Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / ifcvt.c
blob348c0cca8bfc06bf2c42b2fb33ba11a21c9322eb
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static basic_block block_fallthru (basic_block);
92 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
93 static rtx cond_exec_get_condition (rtx);
94 static rtx noce_get_condition (rtx, rtx *, bool);
95 static int noce_operand_ok (const_rtx);
96 static void merge_if_block (ce_if_block_t *);
97 static int find_cond_trap (basic_block, edge, edge);
98 static basic_block find_if_header (basic_block, int);
99 static int block_jumps_and_fallthru_p (basic_block, basic_block);
100 static int noce_find_if_block (basic_block, edge, edge, int);
101 static int cond_exec_find_if_block (ce_if_block_t *);
102 static int find_if_case_1 (basic_block, edge, edge);
103 static int find_if_case_2 (basic_block, edge, edge);
104 static int find_memory (rtx *, void *);
105 static int dead_or_predicable (basic_block, basic_block, basic_block,
106 basic_block, int);
107 static void noce_emit_move_insn (rtx, rtx);
108 static rtx block_has_only_trap (basic_block);
110 /* Count the number of non-jump active insns in BB. */
112 static int
113 count_bb_insns (const_basic_block bb)
115 int count = 0;
116 rtx insn = BB_HEAD (bb);
118 while (1)
120 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
121 count++;
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
128 return count;
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated. */
135 static bool
136 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
138 int count = 0;
139 rtx insn = BB_HEAD (bb);
140 bool speed = optimize_bb_for_speed_p (bb);
142 while (1)
144 if (NONJUMP_INSN_P (insn))
146 int cost = insn_rtx_cost (PATTERN (insn), speed);
147 if (cost == 0)
148 return false;
150 /* If this instruction is the load or set of a "stack" register,
151 such as a floating point register on x87, then the cost of
152 speculatively executing this insn may need to include
153 the additional cost of popping its result off of the
154 register stack. Unfortunately, correctly recognizing and
155 accounting for this additional overhead is tricky, so for
156 now we simply prohibit such speculative execution. */
157 #ifdef STACK_REGS
159 rtx set = single_set (insn);
160 if (set && STACK_REG_P (SET_DEST (set)))
161 return false;
163 #endif
165 count += cost;
166 if (count >= max_cost)
167 return false;
169 else if (CALL_P (insn))
170 return false;
172 if (insn == BB_END (bb))
173 break;
174 insn = NEXT_INSN (insn);
177 return true;
180 /* Return the first non-jump active insn in the basic block. */
182 static rtx
183 first_active_insn (basic_block bb)
185 rtx insn = BB_HEAD (bb);
187 if (LABEL_P (insn))
189 if (insn == BB_END (bb))
190 return NULL_RTX;
191 insn = NEXT_INSN (insn);
194 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
196 if (insn == BB_END (bb))
197 return NULL_RTX;
198 insn = NEXT_INSN (insn);
201 if (JUMP_P (insn))
202 return NULL_RTX;
204 return insn;
207 /* Return the last non-jump active (non-jump) insn in the basic block. */
209 static rtx
210 last_active_insn (basic_block bb, int skip_use_p)
212 rtx insn = BB_END (bb);
213 rtx head = BB_HEAD (bb);
215 while (NOTE_P (insn)
216 || JUMP_P (insn)
217 || DEBUG_INSN_P (insn)
218 || (skip_use_p
219 && NONJUMP_INSN_P (insn)
220 && GET_CODE (PATTERN (insn)) == USE))
222 if (insn == head)
223 return NULL_RTX;
224 insn = PREV_INSN (insn);
227 if (LABEL_P (insn))
228 return NULL_RTX;
230 return insn;
233 /* Return the basic block reached by falling though the basic block BB. */
235 static basic_block
236 block_fallthru (basic_block bb)
238 edge e;
239 edge_iterator ei;
241 FOR_EACH_EDGE (e, ei, bb->succs)
242 if (e->flags & EDGE_FALLTHRU)
243 break;
245 return (e) ? e->dest : NULL_BLOCK;
248 /* Go through a bunch of insns, converting them to conditional
249 execution format if possible. Return TRUE if all of the non-note
250 insns were processed. */
252 static int
253 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
254 /* if block information */rtx start,
255 /* first insn to look at */rtx end,
256 /* last insn to look at */rtx test,
257 /* conditional execution test */rtx prob_val,
258 /* probability of branch taken. */int mod_ok)
260 int must_be_last = FALSE;
261 rtx insn;
262 rtx xtest;
263 rtx pattern;
265 if (!start || !end)
266 return FALSE;
268 for (insn = start; ; insn = NEXT_INSN (insn))
270 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
271 goto insn_done;
273 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
275 /* Remove USE insns that get in the way. */
276 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 /* ??? Ug. Actually unlinking the thing is problematic,
279 given what we'd have to coordinate with our callers. */
280 SET_INSN_DELETED (insn);
281 goto insn_done;
284 /* Last insn wasn't last? */
285 if (must_be_last)
286 return FALSE;
288 if (modified_in_p (test, insn))
290 if (!mod_ok)
291 return FALSE;
292 must_be_last = TRUE;
295 /* Now build the conditional form of the instruction. */
296 pattern = PATTERN (insn);
297 xtest = copy_rtx (test);
299 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
300 two conditions. */
301 if (GET_CODE (pattern) == COND_EXEC)
303 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
304 return FALSE;
306 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
307 COND_EXEC_TEST (pattern));
308 pattern = COND_EXEC_CODE (pattern);
311 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313 /* If the machine needs to modify the insn being conditionally executed,
314 say for example to force a constant integer operand into a temp
315 register, do so here. */
316 #ifdef IFCVT_MODIFY_INSN
317 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
318 if (! pattern)
319 return FALSE;
320 #endif
322 validate_change (insn, &PATTERN (insn), pattern, 1);
324 if (CALL_P (insn) && prob_val)
325 validate_change (insn, &REG_NOTES (insn),
326 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
327 REG_NOTES (insn)), 1);
329 insn_done:
330 if (insn == end)
331 break;
334 return TRUE;
337 /* Return the condition for a jump. Do not do any special processing. */
339 static rtx
340 cond_exec_get_condition (rtx jump)
342 rtx test_if, cond;
344 if (any_condjump_p (jump))
345 test_if = SET_SRC (pc_set (jump));
346 else
347 return NULL_RTX;
348 cond = XEXP (test_if, 0);
350 /* If this branches to JUMP_LABEL when the condition is false,
351 reverse the condition. */
352 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
353 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 enum rtx_code rev = reversed_comparison_code (cond, jump);
356 if (rev == UNKNOWN)
357 return NULL_RTX;
359 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
360 XEXP (cond, 1));
363 return cond;
366 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
367 to conditional execution. Return TRUE if we were successful at
368 converting the block. */
370 static int
371 cond_exec_process_if_block (ce_if_block_t * ce_info,
372 /* if block information */int do_multiple_p)
374 basic_block test_bb = ce_info->test_bb; /* last test block */
375 basic_block then_bb = ce_info->then_bb; /* THEN */
376 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
377 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
378 rtx then_start; /* first insn in THEN block */
379 rtx then_end; /* last insn + 1 in THEN block */
380 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
381 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
382 int max; /* max # of insns to convert. */
383 int then_mod_ok; /* whether conditional mods are ok in THEN */
384 rtx true_expr; /* test for else block insns */
385 rtx false_expr; /* test for then block insns */
386 rtx true_prob_val; /* probability of else block */
387 rtx false_prob_val; /* probability of then block */
388 int n_insns;
389 enum rtx_code false_code;
391 /* If test is comprised of && or || elements, and we've failed at handling
392 all of them together, just use the last test if it is the special case of
393 && elements without an ELSE block. */
394 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
396 if (else_bb || ! ce_info->and_and_p)
397 return FALSE;
399 ce_info->test_bb = test_bb = ce_info->last_test_bb;
400 ce_info->num_multiple_test_blocks = 0;
401 ce_info->num_and_and_blocks = 0;
402 ce_info->num_or_or_blocks = 0;
405 /* Find the conditional jump to the ELSE or JOIN part, and isolate
406 the test. */
407 test_expr = cond_exec_get_condition (BB_END (test_bb));
408 if (! test_expr)
409 return FALSE;
411 /* If the conditional jump is more than just a conditional jump,
412 then we can not do conditional execution conversion on this block. */
413 if (! onlyjump_p (BB_END (test_bb)))
414 return FALSE;
416 /* Collect the bounds of where we're to search, skipping any labels, jumps
417 and notes at the beginning and end of the block. Then count the total
418 number of insns and see if it is small enough to convert. */
419 then_start = first_active_insn (then_bb);
420 then_end = last_active_insn (then_bb, TRUE);
421 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
422 max = MAX_CONDITIONAL_EXECUTE;
424 if (else_bb)
426 max *= 2;
427 else_start = first_active_insn (else_bb);
428 else_end = last_active_insn (else_bb, TRUE);
429 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
432 if (n_insns > max)
433 return FALSE;
435 /* Map test_expr/test_jump into the appropriate MD tests to use on
436 the conditionally executed code. */
438 true_expr = test_expr;
440 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
441 if (false_code != UNKNOWN)
442 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
443 XEXP (true_expr, 0), XEXP (true_expr, 1));
444 else
445 false_expr = NULL_RTX;
447 #ifdef IFCVT_MODIFY_TESTS
448 /* If the machine description needs to modify the tests, such as setting a
449 conditional execution register from a comparison, it can do so here. */
450 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
452 /* See if the conversion failed. */
453 if (!true_expr || !false_expr)
454 goto fail;
455 #endif
457 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
458 if (true_prob_val)
460 true_prob_val = XEXP (true_prob_val, 0);
461 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
463 else
464 false_prob_val = NULL_RTX;
466 /* If we have && or || tests, do them here. These tests are in the adjacent
467 blocks after the first block containing the test. */
468 if (ce_info->num_multiple_test_blocks > 0)
470 basic_block bb = test_bb;
471 basic_block last_test_bb = ce_info->last_test_bb;
473 if (! false_expr)
474 goto fail;
478 rtx start, end;
479 rtx t, f;
480 enum rtx_code f_code;
482 bb = block_fallthru (bb);
483 start = first_active_insn (bb);
484 end = last_active_insn (bb, TRUE);
485 if (start
486 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
487 false_prob_val, FALSE))
488 goto fail;
490 /* If the conditional jump is more than just a conditional jump, then
491 we can not do conditional execution conversion on this block. */
492 if (! onlyjump_p (BB_END (bb)))
493 goto fail;
495 /* Find the conditional jump and isolate the test. */
496 t = cond_exec_get_condition (BB_END (bb));
497 if (! t)
498 goto fail;
500 f_code = reversed_comparison_code (t, BB_END (bb));
501 if (f_code == UNKNOWN)
502 goto fail;
504 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
505 if (ce_info->and_and_p)
507 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
508 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
510 else
512 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
513 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
516 /* If the machine description needs to modify the tests, such as
517 setting a conditional execution register from a comparison, it can
518 do so here. */
519 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
520 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
522 /* See if the conversion failed. */
523 if (!t || !f)
524 goto fail;
525 #endif
527 true_expr = t;
528 false_expr = f;
530 while (bb != last_test_bb);
533 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
534 on then THEN block. */
535 then_mod_ok = (else_bb == NULL_BLOCK);
537 /* Go through the THEN and ELSE blocks converting the insns if possible
538 to conditional execution. */
540 if (then_end
541 && (! false_expr
542 || ! cond_exec_process_insns (ce_info, then_start, then_end,
543 false_expr, false_prob_val,
544 then_mod_ok)))
545 goto fail;
547 if (else_bb && else_end
548 && ! cond_exec_process_insns (ce_info, else_start, else_end,
549 true_expr, true_prob_val, TRUE))
550 goto fail;
552 /* If we cannot apply the changes, fail. Do not go through the normal fail
553 processing, since apply_change_group will call cancel_changes. */
554 if (! apply_change_group ())
556 #ifdef IFCVT_MODIFY_CANCEL
557 /* Cancel any machine dependent changes. */
558 IFCVT_MODIFY_CANCEL (ce_info);
559 #endif
560 return FALSE;
563 #ifdef IFCVT_MODIFY_FINAL
564 /* Do any machine dependent final modifications. */
565 IFCVT_MODIFY_FINAL (ce_info);
566 #endif
568 /* Conversion succeeded. */
569 if (dump_file)
570 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
571 n_insns, (n_insns == 1) ? " was" : "s were");
573 /* Merge the blocks! */
574 merge_if_block (ce_info);
575 cond_exec_changed_p = TRUE;
576 return TRUE;
578 fail:
579 #ifdef IFCVT_MODIFY_CANCEL
580 /* Cancel any machine dependent changes. */
581 IFCVT_MODIFY_CANCEL (ce_info);
582 #endif
584 cancel_changes (0);
585 return FALSE;
588 /* Used by noce_process_if_block to communicate with its subroutines.
590 The subroutines know that A and B may be evaluated freely. They
591 know that X is a register. They should insert new instructions
592 before cond_earliest. */
594 struct noce_if_info
596 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
597 basic_block test_bb, then_bb, else_bb, join_bb;
599 /* The jump that ends TEST_BB. */
600 rtx jump;
602 /* The jump condition. */
603 rtx cond;
605 /* New insns should be inserted before this one. */
606 rtx cond_earliest;
608 /* Insns in the THEN and ELSE block. There is always just this
609 one insns in those blocks. The insns are single_set insns.
610 If there was no ELSE block, INSN_B is the last insn before
611 COND_EARLIEST, or NULL_RTX. In the former case, the insn
612 operands are still valid, as if INSN_B was moved down below
613 the jump. */
614 rtx insn_a, insn_b;
616 /* The SET_SRC of INSN_A and INSN_B. */
617 rtx a, b;
619 /* The SET_DEST of INSN_A. */
620 rtx x;
622 /* True if this if block is not canonical. In the canonical form of
623 if blocks, the THEN_BB is the block reached via the fallthru edge
624 from TEST_BB. For the noce transformations, we allow the symmetric
625 form as well. */
626 bool then_else_reversed;
628 /* Estimated cost of the particular branch instruction. */
629 int branch_cost;
632 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
633 static int noce_try_move (struct noce_if_info *);
634 static int noce_try_store_flag (struct noce_if_info *);
635 static int noce_try_addcc (struct noce_if_info *);
636 static int noce_try_store_flag_constants (struct noce_if_info *);
637 static int noce_try_store_flag_mask (struct noce_if_info *);
638 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
639 rtx, rtx, rtx);
640 static int noce_try_cmove (struct noce_if_info *);
641 static int noce_try_cmove_arith (struct noce_if_info *);
642 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
643 static int noce_try_minmax (struct noce_if_info *);
644 static int noce_try_abs (struct noce_if_info *);
645 static int noce_try_sign_mask (struct noce_if_info *);
647 /* Helper function for noce_try_store_flag*. */
649 static rtx
650 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
651 int normalize)
653 rtx cond = if_info->cond;
654 int cond_complex;
655 enum rtx_code code;
657 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
658 || ! general_operand (XEXP (cond, 1), VOIDmode));
660 /* If earliest == jump, or when the condition is complex, try to
661 build the store_flag insn directly. */
663 if (cond_complex)
665 rtx set = pc_set (if_info->jump);
666 cond = XEXP (SET_SRC (set), 0);
667 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
668 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
669 reversep = !reversep;
670 if (if_info->then_else_reversed)
671 reversep = !reversep;
674 if (reversep)
675 code = reversed_comparison_code (cond, if_info->jump);
676 else
677 code = GET_CODE (cond);
679 if ((if_info->cond_earliest == if_info->jump || cond_complex)
680 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
682 rtx tmp;
684 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
685 XEXP (cond, 1));
686 tmp = gen_rtx_SET (VOIDmode, x, tmp);
688 start_sequence ();
689 tmp = emit_insn (tmp);
691 if (recog_memoized (tmp) >= 0)
693 tmp = get_insns ();
694 end_sequence ();
695 emit_insn (tmp);
697 if_info->cond_earliest = if_info->jump;
699 return x;
702 end_sequence ();
705 /* Don't even try if the comparison operands or the mode of X are weird. */
706 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
707 return NULL_RTX;
709 return emit_store_flag (x, code, XEXP (cond, 0),
710 XEXP (cond, 1), VOIDmode,
711 (code == LTU || code == LEU
712 || code == GEU || code == GTU), normalize);
715 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
716 X is the destination/target and Y is the value to copy. */
718 static void
719 noce_emit_move_insn (rtx x, rtx y)
721 enum machine_mode outmode;
722 rtx outer, inner;
723 int bitpos;
725 if (GET_CODE (x) != STRICT_LOW_PART)
727 rtx seq, insn, target;
728 optab ot;
730 start_sequence ();
731 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
732 otherwise construct a suitable SET pattern ourselves. */
733 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
734 ? emit_move_insn (x, y)
735 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
736 seq = get_insns ();
737 end_sequence ();
739 if (recog_memoized (insn) <= 0)
741 if (GET_CODE (x) == ZERO_EXTRACT)
743 rtx op = XEXP (x, 0);
744 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
745 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
747 /* store_bit_field expects START to be relative to
748 BYTES_BIG_ENDIAN and adjusts this value for machines with
749 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
750 invoke store_bit_field again it is necessary to have the START
751 value from the first call. */
752 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
754 if (MEM_P (op))
755 start = BITS_PER_UNIT - start - size;
756 else
758 gcc_assert (REG_P (op));
759 start = BITS_PER_WORD - start - size;
763 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
764 store_bit_field (op, size, start, GET_MODE (x), y);
765 return;
768 switch (GET_RTX_CLASS (GET_CODE (y)))
770 case RTX_UNARY:
771 ot = code_to_optab[GET_CODE (y)];
772 if (ot)
774 start_sequence ();
775 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
776 if (target != NULL_RTX)
778 if (target != x)
779 emit_move_insn (x, target);
780 seq = get_insns ();
782 end_sequence ();
784 break;
786 case RTX_BIN_ARITH:
787 case RTX_COMM_ARITH:
788 ot = code_to_optab[GET_CODE (y)];
789 if (ot)
791 start_sequence ();
792 target = expand_binop (GET_MODE (y), ot,
793 XEXP (y, 0), XEXP (y, 1),
794 x, 0, OPTAB_DIRECT);
795 if (target != NULL_RTX)
797 if (target != x)
798 emit_move_insn (x, target);
799 seq = get_insns ();
801 end_sequence ();
803 break;
805 default:
806 break;
810 emit_insn (seq);
811 return;
814 outer = XEXP (x, 0);
815 inner = XEXP (outer, 0);
816 outmode = GET_MODE (outer);
817 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
818 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
821 /* Return sequence of instructions generated by if conversion. This
822 function calls end_sequence() to end the current stream, ensures
823 that are instructions are unshared, recognizable non-jump insns.
824 On failure, this function returns a NULL_RTX. */
826 static rtx
827 end_ifcvt_sequence (struct noce_if_info *if_info)
829 rtx insn;
830 rtx seq = get_insns ();
832 set_used_flags (if_info->x);
833 set_used_flags (if_info->cond);
834 unshare_all_rtl_in_chain (seq);
835 end_sequence ();
837 /* Make sure that all of the instructions emitted are recognizable,
838 and that we haven't introduced a new jump instruction.
839 As an exercise for the reader, build a general mechanism that
840 allows proper placement of required clobbers. */
841 for (insn = seq; insn; insn = NEXT_INSN (insn))
842 if (JUMP_P (insn)
843 || recog_memoized (insn) == -1)
844 return NULL_RTX;
846 return seq;
849 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
850 "if (a == b) x = a; else x = b" into "x = b". */
852 static int
853 noce_try_move (struct noce_if_info *if_info)
855 rtx cond = if_info->cond;
856 enum rtx_code code = GET_CODE (cond);
857 rtx y, seq;
859 if (code != NE && code != EQ)
860 return FALSE;
862 /* This optimization isn't valid if either A or B could be a NaN
863 or a signed zero. */
864 if (HONOR_NANS (GET_MODE (if_info->x))
865 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
866 return FALSE;
868 /* Check whether the operands of the comparison are A and in
869 either order. */
870 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
871 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
872 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
873 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
875 y = (code == EQ) ? if_info->a : if_info->b;
877 /* Avoid generating the move if the source is the destination. */
878 if (! rtx_equal_p (if_info->x, y))
880 start_sequence ();
881 noce_emit_move_insn (if_info->x, y);
882 seq = end_ifcvt_sequence (if_info);
883 if (!seq)
884 return FALSE;
886 emit_insn_before_setloc (seq, if_info->jump,
887 INSN_LOCATOR (if_info->insn_a));
889 return TRUE;
891 return FALSE;
894 /* Convert "if (test) x = 1; else x = 0".
896 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
897 tried in noce_try_store_flag_constants after noce_try_cmove has had
898 a go at the conversion. */
900 static int
901 noce_try_store_flag (struct noce_if_info *if_info)
903 int reversep;
904 rtx target, seq;
906 if (CONST_INT_P (if_info->b)
907 && INTVAL (if_info->b) == STORE_FLAG_VALUE
908 && if_info->a == const0_rtx)
909 reversep = 0;
910 else if (if_info->b == const0_rtx
911 && CONST_INT_P (if_info->a)
912 && INTVAL (if_info->a) == STORE_FLAG_VALUE
913 && (reversed_comparison_code (if_info->cond, if_info->jump)
914 != UNKNOWN))
915 reversep = 1;
916 else
917 return FALSE;
919 start_sequence ();
921 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
922 if (target)
924 if (target != if_info->x)
925 noce_emit_move_insn (if_info->x, target);
927 seq = end_ifcvt_sequence (if_info);
928 if (! seq)
929 return FALSE;
931 emit_insn_before_setloc (seq, if_info->jump,
932 INSN_LOCATOR (if_info->insn_a));
933 return TRUE;
935 else
937 end_sequence ();
938 return FALSE;
942 /* Convert "if (test) x = a; else x = b", for A and B constant. */
944 static int
945 noce_try_store_flag_constants (struct noce_if_info *if_info)
947 rtx target, seq;
948 int reversep;
949 HOST_WIDE_INT itrue, ifalse, diff, tmp;
950 int normalize, can_reverse;
951 enum machine_mode mode;
953 if (CONST_INT_P (if_info->a)
954 && CONST_INT_P (if_info->b))
956 mode = GET_MODE (if_info->x);
957 ifalse = INTVAL (if_info->a);
958 itrue = INTVAL (if_info->b);
960 /* Make sure we can represent the difference between the two values. */
961 if ((itrue - ifalse > 0)
962 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
963 return FALSE;
965 diff = trunc_int_for_mode (itrue - ifalse, mode);
967 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
968 != UNKNOWN);
970 reversep = 0;
971 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
972 normalize = 0;
973 else if (ifalse == 0 && exact_log2 (itrue) >= 0
974 && (STORE_FLAG_VALUE == 1
975 || if_info->branch_cost >= 2))
976 normalize = 1;
977 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
978 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
979 normalize = 1, reversep = 1;
980 else if (itrue == -1
981 && (STORE_FLAG_VALUE == -1
982 || if_info->branch_cost >= 2))
983 normalize = -1;
984 else if (ifalse == -1 && can_reverse
985 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
986 normalize = -1, reversep = 1;
987 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
988 || if_info->branch_cost >= 3)
989 normalize = -1;
990 else
991 return FALSE;
993 if (reversep)
995 tmp = itrue; itrue = ifalse; ifalse = tmp;
996 diff = trunc_int_for_mode (-diff, mode);
999 start_sequence ();
1000 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1001 if (! target)
1003 end_sequence ();
1004 return FALSE;
1007 /* if (test) x = 3; else x = 4;
1008 => x = 3 + (test == 0); */
1009 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1011 target = expand_simple_binop (mode,
1012 (diff == STORE_FLAG_VALUE
1013 ? PLUS : MINUS),
1014 GEN_INT (ifalse), target, if_info->x, 0,
1015 OPTAB_WIDEN);
1018 /* if (test) x = 8; else x = 0;
1019 => x = (test != 0) << 3; */
1020 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1022 target = expand_simple_binop (mode, ASHIFT,
1023 target, GEN_INT (tmp), if_info->x, 0,
1024 OPTAB_WIDEN);
1027 /* if (test) x = -1; else x = b;
1028 => x = -(test != 0) | b; */
1029 else if (itrue == -1)
1031 target = expand_simple_binop (mode, IOR,
1032 target, GEN_INT (ifalse), if_info->x, 0,
1033 OPTAB_WIDEN);
1036 /* if (test) x = a; else x = b;
1037 => x = (-(test != 0) & (b - a)) + a; */
1038 else
1040 target = expand_simple_binop (mode, AND,
1041 target, GEN_INT (diff), if_info->x, 0,
1042 OPTAB_WIDEN);
1043 if (target)
1044 target = expand_simple_binop (mode, PLUS,
1045 target, GEN_INT (ifalse),
1046 if_info->x, 0, OPTAB_WIDEN);
1049 if (! target)
1051 end_sequence ();
1052 return FALSE;
1055 if (target != if_info->x)
1056 noce_emit_move_insn (if_info->x, target);
1058 seq = end_ifcvt_sequence (if_info);
1059 if (!seq)
1060 return FALSE;
1062 emit_insn_before_setloc (seq, if_info->jump,
1063 INSN_LOCATOR (if_info->insn_a));
1064 return TRUE;
1067 return FALSE;
1070 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1071 similarly for "foo--". */
1073 static int
1074 noce_try_addcc (struct noce_if_info *if_info)
1076 rtx target, seq;
1077 int subtract, normalize;
1079 if (GET_CODE (if_info->a) == PLUS
1080 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1081 && (reversed_comparison_code (if_info->cond, if_info->jump)
1082 != UNKNOWN))
1084 rtx cond = if_info->cond;
1085 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1087 /* First try to use addcc pattern. */
1088 if (general_operand (XEXP (cond, 0), VOIDmode)
1089 && general_operand (XEXP (cond, 1), VOIDmode))
1091 start_sequence ();
1092 target = emit_conditional_add (if_info->x, code,
1093 XEXP (cond, 0),
1094 XEXP (cond, 1),
1095 VOIDmode,
1096 if_info->b,
1097 XEXP (if_info->a, 1),
1098 GET_MODE (if_info->x),
1099 (code == LTU || code == GEU
1100 || code == LEU || code == GTU));
1101 if (target)
1103 if (target != if_info->x)
1104 noce_emit_move_insn (if_info->x, target);
1106 seq = end_ifcvt_sequence (if_info);
1107 if (!seq)
1108 return FALSE;
1110 emit_insn_before_setloc (seq, if_info->jump,
1111 INSN_LOCATOR (if_info->insn_a));
1112 return TRUE;
1114 end_sequence ();
1117 /* If that fails, construct conditional increment or decrement using
1118 setcc. */
1119 if (if_info->branch_cost >= 2
1120 && (XEXP (if_info->a, 1) == const1_rtx
1121 || XEXP (if_info->a, 1) == constm1_rtx))
1123 start_sequence ();
1124 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1125 subtract = 0, normalize = 0;
1126 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1127 subtract = 1, normalize = 0;
1128 else
1129 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1132 target = noce_emit_store_flag (if_info,
1133 gen_reg_rtx (GET_MODE (if_info->x)),
1134 1, normalize);
1136 if (target)
1137 target = expand_simple_binop (GET_MODE (if_info->x),
1138 subtract ? MINUS : PLUS,
1139 if_info->b, target, if_info->x,
1140 0, OPTAB_WIDEN);
1141 if (target)
1143 if (target != if_info->x)
1144 noce_emit_move_insn (if_info->x, target);
1146 seq = end_ifcvt_sequence (if_info);
1147 if (!seq)
1148 return FALSE;
1150 emit_insn_before_setloc (seq, if_info->jump,
1151 INSN_LOCATOR (if_info->insn_a));
1152 return TRUE;
1154 end_sequence ();
1158 return FALSE;
1161 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1163 static int
1164 noce_try_store_flag_mask (struct noce_if_info *if_info)
1166 rtx target, seq;
1167 int reversep;
1169 reversep = 0;
1170 if ((if_info->branch_cost >= 2
1171 || STORE_FLAG_VALUE == -1)
1172 && ((if_info->a == const0_rtx
1173 && rtx_equal_p (if_info->b, if_info->x))
1174 || ((reversep = (reversed_comparison_code (if_info->cond,
1175 if_info->jump)
1176 != UNKNOWN))
1177 && if_info->b == const0_rtx
1178 && rtx_equal_p (if_info->a, if_info->x))))
1180 start_sequence ();
1181 target = noce_emit_store_flag (if_info,
1182 gen_reg_rtx (GET_MODE (if_info->x)),
1183 reversep, -1);
1184 if (target)
1185 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1186 if_info->x,
1187 target, if_info->x, 0,
1188 OPTAB_WIDEN);
1190 if (target)
1192 if (target != if_info->x)
1193 noce_emit_move_insn (if_info->x, target);
1195 seq = end_ifcvt_sequence (if_info);
1196 if (!seq)
1197 return FALSE;
1199 emit_insn_before_setloc (seq, if_info->jump,
1200 INSN_LOCATOR (if_info->insn_a));
1201 return TRUE;
1204 end_sequence ();
1207 return FALSE;
1210 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1212 static rtx
1213 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1214 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1216 /* If earliest == jump, try to build the cmove insn directly.
1217 This is helpful when combine has created some complex condition
1218 (like for alpha's cmovlbs) that we can't hope to regenerate
1219 through the normal interface. */
1221 if (if_info->cond_earliest == if_info->jump)
1223 rtx tmp;
1225 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1226 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1227 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1229 start_sequence ();
1230 tmp = emit_insn (tmp);
1232 if (recog_memoized (tmp) >= 0)
1234 tmp = get_insns ();
1235 end_sequence ();
1236 emit_insn (tmp);
1238 return x;
1241 end_sequence ();
1244 /* Don't even try if the comparison operands are weird. */
1245 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1246 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1247 return NULL_RTX;
1249 #if HAVE_conditional_move
1250 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1251 vtrue, vfalse, GET_MODE (x),
1252 (code == LTU || code == GEU
1253 || code == LEU || code == GTU));
1254 #else
1255 /* We'll never get here, as noce_process_if_block doesn't call the
1256 functions involved. Ifdef code, however, should be discouraged
1257 because it leads to typos in the code not selected. However,
1258 emit_conditional_move won't exist either. */
1259 return NULL_RTX;
1260 #endif
1263 /* Try only simple constants and registers here. More complex cases
1264 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1265 has had a go at it. */
1267 static int
1268 noce_try_cmove (struct noce_if_info *if_info)
1270 enum rtx_code code;
1271 rtx target, seq;
1273 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1274 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1276 start_sequence ();
1278 code = GET_CODE (if_info->cond);
1279 target = noce_emit_cmove (if_info, if_info->x, code,
1280 XEXP (if_info->cond, 0),
1281 XEXP (if_info->cond, 1),
1282 if_info->a, if_info->b);
1284 if (target)
1286 if (target != if_info->x)
1287 noce_emit_move_insn (if_info->x, target);
1289 seq = end_ifcvt_sequence (if_info);
1290 if (!seq)
1291 return FALSE;
1293 emit_insn_before_setloc (seq, if_info->jump,
1294 INSN_LOCATOR (if_info->insn_a));
1295 return TRUE;
1297 else
1299 end_sequence ();
1300 return FALSE;
1304 return FALSE;
1307 /* Try more complex cases involving conditional_move. */
1309 static int
1310 noce_try_cmove_arith (struct noce_if_info *if_info)
1312 rtx a = if_info->a;
1313 rtx b = if_info->b;
1314 rtx x = if_info->x;
1315 rtx orig_a, orig_b;
1316 rtx insn_a, insn_b;
1317 rtx tmp, target;
1318 int is_mem = 0;
1319 int insn_cost;
1320 enum rtx_code code;
1322 /* A conditional move from two memory sources is equivalent to a
1323 conditional on their addresses followed by a load. Don't do this
1324 early because it'll screw alias analysis. Note that we've
1325 already checked for no side effects. */
1326 /* ??? FIXME: Magic number 5. */
1327 if (cse_not_expected
1328 && MEM_P (a) && MEM_P (b)
1329 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1330 && if_info->branch_cost >= 5)
1332 enum machine_mode address_mode
1333 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1335 a = XEXP (a, 0);
1336 b = XEXP (b, 0);
1337 x = gen_reg_rtx (address_mode);
1338 is_mem = 1;
1341 /* ??? We could handle this if we knew that a load from A or B could
1342 not fault. This is also true if we've already loaded
1343 from the address along the path from ENTRY. */
1344 else if (may_trap_p (a) || may_trap_p (b))
1345 return FALSE;
1347 /* if (test) x = a + b; else x = c - d;
1348 => y = a + b;
1349 x = c - d;
1350 if (test)
1351 x = y;
1354 code = GET_CODE (if_info->cond);
1355 insn_a = if_info->insn_a;
1356 insn_b = if_info->insn_b;
1358 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1359 if insn_rtx_cost can't be estimated. */
1360 if (insn_a)
1362 insn_cost = insn_rtx_cost (PATTERN (insn_a),
1363 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1364 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1365 return FALSE;
1367 else
1368 insn_cost = 0;
1370 if (insn_b)
1372 insn_cost += insn_rtx_cost (PATTERN (insn_b),
1373 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1374 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1375 return FALSE;
1378 /* Possibly rearrange operands to make things come out more natural. */
1379 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1381 int reversep = 0;
1382 if (rtx_equal_p (b, x))
1383 reversep = 1;
1384 else if (general_operand (b, GET_MODE (b)))
1385 reversep = 1;
1387 if (reversep)
1389 code = reversed_comparison_code (if_info->cond, if_info->jump);
1390 tmp = a, a = b, b = tmp;
1391 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1395 start_sequence ();
1397 orig_a = a;
1398 orig_b = b;
1400 /* If either operand is complex, load it into a register first.
1401 The best way to do this is to copy the original insn. In this
1402 way we preserve any clobbers etc that the insn may have had.
1403 This is of course not possible in the IS_MEM case. */
1404 if (! general_operand (a, GET_MODE (a)))
1406 rtx set;
1408 if (is_mem)
1410 tmp = gen_reg_rtx (GET_MODE (a));
1411 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1413 else if (! insn_a)
1414 goto end_seq_and_fail;
1415 else
1417 a = gen_reg_rtx (GET_MODE (a));
1418 tmp = copy_rtx (insn_a);
1419 set = single_set (tmp);
1420 SET_DEST (set) = a;
1421 tmp = emit_insn (PATTERN (tmp));
1423 if (recog_memoized (tmp) < 0)
1424 goto end_seq_and_fail;
1426 if (! general_operand (b, GET_MODE (b)))
1428 rtx set, last;
1430 if (is_mem)
1432 tmp = gen_reg_rtx (GET_MODE (b));
1433 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1435 else if (! insn_b)
1436 goto end_seq_and_fail;
1437 else
1439 b = gen_reg_rtx (GET_MODE (b));
1440 tmp = copy_rtx (insn_b);
1441 set = single_set (tmp);
1442 SET_DEST (set) = b;
1443 tmp = PATTERN (tmp);
1446 /* If insn to set up A clobbers any registers B depends on, try to
1447 swap insn that sets up A with the one that sets up B. If even
1448 that doesn't help, punt. */
1449 last = get_last_insn ();
1450 if (last && modified_in_p (orig_b, last))
1452 tmp = emit_insn_before (tmp, get_insns ());
1453 if (modified_in_p (orig_a, tmp))
1454 goto end_seq_and_fail;
1456 else
1457 tmp = emit_insn (tmp);
1459 if (recog_memoized (tmp) < 0)
1460 goto end_seq_and_fail;
1463 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1464 XEXP (if_info->cond, 1), a, b);
1466 if (! target)
1467 goto end_seq_and_fail;
1469 /* If we're handling a memory for above, emit the load now. */
1470 if (is_mem)
1472 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1474 /* Copy over flags as appropriate. */
1475 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1476 MEM_VOLATILE_P (tmp) = 1;
1477 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1478 MEM_IN_STRUCT_P (tmp) = 1;
1479 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1480 MEM_SCALAR_P (tmp) = 1;
1481 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1482 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1483 set_mem_align (tmp,
1484 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1486 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1487 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1489 noce_emit_move_insn (if_info->x, tmp);
1491 else if (target != x)
1492 noce_emit_move_insn (x, target);
1494 tmp = end_ifcvt_sequence (if_info);
1495 if (!tmp)
1496 return FALSE;
1498 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1499 return TRUE;
1501 end_seq_and_fail:
1502 end_sequence ();
1503 return FALSE;
1506 /* For most cases, the simplified condition we found is the best
1507 choice, but this is not the case for the min/max/abs transforms.
1508 For these we wish to know that it is A or B in the condition. */
1510 static rtx
1511 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1512 rtx *earliest)
1514 rtx cond, set, insn;
1515 int reverse;
1517 /* If target is already mentioned in the known condition, return it. */
1518 if (reg_mentioned_p (target, if_info->cond))
1520 *earliest = if_info->cond_earliest;
1521 return if_info->cond;
1524 set = pc_set (if_info->jump);
1525 cond = XEXP (SET_SRC (set), 0);
1526 reverse
1527 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1528 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1529 if (if_info->then_else_reversed)
1530 reverse = !reverse;
1532 /* If we're looking for a constant, try to make the conditional
1533 have that constant in it. There are two reasons why it may
1534 not have the constant we want:
1536 1. GCC may have needed to put the constant in a register, because
1537 the target can't compare directly against that constant. For
1538 this case, we look for a SET immediately before the comparison
1539 that puts a constant in that register.
1541 2. GCC may have canonicalized the conditional, for example
1542 replacing "if x < 4" with "if x <= 3". We can undo that (or
1543 make equivalent types of changes) to get the constants we need
1544 if they're off by one in the right direction. */
1546 if (CONST_INT_P (target))
1548 enum rtx_code code = GET_CODE (if_info->cond);
1549 rtx op_a = XEXP (if_info->cond, 0);
1550 rtx op_b = XEXP (if_info->cond, 1);
1551 rtx prev_insn;
1553 /* First, look to see if we put a constant in a register. */
1554 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1555 if (prev_insn
1556 && BLOCK_NUM (prev_insn) == BLOCK_NUM (if_info->cond_earliest)
1557 && INSN_P (prev_insn)
1558 && GET_CODE (PATTERN (prev_insn)) == SET)
1560 rtx src = find_reg_equal_equiv_note (prev_insn);
1561 if (!src)
1562 src = SET_SRC (PATTERN (prev_insn));
1563 if (CONST_INT_P (src))
1565 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1566 op_a = src;
1567 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1568 op_b = src;
1570 if (CONST_INT_P (op_a))
1572 rtx tmp = op_a;
1573 op_a = op_b;
1574 op_b = tmp;
1575 code = swap_condition (code);
1580 /* Now, look to see if we can get the right constant by
1581 adjusting the conditional. */
1582 if (CONST_INT_P (op_b))
1584 HOST_WIDE_INT desired_val = INTVAL (target);
1585 HOST_WIDE_INT actual_val = INTVAL (op_b);
1587 switch (code)
1589 case LT:
1590 if (actual_val == desired_val + 1)
1592 code = LE;
1593 op_b = GEN_INT (desired_val);
1595 break;
1596 case LE:
1597 if (actual_val == desired_val - 1)
1599 code = LT;
1600 op_b = GEN_INT (desired_val);
1602 break;
1603 case GT:
1604 if (actual_val == desired_val - 1)
1606 code = GE;
1607 op_b = GEN_INT (desired_val);
1609 break;
1610 case GE:
1611 if (actual_val == desired_val + 1)
1613 code = GT;
1614 op_b = GEN_INT (desired_val);
1616 break;
1617 default:
1618 break;
1622 /* If we made any changes, generate a new conditional that is
1623 equivalent to what we started with, but has the right
1624 constants in it. */
1625 if (code != GET_CODE (if_info->cond)
1626 || op_a != XEXP (if_info->cond, 0)
1627 || op_b != XEXP (if_info->cond, 1))
1629 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1630 *earliest = if_info->cond_earliest;
1631 return cond;
1635 cond = canonicalize_condition (if_info->jump, cond, reverse,
1636 earliest, target, false, true);
1637 if (! cond || ! reg_mentioned_p (target, cond))
1638 return NULL;
1640 /* We almost certainly searched back to a different place.
1641 Need to re-verify correct lifetimes. */
1643 /* X may not be mentioned in the range (cond_earliest, jump]. */
1644 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1645 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1646 return NULL;
1648 /* A and B may not be modified in the range [cond_earliest, jump). */
1649 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1650 if (INSN_P (insn)
1651 && (modified_in_p (if_info->a, insn)
1652 || modified_in_p (if_info->b, insn)))
1653 return NULL;
1655 return cond;
1658 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1660 static int
1661 noce_try_minmax (struct noce_if_info *if_info)
1663 rtx cond, earliest, target, seq;
1664 enum rtx_code code, op;
1665 int unsignedp;
1667 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1668 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1669 to get the target to tell us... */
1670 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1671 || HONOR_NANS (GET_MODE (if_info->x)))
1672 return FALSE;
1674 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1675 if (!cond)
1676 return FALSE;
1678 /* Verify the condition is of the form we expect, and canonicalize
1679 the comparison code. */
1680 code = GET_CODE (cond);
1681 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1683 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1684 return FALSE;
1686 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1688 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1689 return FALSE;
1690 code = swap_condition (code);
1692 else
1693 return FALSE;
1695 /* Determine what sort of operation this is. Note that the code is for
1696 a taken branch, so the code->operation mapping appears backwards. */
1697 switch (code)
1699 case LT:
1700 case LE:
1701 case UNLT:
1702 case UNLE:
1703 op = SMAX;
1704 unsignedp = 0;
1705 break;
1706 case GT:
1707 case GE:
1708 case UNGT:
1709 case UNGE:
1710 op = SMIN;
1711 unsignedp = 0;
1712 break;
1713 case LTU:
1714 case LEU:
1715 op = UMAX;
1716 unsignedp = 1;
1717 break;
1718 case GTU:
1719 case GEU:
1720 op = UMIN;
1721 unsignedp = 1;
1722 break;
1723 default:
1724 return FALSE;
1727 start_sequence ();
1729 target = expand_simple_binop (GET_MODE (if_info->x), op,
1730 if_info->a, if_info->b,
1731 if_info->x, unsignedp, OPTAB_WIDEN);
1732 if (! target)
1734 end_sequence ();
1735 return FALSE;
1737 if (target != if_info->x)
1738 noce_emit_move_insn (if_info->x, target);
1740 seq = end_ifcvt_sequence (if_info);
1741 if (!seq)
1742 return FALSE;
1744 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1745 if_info->cond = cond;
1746 if_info->cond_earliest = earliest;
1748 return TRUE;
1751 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1752 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1753 etc. */
1755 static int
1756 noce_try_abs (struct noce_if_info *if_info)
1758 rtx cond, earliest, target, seq, a, b, c;
1759 int negate;
1760 bool one_cmpl = false;
1762 /* Reject modes with signed zeros. */
1763 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1764 return FALSE;
1766 /* Recognize A and B as constituting an ABS or NABS. The canonical
1767 form is a branch around the negation, taken when the object is the
1768 first operand of a comparison against 0 that evaluates to true. */
1769 a = if_info->a;
1770 b = if_info->b;
1771 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1772 negate = 0;
1773 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1775 c = a; a = b; b = c;
1776 negate = 1;
1778 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1780 negate = 0;
1781 one_cmpl = true;
1783 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1785 c = a; a = b; b = c;
1786 negate = 1;
1787 one_cmpl = true;
1789 else
1790 return FALSE;
1792 cond = noce_get_alt_condition (if_info, b, &earliest);
1793 if (!cond)
1794 return FALSE;
1796 /* Verify the condition is of the form we expect. */
1797 if (rtx_equal_p (XEXP (cond, 0), b))
1798 c = XEXP (cond, 1);
1799 else if (rtx_equal_p (XEXP (cond, 1), b))
1801 c = XEXP (cond, 0);
1802 negate = !negate;
1804 else
1805 return FALSE;
1807 /* Verify that C is zero. Search one step backward for a
1808 REG_EQUAL note or a simple source if necessary. */
1809 if (REG_P (c))
1811 rtx set, insn = prev_nonnote_insn (earliest);
1812 if (insn
1813 && BLOCK_NUM (insn) == BLOCK_NUM (earliest)
1814 && (set = single_set (insn))
1815 && rtx_equal_p (SET_DEST (set), c))
1817 rtx note = find_reg_equal_equiv_note (insn);
1818 if (note)
1819 c = XEXP (note, 0);
1820 else
1821 c = SET_SRC (set);
1823 else
1824 return FALSE;
1826 if (MEM_P (c)
1827 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1828 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1829 c = get_pool_constant (XEXP (c, 0));
1831 /* Work around funny ideas get_condition has wrt canonicalization.
1832 Note that these rtx constants are known to be CONST_INT, and
1833 therefore imply integer comparisons. */
1834 if (c == constm1_rtx && GET_CODE (cond) == GT)
1836 else if (c == const1_rtx && GET_CODE (cond) == LT)
1838 else if (c != CONST0_RTX (GET_MODE (b)))
1839 return FALSE;
1841 /* Determine what sort of operation this is. */
1842 switch (GET_CODE (cond))
1844 case LT:
1845 case LE:
1846 case UNLT:
1847 case UNLE:
1848 negate = !negate;
1849 break;
1850 case GT:
1851 case GE:
1852 case UNGT:
1853 case UNGE:
1854 break;
1855 default:
1856 return FALSE;
1859 start_sequence ();
1860 if (one_cmpl)
1861 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
1862 if_info->x);
1863 else
1864 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1866 /* ??? It's a quandary whether cmove would be better here, especially
1867 for integers. Perhaps combine will clean things up. */
1868 if (target && negate)
1870 if (one_cmpl)
1871 target = expand_simple_unop (GET_MODE (target), NOT, target,
1872 if_info->x, 0);
1873 else
1874 target = expand_simple_unop (GET_MODE (target), NEG, target,
1875 if_info->x, 0);
1878 if (! target)
1880 end_sequence ();
1881 return FALSE;
1884 if (target != if_info->x)
1885 noce_emit_move_insn (if_info->x, target);
1887 seq = end_ifcvt_sequence (if_info);
1888 if (!seq)
1889 return FALSE;
1891 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1892 if_info->cond = cond;
1893 if_info->cond_earliest = earliest;
1895 return TRUE;
1898 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1900 static int
1901 noce_try_sign_mask (struct noce_if_info *if_info)
1903 rtx cond, t, m, c, seq;
1904 enum machine_mode mode;
1905 enum rtx_code code;
1906 bool t_unconditional;
1908 cond = if_info->cond;
1909 code = GET_CODE (cond);
1910 m = XEXP (cond, 0);
1911 c = XEXP (cond, 1);
1913 t = NULL_RTX;
1914 if (if_info->a == const0_rtx)
1916 if ((code == LT && c == const0_rtx)
1917 || (code == LE && c == constm1_rtx))
1918 t = if_info->b;
1920 else if (if_info->b == const0_rtx)
1922 if ((code == GE && c == const0_rtx)
1923 || (code == GT && c == constm1_rtx))
1924 t = if_info->a;
1927 if (! t || side_effects_p (t))
1928 return FALSE;
1930 /* We currently don't handle different modes. */
1931 mode = GET_MODE (t);
1932 if (GET_MODE (m) != mode)
1933 return FALSE;
1935 /* This is only profitable if T is unconditionally executed/evaluated in the
1936 original insn sequence or T is cheap. The former happens if B is the
1937 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
1938 INSN_B which can happen for e.g. conditional stores to memory. For the
1939 cost computation use the block TEST_BB where the evaluation will end up
1940 after the transformation. */
1941 t_unconditional =
1942 (t == if_info->b
1943 && (if_info->insn_b == NULL_RTX
1944 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
1945 if (!(t_unconditional
1946 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
1947 < COSTS_N_INSNS (2))))
1948 return FALSE;
1950 start_sequence ();
1951 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1952 "(signed) m >> 31" directly. This benefits targets with specialized
1953 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1954 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1955 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1956 : NULL_RTX;
1958 if (!t)
1960 end_sequence ();
1961 return FALSE;
1964 noce_emit_move_insn (if_info->x, t);
1966 seq = end_ifcvt_sequence (if_info);
1967 if (!seq)
1968 return FALSE;
1970 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1971 return TRUE;
1975 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1976 transformations. */
1978 static int
1979 noce_try_bitop (struct noce_if_info *if_info)
1981 rtx cond, x, a, result, seq;
1982 enum machine_mode mode;
1983 enum rtx_code code;
1984 int bitnum;
1986 x = if_info->x;
1987 cond = if_info->cond;
1988 code = GET_CODE (cond);
1990 /* Check for no else condition. */
1991 if (! rtx_equal_p (x, if_info->b))
1992 return FALSE;
1994 /* Check for a suitable condition. */
1995 if (code != NE && code != EQ)
1996 return FALSE;
1997 if (XEXP (cond, 1) != const0_rtx)
1998 return FALSE;
1999 cond = XEXP (cond, 0);
2001 /* ??? We could also handle AND here. */
2002 if (GET_CODE (cond) == ZERO_EXTRACT)
2004 if (XEXP (cond, 1) != const1_rtx
2005 || !CONST_INT_P (XEXP (cond, 2))
2006 || ! rtx_equal_p (x, XEXP (cond, 0)))
2007 return FALSE;
2008 bitnum = INTVAL (XEXP (cond, 2));
2009 mode = GET_MODE (x);
2010 if (BITS_BIG_ENDIAN)
2011 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2012 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2013 return FALSE;
2015 else
2016 return FALSE;
2018 a = if_info->a;
2019 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2021 /* Check for "if (X & C) x = x op C". */
2022 if (! rtx_equal_p (x, XEXP (a, 0))
2023 || !CONST_INT_P (XEXP (a, 1))
2024 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2025 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2026 return FALSE;
2028 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2029 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2030 if (GET_CODE (a) == IOR)
2031 result = (code == NE) ? a : NULL_RTX;
2032 else if (code == NE)
2034 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2035 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2036 result = simplify_gen_binary (IOR, mode, x, result);
2038 else
2040 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2041 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2042 result = simplify_gen_binary (AND, mode, x, result);
2045 else if (GET_CODE (a) == AND)
2047 /* Check for "if (X & C) x &= ~C". */
2048 if (! rtx_equal_p (x, XEXP (a, 0))
2049 || !CONST_INT_P (XEXP (a, 1))
2050 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2051 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2052 return FALSE;
2054 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2055 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2056 result = (code == EQ) ? a : NULL_RTX;
2058 else
2059 return FALSE;
2061 if (result)
2063 start_sequence ();
2064 noce_emit_move_insn (x, result);
2065 seq = end_ifcvt_sequence (if_info);
2066 if (!seq)
2067 return FALSE;
2069 emit_insn_before_setloc (seq, if_info->jump,
2070 INSN_LOCATOR (if_info->insn_a));
2072 return TRUE;
2076 /* Similar to get_condition, only the resulting condition must be
2077 valid at JUMP, instead of at EARLIEST.
2079 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2080 THEN block of the caller, and we have to reverse the condition. */
2082 static rtx
2083 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2085 rtx cond, set, tmp;
2086 bool reverse;
2088 if (! any_condjump_p (jump))
2089 return NULL_RTX;
2091 set = pc_set (jump);
2093 /* If this branches to JUMP_LABEL when the condition is false,
2094 reverse the condition. */
2095 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2096 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2098 /* We may have to reverse because the caller's if block is not canonical,
2099 i.e. the THEN block isn't the fallthrough block for the TEST block
2100 (see find_if_header). */
2101 if (then_else_reversed)
2102 reverse = !reverse;
2104 /* If the condition variable is a register and is MODE_INT, accept it. */
2106 cond = XEXP (SET_SRC (set), 0);
2107 tmp = XEXP (cond, 0);
2108 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2110 *earliest = jump;
2112 if (reverse)
2113 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2114 GET_MODE (cond), tmp, XEXP (cond, 1));
2115 return cond;
2118 /* Otherwise, fall back on canonicalize_condition to do the dirty
2119 work of manipulating MODE_CC values and COMPARE rtx codes. */
2120 return canonicalize_condition (jump, cond, reverse, earliest,
2121 NULL_RTX, false, true);
2124 /* Return true if OP is ok for if-then-else processing. */
2126 static int
2127 noce_operand_ok (const_rtx op)
2129 /* We special-case memories, so handle any of them with
2130 no address side effects. */
2131 if (MEM_P (op))
2132 return ! side_effects_p (XEXP (op, 0));
2134 if (side_effects_p (op))
2135 return FALSE;
2137 return ! may_trap_p (op);
2140 /* Return true if a write into MEM may trap or fault. */
2142 static bool
2143 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2145 rtx addr;
2147 if (MEM_READONLY_P (mem))
2148 return true;
2150 if (may_trap_or_fault_p (mem))
2151 return true;
2153 addr = XEXP (mem, 0);
2155 /* Call target hook to avoid the effects of -fpic etc.... */
2156 addr = targetm.delegitimize_address (addr);
2158 while (addr)
2159 switch (GET_CODE (addr))
2161 case CONST:
2162 case PRE_DEC:
2163 case PRE_INC:
2164 case POST_DEC:
2165 case POST_INC:
2166 case POST_MODIFY:
2167 addr = XEXP (addr, 0);
2168 break;
2169 case LO_SUM:
2170 case PRE_MODIFY:
2171 addr = XEXP (addr, 1);
2172 break;
2173 case PLUS:
2174 if (CONST_INT_P (XEXP (addr, 1)))
2175 addr = XEXP (addr, 0);
2176 else
2177 return false;
2178 break;
2179 case LABEL_REF:
2180 return true;
2181 case SYMBOL_REF:
2182 if (SYMBOL_REF_DECL (addr)
2183 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2184 return true;
2185 return false;
2186 default:
2187 return false;
2190 return false;
2193 /* Return whether we can use store speculation for MEM. TOP_BB is the
2194 basic block above the conditional block where we are considering
2195 doing the speculative store. We look for whether MEM is set
2196 unconditionally later in the function. */
2198 static bool
2199 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2201 basic_block dominator;
2203 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2204 dominator != NULL;
2205 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2207 rtx insn;
2209 FOR_BB_INSNS (dominator, insn)
2211 /* If we see something that might be a memory barrier, we
2212 have to stop looking. Even if the MEM is set later in
2213 the function, we still don't want to set it
2214 unconditionally before the barrier. */
2215 if (INSN_P (insn)
2216 && (volatile_insn_p (PATTERN (insn))
2217 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2218 return false;
2220 if (memory_modified_in_insn_p (mem, insn))
2221 return true;
2222 if (modified_in_p (XEXP (mem, 0), insn))
2223 return false;
2228 return false;
2231 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2232 it without using conditional execution. Return TRUE if we were successful
2233 at converting the block. */
2235 static int
2236 noce_process_if_block (struct noce_if_info *if_info)
2238 basic_block test_bb = if_info->test_bb; /* test block */
2239 basic_block then_bb = if_info->then_bb; /* THEN */
2240 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2241 basic_block join_bb = if_info->join_bb; /* JOIN */
2242 rtx jump = if_info->jump;
2243 rtx cond = if_info->cond;
2244 rtx insn_a, insn_b;
2245 rtx set_a, set_b;
2246 rtx orig_x, x, a, b;
2248 /* We're looking for patterns of the form
2250 (1) if (...) x = a; else x = b;
2251 (2) x = b; if (...) x = a;
2252 (3) if (...) x = a; // as if with an initial x = x.
2254 The later patterns require jumps to be more expensive.
2256 ??? For future expansion, look for multiple X in such patterns. */
2258 /* Look for one of the potential sets. */
2259 insn_a = first_active_insn (then_bb);
2260 if (! insn_a
2261 || insn_a != last_active_insn (then_bb, FALSE)
2262 || (set_a = single_set (insn_a)) == NULL_RTX)
2263 return FALSE;
2265 x = SET_DEST (set_a);
2266 a = SET_SRC (set_a);
2268 /* Look for the other potential set. Make sure we've got equivalent
2269 destinations. */
2270 /* ??? This is overconservative. Storing to two different mems is
2271 as easy as conditionally computing the address. Storing to a
2272 single mem merely requires a scratch memory to use as one of the
2273 destination addresses; often the memory immediately below the
2274 stack pointer is available for this. */
2275 set_b = NULL_RTX;
2276 if (else_bb)
2278 insn_b = first_active_insn (else_bb);
2279 if (! insn_b
2280 || insn_b != last_active_insn (else_bb, FALSE)
2281 || (set_b = single_set (insn_b)) == NULL_RTX
2282 || ! rtx_equal_p (x, SET_DEST (set_b)))
2283 return FALSE;
2285 else
2287 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2288 while (insn_b && DEBUG_INSN_P (insn_b))
2289 insn_b = prev_nonnote_insn (insn_b);
2290 /* We're going to be moving the evaluation of B down from above
2291 COND_EARLIEST to JUMP. Make sure the relevant data is still
2292 intact. */
2293 if (! insn_b
2294 || BLOCK_NUM (insn_b) != BLOCK_NUM (if_info->cond_earliest)
2295 || !NONJUMP_INSN_P (insn_b)
2296 || (set_b = single_set (insn_b)) == NULL_RTX
2297 || ! rtx_equal_p (x, SET_DEST (set_b))
2298 || ! noce_operand_ok (SET_SRC (set_b))
2299 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2300 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2301 /* Likewise with X. In particular this can happen when
2302 noce_get_condition looks farther back in the instruction
2303 stream than one might expect. */
2304 || reg_overlap_mentioned_p (x, cond)
2305 || reg_overlap_mentioned_p (x, a)
2306 || modified_between_p (x, insn_b, jump))
2307 insn_b = set_b = NULL_RTX;
2310 /* If x has side effects then only the if-then-else form is safe to
2311 convert. But even in that case we would need to restore any notes
2312 (such as REG_INC) at then end. That can be tricky if
2313 noce_emit_move_insn expands to more than one insn, so disable the
2314 optimization entirely for now if there are side effects. */
2315 if (side_effects_p (x))
2316 return FALSE;
2318 b = (set_b ? SET_SRC (set_b) : x);
2320 /* Only operate on register destinations, and even then avoid extending
2321 the lifetime of hard registers on small register class machines. */
2322 orig_x = x;
2323 if (!REG_P (x)
2324 || (SMALL_REGISTER_CLASSES
2325 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2327 if (GET_MODE (x) == BLKmode)
2328 return FALSE;
2330 if (GET_CODE (x) == ZERO_EXTRACT
2331 && (!CONST_INT_P (XEXP (x, 1))
2332 || !CONST_INT_P (XEXP (x, 2))))
2333 return FALSE;
2335 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2336 ? XEXP (x, 0) : x));
2339 /* Don't operate on sources that may trap or are volatile. */
2340 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2341 return FALSE;
2343 retry:
2344 /* Set up the info block for our subroutines. */
2345 if_info->insn_a = insn_a;
2346 if_info->insn_b = insn_b;
2347 if_info->x = x;
2348 if_info->a = a;
2349 if_info->b = b;
2351 /* Try optimizations in some approximation of a useful order. */
2352 /* ??? Should first look to see if X is live incoming at all. If it
2353 isn't, we don't need anything but an unconditional set. */
2355 /* Look and see if A and B are really the same. Avoid creating silly
2356 cmove constructs that no one will fix up later. */
2357 if (rtx_equal_p (a, b))
2359 /* If we have an INSN_B, we don't have to create any new rtl. Just
2360 move the instruction that we already have. If we don't have an
2361 INSN_B, that means that A == X, and we've got a noop move. In
2362 that case don't do anything and let the code below delete INSN_A. */
2363 if (insn_b && else_bb)
2365 rtx note;
2367 if (else_bb && insn_b == BB_END (else_bb))
2368 BB_END (else_bb) = PREV_INSN (insn_b);
2369 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2371 /* If there was a REG_EQUAL note, delete it since it may have been
2372 true due to this insn being after a jump. */
2373 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2374 remove_note (insn_b, note);
2376 insn_b = NULL_RTX;
2378 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2379 x must be executed twice. */
2380 else if (insn_b && side_effects_p (orig_x))
2381 return FALSE;
2383 x = orig_x;
2384 goto success;
2387 if (!set_b && MEM_P (orig_x))
2389 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2390 for optimizations if writing to x may trap or fault,
2391 i.e. it's a memory other than a static var or a stack slot,
2392 is misaligned on strict aligned machines or is read-only. If
2393 x is a read-only memory, then the program is valid only if we
2394 avoid the store into it. If there are stores on both the
2395 THEN and ELSE arms, then we can go ahead with the conversion;
2396 either the program is broken, or the condition is always
2397 false such that the other memory is selected. */
2398 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2399 return FALSE;
2401 /* Avoid store speculation: given "if (...) x = a" where x is a
2402 MEM, we only want to do the store if x is always set
2403 somewhere in the function. This avoids cases like
2404 if (pthread_mutex_trylock(mutex))
2405 ++global_variable;
2406 where we only want global_variable to be changed if the mutex
2407 is held. FIXME: This should ideally be expressed directly in
2408 RTL somehow. */
2409 if (!noce_can_store_speculate_p (test_bb, orig_x))
2410 return FALSE;
2413 if (noce_try_move (if_info))
2414 goto success;
2415 if (noce_try_store_flag (if_info))
2416 goto success;
2417 if (noce_try_bitop (if_info))
2418 goto success;
2419 if (noce_try_minmax (if_info))
2420 goto success;
2421 if (noce_try_abs (if_info))
2422 goto success;
2423 if (HAVE_conditional_move
2424 && noce_try_cmove (if_info))
2425 goto success;
2426 if (! targetm.have_conditional_execution ())
2428 if (noce_try_store_flag_constants (if_info))
2429 goto success;
2430 if (noce_try_addcc (if_info))
2431 goto success;
2432 if (noce_try_store_flag_mask (if_info))
2433 goto success;
2434 if (HAVE_conditional_move
2435 && noce_try_cmove_arith (if_info))
2436 goto success;
2437 if (noce_try_sign_mask (if_info))
2438 goto success;
2441 if (!else_bb && set_b)
2443 insn_b = set_b = NULL_RTX;
2444 b = orig_x;
2445 goto retry;
2448 return FALSE;
2450 success:
2452 /* If we used a temporary, fix it up now. */
2453 if (orig_x != x)
2455 rtx seq;
2457 start_sequence ();
2458 noce_emit_move_insn (orig_x, x);
2459 seq = get_insns ();
2460 set_used_flags (orig_x);
2461 unshare_all_rtl_in_chain (seq);
2462 end_sequence ();
2464 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2467 /* The original THEN and ELSE blocks may now be removed. The test block
2468 must now jump to the join block. If the test block and the join block
2469 can be merged, do so. */
2470 if (else_bb)
2472 delete_basic_block (else_bb);
2473 num_true_changes++;
2475 else
2476 remove_edge (find_edge (test_bb, join_bb));
2478 remove_edge (find_edge (then_bb, join_bb));
2479 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2480 delete_basic_block (then_bb);
2481 num_true_changes++;
2483 if (can_merge_blocks_p (test_bb, join_bb))
2485 merge_blocks (test_bb, join_bb);
2486 num_true_changes++;
2489 num_updated_if_blocks++;
2490 return TRUE;
2493 /* Check whether a block is suitable for conditional move conversion.
2494 Every insn must be a simple set of a register to a constant or a
2495 register. For each assignment, store the value in the array VALS,
2496 indexed by register number, then store the register number in
2497 REGS. COND is the condition we will test. */
2499 static int
2500 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs, rtx cond)
2502 rtx insn;
2504 /* We can only handle simple jumps at the end of the basic block.
2505 It is almost impossible to update the CFG otherwise. */
2506 insn = BB_END (bb);
2507 if (JUMP_P (insn) && !onlyjump_p (insn))
2508 return FALSE;
2510 FOR_BB_INSNS (bb, insn)
2512 rtx set, dest, src;
2514 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2515 continue;
2516 set = single_set (insn);
2517 if (!set)
2518 return FALSE;
2520 dest = SET_DEST (set);
2521 src = SET_SRC (set);
2522 if (!REG_P (dest)
2523 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2524 return FALSE;
2526 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2527 return FALSE;
2529 if (side_effects_p (src) || side_effects_p (dest))
2530 return FALSE;
2532 if (may_trap_p (src) || may_trap_p (dest))
2533 return FALSE;
2535 /* Don't try to handle this if the source register was
2536 modified earlier in the block. */
2537 if ((REG_P (src)
2538 && vals[REGNO (src)] != NULL)
2539 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2540 && vals[REGNO (SUBREG_REG (src))] != NULL))
2541 return FALSE;
2543 /* Don't try to handle this if the destination register was
2544 modified earlier in the block. */
2545 if (vals[REGNO (dest)] != NULL)
2546 return FALSE;
2548 /* Don't try to handle this if the condition uses the
2549 destination register. */
2550 if (reg_overlap_mentioned_p (dest, cond))
2551 return FALSE;
2553 /* Don't try to handle this if the source register is modified
2554 later in the block. */
2555 if (!CONSTANT_P (src)
2556 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2557 return FALSE;
2559 vals[REGNO (dest)] = src;
2561 VEC_safe_push (int, heap, *regs, REGNO (dest));
2564 return TRUE;
2567 /* Given a basic block BB suitable for conditional move conversion,
2568 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2569 register values depending on COND, emit the insns in the block as
2570 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2571 processed. The caller has started a sequence for the conversion.
2572 Return true if successful, false if something goes wrong. */
2574 static bool
2575 cond_move_convert_if_block (struct noce_if_info *if_infop,
2576 basic_block bb, rtx cond,
2577 rtx *then_vals, rtx *else_vals,
2578 bool else_block_p)
2580 enum rtx_code code;
2581 rtx insn, cond_arg0, cond_arg1;
2583 code = GET_CODE (cond);
2584 cond_arg0 = XEXP (cond, 0);
2585 cond_arg1 = XEXP (cond, 1);
2587 FOR_BB_INSNS (bb, insn)
2589 rtx set, target, dest, t, e;
2590 unsigned int regno;
2592 /* ??? Maybe emit conditional debug insn? */
2593 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2594 continue;
2595 set = single_set (insn);
2596 gcc_assert (set && REG_P (SET_DEST (set)));
2598 dest = SET_DEST (set);
2599 regno = REGNO (dest);
2601 t = then_vals[regno];
2602 e = else_vals[regno];
2604 if (else_block_p)
2606 /* If this register was set in the then block, we already
2607 handled this case there. */
2608 if (t)
2609 continue;
2610 t = dest;
2611 gcc_assert (e);
2613 else
2615 gcc_assert (t);
2616 if (!e)
2617 e = dest;
2620 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2621 t, e);
2622 if (!target)
2623 return false;
2625 if (target != dest)
2626 noce_emit_move_insn (dest, target);
2629 return true;
2632 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2633 it using only conditional moves. Return TRUE if we were successful at
2634 converting the block. */
2636 static int
2637 cond_move_process_if_block (struct noce_if_info *if_info)
2639 basic_block test_bb = if_info->test_bb;
2640 basic_block then_bb = if_info->then_bb;
2641 basic_block else_bb = if_info->else_bb;
2642 basic_block join_bb = if_info->join_bb;
2643 rtx jump = if_info->jump;
2644 rtx cond = if_info->cond;
2645 rtx seq, loc_insn;
2646 int max_reg, size, c, reg;
2647 rtx *then_vals;
2648 rtx *else_vals;
2649 VEC (int, heap) *then_regs = NULL;
2650 VEC (int, heap) *else_regs = NULL;
2651 unsigned int i;
2653 /* Build a mapping for each block to the value used for each
2654 register. */
2655 max_reg = max_reg_num ();
2656 size = (max_reg + 1) * sizeof (rtx);
2657 then_vals = (rtx *) alloca (size);
2658 else_vals = (rtx *) alloca (size);
2659 memset (then_vals, 0, size);
2660 memset (else_vals, 0, size);
2662 /* Make sure the blocks are suitable. */
2663 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2664 || (else_bb && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2666 VEC_free (int, heap, then_regs);
2667 VEC_free (int, heap, else_regs);
2668 return FALSE;
2671 /* Make sure the blocks can be used together. If the same register
2672 is set in both blocks, and is not set to a constant in both
2673 cases, then both blocks must set it to the same register. We
2674 have already verified that if it is set to a register, that the
2675 source register does not change after the assignment. Also count
2676 the number of registers set in only one of the blocks. */
2677 c = 0;
2678 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2680 if (!then_vals[reg] && !else_vals[reg])
2681 continue;
2683 if (!else_vals[reg])
2684 ++c;
2685 else
2687 if (!CONSTANT_P (then_vals[reg])
2688 && !CONSTANT_P (else_vals[reg])
2689 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2691 VEC_free (int, heap, then_regs);
2692 VEC_free (int, heap, else_regs);
2693 return FALSE;
2698 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2699 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2700 if (!then_vals[reg])
2701 ++c;
2703 /* Make sure it is reasonable to convert this block. What matters
2704 is the number of assignments currently made in only one of the
2705 branches, since if we convert we are going to always execute
2706 them. */
2707 if (c > MAX_CONDITIONAL_EXECUTE)
2709 VEC_free (int, heap, then_regs);
2710 VEC_free (int, heap, else_regs);
2711 return FALSE;
2714 /* Try to emit the conditional moves. First do the then block,
2715 then do anything left in the else blocks. */
2716 start_sequence ();
2717 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2718 then_vals, else_vals, false)
2719 || (else_bb
2720 && !cond_move_convert_if_block (if_info, else_bb, cond,
2721 then_vals, else_vals, true)))
2723 end_sequence ();
2724 VEC_free (int, heap, then_regs);
2725 VEC_free (int, heap, else_regs);
2726 return FALSE;
2728 seq = end_ifcvt_sequence (if_info);
2729 if (!seq)
2731 VEC_free (int, heap, then_regs);
2732 VEC_free (int, heap, else_regs);
2733 return FALSE;
2736 loc_insn = first_active_insn (then_bb);
2737 if (!loc_insn)
2739 loc_insn = first_active_insn (else_bb);
2740 gcc_assert (loc_insn);
2742 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2744 if (else_bb)
2746 delete_basic_block (else_bb);
2747 num_true_changes++;
2749 else
2750 remove_edge (find_edge (test_bb, join_bb));
2752 remove_edge (find_edge (then_bb, join_bb));
2753 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2754 delete_basic_block (then_bb);
2755 num_true_changes++;
2757 if (can_merge_blocks_p (test_bb, join_bb))
2759 merge_blocks (test_bb, join_bb);
2760 num_true_changes++;
2763 num_updated_if_blocks++;
2765 VEC_free (int, heap, then_regs);
2766 VEC_free (int, heap, else_regs);
2767 return TRUE;
2771 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2772 IF-THEN-ELSE-JOIN block.
2774 If so, we'll try to convert the insns to not require the branch,
2775 using only transformations that do not require conditional execution.
2777 Return TRUE if we were successful at converting the block. */
2779 static int
2780 noce_find_if_block (basic_block test_bb,
2781 edge then_edge, edge else_edge,
2782 int pass)
2784 basic_block then_bb, else_bb, join_bb;
2785 bool then_else_reversed = false;
2786 rtx jump, cond;
2787 rtx cond_earliest;
2788 struct noce_if_info if_info;
2790 /* We only ever should get here before reload. */
2791 gcc_assert (!reload_completed);
2793 /* Recognize an IF-THEN-ELSE-JOIN block. */
2794 if (single_pred_p (then_edge->dest)
2795 && single_succ_p (then_edge->dest)
2796 && single_pred_p (else_edge->dest)
2797 && single_succ_p (else_edge->dest)
2798 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2800 then_bb = then_edge->dest;
2801 else_bb = else_edge->dest;
2802 join_bb = single_succ (then_bb);
2804 /* Recognize an IF-THEN-JOIN block. */
2805 else if (single_pred_p (then_edge->dest)
2806 && single_succ_p (then_edge->dest)
2807 && single_succ (then_edge->dest) == else_edge->dest)
2809 then_bb = then_edge->dest;
2810 else_bb = NULL_BLOCK;
2811 join_bb = else_edge->dest;
2813 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2814 of basic blocks in cfglayout mode does not matter, so the fallthrough
2815 edge can go to any basic block (and not just to bb->next_bb, like in
2816 cfgrtl mode). */
2817 else if (single_pred_p (else_edge->dest)
2818 && single_succ_p (else_edge->dest)
2819 && single_succ (else_edge->dest) == then_edge->dest)
2821 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2822 To make this work, we have to invert the THEN and ELSE blocks
2823 and reverse the jump condition. */
2824 then_bb = else_edge->dest;
2825 else_bb = NULL_BLOCK;
2826 join_bb = single_succ (then_bb);
2827 then_else_reversed = true;
2829 else
2830 /* Not a form we can handle. */
2831 return FALSE;
2833 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2834 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2835 return FALSE;
2836 if (else_bb
2837 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2838 return FALSE;
2840 num_possible_if_blocks++;
2842 if (dump_file)
2844 fprintf (dump_file,
2845 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2846 (else_bb) ? "-ELSE" : "",
2847 pass, test_bb->index, then_bb->index);
2849 if (else_bb)
2850 fprintf (dump_file, ", else %d", else_bb->index);
2852 fprintf (dump_file, ", join %d\n", join_bb->index);
2855 /* If the conditional jump is more than just a conditional
2856 jump, then we can not do if-conversion on this block. */
2857 jump = BB_END (test_bb);
2858 if (! onlyjump_p (jump))
2859 return FALSE;
2861 /* If this is not a standard conditional jump, we can't parse it. */
2862 cond = noce_get_condition (jump,
2863 &cond_earliest,
2864 then_else_reversed);
2865 if (!cond)
2866 return FALSE;
2868 /* We must be comparing objects whose modes imply the size. */
2869 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2870 return FALSE;
2872 /* Initialize an IF_INFO struct to pass around. */
2873 memset (&if_info, 0, sizeof if_info);
2874 if_info.test_bb = test_bb;
2875 if_info.then_bb = then_bb;
2876 if_info.else_bb = else_bb;
2877 if_info.join_bb = join_bb;
2878 if_info.cond = cond;
2879 if_info.cond_earliest = cond_earliest;
2880 if_info.jump = jump;
2881 if_info.then_else_reversed = then_else_reversed;
2882 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
2883 predictable_edge_p (then_edge));
2885 /* Do the real work. */
2887 if (noce_process_if_block (&if_info))
2888 return TRUE;
2890 if (HAVE_conditional_move
2891 && cond_move_process_if_block (&if_info))
2892 return TRUE;
2894 return FALSE;
2898 /* Merge the blocks and mark for local life update. */
2900 static void
2901 merge_if_block (struct ce_if_block * ce_info)
2903 basic_block test_bb = ce_info->test_bb; /* last test block */
2904 basic_block then_bb = ce_info->then_bb; /* THEN */
2905 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2906 basic_block join_bb = ce_info->join_bb; /* join block */
2907 basic_block combo_bb;
2909 /* All block merging is done into the lower block numbers. */
2911 combo_bb = test_bb;
2912 df_set_bb_dirty (test_bb);
2914 /* Merge any basic blocks to handle && and || subtests. Each of
2915 the blocks are on the fallthru path from the predecessor block. */
2916 if (ce_info->num_multiple_test_blocks > 0)
2918 basic_block bb = test_bb;
2919 basic_block last_test_bb = ce_info->last_test_bb;
2920 basic_block fallthru = block_fallthru (bb);
2924 bb = fallthru;
2925 fallthru = block_fallthru (bb);
2926 merge_blocks (combo_bb, bb);
2927 num_true_changes++;
2929 while (bb != last_test_bb);
2932 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2933 label, but it might if there were || tests. That label's count should be
2934 zero, and it normally should be removed. */
2936 if (then_bb)
2938 merge_blocks (combo_bb, then_bb);
2939 num_true_changes++;
2942 /* The ELSE block, if it existed, had a label. That label count
2943 will almost always be zero, but odd things can happen when labels
2944 get their addresses taken. */
2945 if (else_bb)
2947 merge_blocks (combo_bb, else_bb);
2948 num_true_changes++;
2951 /* If there was no join block reported, that means it was not adjacent
2952 to the others, and so we cannot merge them. */
2954 if (! join_bb)
2956 rtx last = BB_END (combo_bb);
2958 /* The outgoing edge for the current COMBO block should already
2959 be correct. Verify this. */
2960 if (EDGE_COUNT (combo_bb->succs) == 0)
2961 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2962 || (NONJUMP_INSN_P (last)
2963 && GET_CODE (PATTERN (last)) == TRAP_IF
2964 && (TRAP_CONDITION (PATTERN (last))
2965 == const_true_rtx)));
2967 else
2968 /* There should still be something at the end of the THEN or ELSE
2969 blocks taking us to our final destination. */
2970 gcc_assert (JUMP_P (last)
2971 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2972 && CALL_P (last)
2973 && SIBLING_CALL_P (last))
2974 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2975 && can_throw_internal (last)));
2978 /* The JOIN block may have had quite a number of other predecessors too.
2979 Since we've already merged the TEST, THEN and ELSE blocks, we should
2980 have only one remaining edge from our if-then-else diamond. If there
2981 is more than one remaining edge, it must come from elsewhere. There
2982 may be zero incoming edges if the THEN block didn't actually join
2983 back up (as with a call to a non-return function). */
2984 else if (EDGE_COUNT (join_bb->preds) < 2
2985 && join_bb != EXIT_BLOCK_PTR)
2987 /* We can merge the JOIN cleanly and update the dataflow try
2988 again on this pass.*/
2989 merge_blocks (combo_bb, join_bb);
2990 num_true_changes++;
2992 else
2994 /* We cannot merge the JOIN. */
2996 /* The outgoing edge for the current COMBO block should already
2997 be correct. Verify this. */
2998 gcc_assert (single_succ_p (combo_bb)
2999 && single_succ (combo_bb) == join_bb);
3001 /* Remove the jump and cruft from the end of the COMBO block. */
3002 if (join_bb != EXIT_BLOCK_PTR)
3003 tidy_fallthru_edge (single_succ_edge (combo_bb));
3006 num_updated_if_blocks++;
3009 /* Find a block ending in a simple IF condition and try to transform it
3010 in some way. When converting a multi-block condition, put the new code
3011 in the first such block and delete the rest. Return a pointer to this
3012 first block if some transformation was done. Return NULL otherwise. */
3014 static basic_block
3015 find_if_header (basic_block test_bb, int pass)
3017 ce_if_block_t ce_info;
3018 edge then_edge;
3019 edge else_edge;
3021 /* The kind of block we're looking for has exactly two successors. */
3022 if (EDGE_COUNT (test_bb->succs) != 2)
3023 return NULL;
3025 then_edge = EDGE_SUCC (test_bb, 0);
3026 else_edge = EDGE_SUCC (test_bb, 1);
3028 if (df_get_bb_dirty (then_edge->dest))
3029 return NULL;
3030 if (df_get_bb_dirty (else_edge->dest))
3031 return NULL;
3033 /* Neither edge should be abnormal. */
3034 if ((then_edge->flags & EDGE_COMPLEX)
3035 || (else_edge->flags & EDGE_COMPLEX))
3036 return NULL;
3038 /* Nor exit the loop. */
3039 if ((then_edge->flags & EDGE_LOOP_EXIT)
3040 || (else_edge->flags & EDGE_LOOP_EXIT))
3041 return NULL;
3043 /* The THEN edge is canonically the one that falls through. */
3044 if (then_edge->flags & EDGE_FALLTHRU)
3046 else if (else_edge->flags & EDGE_FALLTHRU)
3048 edge e = else_edge;
3049 else_edge = then_edge;
3050 then_edge = e;
3052 else
3053 /* Otherwise this must be a multiway branch of some sort. */
3054 return NULL;
3056 memset (&ce_info, '\0', sizeof (ce_info));
3057 ce_info.test_bb = test_bb;
3058 ce_info.then_bb = then_edge->dest;
3059 ce_info.else_bb = else_edge->dest;
3060 ce_info.pass = pass;
3062 #ifdef IFCVT_INIT_EXTRA_FIELDS
3063 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3064 #endif
3066 if (! reload_completed
3067 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3068 goto success;
3070 if (targetm.have_conditional_execution () && reload_completed
3071 && cond_exec_find_if_block (&ce_info))
3072 goto success;
3074 if (HAVE_trap
3075 && optab_handler (ctrap_optab, word_mode)->insn_code != CODE_FOR_nothing
3076 && find_cond_trap (test_bb, then_edge, else_edge))
3077 goto success;
3079 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3080 && (! targetm.have_conditional_execution () || reload_completed))
3082 if (find_if_case_1 (test_bb, then_edge, else_edge))
3083 goto success;
3084 if (find_if_case_2 (test_bb, then_edge, else_edge))
3085 goto success;
3088 return NULL;
3090 success:
3091 if (dump_file)
3092 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3093 /* Set this so we continue looking. */
3094 cond_exec_changed_p = TRUE;
3095 return ce_info.test_bb;
3098 /* Return true if a block has two edges, one of which falls through to the next
3099 block, and the other jumps to a specific block, so that we can tell if the
3100 block is part of an && test or an || test. Returns either -1 or the number
3101 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3103 static int
3104 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3106 edge cur_edge;
3107 int fallthru_p = FALSE;
3108 int jump_p = FALSE;
3109 rtx insn;
3110 rtx end;
3111 int n_insns = 0;
3112 edge_iterator ei;
3114 if (!cur_bb || !target_bb)
3115 return -1;
3117 /* If no edges, obviously it doesn't jump or fallthru. */
3118 if (EDGE_COUNT (cur_bb->succs) == 0)
3119 return FALSE;
3121 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3123 if (cur_edge->flags & EDGE_COMPLEX)
3124 /* Anything complex isn't what we want. */
3125 return -1;
3127 else if (cur_edge->flags & EDGE_FALLTHRU)
3128 fallthru_p = TRUE;
3130 else if (cur_edge->dest == target_bb)
3131 jump_p = TRUE;
3133 else
3134 return -1;
3137 if ((jump_p & fallthru_p) == 0)
3138 return -1;
3140 /* Don't allow calls in the block, since this is used to group && and ||
3141 together for conditional execution support. ??? we should support
3142 conditional execution support across calls for IA-64 some day, but
3143 for now it makes the code simpler. */
3144 end = BB_END (cur_bb);
3145 insn = BB_HEAD (cur_bb);
3147 while (insn != NULL_RTX)
3149 if (CALL_P (insn))
3150 return -1;
3152 if (INSN_P (insn)
3153 && !JUMP_P (insn)
3154 && !DEBUG_INSN_P (insn)
3155 && GET_CODE (PATTERN (insn)) != USE
3156 && GET_CODE (PATTERN (insn)) != CLOBBER)
3157 n_insns++;
3159 if (insn == end)
3160 break;
3162 insn = NEXT_INSN (insn);
3165 return n_insns;
3168 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3169 block. If so, we'll try to convert the insns to not require the branch.
3170 Return TRUE if we were successful at converting the block. */
3172 static int
3173 cond_exec_find_if_block (struct ce_if_block * ce_info)
3175 basic_block test_bb = ce_info->test_bb;
3176 basic_block then_bb = ce_info->then_bb;
3177 basic_block else_bb = ce_info->else_bb;
3178 basic_block join_bb = NULL_BLOCK;
3179 edge cur_edge;
3180 basic_block next;
3181 edge_iterator ei;
3183 ce_info->last_test_bb = test_bb;
3185 /* We only ever should get here after reload,
3186 and only if we have conditional execution. */
3187 gcc_assert (targetm.have_conditional_execution () && reload_completed);
3189 /* Discover if any fall through predecessors of the current test basic block
3190 were && tests (which jump to the else block) or || tests (which jump to
3191 the then block). */
3192 if (single_pred_p (test_bb)
3193 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3195 basic_block bb = single_pred (test_bb);
3196 basic_block target_bb;
3197 int max_insns = MAX_CONDITIONAL_EXECUTE;
3198 int n_insns;
3200 /* Determine if the preceding block is an && or || block. */
3201 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3203 ce_info->and_and_p = TRUE;
3204 target_bb = else_bb;
3206 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3208 ce_info->and_and_p = FALSE;
3209 target_bb = then_bb;
3211 else
3212 target_bb = NULL_BLOCK;
3214 if (target_bb && n_insns <= max_insns)
3216 int total_insns = 0;
3217 int blocks = 0;
3219 ce_info->last_test_bb = test_bb;
3221 /* Found at least one && or || block, look for more. */
3224 ce_info->test_bb = test_bb = bb;
3225 total_insns += n_insns;
3226 blocks++;
3228 if (!single_pred_p (bb))
3229 break;
3231 bb = single_pred (bb);
3232 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3234 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3236 ce_info->num_multiple_test_blocks = blocks;
3237 ce_info->num_multiple_test_insns = total_insns;
3239 if (ce_info->and_and_p)
3240 ce_info->num_and_and_blocks = blocks;
3241 else
3242 ce_info->num_or_or_blocks = blocks;
3246 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3247 other than any || blocks which jump to the THEN block. */
3248 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3249 return FALSE;
3251 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3252 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3254 if (cur_edge->flags & EDGE_COMPLEX)
3255 return FALSE;
3258 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3260 if (cur_edge->flags & EDGE_COMPLEX)
3261 return FALSE;
3264 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3265 if (EDGE_COUNT (then_bb->succs) > 0
3266 && (!single_succ_p (then_bb)
3267 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3268 || (epilogue_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3269 return FALSE;
3271 /* If the THEN block has no successors, conditional execution can still
3272 make a conditional call. Don't do this unless the ELSE block has
3273 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3274 Check for the last insn of the THEN block being an indirect jump, which
3275 is listed as not having any successors, but confuses the rest of the CE
3276 code processing. ??? we should fix this in the future. */
3277 if (EDGE_COUNT (then_bb->succs) == 0)
3279 if (single_pred_p (else_bb))
3281 rtx last_insn = BB_END (then_bb);
3283 while (last_insn
3284 && NOTE_P (last_insn)
3285 && last_insn != BB_HEAD (then_bb))
3286 last_insn = PREV_INSN (last_insn);
3288 if (last_insn
3289 && JUMP_P (last_insn)
3290 && ! simplejump_p (last_insn))
3291 return FALSE;
3293 join_bb = else_bb;
3294 else_bb = NULL_BLOCK;
3296 else
3297 return FALSE;
3300 /* If the THEN block's successor is the other edge out of the TEST block,
3301 then we have an IF-THEN combo without an ELSE. */
3302 else if (single_succ (then_bb) == else_bb)
3304 join_bb = else_bb;
3305 else_bb = NULL_BLOCK;
3308 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3309 has exactly one predecessor and one successor, and the outgoing edge
3310 is not complex, then we have an IF-THEN-ELSE combo. */
3311 else if (single_succ_p (else_bb)
3312 && single_succ (then_bb) == single_succ (else_bb)
3313 && single_pred_p (else_bb)
3314 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3315 && ! (epilogue_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3316 join_bb = single_succ (else_bb);
3318 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3319 else
3320 return FALSE;
3322 num_possible_if_blocks++;
3324 if (dump_file)
3326 fprintf (dump_file,
3327 "\nIF-THEN%s block found, pass %d, start block %d "
3328 "[insn %d], then %d [%d]",
3329 (else_bb) ? "-ELSE" : "",
3330 ce_info->pass,
3331 test_bb->index,
3332 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3333 then_bb->index,
3334 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3336 if (else_bb)
3337 fprintf (dump_file, ", else %d [%d]",
3338 else_bb->index,
3339 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3341 fprintf (dump_file, ", join %d [%d]",
3342 join_bb->index,
3343 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3345 if (ce_info->num_multiple_test_blocks > 0)
3346 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3347 ce_info->num_multiple_test_blocks,
3348 (ce_info->and_and_p) ? "&&" : "||",
3349 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3350 ce_info->last_test_bb->index,
3351 ((BB_HEAD (ce_info->last_test_bb))
3352 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3353 : -1));
3355 fputc ('\n', dump_file);
3358 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3359 first condition for free, since we've already asserted that there's a
3360 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3361 we checked the FALLTHRU flag, those are already adjacent to the last IF
3362 block. */
3363 /* ??? As an enhancement, move the ELSE block. Have to deal with
3364 BLOCK notes, if by no other means than backing out the merge if they
3365 exist. Sticky enough I don't want to think about it now. */
3366 next = then_bb;
3367 if (else_bb && (next = next->next_bb) != else_bb)
3368 return FALSE;
3369 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3371 if (else_bb)
3372 join_bb = NULL;
3373 else
3374 return FALSE;
3377 /* Do the real work. */
3379 ce_info->else_bb = else_bb;
3380 ce_info->join_bb = join_bb;
3382 /* If we have && and || tests, try to first handle combining the && and ||
3383 tests into the conditional code, and if that fails, go back and handle
3384 it without the && and ||, which at present handles the && case if there
3385 was no ELSE block. */
3386 if (cond_exec_process_if_block (ce_info, TRUE))
3387 return TRUE;
3389 if (ce_info->num_multiple_test_blocks)
3391 cancel_changes (0);
3393 if (cond_exec_process_if_block (ce_info, FALSE))
3394 return TRUE;
3397 return FALSE;
3400 /* Convert a branch over a trap, or a branch
3401 to a trap, into a conditional trap. */
3403 static int
3404 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3406 basic_block then_bb = then_edge->dest;
3407 basic_block else_bb = else_edge->dest;
3408 basic_block other_bb, trap_bb;
3409 rtx trap, jump, cond, cond_earliest, seq;
3410 enum rtx_code code;
3412 /* Locate the block with the trap instruction. */
3413 /* ??? While we look for no successors, we really ought to allow
3414 EH successors. Need to fix merge_if_block for that to work. */
3415 if ((trap = block_has_only_trap (then_bb)) != NULL)
3416 trap_bb = then_bb, other_bb = else_bb;
3417 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3418 trap_bb = else_bb, other_bb = then_bb;
3419 else
3420 return FALSE;
3422 if (dump_file)
3424 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3425 test_bb->index, trap_bb->index);
3428 /* If this is not a standard conditional jump, we can't parse it. */
3429 jump = BB_END (test_bb);
3430 cond = noce_get_condition (jump, &cond_earliest, false);
3431 if (! cond)
3432 return FALSE;
3434 /* If the conditional jump is more than just a conditional jump, then
3435 we can not do if-conversion on this block. */
3436 if (! onlyjump_p (jump))
3437 return FALSE;
3439 /* We must be comparing objects whose modes imply the size. */
3440 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3441 return FALSE;
3443 /* Reverse the comparison code, if necessary. */
3444 code = GET_CODE (cond);
3445 if (then_bb == trap_bb)
3447 code = reversed_comparison_code (cond, jump);
3448 if (code == UNKNOWN)
3449 return FALSE;
3452 /* Attempt to generate the conditional trap. */
3453 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3454 copy_rtx (XEXP (cond, 1)),
3455 TRAP_CODE (PATTERN (trap)));
3456 if (seq == NULL)
3457 return FALSE;
3459 /* Emit the new insns before cond_earliest. */
3460 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3462 /* Delete the trap block if possible. */
3463 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3464 df_set_bb_dirty (test_bb);
3465 df_set_bb_dirty (then_bb);
3466 df_set_bb_dirty (else_bb);
3468 if (EDGE_COUNT (trap_bb->preds) == 0)
3470 delete_basic_block (trap_bb);
3471 num_true_changes++;
3474 /* Wire together the blocks again. */
3475 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3476 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3477 else
3479 rtx lab, newjump;
3481 lab = JUMP_LABEL (jump);
3482 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3483 LABEL_NUSES (lab) += 1;
3484 JUMP_LABEL (newjump) = lab;
3485 emit_barrier_after (newjump);
3487 delete_insn (jump);
3489 if (can_merge_blocks_p (test_bb, other_bb))
3491 merge_blocks (test_bb, other_bb);
3492 num_true_changes++;
3495 num_updated_if_blocks++;
3496 return TRUE;
3499 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3500 return it. */
3502 static rtx
3503 block_has_only_trap (basic_block bb)
3505 rtx trap;
3507 /* We're not the exit block. */
3508 if (bb == EXIT_BLOCK_PTR)
3509 return NULL_RTX;
3511 /* The block must have no successors. */
3512 if (EDGE_COUNT (bb->succs) > 0)
3513 return NULL_RTX;
3515 /* The only instruction in the THEN block must be the trap. */
3516 trap = first_active_insn (bb);
3517 if (! (trap == BB_END (bb)
3518 && GET_CODE (PATTERN (trap)) == TRAP_IF
3519 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3520 return NULL_RTX;
3522 return trap;
3525 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3526 transformable, but not necessarily the other. There need be no
3527 JOIN block.
3529 Return TRUE if we were successful at converting the block.
3531 Cases we'd like to look at:
3534 if (test) goto over; // x not live
3535 x = a;
3536 goto label;
3537 over:
3539 becomes
3541 x = a;
3542 if (! test) goto label;
3545 if (test) goto E; // x not live
3546 x = big();
3547 goto L;
3549 x = b;
3550 goto M;
3552 becomes
3554 x = b;
3555 if (test) goto M;
3556 x = big();
3557 goto L;
3559 (3) // This one's really only interesting for targets that can do
3560 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3561 // it results in multiple branches on a cache line, which often
3562 // does not sit well with predictors.
3564 if (test1) goto E; // predicted not taken
3565 x = a;
3566 if (test2) goto F;
3569 x = b;
3572 becomes
3574 x = a;
3575 if (test1) goto E;
3576 if (test2) goto F;
3578 Notes:
3580 (A) Don't do (2) if the branch is predicted against the block we're
3581 eliminating. Do it anyway if we can eliminate a branch; this requires
3582 that the sole successor of the eliminated block postdominate the other
3583 side of the if.
3585 (B) With CE, on (3) we can steal from both sides of the if, creating
3587 if (test1) x = a;
3588 if (!test1) x = b;
3589 if (test1) goto J;
3590 if (test2) goto F;
3594 Again, this is most useful if J postdominates.
3596 (C) CE substitutes for helpful life information.
3598 (D) These heuristics need a lot of work. */
3600 /* Tests for case 1 above. */
3602 static int
3603 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3605 basic_block then_bb = then_edge->dest;
3606 basic_block else_bb = else_edge->dest;
3607 basic_block new_bb;
3608 int then_bb_index;
3610 /* If we are partitioning hot/cold basic blocks, we don't want to
3611 mess up unconditional or indirect jumps that cross between hot
3612 and cold sections.
3614 Basic block partitioning may result in some jumps that appear to
3615 be optimizable (or blocks that appear to be mergeable), but which really
3616 must be left untouched (they are required to make it safely across
3617 partition boundaries). See the comments at the top of
3618 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3620 if ((BB_END (then_bb)
3621 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3622 || (BB_END (test_bb)
3623 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3624 || (BB_END (else_bb)
3625 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3626 NULL_RTX)))
3627 return FALSE;
3629 /* THEN has one successor. */
3630 if (!single_succ_p (then_bb))
3631 return FALSE;
3633 /* THEN does not fall through, but is not strange either. */
3634 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3635 return FALSE;
3637 /* THEN has one predecessor. */
3638 if (!single_pred_p (then_bb))
3639 return FALSE;
3641 /* THEN must do something. */
3642 if (forwarder_block_p (then_bb))
3643 return FALSE;
3645 num_possible_if_blocks++;
3646 if (dump_file)
3647 fprintf (dump_file,
3648 "\nIF-CASE-1 found, start %d, then %d\n",
3649 test_bb->index, then_bb->index);
3651 /* THEN is small. */
3652 if (! cheap_bb_rtx_cost_p (then_bb,
3653 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3654 predictable_edge_p (then_edge)))))
3655 return FALSE;
3657 /* Registers set are dead, or are predicable. */
3658 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3659 single_succ (then_bb), 1))
3660 return FALSE;
3662 /* Conversion went ok, including moving the insns and fixing up the
3663 jump. Adjust the CFG to match. */
3665 /* We can avoid creating a new basic block if then_bb is immediately
3666 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3667 thru to else_bb. */
3669 if (then_bb->next_bb == else_bb
3670 && then_bb->prev_bb == test_bb
3671 && else_bb != EXIT_BLOCK_PTR)
3673 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3674 new_bb = 0;
3676 else
3677 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3678 else_bb);
3680 df_set_bb_dirty (test_bb);
3681 df_set_bb_dirty (else_bb);
3683 then_bb_index = then_bb->index;
3684 delete_basic_block (then_bb);
3686 /* Make rest of code believe that the newly created block is the THEN_BB
3687 block we removed. */
3688 if (new_bb)
3690 df_bb_replace (then_bb_index, new_bb);
3691 /* Since the fallthru edge was redirected from test_bb to new_bb,
3692 we need to ensure that new_bb is in the same partition as
3693 test bb (you can not fall through across section boundaries). */
3694 BB_COPY_PARTITION (new_bb, test_bb);
3697 num_true_changes++;
3698 num_updated_if_blocks++;
3700 return TRUE;
3703 /* Test for case 2 above. */
3705 static int
3706 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3708 basic_block then_bb = then_edge->dest;
3709 basic_block else_bb = else_edge->dest;
3710 edge else_succ;
3711 rtx note;
3713 /* If we are partitioning hot/cold basic blocks, we don't want to
3714 mess up unconditional or indirect jumps that cross between hot
3715 and cold sections.
3717 Basic block partitioning may result in some jumps that appear to
3718 be optimizable (or blocks that appear to be mergeable), but which really
3719 must be left untouched (they are required to make it safely across
3720 partition boundaries). See the comments at the top of
3721 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3723 if ((BB_END (then_bb)
3724 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3725 || (BB_END (test_bb)
3726 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3727 || (BB_END (else_bb)
3728 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3729 NULL_RTX)))
3730 return FALSE;
3732 /* ELSE has one successor. */
3733 if (!single_succ_p (else_bb))
3734 return FALSE;
3735 else
3736 else_succ = single_succ_edge (else_bb);
3738 /* ELSE outgoing edge is not complex. */
3739 if (else_succ->flags & EDGE_COMPLEX)
3740 return FALSE;
3742 /* ELSE has one predecessor. */
3743 if (!single_pred_p (else_bb))
3744 return FALSE;
3746 /* THEN is not EXIT. */
3747 if (then_bb->index < NUM_FIXED_BLOCKS)
3748 return FALSE;
3750 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3751 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3752 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3754 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3755 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3756 else_succ->dest))
3758 else
3759 return FALSE;
3761 num_possible_if_blocks++;
3762 if (dump_file)
3763 fprintf (dump_file,
3764 "\nIF-CASE-2 found, start %d, else %d\n",
3765 test_bb->index, else_bb->index);
3767 /* ELSE is small. */
3768 if (! cheap_bb_rtx_cost_p (else_bb,
3769 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3770 predictable_edge_p (else_edge)))))
3771 return FALSE;
3773 /* Registers set are dead, or are predicable. */
3774 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3775 return FALSE;
3777 /* Conversion went ok, including moving the insns and fixing up the
3778 jump. Adjust the CFG to match. */
3780 df_set_bb_dirty (test_bb);
3781 df_set_bb_dirty (then_bb);
3782 delete_basic_block (else_bb);
3784 num_true_changes++;
3785 num_updated_if_blocks++;
3787 /* ??? We may now fallthru from one of THEN's successors into a join
3788 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3790 return TRUE;
3793 /* A subroutine of dead_or_predicable called through for_each_rtx.
3794 Return 1 if a memory is found. */
3796 static int
3797 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3799 return MEM_P (*px);
3802 /* Used by the code above to perform the actual rtl transformations.
3803 Return TRUE if successful.
3805 TEST_BB is the block containing the conditional branch. MERGE_BB
3806 is the block containing the code to manipulate. NEW_DEST is the
3807 label TEST_BB should be branching to after the conversion.
3808 REVERSEP is true if the sense of the branch should be reversed. */
3810 static int
3811 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3812 basic_block other_bb, basic_block new_dest, int reversep)
3814 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3815 /* Number of pending changes. */
3816 int n_validated_changes = 0;
3818 jump = BB_END (test_bb);
3820 /* Find the extent of the real code in the merge block. */
3821 head = BB_HEAD (merge_bb);
3822 end = BB_END (merge_bb);
3824 while (DEBUG_INSN_P (end) && end != head)
3825 end = PREV_INSN (end);
3827 /* If merge_bb ends with a tablejump, predicating/moving insn's
3828 into test_bb and then deleting merge_bb will result in the jumptable
3829 that follows merge_bb being removed along with merge_bb and then we
3830 get an unresolved reference to the jumptable. */
3831 if (tablejump_p (end, NULL, NULL))
3832 return FALSE;
3834 if (LABEL_P (head))
3835 head = NEXT_INSN (head);
3836 while (DEBUG_INSN_P (head) && head != end)
3837 head = NEXT_INSN (head);
3838 if (NOTE_P (head))
3840 if (head == end)
3842 head = end = NULL_RTX;
3843 goto no_body;
3845 head = NEXT_INSN (head);
3846 while (DEBUG_INSN_P (head) && head != end)
3847 head = NEXT_INSN (head);
3850 if (JUMP_P (end))
3852 if (head == end)
3854 head = end = NULL_RTX;
3855 goto no_body;
3857 end = PREV_INSN (end);
3858 while (DEBUG_INSN_P (end) && end != head)
3859 end = PREV_INSN (end);
3862 /* Disable handling dead code by conditional execution if the machine needs
3863 to do anything funny with the tests, etc. */
3864 #ifndef IFCVT_MODIFY_TESTS
3865 if (targetm.have_conditional_execution ())
3867 /* In the conditional execution case, we have things easy. We know
3868 the condition is reversible. We don't have to check life info
3869 because we're going to conditionally execute the code anyway.
3870 All that's left is making sure the insns involved can actually
3871 be predicated. */
3873 rtx cond, prob_val;
3875 cond = cond_exec_get_condition (jump);
3876 if (! cond)
3877 return FALSE;
3879 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3880 if (prob_val)
3881 prob_val = XEXP (prob_val, 0);
3883 if (reversep)
3885 enum rtx_code rev = reversed_comparison_code (cond, jump);
3886 if (rev == UNKNOWN)
3887 return FALSE;
3888 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3889 XEXP (cond, 1));
3890 if (prob_val)
3891 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3894 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
3895 && verify_changes (0))
3896 n_validated_changes = num_validated_changes ();
3897 else
3898 cancel_changes (0);
3900 earliest = jump;
3902 #endif
3903 /* Try the NCE path if the CE path did not result in any changes. */
3904 if (n_validated_changes == 0)
3906 /* In the non-conditional execution case, we have to verify that there
3907 are no trapping operations, no calls, no references to memory, and
3908 that any registers modified are dead at the branch site. */
3910 rtx insn, cond, prev;
3911 bitmap merge_set, test_live, test_set;
3912 unsigned i, fail = 0;
3913 bitmap_iterator bi;
3915 /* Check for no calls or trapping operations. */
3916 for (insn = head; ; insn = NEXT_INSN (insn))
3918 if (CALL_P (insn))
3919 return FALSE;
3920 if (NONDEBUG_INSN_P (insn))
3922 if (may_trap_p (PATTERN (insn)))
3923 return FALSE;
3925 /* ??? Even non-trapping memories such as stack frame
3926 references must be avoided. For stores, we collect
3927 no lifetime info; for reads, we'd have to assert
3928 true_dependence false against every store in the
3929 TEST range. */
3930 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3931 return FALSE;
3933 if (insn == end)
3934 break;
3937 if (! any_condjump_p (jump))
3938 return FALSE;
3940 /* Find the extent of the conditional. */
3941 cond = noce_get_condition (jump, &earliest, false);
3942 if (! cond)
3943 return FALSE;
3945 /* Collect:
3946 MERGE_SET = set of registers set in MERGE_BB
3947 TEST_LIVE = set of registers live at EARLIEST
3948 TEST_SET = set of registers set between EARLIEST and the
3949 end of the block. */
3951 merge_set = BITMAP_ALLOC (&reg_obstack);
3952 test_live = BITMAP_ALLOC (&reg_obstack);
3953 test_set = BITMAP_ALLOC (&reg_obstack);
3955 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3956 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3957 since we've already asserted that MERGE_BB is small. */
3958 /* If we allocated new pseudos (e.g. in the conditional move
3959 expander called from noce_emit_cmove), we must resize the
3960 array first. */
3961 if (max_regno < max_reg_num ())
3962 max_regno = max_reg_num ();
3964 FOR_BB_INSNS (merge_bb, insn)
3966 if (NONDEBUG_INSN_P (insn))
3968 unsigned int uid = INSN_UID (insn);
3969 df_ref *def_rec;
3970 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3972 df_ref def = *def_rec;
3973 bitmap_set_bit (merge_set, DF_REF_REGNO (def));
3978 /* For small register class machines, don't lengthen lifetimes of
3979 hard registers before reload. */
3980 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3982 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3984 if (i < FIRST_PSEUDO_REGISTER
3985 && ! fixed_regs[i]
3986 && ! global_regs[i])
3987 fail = 1;
3991 /* For TEST, we're interested in a range of insns, not a whole block.
3992 Moreover, we're interested in the insns live from OTHER_BB. */
3994 /* The loop below takes the set of live registers
3995 after JUMP, and calculates the live set before EARLIEST. */
3996 bitmap_copy (test_live, df_get_live_in (other_bb));
3997 df_simulate_initialize_backwards (test_bb, test_live);
3998 for (insn = jump; ; insn = prev)
4000 if (INSN_P (insn))
4002 df_simulate_find_defs (insn, test_set);
4003 df_simulate_one_insn_backwards (test_bb, insn, test_live);
4005 prev = PREV_INSN (insn);
4006 if (insn == earliest)
4007 break;
4010 /* We can perform the transformation if
4011 MERGE_SET & (TEST_SET | TEST_LIVE)
4013 TEST_SET & DF_LIVE_IN (merge_bb)
4014 are empty. */
4016 if (bitmap_intersect_p (test_set, merge_set)
4017 || bitmap_intersect_p (test_live, merge_set)
4018 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
4019 fail = 1;
4021 BITMAP_FREE (merge_set);
4022 BITMAP_FREE (test_live);
4023 BITMAP_FREE (test_set);
4025 if (fail)
4026 return FALSE;
4029 no_body:
4030 /* We don't want to use normal invert_jump or redirect_jump because
4031 we don't want to delete_insn called. Also, we want to do our own
4032 change group management. */
4034 old_dest = JUMP_LABEL (jump);
4035 if (other_bb != new_dest)
4037 new_label = block_label (new_dest);
4038 if (reversep
4039 ? ! invert_jump_1 (jump, new_label)
4040 : ! redirect_jump_1 (jump, new_label))
4041 goto cancel;
4044 if (verify_changes (n_validated_changes))
4045 confirm_change_group ();
4046 else
4047 goto cancel;
4049 if (other_bb != new_dest)
4051 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4053 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4054 if (reversep)
4056 gcov_type count, probability;
4057 count = BRANCH_EDGE (test_bb)->count;
4058 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4059 FALLTHRU_EDGE (test_bb)->count = count;
4060 probability = BRANCH_EDGE (test_bb)->probability;
4061 BRANCH_EDGE (test_bb)->probability
4062 = FALLTHRU_EDGE (test_bb)->probability;
4063 FALLTHRU_EDGE (test_bb)->probability = probability;
4064 update_br_prob_note (test_bb);
4068 /* Move the insns out of MERGE_BB to before the branch. */
4069 if (head != NULL)
4071 rtx insn;
4073 if (end == BB_END (merge_bb))
4074 BB_END (merge_bb) = PREV_INSN (head);
4076 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4077 notes might become invalid. */
4078 insn = head;
4081 rtx note, set;
4083 if (! INSN_P (insn))
4084 continue;
4085 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4086 if (! note)
4087 continue;
4088 set = single_set (insn);
4089 if (!set || !function_invariant_p (SET_SRC (set)))
4090 remove_note (insn, note);
4091 } while (insn != end && (insn = NEXT_INSN (insn)));
4093 reorder_insns (head, end, PREV_INSN (earliest));
4096 /* Remove the jump and edge if we can. */
4097 if (other_bb == new_dest)
4099 delete_insn (jump);
4100 remove_edge (BRANCH_EDGE (test_bb));
4101 /* ??? Can't merge blocks here, as then_bb is still in use.
4102 At minimum, the merge will get done just before bb-reorder. */
4105 return TRUE;
4107 cancel:
4108 cancel_changes (0);
4109 return FALSE;
4112 /* Main entry point for all if-conversion. */
4114 static void
4115 if_convert (void)
4117 basic_block bb;
4118 int pass;
4120 if (optimize == 1)
4122 df_live_add_problem ();
4123 df_live_set_all_dirty ();
4126 num_possible_if_blocks = 0;
4127 num_updated_if_blocks = 0;
4128 num_true_changes = 0;
4130 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4131 mark_loop_exit_edges ();
4132 loop_optimizer_finalize ();
4133 free_dominance_info (CDI_DOMINATORS);
4135 /* Compute postdominators. */
4136 calculate_dominance_info (CDI_POST_DOMINATORS);
4138 df_set_flags (DF_LR_RUN_DCE);
4140 /* Go through each of the basic blocks looking for things to convert. If we
4141 have conditional execution, we make multiple passes to allow us to handle
4142 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4143 pass = 0;
4146 df_analyze ();
4147 /* Only need to do dce on the first pass. */
4148 df_clear_flags (DF_LR_RUN_DCE);
4149 cond_exec_changed_p = FALSE;
4150 pass++;
4152 #ifdef IFCVT_MULTIPLE_DUMPS
4153 if (dump_file && pass > 1)
4154 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4155 #endif
4157 FOR_EACH_BB (bb)
4159 basic_block new_bb;
4160 while (!df_get_bb_dirty (bb)
4161 && (new_bb = find_if_header (bb, pass)) != NULL)
4162 bb = new_bb;
4165 #ifdef IFCVT_MULTIPLE_DUMPS
4166 if (dump_file && cond_exec_changed_p)
4167 print_rtl_with_bb (dump_file, get_insns ());
4168 #endif
4170 while (cond_exec_changed_p);
4172 #ifdef IFCVT_MULTIPLE_DUMPS
4173 if (dump_file)
4174 fprintf (dump_file, "\n\n========== no more changes\n");
4175 #endif
4177 free_dominance_info (CDI_POST_DOMINATORS);
4179 if (dump_file)
4180 fflush (dump_file);
4182 clear_aux_for_blocks ();
4184 /* If we allocated new pseudos, we must resize the array for sched1. */
4185 if (max_regno < max_reg_num ())
4186 max_regno = max_reg_num ();
4188 /* Write the final stats. */
4189 if (dump_file && num_possible_if_blocks > 0)
4191 fprintf (dump_file,
4192 "\n%d possible IF blocks searched.\n",
4193 num_possible_if_blocks);
4194 fprintf (dump_file,
4195 "%d IF blocks converted.\n",
4196 num_updated_if_blocks);
4197 fprintf (dump_file,
4198 "%d true changes made.\n\n\n",
4199 num_true_changes);
4202 if (optimize == 1)
4203 df_remove_problem (df_live);
4205 #ifdef ENABLE_CHECKING
4206 verify_flow_info ();
4207 #endif
4210 static bool
4211 gate_handle_if_conversion (void)
4213 return (optimize > 0)
4214 && dbg_cnt (if_conversion);
4217 /* If-conversion and CFG cleanup. */
4218 static unsigned int
4219 rest_of_handle_if_conversion (void)
4221 if (flag_if_conversion)
4223 if (dump_file)
4224 dump_flow_info (dump_file, dump_flags);
4225 cleanup_cfg (CLEANUP_EXPENSIVE);
4226 if_convert ();
4229 cleanup_cfg (0);
4230 return 0;
4233 struct rtl_opt_pass pass_rtl_ifcvt =
4236 RTL_PASS,
4237 "ce1", /* name */
4238 gate_handle_if_conversion, /* gate */
4239 rest_of_handle_if_conversion, /* execute */
4240 NULL, /* sub */
4241 NULL, /* next */
4242 0, /* static_pass_number */
4243 TV_IFCVT, /* tv_id */
4244 0, /* properties_required */
4245 0, /* properties_provided */
4246 0, /* properties_destroyed */
4247 0, /* todo_flags_start */
4248 TODO_df_finish | TODO_verify_rtl_sharing |
4249 TODO_dump_func /* todo_flags_finish */
4253 static bool
4254 gate_handle_if_after_combine (void)
4256 return optimize > 0 && flag_if_conversion
4257 && dbg_cnt (if_after_combine);
4261 /* Rerun if-conversion, as combine may have simplified things enough
4262 to now meet sequence length restrictions. */
4263 static unsigned int
4264 rest_of_handle_if_after_combine (void)
4266 if_convert ();
4267 return 0;
4270 struct rtl_opt_pass pass_if_after_combine =
4273 RTL_PASS,
4274 "ce2", /* name */
4275 gate_handle_if_after_combine, /* gate */
4276 rest_of_handle_if_after_combine, /* execute */
4277 NULL, /* sub */
4278 NULL, /* next */
4279 0, /* static_pass_number */
4280 TV_IFCVT, /* tv_id */
4281 0, /* properties_required */
4282 0, /* properties_provided */
4283 0, /* properties_destroyed */
4284 0, /* todo_flags_start */
4285 TODO_df_finish | TODO_verify_rtl_sharing |
4286 TODO_dump_func |
4287 TODO_ggc_collect /* todo_flags_finish */
4292 static bool
4293 gate_handle_if_after_reload (void)
4295 return optimize > 0 && flag_if_conversion2
4296 && dbg_cnt (if_after_reload);
4299 static unsigned int
4300 rest_of_handle_if_after_reload (void)
4302 if_convert ();
4303 return 0;
4307 struct rtl_opt_pass pass_if_after_reload =
4310 RTL_PASS,
4311 "ce3", /* name */
4312 gate_handle_if_after_reload, /* gate */
4313 rest_of_handle_if_after_reload, /* execute */
4314 NULL, /* sub */
4315 NULL, /* next */
4316 0, /* static_pass_number */
4317 TV_IFCVT2, /* tv_id */
4318 0, /* properties_required */
4319 0, /* properties_provided */
4320 0, /* properties_destroyed */
4321 0, /* todo_flags_start */
4322 TODO_df_finish | TODO_verify_rtl_sharing |
4323 TODO_dump_func |
4324 TODO_ggc_collect /* todo_flags_finish */