body);
1513 /* The output is in the SET.
1514 Its constraint is in the ASM_OPERANDS itself. */
1515 if (operands)
1516 operands[0] = SET_DEST (body);
1517 if (operand_locs)
1518 operand_locs[0] = &SET_DEST (body);
1519 if (constraints)
1520 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1521 if (modes)
1522 modes[0] = GET_MODE (SET_DEST (body));
1523 nbase = 1;
1524 break;
1526 case PARALLEL:
1528 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1530 asmop = XVECEXP (body, 0, 0);
1531 if (GET_CODE (asmop) == SET)
1533 asmop = SET_SRC (asmop);
1535 /* At least one output, plus some CLOBBERs. The outputs are in
1536 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1537 for (i = 0; i < nparallel; i++)
1539 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1540 break; /* Past last SET */
1541 if (operands)
1542 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1543 if (operand_locs)
1544 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1545 if (constraints)
1546 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1547 if (modes)
1548 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1550 nbase = i;
1552 break;
1555 default:
1556 gcc_unreachable ();
1559 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1560 for (i = 0; i < n; i++)
1562 if (operand_locs)
1563 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1564 if (operands)
1565 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1566 if (constraints)
1567 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1568 if (modes)
1569 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1571 nbase += n;
1573 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1574 for (i = 0; i < n; i++)
1576 if (operand_locs)
1577 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1578 if (operands)
1579 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1580 if (constraints)
1581 constraints[nbase + i] = "";
1582 if (modes)
1583 modes[nbase + i] = Pmode;
1586 if (loc)
1587 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1589 return ASM_OPERANDS_TEMPLATE (asmop);
1592 /* Check if an asm_operand matches its constraints.
1593 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1596 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1598 int result = 0;
1600 /* Use constrain_operands after reload. */
1601 gcc_assert (!reload_completed);
1603 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1604 many alternatives as required to match the other operands. */
1605 if (*constraint == '\0')
1606 return 1;
1608 while (*constraint)
1610 char c = *constraint;
1611 int len;
1612 switch (c)
1614 case ',':
1615 constraint++;
1616 continue;
1617 case '=':
1618 case '+':
1619 case '*':
1620 case '%':
1621 case '!':
1622 case '#':
1623 case '&':
1624 case '?':
1625 break;
1627 case '0': case '1': case '2': case '3': case '4':
1628 case '5': case '6': case '7': case '8': case '9':
1629 /* If caller provided constraints pointer, look up
1630 the maching constraint. Otherwise, our caller should have
1631 given us the proper matching constraint, but we can't
1632 actually fail the check if they didn't. Indicate that
1633 results are inconclusive. */
1634 if (constraints)
1636 char *end;
1637 unsigned long match;
1639 match = strtoul (constraint, &end, 10);
1640 if (!result)
1641 result = asm_operand_ok (op, constraints[match], NULL);
1642 constraint = (const char *) end;
1644 else
1647 constraint++;
1648 while (ISDIGIT (*constraint));
1649 if (! result)
1650 result = -1;
1652 continue;
1654 case 'p':
1655 if (address_operand (op, VOIDmode))
1656 result = 1;
1657 break;
1659 case TARGET_MEM_CONSTRAINT:
1660 case 'V': /* non-offsettable */
1661 if (memory_operand (op, VOIDmode))
1662 result = 1;
1663 break;
1665 case 'o': /* offsettable */
1666 if (offsettable_nonstrict_memref_p (op))
1667 result = 1;
1668 break;
1670 case '<':
1671 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1672 excepting those that expand_call created. Further, on some
1673 machines which do not have generalized auto inc/dec, an inc/dec
1674 is not a memory_operand.
1676 Match any memory and hope things are resolved after reload. */
1678 if (MEM_P (op)
1679 && (1
1680 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1681 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1682 result = 1;
1683 break;
1685 case '>':
1686 if (MEM_P (op)
1687 && (1
1688 || GET_CODE (XEXP (op, 0)) == PRE_INC
1689 || GET_CODE (XEXP (op, 0)) == POST_INC))
1690 result = 1;
1691 break;
1693 case 'E':
1694 case 'F':
1695 if (GET_CODE (op) == CONST_DOUBLE
1696 || (GET_CODE (op) == CONST_VECTOR
1697 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1698 result = 1;
1699 break;
1701 case 'G':
1702 if (GET_CODE (op) == CONST_DOUBLE
1703 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1704 result = 1;
1705 break;
1706 case 'H':
1707 if (GET_CODE (op) == CONST_DOUBLE
1708 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1709 result = 1;
1710 break;
1712 case 's':
1713 if (CONST_INT_P (op)
1714 || (GET_CODE (op) == CONST_DOUBLE
1715 && GET_MODE (op) == VOIDmode))
1716 break;
1717 /* Fall through. */
1719 case 'i':
1720 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1721 result = 1;
1722 break;
1724 case 'n':
1725 if (CONST_INT_P (op)
1726 || (GET_CODE (op) == CONST_DOUBLE
1727 && GET_MODE (op) == VOIDmode))
1728 result = 1;
1729 break;
1731 case 'I':
1732 if (CONST_INT_P (op)
1733 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1734 result = 1;
1735 break;
1736 case 'J':
1737 if (CONST_INT_P (op)
1738 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1739 result = 1;
1740 break;
1741 case 'K':
1742 if (CONST_INT_P (op)
1743 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1744 result = 1;
1745 break;
1746 case 'L':
1747 if (CONST_INT_P (op)
1748 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1749 result = 1;
1750 break;
1751 case 'M':
1752 if (CONST_INT_P (op)
1753 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1754 result = 1;
1755 break;
1756 case 'N':
1757 if (CONST_INT_P (op)
1758 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1759 result = 1;
1760 break;
1761 case 'O':
1762 if (CONST_INT_P (op)
1763 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1764 result = 1;
1765 break;
1766 case 'P':
1767 if (CONST_INT_P (op)
1768 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1769 result = 1;
1770 break;
1772 case 'X':
1773 result = 1;
1774 break;
1776 case 'g':
1777 if (general_operand (op, VOIDmode))
1778 result = 1;
1779 break;
1781 default:
1782 /* For all other letters, we first check for a register class,
1783 otherwise it is an EXTRA_CONSTRAINT. */
1784 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1786 case 'r':
1787 if (GET_MODE (op) == BLKmode)
1788 break;
1789 if (register_operand (op, VOIDmode))
1790 result = 1;
1792 #ifdef EXTRA_CONSTRAINT_STR
1793 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1794 /* Every memory operand can be reloaded to fit. */
1795 result = result || memory_operand (op, VOIDmode);
1796 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1797 /* Every address operand can be reloaded to fit. */
1798 result = result || address_operand (op, VOIDmode);
1799 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1800 result = 1;
1801 #endif
1802 break;
1804 len = CONSTRAINT_LEN (c, constraint);
1806 constraint++;
1807 while (--len && *constraint);
1808 if (len)
1809 return 0;
1812 return result;
1815 /* Given an rtx *P, if it is a sum containing an integer constant term,
1816 return the location (type rtx *) of the pointer to that constant term.
1817 Otherwise, return a null pointer. */
1819 rtx *
1820 find_constant_term_loc (rtx *p)
1822 rtx *tem;
1823 enum rtx_code code = GET_CODE (*p);
1825 /* If *P IS such a constant term, P is its location. */
1827 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1828 || code == CONST)
1829 return p;
1831 /* Otherwise, if not a sum, it has no constant term. */
1833 if (GET_CODE (*p) != PLUS)
1834 return 0;
1836 /* If one of the summands is constant, return its location. */
1838 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1839 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1840 return p;
1842 /* Otherwise, check each summand for containing a constant term. */
1844 if (XEXP (*p, 0) != 0)
1846 tem = find_constant_term_loc (&XEXP (*p, 0));
1847 if (tem != 0)
1848 return tem;
1851 if (XEXP (*p, 1) != 0)
1853 tem = find_constant_term_loc (&XEXP (*p, 1));
1854 if (tem != 0)
1855 return tem;
1858 return 0;
1861 /* Return 1 if OP is a memory reference
1862 whose address contains no side effects
1863 and remains valid after the addition
1864 of a positive integer less than the
1865 size of the object being referenced.
1867 We assume that the original address is valid and do not check it.
1869 This uses strict_memory_address_p as a subroutine, so
1870 don't use it before reload. */
1873 offsettable_memref_p (rtx op)
1875 return ((MEM_P (op))
1876 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1877 MEM_ADDR_SPACE (op)));
1880 /* Similar, but don't require a strictly valid mem ref:
1881 consider pseudo-regs valid as index or base regs. */
1884 offsettable_nonstrict_memref_p (rtx op)
1886 return ((MEM_P (op))
1887 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1888 MEM_ADDR_SPACE (op)));
1891 /* Return 1 if Y is a memory address which contains no side effects
1892 and would remain valid for address space AS after the addition of
1893 a positive integer less than the size of that mode.
1895 We assume that the original address is valid and do not check it.
1896 We do check that it is valid for narrower modes.
1898 If STRICTP is nonzero, we require a strictly valid address,
1899 for the sake of use in reload.c. */
1902 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1903 addr_space_t as)
1905 enum rtx_code ycode = GET_CODE (y);
1906 rtx z;
1907 rtx y1 = y;
1908 rtx *y2;
1909 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1910 (strictp ? strict_memory_address_addr_space_p
1911 : memory_address_addr_space_p);
1912 unsigned int mode_sz = GET_MODE_SIZE (mode);
1914 if (CONSTANT_ADDRESS_P (y))
1915 return 1;
1917 /* Adjusting an offsettable address involves changing to a narrower mode.
1918 Make sure that's OK. */
1920 if (mode_dependent_address_p (y))
1921 return 0;
1923 /* ??? How much offset does an offsettable BLKmode reference need?
1924 Clearly that depends on the situation in which it's being used.
1925 However, the current situation in which we test 0xffffffff is
1926 less than ideal. Caveat user. */
1927 if (mode_sz == 0)
1928 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1930 /* If the expression contains a constant term,
1931 see if it remains valid when max possible offset is added. */
1933 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1935 int good;
1937 y1 = *y2;
1938 *y2 = plus_constant (*y2, mode_sz - 1);
1939 /* Use QImode because an odd displacement may be automatically invalid
1940 for any wider mode. But it should be valid for a single byte. */
1941 good = (*addressp) (QImode, y, as);
1943 /* In any case, restore old contents of memory. */
1944 *y2 = y1;
1945 return good;
1948 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1949 return 0;
1951 /* The offset added here is chosen as the maximum offset that
1952 any instruction could need to add when operating on something
1953 of the specified mode. We assume that if Y and Y+c are
1954 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1955 go inside a LO_SUM here, so we do so as well. */
1956 if (GET_CODE (y) == LO_SUM
1957 && mode != BLKmode
1958 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1959 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1960 plus_constant (XEXP (y, 1), mode_sz - 1));
1961 else
1962 z = plus_constant (y, mode_sz - 1);
1964 /* Use QImode because an odd displacement may be automatically invalid
1965 for any wider mode. But it should be valid for a single byte. */
1966 return (*addressp) (QImode, z, as);
1969 /* Return 1 if ADDR is an address-expression whose effect depends
1970 on the mode of the memory reference it is used in.
1972 Autoincrement addressing is a typical example of mode-dependence
1973 because the amount of the increment depends on the mode. */
1976 mode_dependent_address_p (rtx addr)
1978 /* Auto-increment addressing with anything other than post_modify
1979 or pre_modify always introduces a mode dependency. Catch such
1980 cases now instead of deferring to the target. */
1981 if (GET_CODE (addr) == PRE_INC
1982 || GET_CODE (addr) == POST_INC
1983 || GET_CODE (addr) == PRE_DEC
1984 || GET_CODE (addr) == POST_DEC)
1985 return 1;
1987 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1988 return 0;
1989 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1990 win: ATTRIBUTE_UNUSED_LABEL
1991 return 1;
1994 /* Like extract_insn, but save insn extracted and don't extract again, when
1995 called again for the same insn expecting that recog_data still contain the
1996 valid information. This is used primary by gen_attr infrastructure that
1997 often does extract insn again and again. */
1998 void
1999 extract_insn_cached (rtx insn)
2001 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2002 return;
2003 extract_insn (insn);
2004 recog_data.insn = insn;
2007 /* Do cached extract_insn, constrain_operands and complain about failures.
2008 Used by insn_attrtab. */
2009 void
2010 extract_constrain_insn_cached (rtx insn)
2012 extract_insn_cached (insn);
2013 if (which_alternative == -1
2014 && !constrain_operands (reload_completed))
2015 fatal_insn_not_found (insn);
2018 /* Do cached constrain_operands and complain about failures. */
2020 constrain_operands_cached (int strict)
2022 if (which_alternative == -1)
2023 return constrain_operands (strict);
2024 else
2025 return 1;
2028 /* Analyze INSN and fill in recog_data. */
2030 void
2031 extract_insn (rtx insn)
2033 int i;
2034 int icode;
2035 int noperands;
2036 rtx body = PATTERN (insn);
2038 recog_data.n_operands = 0;
2039 recog_data.n_alternatives = 0;
2040 recog_data.n_dups = 0;
2042 switch (GET_CODE (body))
2044 case USE:
2045 case CLOBBER:
2046 case ASM_INPUT:
2047 case ADDR_VEC:
2048 case ADDR_DIFF_VEC:
2049 case VAR_LOCATION:
2050 return;
2052 case SET:
2053 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2054 goto asm_insn;
2055 else
2056 goto normal_insn;
2057 case PARALLEL:
2058 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2059 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2060 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2061 goto asm_insn;
2062 else
2063 goto normal_insn;
2064 case ASM_OPERANDS:
2065 asm_insn:
2066 recog_data.n_operands = noperands = asm_noperands (body);
2067 if (noperands >= 0)
2069 /* This insn is an `asm' with operands. */
2071 /* expand_asm_operands makes sure there aren't too many operands. */
2072 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2074 /* Now get the operand values and constraints out of the insn. */
2075 decode_asm_operands (body, recog_data.operand,
2076 recog_data.operand_loc,
2077 recog_data.constraints,
2078 recog_data.operand_mode, NULL);
2079 if (noperands > 0)
2081 const char *p = recog_data.constraints[0];
2082 recog_data.n_alternatives = 1;
2083 while (*p)
2084 recog_data.n_alternatives += (*p++ == ',');
2086 break;
2088 fatal_insn_not_found (insn);
2090 default:
2091 normal_insn:
2092 /* Ordinary insn: recognize it, get the operands via insn_extract
2093 and get the constraints. */
2095 icode = recog_memoized (insn);
2096 if (icode < 0)
2097 fatal_insn_not_found (insn);
2099 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2100 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2101 recog_data.n_dups = insn_data[icode].n_dups;
2103 insn_extract (insn);
2105 for (i = 0; i < noperands; i++)
2107 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2108 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2109 /* VOIDmode match_operands gets mode from their real operand. */
2110 if (recog_data.operand_mode[i] == VOIDmode)
2111 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2114 for (i = 0; i < noperands; i++)
2115 recog_data.operand_type[i]
2116 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2117 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2118 : OP_IN);
2120 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2122 if (INSN_CODE (insn) < 0)
2123 for (i = 0; i < recog_data.n_alternatives; i++)
2124 recog_data.alternative_enabled_p[i] = true;
2125 else
2127 recog_data.insn = insn;
2128 for (i = 0; i < recog_data.n_alternatives; i++)
2130 which_alternative = i;
2131 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2135 recog_data.insn = NULL;
2136 which_alternative = -1;
2139 /* After calling extract_insn, you can use this function to extract some
2140 information from the constraint strings into a more usable form.
2141 The collected data is stored in recog_op_alt. */
2142 void
2143 preprocess_constraints (void)
2145 int i;
2147 for (i = 0; i < recog_data.n_operands; i++)
2148 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2149 * sizeof (struct operand_alternative)));
2151 for (i = 0; i < recog_data.n_operands; i++)
2153 int j;
2154 struct operand_alternative *op_alt;
2155 const char *p = recog_data.constraints[i];
2157 op_alt = recog_op_alt[i];
2159 for (j = 0; j < recog_data.n_alternatives; j++)
2161 op_alt[j].cl = NO_REGS;
2162 op_alt[j].constraint = p;
2163 op_alt[j].matches = -1;
2164 op_alt[j].matched = -1;
2166 if (!recog_data.alternative_enabled_p[j])
2168 p = skip_alternative (p);
2169 continue;
2172 if (*p == '\0' || *p == ',')
2174 op_alt[j].anything_ok = 1;
2175 continue;
2178 for (;;)
2180 char c = *p;
2181 if (c == '#')
2183 c = *++p;
2184 while (c != ',' && c != '\0');
2185 if (c == ',' || c == '\0')
2187 p++;
2188 break;
2191 switch (c)
2193 case '=': case '+': case '*': case '%':
2194 case 'E': case 'F': case 'G': case 'H':
2195 case 's': case 'i': case 'n':
2196 case 'I': case 'J': case 'K': case 'L':
2197 case 'M': case 'N': case 'O': case 'P':
2198 /* These don't say anything we care about. */
2199 break;
2201 case '?':
2202 op_alt[j].reject += 6;
2203 break;
2204 case '!':
2205 op_alt[j].reject += 600;
2206 break;
2207 case '&':
2208 op_alt[j].earlyclobber = 1;
2209 break;
2211 case '0': case '1': case '2': case '3': case '4':
2212 case '5': case '6': case '7': case '8': case '9':
2214 char *end;
2215 op_alt[j].matches = strtoul (p, &end, 10);
2216 recog_op_alt[op_alt[j].matches][j].matched = i;
2217 p = end;
2219 continue;
2221 case TARGET_MEM_CONSTRAINT:
2222 op_alt[j].memory_ok = 1;
2223 break;
2224 case '<':
2225 op_alt[j].decmem_ok = 1;
2226 break;
2227 case '>':
2228 op_alt[j].incmem_ok = 1;
2229 break;
2230 case 'V':
2231 op_alt[j].nonoffmem_ok = 1;
2232 break;
2233 case 'o':
2234 op_alt[j].offmem_ok = 1;
2235 break;
2236 case 'X':
2237 op_alt[j].anything_ok = 1;
2238 break;
2240 case 'p':
2241 op_alt[j].is_address = 1;
2242 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2243 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2244 break;
2246 case 'g':
2247 case 'r':
2248 op_alt[j].cl =
2249 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2250 break;
2252 default:
2253 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2255 op_alt[j].memory_ok = 1;
2256 break;
2258 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2260 op_alt[j].is_address = 1;
2261 op_alt[j].cl
2262 = (reg_class_subunion
2263 [(int) op_alt[j].cl]
2264 [(int) base_reg_class (VOIDmode, ADDRESS,
2265 SCRATCH)]);
2266 break;
2269 op_alt[j].cl
2270 = (reg_class_subunion
2271 [(int) op_alt[j].cl]
2272 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2273 break;
2275 p += CONSTRAINT_LEN (c, p);
2281 /* Check the operands of an insn against the insn's operand constraints
2282 and return 1 if they are valid.
2283 The information about the insn's operands, constraints, operand modes
2284 etc. is obtained from the global variables set up by extract_insn.
2286 WHICH_ALTERNATIVE is set to a number which indicates which
2287 alternative of constraints was matched: 0 for the first alternative,
2288 1 for the next, etc.
2290 In addition, when two operands are required to match
2291 and it happens that the output operand is (reg) while the
2292 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2293 make the output operand look like the input.
2294 This is because the output operand is the one the template will print.
2296 This is used in final, just before printing the assembler code and by
2297 the routines that determine an insn's attribute.
2299 If STRICT is a positive nonzero value, it means that we have been
2300 called after reload has been completed. In that case, we must
2301 do all checks strictly. If it is zero, it means that we have been called
2302 before reload has completed. In that case, we first try to see if we can
2303 find an alternative that matches strictly. If not, we try again, this
2304 time assuming that reload will fix up the insn. This provides a "best
2305 guess" for the alternative and is used to compute attributes of insns prior
2306 to reload. A negative value of STRICT is used for this internal call. */
2308 struct funny_match
2310 int this_op, other;
2314 constrain_operands (int strict)
2316 const char *constraints[MAX_RECOG_OPERANDS];
2317 int matching_operands[MAX_RECOG_OPERANDS];
2318 int earlyclobber[MAX_RECOG_OPERANDS];
2319 int c;
2321 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2322 int funny_match_index;
2324 which_alternative = 0;
2325 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2326 return 1;
2328 for (c = 0; c < recog_data.n_operands; c++)
2330 constraints[c] = recog_data.constraints[c];
2331 matching_operands[c] = -1;
2336 int seen_earlyclobber_at = -1;
2337 int opno;
2338 int lose = 0;
2339 funny_match_index = 0;
2341 if (!recog_data.alternative_enabled_p[which_alternative])
2343 int i;
2345 for (i = 0; i < recog_data.n_operands; i++)
2346 constraints[i] = skip_alternative (constraints[i]);
2348 which_alternative++;
2349 continue;
2352 for (opno = 0; opno < recog_data.n_operands; opno++)
2354 rtx op = recog_data.operand[opno];
2355 enum machine_mode mode = GET_MODE (op);
2356 const char *p = constraints[opno];
2357 int offset = 0;
2358 int win = 0;
2359 int val;
2360 int len;
2362 earlyclobber[opno] = 0;
2364 /* A unary operator may be accepted by the predicate, but it
2365 is irrelevant for matching constraints. */
2366 if (UNARY_P (op))
2367 op = XEXP (op, 0);
2369 if (GET_CODE (op) == SUBREG)
2371 if (REG_P (SUBREG_REG (op))
2372 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2373 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2374 GET_MODE (SUBREG_REG (op)),
2375 SUBREG_BYTE (op),
2376 GET_MODE (op));
2377 op = SUBREG_REG (op);
2380 /* An empty constraint or empty alternative
2381 allows anything which matched the pattern. */
2382 if (*p == 0 || *p == ',')
2383 win = 1;
2386 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2388 case '\0':
2389 len = 0;
2390 break;
2391 case ',':
2392 c = '\0';
2393 break;
2395 case '?': case '!': case '*': case '%':
2396 case '=': case '+':
2397 break;
2399 case '#':
2400 /* Ignore rest of this alternative as far as
2401 constraint checking is concerned. */
2403 p++;
2404 while (*p && *p != ',');
2405 len = 0;
2406 break;
2408 case '&':
2409 earlyclobber[opno] = 1;
2410 if (seen_earlyclobber_at < 0)
2411 seen_earlyclobber_at = opno;
2412 break;
2414 case '0': case '1': case '2': case '3': case '4':
2415 case '5': case '6': case '7': case '8': case '9':
2417 /* This operand must be the same as a previous one.
2418 This kind of constraint is used for instructions such
2419 as add when they take only two operands.
2421 Note that the lower-numbered operand is passed first.
2423 If we are not testing strictly, assume that this
2424 constraint will be satisfied. */
2426 char *end;
2427 int match;
2429 match = strtoul (p, &end, 10);
2430 p = end;
2432 if (strict < 0)
2433 val = 1;
2434 else
2436 rtx op1 = recog_data.operand[match];
2437 rtx op2 = recog_data.operand[opno];
2439 /* A unary operator may be accepted by the predicate,
2440 but it is irrelevant for matching constraints. */
2441 if (UNARY_P (op1))
2442 op1 = XEXP (op1, 0);
2443 if (UNARY_P (op2))
2444 op2 = XEXP (op2, 0);
2446 val = operands_match_p (op1, op2);
2449 matching_operands[opno] = match;
2450 matching_operands[match] = opno;
2452 if (val != 0)
2453 win = 1;
2455 /* If output is *x and input is *--x, arrange later
2456 to change the output to *--x as well, since the
2457 output op is the one that will be printed. */
2458 if (val == 2 && strict > 0)
2460 funny_match[funny_match_index].this_op = opno;
2461 funny_match[funny_match_index++].other = match;
2464 len = 0;
2465 break;
2467 case 'p':
2468 /* p is used for address_operands. When we are called by
2469 gen_reload, no one will have checked that the address is
2470 strictly valid, i.e., that all pseudos requiring hard regs
2471 have gotten them. */
2472 if (strict <= 0
2473 || (strict_memory_address_p (recog_data.operand_mode[opno],
2474 op)))
2475 win = 1;
2476 break;
2478 /* No need to check general_operand again;
2479 it was done in insn-recog.c. Well, except that reload
2480 doesn't check the validity of its replacements, but
2481 that should only matter when there's a bug. */
2482 case 'g':
2483 /* Anything goes unless it is a REG and really has a hard reg
2484 but the hard reg is not in the class GENERAL_REGS. */
2485 if (REG_P (op))
2487 if (strict < 0
2488 || GENERAL_REGS == ALL_REGS
2489 || (reload_in_progress
2490 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2491 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2492 win = 1;
2494 else if (strict < 0 || general_operand (op, mode))
2495 win = 1;
2496 break;
2498 case 'X':
2499 /* This is used for a MATCH_SCRATCH in the cases when
2500 we don't actually need anything. So anything goes
2501 any time. */
2502 win = 1;
2503 break;
2505 case TARGET_MEM_CONSTRAINT:
2506 /* Memory operands must be valid, to the extent
2507 required by STRICT. */
2508 if (MEM_P (op))
2510 if (strict > 0
2511 && !strict_memory_address_addr_space_p
2512 (GET_MODE (op), XEXP (op, 0),
2513 MEM_ADDR_SPACE (op)))
2514 break;
2515 if (strict == 0
2516 && !memory_address_addr_space_p
2517 (GET_MODE (op), XEXP (op, 0),
2518 MEM_ADDR_SPACE (op)))
2519 break;
2520 win = 1;
2522 /* Before reload, accept what reload can turn into mem. */
2523 else if (strict < 0 && CONSTANT_P (op))
2524 win = 1;
2525 /* During reload, accept a pseudo */
2526 else if (reload_in_progress && REG_P (op)
2527 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2528 win = 1;
2529 break;
2531 case '<':
2532 if (MEM_P (op)
2533 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2534 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2535 win = 1;
2536 break;
2538 case '>':
2539 if (MEM_P (op)
2540 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2541 || GET_CODE (XEXP (op, 0)) == POST_INC))
2542 win = 1;
2543 break;
2545 case 'E':
2546 case 'F':
2547 if (GET_CODE (op) == CONST_DOUBLE
2548 || (GET_CODE (op) == CONST_VECTOR
2549 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2550 win = 1;
2551 break;
2553 case 'G':
2554 case 'H':
2555 if (GET_CODE (op) == CONST_DOUBLE
2556 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2557 win = 1;
2558 break;
2560 case 's':
2561 if (CONST_INT_P (op)
2562 || (GET_CODE (op) == CONST_DOUBLE
2563 && GET_MODE (op) == VOIDmode))
2564 break;
2565 case 'i':
2566 if (CONSTANT_P (op))
2567 win = 1;
2568 break;
2570 case 'n':
2571 if (CONST_INT_P (op)
2572 || (GET_CODE (op) == CONST_DOUBLE
2573 && GET_MODE (op) == VOIDmode))
2574 win = 1;
2575 break;
2577 case 'I':
2578 case 'J':
2579 case 'K':
2580 case 'L':
2581 case 'M':
2582 case 'N':
2583 case 'O':
2584 case 'P':
2585 if (CONST_INT_P (op)
2586 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2587 win = 1;
2588 break;
2590 case 'V':
2591 if (MEM_P (op)
2592 && ((strict > 0 && ! offsettable_memref_p (op))
2593 || (strict < 0
2594 && !(CONSTANT_P (op) || MEM_P (op)))
2595 || (reload_in_progress
2596 && !(REG_P (op)
2597 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2598 win = 1;
2599 break;
2601 case 'o':
2602 if ((strict > 0 && offsettable_memref_p (op))
2603 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2604 /* Before reload, accept what reload can handle. */
2605 || (strict < 0
2606 && (CONSTANT_P (op) || MEM_P (op)))
2607 /* During reload, accept a pseudo */
2608 || (reload_in_progress && REG_P (op)
2609 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2610 win = 1;
2611 break;
2613 default:
2615 enum reg_class cl;
2617 cl = (c == 'r'
2618 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2619 if (cl != NO_REGS)
2621 if (strict < 0
2622 || (strict == 0
2623 && REG_P (op)
2624 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2625 || (strict == 0 && GET_CODE (op) == SCRATCH)
2626 || (REG_P (op)
2627 && reg_fits_class_p (op, cl, offset, mode)))
2628 win = 1;
2630 #ifdef EXTRA_CONSTRAINT_STR
2631 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2632 win = 1;
2634 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2635 /* Every memory operand can be reloaded to fit. */
2636 && ((strict < 0 && MEM_P (op))
2637 /* Before reload, accept what reload can turn
2638 into mem. */
2639 || (strict < 0 && CONSTANT_P (op))
2640 /* During reload, accept a pseudo */
2641 || (reload_in_progress && REG_P (op)
2642 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2643 win = 1;
2644 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2645 /* Every address operand can be reloaded to fit. */
2646 && strict < 0)
2647 win = 1;
2648 #endif
2649 break;
2652 while (p += len, c);
2654 constraints[opno] = p;
2655 /* If this operand did not win somehow,
2656 this alternative loses. */
2657 if (! win)
2658 lose = 1;
2660 /* This alternative won; the operands are ok.
2661 Change whichever operands this alternative says to change. */
2662 if (! lose)
2664 int opno, eopno;
2666 /* See if any earlyclobber operand conflicts with some other
2667 operand. */
2669 if (strict > 0 && seen_earlyclobber_at >= 0)
2670 for (eopno = seen_earlyclobber_at;
2671 eopno < recog_data.n_operands;
2672 eopno++)
2673 /* Ignore earlyclobber operands now in memory,
2674 because we would often report failure when we have
2675 two memory operands, one of which was formerly a REG. */
2676 if (earlyclobber[eopno]
2677 && REG_P (recog_data.operand[eopno]))
2678 for (opno = 0; opno < recog_data.n_operands; opno++)
2679 if ((MEM_P (recog_data.operand[opno])
2680 || recog_data.operand_type[opno] != OP_OUT)
2681 && opno != eopno
2682 /* Ignore things like match_operator operands. */
2683 && *recog_data.constraints[opno] != 0
2684 && ! (matching_operands[opno] == eopno
2685 && operands_match_p (recog_data.operand[opno],
2686 recog_data.operand[eopno]))
2687 && ! safe_from_earlyclobber (recog_data.operand[opno],
2688 recog_data.operand[eopno]))
2689 lose = 1;
2691 if (! lose)
2693 while (--funny_match_index >= 0)
2695 recog_data.operand[funny_match[funny_match_index].other]
2696 = recog_data.operand[funny_match[funny_match_index].this_op];
2699 return 1;
2703 which_alternative++;
2705 while (which_alternative < recog_data.n_alternatives);
2707 which_alternative = -1;
2708 /* If we are about to reject this, but we are not to test strictly,
2709 try a very loose test. Only return failure if it fails also. */
2710 if (strict == 0)
2711 return constrain_operands (-1);
2712 else
2713 return 0;
2716 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2717 is a hard reg in class CLASS when its regno is offset by OFFSET
2718 and changed to mode MODE.
2719 If REG occupies multiple hard regs, all of them must be in CLASS. */
2722 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2723 enum machine_mode mode)
2725 int regno = REGNO (operand);
2727 if (cl == NO_REGS)
2728 return 0;
2730 return (regno < FIRST_PSEUDO_REGISTER
2731 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2732 mode, regno + offset));
2735 /* Split single instruction. Helper function for split_all_insns and
2736 split_all_insns_noflow. Return last insn in the sequence if successful,
2737 or NULL if unsuccessful. */
2739 static rtx
2740 split_insn (rtx insn)
2742 /* Split insns here to get max fine-grain parallelism. */
2743 rtx first = PREV_INSN (insn);
2744 rtx last = try_split (PATTERN (insn), insn, 1);
2745 rtx insn_set, last_set, note;
2747 if (last == insn)
2748 return NULL_RTX;
2750 /* If the original instruction was a single set that was known to be
2751 equivalent to a constant, see if we can say the same about the last
2752 instruction in the split sequence. The two instructions must set
2753 the same destination. */
2754 insn_set = single_set (insn);
2755 if (insn_set)
2757 last_set = single_set (last);
2758 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2760 note = find_reg_equal_equiv_note (insn);
2761 if (note && CONSTANT_P (XEXP (note, 0)))
2762 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2763 else if (CONSTANT_P (SET_SRC (insn_set)))
2764 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2768 /* try_split returns the NOTE that INSN became. */
2769 SET_INSN_DELETED (insn);
2771 /* ??? Coddle to md files that generate subregs in post-reload
2772 splitters instead of computing the proper hard register. */
2773 if (reload_completed && first != last)
2775 first = NEXT_INSN (first);
2776 for (;;)
2778 if (INSN_P (first))
2779 cleanup_subreg_operands (first);
2780 if (first == last)
2781 break;
2782 first = NEXT_INSN (first);
2786 return last;
2789 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2791 void
2792 split_all_insns (void)
2794 sbitmap blocks;
2795 bool changed;
2796 basic_block bb;
2798 blocks = sbitmap_alloc (last_basic_block);
2799 sbitmap_zero (blocks);
2800 changed = false;
2802 FOR_EACH_BB_REVERSE (bb)
2804 rtx insn, next;
2805 bool finish = false;
2807 rtl_profile_for_bb (bb);
2808 for (insn = BB_HEAD (bb); !finish ; insn = next)
2810 /* Can't use `next_real_insn' because that might go across
2811 CODE_LABELS and short-out basic blocks. */
2812 next = NEXT_INSN (insn);
2813 finish = (insn == BB_END (bb));
2814 if (INSN_P (insn))
2816 rtx set = single_set (insn);
2818 /* Don't split no-op move insns. These should silently
2819 disappear later in final. Splitting such insns would
2820 break the code that handles LIBCALL blocks. */
2821 if (set && set_noop_p (set))
2823 /* Nops get in the way while scheduling, so delete them
2824 now if register allocation has already been done. It
2825 is too risky to try to do this before register
2826 allocation, and there are unlikely to be very many
2827 nops then anyways. */
2828 if (reload_completed)
2829 delete_insn_and_edges (insn);
2831 else
2833 rtx last = split_insn (insn);
2834 if (last)
2836 /* The split sequence may include barrier, but the
2837 BB boundary we are interested in will be set to
2838 previous one. */
2840 while (BARRIER_P (last))
2841 last = PREV_INSN (last);
2842 SET_BIT (blocks, bb->index);
2843 changed = true;
2850 default_rtl_profile ();
2851 if (changed)
2852 find_many_sub_basic_blocks (blocks);
2854 #ifdef ENABLE_CHECKING
2855 verify_flow_info ();
2856 #endif
2858 sbitmap_free (blocks);
2861 /* Same as split_all_insns, but do not expect CFG to be available.
2862 Used by machine dependent reorg passes. */
2864 unsigned int
2865 split_all_insns_noflow (void)
2867 rtx next, insn;
2869 for (insn = get_insns (); insn; insn = next)
2871 next = NEXT_INSN (insn);
2872 if (INSN_P (insn))
2874 /* Don't split no-op move insns. These should silently
2875 disappear later in final. Splitting such insns would
2876 break the code that handles LIBCALL blocks. */
2877 rtx set = single_set (insn);
2878 if (set && set_noop_p (set))
2880 /* Nops get in the way while scheduling, so delete them
2881 now if register allocation has already been done. It
2882 is too risky to try to do this before register
2883 allocation, and there are unlikely to be very many
2884 nops then anyways.
2886 ??? Should we use delete_insn when the CFG isn't valid? */
2887 if (reload_completed)
2888 delete_insn_and_edges (insn);
2890 else
2891 split_insn (insn);
2894 return 0;
2897 #ifdef HAVE_peephole2
2898 struct peep2_insn_data
2900 rtx insn;
2901 regset live_before;
2904 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2905 static int peep2_current;
2906 /* The number of instructions available to match a peep2. */
2907 int peep2_current_count;
2909 /* A non-insn marker indicating the last insn of the block.
2910 The live_before regset for this element is correct, indicating
2911 DF_LIVE_OUT for the block. */
2912 #define PEEP2_EOB pc_rtx
2914 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2915 does not exist. Used by the recognizer to find the next insn to match
2916 in a multi-insn pattern. */
2919 peep2_next_insn (int n)
2921 gcc_assert (n <= peep2_current_count);
2923 n += peep2_current;
2924 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2925 n -= MAX_INSNS_PER_PEEP2 + 1;
2927 return peep2_insn_data[n].insn;
2930 /* Return true if REGNO is dead before the Nth non-note insn
2931 after `current'. */
2934 peep2_regno_dead_p (int ofs, int regno)
2936 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2938 ofs += peep2_current;
2939 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2940 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2942 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2944 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2947 /* Similarly for a REG. */
2950 peep2_reg_dead_p (int ofs, rtx reg)
2952 int regno, n;
2954 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2956 ofs += peep2_current;
2957 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2958 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2960 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2962 regno = REGNO (reg);
2963 n = hard_regno_nregs[regno][GET_MODE (reg)];
2964 while (--n >= 0)
2965 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2966 return 0;
2967 return 1;
2970 /* Try to find a hard register of mode MODE, matching the register class in
2971 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2972 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2973 in which case the only condition is that the register must be available
2974 before CURRENT_INSN.
2975 Registers that already have bits set in REG_SET will not be considered.
2977 If an appropriate register is available, it will be returned and the
2978 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2979 returned. */
2982 peep2_find_free_register (int from, int to, const char *class_str,
2983 enum machine_mode mode, HARD_REG_SET *reg_set)
2985 static int search_ofs;
2986 enum reg_class cl;
2987 HARD_REG_SET live;
2988 int i;
2990 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2991 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2993 from += peep2_current;
2994 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2995 from -= MAX_INSNS_PER_PEEP2 + 1;
2996 to += peep2_current;
2997 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2998 to -= MAX_INSNS_PER_PEEP2 + 1;
3000 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3001 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3003 while (from != to)
3005 HARD_REG_SET this_live;
3007 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3008 from = 0;
3009 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3010 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3011 IOR_HARD_REG_SET (live, this_live);
3014 cl = (class_str[0] == 'r' ? GENERAL_REGS
3015 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3019 int raw_regno, regno, success, j;
3021 /* Distribute the free registers as much as possible. */
3022 raw_regno = search_ofs + i;
3023 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3024 raw_regno -= FIRST_PSEUDO_REGISTER;
3025 #ifdef REG_ALLOC_ORDER
3026 regno = reg_alloc_order[raw_regno];
3027 #else
3028 regno = raw_regno;
3029 #endif
3031 /* Don't allocate fixed registers. */
3032 if (fixed_regs[regno])
3033 continue;
3034 /* Don't allocate global registers. */
3035 if (global_regs[regno])
3036 continue;
3037 /* Make sure the register is of the right class. */
3038 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3039 continue;
3040 /* And can support the mode we need. */
3041 if (! HARD_REGNO_MODE_OK (regno, mode))
3042 continue;
3043 /* And that we don't create an extra save/restore. */
3044 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3045 continue;
3046 if (! targetm.hard_regno_scratch_ok (regno))
3047 continue;
3049 /* And we don't clobber traceback for noreturn functions. */
3050 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3051 && (! reload_completed || frame_pointer_needed))
3052 continue;
3054 success = 1;
3055 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3057 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3058 || TEST_HARD_REG_BIT (live, regno + j))
3060 success = 0;
3061 break;
3064 if (success)
3066 add_to_hard_reg_set (reg_set, mode, regno);
3068 /* Start the next search with the next register. */
3069 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3070 raw_regno = 0;
3071 search_ofs = raw_regno;
3073 return gen_rtx_REG (mode, regno);
3077 search_ofs = 0;
3078 return NULL_RTX;
3081 /* Forget all currently tracked instructions, only remember current
3082 LIVE regset. */
3084 static void
3085 peep2_reinit_state (regset live)
3087 int i;
3089 /* Indicate that all slots except the last holds invalid data. */
3090 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3091 peep2_insn_data[i].insn = NULL_RTX;
3092 peep2_current_count = 0;
3094 /* Indicate that the last slot contains live_after data. */
3095 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3096 peep2_current = MAX_INSNS_PER_PEEP2;
3098 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3101 /* Perform the peephole2 optimization pass. */
3103 static void
3104 peephole2_optimize (void)
3106 rtx insn, prev;
3107 bitmap live;
3108 int i;
3109 basic_block bb;
3110 bool do_cleanup_cfg = false;
3111 bool do_rebuild_jump_labels = false;
3113 df_set_flags (DF_LR_RUN_DCE);
3114 df_analyze ();
3116 /* Initialize the regsets we're going to use. */
3117 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3118 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3119 live = BITMAP_ALLOC (&reg_obstack);
3121 FOR_EACH_BB_REVERSE (bb)
3123 rtl_profile_for_bb (bb);
3125 /* Start up propagation. */
3126 bitmap_copy (live, DF_LR_OUT (bb));
3127 df_simulate_initialize_backwards (bb, live);
3128 peep2_reinit_state (live);
3130 for (insn = BB_END (bb); ; insn = prev)
3132 prev = PREV_INSN (insn);
3133 if (NONDEBUG_INSN_P (insn))
3135 rtx attempt, before_try, x;
3136 int match_len;
3137 rtx note;
3138 bool was_call = false;
3140 /* Record this insn. */
3141 if (--peep2_current < 0)
3142 peep2_current = MAX_INSNS_PER_PEEP2;
3143 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3144 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3145 peep2_current_count++;
3146 peep2_insn_data[peep2_current].insn = insn;
3147 df_simulate_one_insn_backwards (bb, insn, live);
3148 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3150 if (RTX_FRAME_RELATED_P (insn))
3152 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3153 substitution would lose the
3154 REG_FRAME_RELATED_EXPR that is attached. */
3155 peep2_reinit_state (live);
3156 attempt = NULL;
3158 else
3159 /* Match the peephole. */
3160 attempt = peephole2_insns (PATTERN (insn), insn, &match_len);
3162 if (attempt != NULL)
3164 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3165 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3166 cfg-related call notes. */
3167 for (i = 0; i <= match_len; ++i)
3169 int j;
3170 rtx old_insn, new_insn, note;
3172 j = i + peep2_current;
3173 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3174 j -= MAX_INSNS_PER_PEEP2 + 1;
3175 old_insn = peep2_insn_data[j].insn;
3176 if (!CALL_P (old_insn))
3177 continue;
3178 was_call = true;
3180 new_insn = attempt;
3181 while (new_insn != NULL_RTX)
3183 if (CALL_P (new_insn))
3184 break;
3185 new_insn = NEXT_INSN (new_insn);
3188 gcc_assert (new_insn != NULL_RTX);
3190 CALL_INSN_FUNCTION_USAGE (new_insn)
3191 = CALL_INSN_FUNCTION_USAGE (old_insn);
3193 for (note = REG_NOTES (old_insn);
3194 note;
3195 note = XEXP (note, 1))
3196 switch (REG_NOTE_KIND (note))
3198 case REG_NORETURN:
3199 case REG_SETJMP:
3200 add_reg_note (new_insn, REG_NOTE_KIND (note),
3201 XEXP (note, 0));
3202 break;
3203 default:
3204 /* Discard all other reg notes. */
3205 break;
3208 /* Croak if there is another call in the sequence. */
3209 while (++i <= match_len)
3211 j = i + peep2_current;
3212 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3213 j -= MAX_INSNS_PER_PEEP2 + 1;
3214 old_insn = peep2_insn_data[j].insn;
3215 gcc_assert (!CALL_P (old_insn));
3217 break;
3220 i = match_len + peep2_current;
3221 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3222 i -= MAX_INSNS_PER_PEEP2 + 1;
3224 note = find_reg_note (peep2_insn_data[i].insn,
3225 REG_EH_REGION, NULL_RTX);
3227 /* Replace the old sequence with the new. */
3228 attempt = emit_insn_after_setloc (attempt,
3229 peep2_insn_data[i].insn,
3230 INSN_LOCATOR (peep2_insn_data[i].insn));
3231 before_try = PREV_INSN (insn);
3232 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3234 /* Re-insert the EH_REGION notes. */
3235 if (note || (was_call && nonlocal_goto_handler_labels))
3237 edge eh_edge;
3238 edge_iterator ei;
3240 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3241 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3242 break;
3244 if (note)
3245 copy_reg_eh_region_note_backward (note, attempt,
3246 before_try);
3248 if (eh_edge)
3249 for (x = attempt ; x != before_try ; x = PREV_INSN (x))
3250 if (x != BB_END (bb)
3251 && (can_throw_internal (x)
3252 || can_nonlocal_goto (x)))
3254 edge nfte, nehe;
3255 int flags;
3257 nfte = split_block (bb, x);
3258 flags = (eh_edge->flags
3259 & (EDGE_EH | EDGE_ABNORMAL));
3260 if (CALL_P (x))
3261 flags |= EDGE_ABNORMAL_CALL;
3262 nehe = make_edge (nfte->src, eh_edge->dest,
3263 flags);
3265 nehe->probability = eh_edge->probability;
3266 nfte->probability
3267 = REG_BR_PROB_BASE - nehe->probability;
3269 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3270 bb = nfte->src;
3271 eh_edge = nehe;
3274 /* Converting possibly trapping insn to non-trapping is
3275 possible. Zap dummy outgoing edges. */
3276 do_cleanup_cfg |= purge_dead_edges (bb);
3279 if (targetm.have_conditional_execution ())
3281 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3282 peep2_insn_data[i].insn = NULL_RTX;
3283 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3284 peep2_current_count = 0;
3286 else
3288 /* Back up lifetime information past the end of the
3289 newly created sequence. */
3290 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3291 i = 0;
3292 bitmap_copy (live, peep2_insn_data[i].live_before);
3294 /* Update life information for the new sequence. */
3295 x = attempt;
3298 if (INSN_P (x))
3300 if (--i < 0)
3301 i = MAX_INSNS_PER_PEEP2;
3302 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3303 && peep2_insn_data[i].insn == NULL_RTX)
3304 peep2_current_count++;
3305 peep2_insn_data[i].insn = x;
3306 df_insn_rescan (x);
3307 df_simulate_one_insn_backwards (bb, x, live);
3308 bitmap_copy (peep2_insn_data[i].live_before,
3309 live);
3311 x = PREV_INSN (x);
3313 while (x != prev);
3315 peep2_current = i;
3318 /* If we generated a jump instruction, it won't have
3319 JUMP_LABEL set. Recompute after we're done. */
3320 for (x = attempt; x != before_try; x = PREV_INSN (x))
3321 if (JUMP_P (x))
3323 do_rebuild_jump_labels = true;
3324 break;
3329 if (insn == BB_HEAD (bb))
3330 break;
3334 default_rtl_profile ();
3335 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3336 BITMAP_FREE (peep2_insn_data[i].live_before);
3337 BITMAP_FREE (live);
3338 if (do_rebuild_jump_labels)
3339 rebuild_jump_labels (get_insns ());
3341 #endif /* HAVE_peephole2 */
3343 /* Common predicates for use with define_bypass. */
3345 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3346 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3347 must be either a single_set or a PARALLEL with SETs inside. */
3350 store_data_bypass_p (rtx out_insn, rtx in_insn)
3352 rtx out_set, in_set;
3353 rtx out_pat, in_pat;
3354 rtx out_exp, in_exp;
3355 int i, j;
3357 in_set = single_set (in_insn);
3358 if (in_set)
3360 if (!MEM_P (SET_DEST (in_set)))
3361 return false;
3363 out_set = single_set (out_insn);
3364 if (out_set)
3366 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3367 return false;
3369 else
3371 out_pat = PATTERN (out_insn);
3373 if (GET_CODE (out_pat) != PARALLEL)
3374 return false;
3376 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3378 out_exp = XVECEXP (out_pat, 0, i);
3380 if (GET_CODE (out_exp) == CLOBBER)
3381 continue;
3383 gcc_assert (GET_CODE (out_exp) == SET);
3385 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3386 return false;
3390 else
3392 in_pat = PATTERN (in_insn);
3393 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3395 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3397 in_exp = XVECEXP (in_pat, 0, i);
3399 if (GET_CODE (in_exp) == CLOBBER)
3400 continue;
3402 gcc_assert (GET_CODE (in_exp) == SET);
3404 if (!MEM_P (SET_DEST (in_exp)))
3405 return false;
3407 out_set = single_set (out_insn);
3408 if (out_set)
3410 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3411 return false;
3413 else
3415 out_pat = PATTERN (out_insn);
3416 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3418 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3420 out_exp = XVECEXP (out_pat, 0, j);
3422 if (GET_CODE (out_exp) == CLOBBER)
3423 continue;
3425 gcc_assert (GET_CODE (out_exp) == SET);
3427 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3428 return false;
3434 return true;
3437 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3438 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3439 or multiple set; IN_INSN should be single_set for truth, but for convenience
3440 of insn categorization may be any JUMP or CALL insn. */
3443 if_test_bypass_p (rtx out_insn, rtx in_insn)
3445 rtx out_set, in_set;
3447 in_set = single_set (in_insn);
3448 if (! in_set)
3450 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3451 return false;
3454 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3455 return false;
3456 in_set = SET_SRC (in_set);
3458 out_set = single_set (out_insn);
3459 if (out_set)
3461 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3462 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3463 return false;
3465 else
3467 rtx out_pat;
3468 int i;
3470 out_pat = PATTERN (out_insn);
3471 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3473 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3475 rtx exp = XVECEXP (out_pat, 0, i);
3477 if (GET_CODE (exp) == CLOBBER)
3478 continue;
3480 gcc_assert (GET_CODE (exp) == SET);
3482 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3483 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3484 return false;
3488 return true;
3491 static bool
3492 gate_handle_peephole2 (void)
3494 return (optimize > 0 && flag_peephole2);
3497 static unsigned int
3498 rest_of_handle_peephole2 (void)
3500 #ifdef HAVE_peephole2
3501 peephole2_optimize ();
3502 #endif
3503 return 0;
3506 struct rtl_opt_pass pass_peephole2 =
3509 RTL_PASS,
3510 "peephole2", /* name */
3511 gate_handle_peephole2, /* gate */
3512 rest_of_handle_peephole2, /* execute */
3513 NULL, /* sub */
3514 NULL, /* next */
3515 0, /* static_pass_number */
3516 TV_PEEPHOLE2, /* tv_id */
3517 0, /* properties_required */
3518 0, /* properties_provided */
3519 0, /* properties_destroyed */
3520 0, /* todo_flags_start */
3521 TODO_df_finish | TODO_verify_rtl_sharing |
3522 TODO_dump_func /* todo_flags_finish */
3526 static unsigned int
3527 rest_of_handle_split_all_insns (void)
3529 split_all_insns ();
3530 return 0;
3533 struct rtl_opt_pass pass_split_all_insns =
3536 RTL_PASS,
3537 "split1", /* name */
3538 NULL, /* gate */
3539 rest_of_handle_split_all_insns, /* execute */
3540 NULL, /* sub */
3541 NULL, /* next */
3542 0, /* static_pass_number */
3543 TV_NONE, /* tv_id */
3544 0, /* properties_required */
3545 0, /* properties_provided */
3546 0, /* properties_destroyed */
3547 0, /* todo_flags_start */
3548 TODO_dump_func /* todo_flags_finish */
3552 static unsigned int
3553 rest_of_handle_split_after_reload (void)
3555 /* If optimizing, then go ahead and split insns now. */
3556 #ifndef STACK_REGS
3557 if (optimize > 0)
3558 #endif
3559 split_all_insns ();
3560 return 0;
3563 struct rtl_opt_pass pass_split_after_reload =
3566 RTL_PASS,
3567 "split2", /* name */
3568 NULL, /* gate */
3569 rest_of_handle_split_after_reload, /* execute */
3570 NULL, /* sub */
3571 NULL, /* next */
3572 0, /* static_pass_number */
3573 TV_NONE, /* tv_id */
3574 0, /* properties_required */
3575 0, /* properties_provided */
3576 0, /* properties_destroyed */
3577 0, /* todo_flags_start */
3578 TODO_dump_func /* todo_flags_finish */
3582 static bool
3583 gate_handle_split_before_regstack (void)
3585 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3586 /* If flow2 creates new instructions which need splitting
3587 and scheduling after reload is not done, they might not be
3588 split until final which doesn't allow splitting
3589 if HAVE_ATTR_length. */
3590 # ifdef INSN_SCHEDULING
3591 return (optimize && !flag_schedule_insns_after_reload);
3592 # else
3593 return (optimize);
3594 # endif
3595 #else
3596 return 0;
3597 #endif
3600 static unsigned int
3601 rest_of_handle_split_before_regstack (void)
3603 split_all_insns ();
3604 return 0;
3607 struct rtl_opt_pass pass_split_before_regstack =
3610 RTL_PASS,
3611 "split3", /* name */
3612 gate_handle_split_before_regstack, /* gate */
3613 rest_of_handle_split_before_regstack, /* execute */
3614 NULL, /* sub */
3615 NULL, /* next */
3616 0, /* static_pass_number */
3617 TV_NONE, /* tv_id */
3618 0, /* properties_required */
3619 0, /* properties_provided */
3620 0, /* properties_destroyed */
3621 0, /* todo_flags_start */
3622 TODO_dump_func /* todo_flags_finish */
3626 static bool
3627 gate_handle_split_before_sched2 (void)
3629 #ifdef INSN_SCHEDULING
3630 return optimize > 0 && flag_schedule_insns_after_reload;
3631 #else
3632 return 0;
3633 #endif
3636 static unsigned int
3637 rest_of_handle_split_before_sched2 (void)
3639 #ifdef INSN_SCHEDULING
3640 split_all_insns ();
3641 #endif
3642 return 0;
3645 struct rtl_opt_pass pass_split_before_sched2 =
3648 RTL_PASS,
3649 "split4", /* name */
3650 gate_handle_split_before_sched2, /* gate */
3651 rest_of_handle_split_before_sched2, /* execute */
3652 NULL, /* sub */
3653 NULL, /* next */
3654 0, /* static_pass_number */
3655 TV_NONE, /* tv_id */
3656 0, /* properties_required */
3657 0, /* properties_provided */
3658 0, /* properties_destroyed */
3659 0, /* todo_flags_start */
3660 TODO_verify_flow |
3661 TODO_dump_func /* todo_flags_finish */
3665 /* The placement of the splitting that we do for shorten_branches
3666 depends on whether regstack is used by the target or not. */
3667 static bool
3668 gate_do_final_split (void)
3670 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3671 return 1;
3672 #else
3673 return 0;
3674 #endif
3677 struct rtl_opt_pass pass_split_for_shorten_branches =
3680 RTL_PASS,
3681 "split5", /* name */
3682 gate_do_final_split, /* gate */
3683 split_all_insns_noflow, /* execute */
3684 NULL, /* sub */
3685 NULL, /* next */
3686 0, /* static_pass_number */
3687 TV_NONE, /* tv_id */
3688 0, /* properties_required */
3689 0, /* properties_provided */
3690 0, /* properties_destroyed */
3691 0, /* todo_flags_start */
3692 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */