Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / haifa-sched.c
blob204fab6aff94ec189e1d0e5acfa5dd02e00a6fb6
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "toplev.h"
132 #include "rtl.h"
133 #include "tm_p.h"
134 #include "hard-reg-set.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "toplev.h"
142 #include "recog.h"
143 #include "sched-int.h"
144 #include "target.h"
145 #include "output.h"
146 #include "params.h"
147 #include "vecprim.h"
148 #include "dbgcnt.h"
149 #include "cfgloop.h"
150 #include "ira.h"
152 #ifdef INSN_SCHEDULING
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
158 int issue_rate;
160 /* sched-verbose controls the amount of debugging output the
161 scheduler prints. It is controlled by -fsched-verbose=N:
162 N>0 and no -DSR : the output is directed to stderr.
163 N>=10 will direct the printouts to stderr (regardless of -dSR).
164 N=1: same as -dSR.
165 N=2: bb's probabilities, detailed ready list info, unit/insn info.
166 N=3: rtl at abort point, control-flow, regions info.
167 N=5: dependences info. */
169 static int sched_verbose_param = 0;
170 int sched_verbose = 0;
172 /* Debugging file. All printouts are sent to dump, which is always set,
173 either to stderr, or to the dump listing file (-dRS). */
174 FILE *sched_dump = 0;
176 /* fix_sched_param() is called from toplev.c upon detection
177 of the -fsched-verbose=N option. */
179 void
180 fix_sched_param (const char *param, const char *val)
182 if (!strcmp (param, "verbose"))
183 sched_verbose_param = atoi (val);
184 else
185 warning (0, "fix_sched_param: unknown param: %s", param);
188 /* This is a placeholder for the scheduler parameters common
189 to all schedulers. */
190 struct common_sched_info_def *common_sched_info;
192 #define INSN_TICK(INSN) (HID (INSN)->tick)
193 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
195 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
196 then it should be recalculated from scratch. */
197 #define INVALID_TICK (-(max_insn_queue_index + 1))
198 /* The minimal value of the INSN_TICK of an instruction. */
199 #define MIN_TICK (-max_insn_queue_index)
201 /* Issue points are used to distinguish between instructions in max_issue ().
202 For now, all instructions are equally good. */
203 #define ISSUE_POINTS(INSN) 1
205 /* List of important notes we must keep around. This is a pointer to the
206 last element in the list. */
207 rtx note_list;
209 static struct spec_info_def spec_info_var;
210 /* Description of the speculative part of the scheduling.
211 If NULL - no speculation. */
212 spec_info_t spec_info = NULL;
214 /* True, if recovery block was added during scheduling of current block.
215 Used to determine, if we need to fix INSN_TICKs. */
216 static bool haifa_recovery_bb_recently_added_p;
218 /* True, if recovery block was added during this scheduling pass.
219 Used to determine if we should have empty memory pools of dependencies
220 after finishing current region. */
221 bool haifa_recovery_bb_ever_added_p;
223 /* Counters of different types of speculative instructions. */
224 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
226 /* Array used in {unlink, restore}_bb_notes. */
227 static rtx *bb_header = 0;
229 /* Basic block after which recovery blocks will be created. */
230 static basic_block before_recovery;
232 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
233 created it. */
234 basic_block after_recovery;
236 /* FALSE if we add bb to another region, so we don't need to initialize it. */
237 bool adding_bb_to_current_region_p = true;
239 /* Queues, etc. */
241 /* An instruction is ready to be scheduled when all insns preceding it
242 have already been scheduled. It is important to ensure that all
243 insns which use its result will not be executed until its result
244 has been computed. An insn is maintained in one of four structures:
246 (P) the "Pending" set of insns which cannot be scheduled until
247 their dependencies have been satisfied.
248 (Q) the "Queued" set of insns that can be scheduled when sufficient
249 time has passed.
250 (R) the "Ready" list of unscheduled, uncommitted insns.
251 (S) the "Scheduled" list of insns.
253 Initially, all insns are either "Pending" or "Ready" depending on
254 whether their dependencies are satisfied.
256 Insns move from the "Ready" list to the "Scheduled" list as they
257 are committed to the schedule. As this occurs, the insns in the
258 "Pending" list have their dependencies satisfied and move to either
259 the "Ready" list or the "Queued" set depending on whether
260 sufficient time has passed to make them ready. As time passes,
261 insns move from the "Queued" set to the "Ready" list.
263 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
264 unscheduled insns, i.e., those that are ready, queued, and pending.
265 The "Queued" set (Q) is implemented by the variable `insn_queue'.
266 The "Ready" list (R) is implemented by the variables `ready' and
267 `n_ready'.
268 The "Scheduled" list (S) is the new insn chain built by this pass.
270 The transition (R->S) is implemented in the scheduling loop in
271 `schedule_block' when the best insn to schedule is chosen.
272 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
273 insns move from the ready list to the scheduled list.
274 The transition (Q->R) is implemented in 'queue_to_insn' as time
275 passes or stalls are introduced. */
277 /* Implement a circular buffer to delay instructions until sufficient
278 time has passed. For the new pipeline description interface,
279 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
280 than maximal time of instruction execution computed by genattr.c on
281 the base maximal time of functional unit reservations and getting a
282 result. This is the longest time an insn may be queued. */
284 static rtx *insn_queue;
285 static int q_ptr = 0;
286 static int q_size = 0;
287 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
288 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
290 #define QUEUE_SCHEDULED (-3)
291 #define QUEUE_NOWHERE (-2)
292 #define QUEUE_READY (-1)
293 /* QUEUE_SCHEDULED - INSN is scheduled.
294 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
295 queue or ready list.
296 QUEUE_READY - INSN is in ready list.
297 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
299 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
301 /* The following variable value refers for all current and future
302 reservations of the processor units. */
303 state_t curr_state;
305 /* The following variable value is size of memory representing all
306 current and future reservations of the processor units. */
307 size_t dfa_state_size;
309 /* The following array is used to find the best insn from ready when
310 the automaton pipeline interface is used. */
311 char *ready_try = NULL;
313 /* The ready list. */
314 struct ready_list ready = {NULL, 0, 0, 0, 0};
316 /* The pointer to the ready list (to be removed). */
317 static struct ready_list *readyp = &ready;
319 /* Scheduling clock. */
320 static int clock_var;
322 static int may_trap_exp (const_rtx, int);
324 /* Nonzero iff the address is comprised from at most 1 register. */
325 #define CONST_BASED_ADDRESS_P(x) \
326 (REG_P (x) \
327 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
328 || (GET_CODE (x) == LO_SUM)) \
329 && (CONSTANT_P (XEXP (x, 0)) \
330 || CONSTANT_P (XEXP (x, 1)))))
332 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
333 as found by analyzing insn's expression. */
336 static int haifa_luid_for_non_insn (rtx x);
338 /* Haifa version of sched_info hooks common to all headers. */
339 const struct common_sched_info_def haifa_common_sched_info =
341 NULL, /* fix_recovery_cfg */
342 NULL, /* add_block */
343 NULL, /* estimate_number_of_insns */
344 haifa_luid_for_non_insn, /* luid_for_non_insn */
345 SCHED_PASS_UNKNOWN /* sched_pass_id */
348 const struct sched_scan_info_def *sched_scan_info;
350 /* Mapping from instruction UID to its Logical UID. */
351 VEC (int, heap) *sched_luids = NULL;
353 /* Next LUID to assign to an instruction. */
354 int sched_max_luid = 1;
356 /* Haifa Instruction Data. */
357 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
359 void (* sched_init_only_bb) (basic_block, basic_block);
361 /* Split block function. Different schedulers might use different functions
362 to handle their internal data consistent. */
363 basic_block (* sched_split_block) (basic_block, rtx);
365 /* Create empty basic block after the specified block. */
366 basic_block (* sched_create_empty_bb) (basic_block);
368 static int
369 may_trap_exp (const_rtx x, int is_store)
371 enum rtx_code code;
373 if (x == 0)
374 return TRAP_FREE;
375 code = GET_CODE (x);
376 if (is_store)
378 if (code == MEM && may_trap_p (x))
379 return TRAP_RISKY;
380 else
381 return TRAP_FREE;
383 if (code == MEM)
385 /* The insn uses memory: a volatile load. */
386 if (MEM_VOLATILE_P (x))
387 return IRISKY;
388 /* An exception-free load. */
389 if (!may_trap_p (x))
390 return IFREE;
391 /* A load with 1 base register, to be further checked. */
392 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
393 return PFREE_CANDIDATE;
394 /* No info on the load, to be further checked. */
395 return PRISKY_CANDIDATE;
397 else
399 const char *fmt;
400 int i, insn_class = TRAP_FREE;
402 /* Neither store nor load, check if it may cause a trap. */
403 if (may_trap_p (x))
404 return TRAP_RISKY;
405 /* Recursive step: walk the insn... */
406 fmt = GET_RTX_FORMAT (code);
407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
409 if (fmt[i] == 'e')
411 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
412 insn_class = WORST_CLASS (insn_class, tmp_class);
414 else if (fmt[i] == 'E')
416 int j;
417 for (j = 0; j < XVECLEN (x, i); j++)
419 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
420 insn_class = WORST_CLASS (insn_class, tmp_class);
421 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
422 break;
425 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
426 break;
428 return insn_class;
432 /* Classifies rtx X of an insn for the purpose of verifying that X can be
433 executed speculatively (and consequently the insn can be moved
434 speculatively), by examining X, returning:
435 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
436 TRAP_FREE: non-load insn.
437 IFREE: load from a globally safe location.
438 IRISKY: volatile load.
439 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
440 being either PFREE or PRISKY. */
442 static int
443 haifa_classify_rtx (const_rtx x)
445 int tmp_class = TRAP_FREE;
446 int insn_class = TRAP_FREE;
447 enum rtx_code code;
449 if (GET_CODE (x) == PARALLEL)
451 int i, len = XVECLEN (x, 0);
453 for (i = len - 1; i >= 0; i--)
455 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
456 insn_class = WORST_CLASS (insn_class, tmp_class);
457 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
458 break;
461 else
463 code = GET_CODE (x);
464 switch (code)
466 case CLOBBER:
467 /* Test if it is a 'store'. */
468 tmp_class = may_trap_exp (XEXP (x, 0), 1);
469 break;
470 case SET:
471 /* Test if it is a store. */
472 tmp_class = may_trap_exp (SET_DEST (x), 1);
473 if (tmp_class == TRAP_RISKY)
474 break;
475 /* Test if it is a load. */
476 tmp_class =
477 WORST_CLASS (tmp_class,
478 may_trap_exp (SET_SRC (x), 0));
479 break;
480 case COND_EXEC:
481 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
482 if (tmp_class == TRAP_RISKY)
483 break;
484 tmp_class = WORST_CLASS (tmp_class,
485 may_trap_exp (COND_EXEC_TEST (x), 0));
486 break;
487 case TRAP_IF:
488 tmp_class = TRAP_RISKY;
489 break;
490 default:;
492 insn_class = tmp_class;
495 return insn_class;
499 haifa_classify_insn (const_rtx insn)
501 return haifa_classify_rtx (PATTERN (insn));
504 /* Forward declarations. */
506 static int priority (rtx);
507 static int rank_for_schedule (const void *, const void *);
508 static void swap_sort (rtx *, int);
509 static void queue_insn (rtx, int);
510 static int schedule_insn (rtx);
511 static void adjust_priority (rtx);
512 static void advance_one_cycle (void);
513 static void extend_h_i_d (void);
516 /* Notes handling mechanism:
517 =========================
518 Generally, NOTES are saved before scheduling and restored after scheduling.
519 The scheduler distinguishes between two types of notes:
521 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
522 Before scheduling a region, a pointer to the note is added to the insn
523 that follows or precedes it. (This happens as part of the data dependence
524 computation). After scheduling an insn, the pointer contained in it is
525 used for regenerating the corresponding note (in reemit_notes).
527 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
528 these notes are put in a list (in rm_other_notes() and
529 unlink_other_notes ()). After scheduling the block, these notes are
530 inserted at the beginning of the block (in schedule_block()). */
532 static void ready_add (struct ready_list *, rtx, bool);
533 static rtx ready_remove_first (struct ready_list *);
535 static void queue_to_ready (struct ready_list *);
536 static int early_queue_to_ready (state_t, struct ready_list *);
538 static void debug_ready_list (struct ready_list *);
540 /* The following functions are used to implement multi-pass scheduling
541 on the first cycle. */
542 static rtx ready_remove (struct ready_list *, int);
543 static void ready_remove_insn (rtx);
545 static int choose_ready (struct ready_list *, rtx *);
547 static void fix_inter_tick (rtx, rtx);
548 static int fix_tick_ready (rtx);
549 static void change_queue_index (rtx, int);
551 /* The following functions are used to implement scheduling of data/control
552 speculative instructions. */
554 static void extend_h_i_d (void);
555 static void init_h_i_d (rtx);
556 static void generate_recovery_code (rtx);
557 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
558 static void begin_speculative_block (rtx);
559 static void add_to_speculative_block (rtx);
560 static void init_before_recovery (basic_block *);
561 static void create_check_block_twin (rtx, bool);
562 static void fix_recovery_deps (basic_block);
563 static void haifa_change_pattern (rtx, rtx);
564 static void dump_new_block_header (int, basic_block, rtx, rtx);
565 static void restore_bb_notes (basic_block);
566 static void fix_jump_move (rtx);
567 static void move_block_after_check (rtx);
568 static void move_succs (VEC(edge,gc) **, basic_block);
569 static void sched_remove_insn (rtx);
570 static void clear_priorities (rtx, rtx_vec_t *);
571 static void calc_priorities (rtx_vec_t);
572 static void add_jump_dependencies (rtx, rtx);
573 #ifdef ENABLE_CHECKING
574 static int has_edge_p (VEC(edge,gc) *, int);
575 static void check_cfg (rtx, rtx);
576 #endif
578 #endif /* INSN_SCHEDULING */
580 /* Point to state used for the current scheduling pass. */
581 struct haifa_sched_info *current_sched_info;
583 #ifndef INSN_SCHEDULING
584 void
585 schedule_insns (void)
588 #else
590 /* Do register pressure sensitive insn scheduling if the flag is set
591 up. */
592 bool sched_pressure_p;
594 /* Map regno -> its cover class. The map defined only when
595 SCHED_PRESSURE_P is true. */
596 enum reg_class *sched_regno_cover_class;
598 /* The current register pressure. Only elements corresponding cover
599 classes are defined. */
600 static int curr_reg_pressure[N_REG_CLASSES];
602 /* Saved value of the previous array. */
603 static int saved_reg_pressure[N_REG_CLASSES];
605 /* Register living at given scheduling point. */
606 static bitmap curr_reg_live;
608 /* Saved value of the previous array. */
609 static bitmap saved_reg_live;
611 /* Registers mentioned in the current region. */
612 static bitmap region_ref_regs;
614 /* Initiate register pressure relative info for scheduling the current
615 region. Currently it is only clearing register mentioned in the
616 current region. */
617 void
618 sched_init_region_reg_pressure_info (void)
620 bitmap_clear (region_ref_regs);
623 /* Update current register pressure related info after birth (if
624 BIRTH_P) or death of register REGNO. */
625 static void
626 mark_regno_birth_or_death (int regno, bool birth_p)
628 enum reg_class cover_class;
630 cover_class = sched_regno_cover_class[regno];
631 if (regno >= FIRST_PSEUDO_REGISTER)
633 if (cover_class != NO_REGS)
635 if (birth_p)
637 bitmap_set_bit (curr_reg_live, regno);
638 curr_reg_pressure[cover_class]
639 += ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
641 else
643 bitmap_clear_bit (curr_reg_live, regno);
644 curr_reg_pressure[cover_class]
645 -= ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
649 else if (cover_class != NO_REGS
650 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
652 if (birth_p)
654 bitmap_set_bit (curr_reg_live, regno);
655 curr_reg_pressure[cover_class]++;
657 else
659 bitmap_clear_bit (curr_reg_live, regno);
660 curr_reg_pressure[cover_class]--;
665 /* Initiate current register pressure related info from living
666 registers given by LIVE. */
667 static void
668 initiate_reg_pressure_info (bitmap live)
670 int i;
671 unsigned int j;
672 bitmap_iterator bi;
674 for (i = 0; i < ira_reg_class_cover_size; i++)
675 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
676 bitmap_clear (curr_reg_live);
677 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
678 if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
679 mark_regno_birth_or_death (j, true);
682 /* Mark registers in X as mentioned in the current region. */
683 static void
684 setup_ref_regs (rtx x)
686 int i, j, regno;
687 const RTX_CODE code = GET_CODE (x);
688 const char *fmt;
690 if (REG_P (x))
692 regno = REGNO (x);
693 if (regno >= FIRST_PSEUDO_REGISTER)
694 bitmap_set_bit (region_ref_regs, REGNO (x));
695 else
696 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
697 bitmap_set_bit (region_ref_regs, regno + i);
698 return;
700 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
702 if (fmt[i] == 'e')
703 setup_ref_regs (XEXP (x, i));
704 else if (fmt[i] == 'E')
706 for (j = 0; j < XVECLEN (x, i); j++)
707 setup_ref_regs (XVECEXP (x, i, j));
711 /* Initiate current register pressure related info at the start of
712 basic block BB. */
713 static void
714 initiate_bb_reg_pressure_info (basic_block bb)
716 unsigned int i;
717 rtx insn;
719 if (current_nr_blocks > 1)
720 FOR_BB_INSNS (bb, insn)
721 if (INSN_P (insn))
722 setup_ref_regs (PATTERN (insn));
723 initiate_reg_pressure_info (df_get_live_in (bb));
724 #ifdef EH_RETURN_DATA_REGNO
725 if (bb_has_eh_pred (bb))
726 for (i = 0; ; ++i)
728 unsigned int regno = EH_RETURN_DATA_REGNO (i);
730 if (regno == INVALID_REGNUM)
731 break;
732 if (! bitmap_bit_p (df_get_live_in (bb), regno))
733 mark_regno_birth_or_death (regno, true);
735 #endif
738 /* Save current register pressure related info. */
739 static void
740 save_reg_pressure (void)
742 int i;
744 for (i = 0; i < ira_reg_class_cover_size; i++)
745 saved_reg_pressure[ira_reg_class_cover[i]]
746 = curr_reg_pressure[ira_reg_class_cover[i]];
747 bitmap_copy (saved_reg_live, curr_reg_live);
750 /* Restore saved register pressure related info. */
751 static void
752 restore_reg_pressure (void)
754 int i;
756 for (i = 0; i < ira_reg_class_cover_size; i++)
757 curr_reg_pressure[ira_reg_class_cover[i]]
758 = saved_reg_pressure[ira_reg_class_cover[i]];
759 bitmap_copy (curr_reg_live, saved_reg_live);
762 /* Return TRUE if the register is dying after its USE. */
763 static bool
764 dying_use_p (struct reg_use_data *use)
766 struct reg_use_data *next;
768 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
769 if (QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
770 return false;
771 return true;
774 /* Print info about the current register pressure and its excess for
775 each cover class. */
776 static void
777 print_curr_reg_pressure (void)
779 int i;
780 enum reg_class cl;
782 fprintf (sched_dump, ";;\t");
783 for (i = 0; i < ira_reg_class_cover_size; i++)
785 cl = ira_reg_class_cover[i];
786 gcc_assert (curr_reg_pressure[cl] >= 0);
787 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
788 curr_reg_pressure[cl],
789 curr_reg_pressure[cl] - ira_available_class_regs[cl]);
791 fprintf (sched_dump, "\n");
794 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
795 so that insns independent of the last scheduled insn will be preferred
796 over dependent instructions. */
798 static rtx last_scheduled_insn;
800 /* Cached cost of the instruction. Use below function to get cost of the
801 insn. -1 here means that the field is not initialized. */
802 #define INSN_COST(INSN) (HID (INSN)->cost)
804 /* Compute cost of executing INSN.
805 This is the number of cycles between instruction issue and
806 instruction results. */
808 insn_cost (rtx insn)
810 int cost;
812 if (sel_sched_p ())
814 if (recog_memoized (insn) < 0)
815 return 0;
817 cost = insn_default_latency (insn);
818 if (cost < 0)
819 cost = 0;
821 return cost;
824 cost = INSN_COST (insn);
826 if (cost < 0)
828 /* A USE insn, or something else we don't need to
829 understand. We can't pass these directly to
830 result_ready_cost or insn_default_latency because it will
831 trigger a fatal error for unrecognizable insns. */
832 if (recog_memoized (insn) < 0)
834 INSN_COST (insn) = 0;
835 return 0;
837 else
839 cost = insn_default_latency (insn);
840 if (cost < 0)
841 cost = 0;
843 INSN_COST (insn) = cost;
847 return cost;
850 /* Compute cost of dependence LINK.
851 This is the number of cycles between instruction issue and
852 instruction results.
853 ??? We also use this function to call recog_memoized on all insns. */
855 dep_cost_1 (dep_t link, dw_t dw)
857 rtx insn = DEP_PRO (link);
858 rtx used = DEP_CON (link);
859 int cost;
861 /* A USE insn should never require the value used to be computed.
862 This allows the computation of a function's result and parameter
863 values to overlap the return and call. We don't care about the
864 the dependence cost when only decreasing register pressure. */
865 if (recog_memoized (used) < 0)
867 cost = 0;
868 recog_memoized (insn);
870 else
872 enum reg_note dep_type = DEP_TYPE (link);
874 cost = insn_cost (insn);
876 if (INSN_CODE (insn) >= 0)
878 if (dep_type == REG_DEP_ANTI)
879 cost = 0;
880 else if (dep_type == REG_DEP_OUTPUT)
882 cost = (insn_default_latency (insn)
883 - insn_default_latency (used));
884 if (cost <= 0)
885 cost = 1;
887 else if (bypass_p (insn))
888 cost = insn_latency (insn, used);
892 if (targetm.sched.adjust_cost_2)
893 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
894 dw);
895 else if (targetm.sched.adjust_cost != NULL)
897 /* This variable is used for backward compatibility with the
898 targets. */
899 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
901 /* Make it self-cycled, so that if some tries to walk over this
902 incomplete list he/she will be caught in an endless loop. */
903 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
905 /* Targets use only REG_NOTE_KIND of the link. */
906 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
908 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
909 insn, cost);
911 free_INSN_LIST_node (dep_cost_rtx_link);
914 if (cost < 0)
915 cost = 0;
918 return cost;
921 /* Compute cost of dependence LINK.
922 This is the number of cycles between instruction issue and
923 instruction results. */
925 dep_cost (dep_t link)
927 return dep_cost_1 (link, 0);
930 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
931 INSN_PRIORITY explicitly. */
932 void
933 increase_insn_priority (rtx insn, int amount)
935 if (!sel_sched_p ())
937 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
938 if (INSN_PRIORITY_KNOWN (insn))
939 INSN_PRIORITY (insn) += amount;
941 else
943 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
944 Use EXPR_PRIORITY instead. */
945 sel_add_to_insn_priority (insn, amount);
949 /* Return 'true' if DEP should be included in priority calculations. */
950 static bool
951 contributes_to_priority_p (dep_t dep)
953 if (DEBUG_INSN_P (DEP_CON (dep))
954 || DEBUG_INSN_P (DEP_PRO (dep)))
955 return false;
957 /* Critical path is meaningful in block boundaries only. */
958 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
959 DEP_PRO (dep)))
960 return false;
962 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
963 then speculative instructions will less likely be
964 scheduled. That is because the priority of
965 their producers will increase, and, thus, the
966 producers will more likely be scheduled, thus,
967 resolving the dependence. */
968 if (sched_deps_info->generate_spec_deps
969 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
970 && (DEP_STATUS (dep) & SPECULATIVE))
971 return false;
973 return true;
976 /* Compute the number of nondebug forward deps of an insn. */
978 static int
979 dep_list_size (rtx insn)
981 sd_iterator_def sd_it;
982 dep_t dep;
983 int dbgcount = 0, nodbgcount = 0;
985 if (!MAY_HAVE_DEBUG_INSNS)
986 return sd_lists_size (insn, SD_LIST_FORW);
988 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
990 if (DEBUG_INSN_P (DEP_CON (dep)))
991 dbgcount++;
992 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
993 nodbgcount++;
996 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
998 return nodbgcount;
1001 /* Compute the priority number for INSN. */
1002 static int
1003 priority (rtx insn)
1005 if (! INSN_P (insn))
1006 return 0;
1008 /* We should not be interested in priority of an already scheduled insn. */
1009 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1011 if (!INSN_PRIORITY_KNOWN (insn))
1013 int this_priority = -1;
1015 if (dep_list_size (insn) == 0)
1016 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1017 some forward deps but all of them are ignored by
1018 contributes_to_priority hook. At the moment we set priority of
1019 such insn to 0. */
1020 this_priority = insn_cost (insn);
1021 else
1023 rtx prev_first, twin;
1024 basic_block rec;
1026 /* For recovery check instructions we calculate priority slightly
1027 different than that of normal instructions. Instead of walking
1028 through INSN_FORW_DEPS (check) list, we walk through
1029 INSN_FORW_DEPS list of each instruction in the corresponding
1030 recovery block. */
1032 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1033 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1034 if (!rec || rec == EXIT_BLOCK_PTR)
1036 prev_first = PREV_INSN (insn);
1037 twin = insn;
1039 else
1041 prev_first = NEXT_INSN (BB_HEAD (rec));
1042 twin = PREV_INSN (BB_END (rec));
1047 sd_iterator_def sd_it;
1048 dep_t dep;
1050 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1052 rtx next;
1053 int next_priority;
1055 next = DEP_CON (dep);
1057 if (BLOCK_FOR_INSN (next) != rec)
1059 int cost;
1061 if (!contributes_to_priority_p (dep))
1062 continue;
1064 if (twin == insn)
1065 cost = dep_cost (dep);
1066 else
1068 struct _dep _dep1, *dep1 = &_dep1;
1070 init_dep (dep1, insn, next, REG_DEP_ANTI);
1072 cost = dep_cost (dep1);
1075 next_priority = cost + priority (next);
1077 if (next_priority > this_priority)
1078 this_priority = next_priority;
1082 twin = PREV_INSN (twin);
1084 while (twin != prev_first);
1087 if (this_priority < 0)
1089 gcc_assert (this_priority == -1);
1091 this_priority = insn_cost (insn);
1094 INSN_PRIORITY (insn) = this_priority;
1095 INSN_PRIORITY_STATUS (insn) = 1;
1098 return INSN_PRIORITY (insn);
1101 /* Macros and functions for keeping the priority queue sorted, and
1102 dealing with queuing and dequeuing of instructions. */
1104 #define SCHED_SORT(READY, N_READY) \
1105 do { if ((N_READY) == 2) \
1106 swap_sort (READY, N_READY); \
1107 else if ((N_READY) > 2) \
1108 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1109 while (0)
1111 /* Setup info about the current register pressure impact of scheduling
1112 INSN at the current scheduling point. */
1113 static void
1114 setup_insn_reg_pressure_info (rtx insn)
1116 int i, change, before, after, hard_regno;
1117 int excess_cost_change;
1118 enum machine_mode mode;
1119 enum reg_class cl;
1120 struct reg_pressure_data *pressure_info;
1121 int *max_reg_pressure;
1122 struct reg_use_data *use;
1123 static int death[N_REG_CLASSES];
1125 excess_cost_change = 0;
1126 for (i = 0; i < ira_reg_class_cover_size; i++)
1127 death[ira_reg_class_cover[i]] = 0;
1128 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1129 if (dying_use_p (use))
1131 cl = sched_regno_cover_class[use->regno];
1132 if (use->regno < FIRST_PSEUDO_REGISTER)
1133 death[cl]++;
1134 else
1135 death[cl] += ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1137 pressure_info = INSN_REG_PRESSURE (insn);
1138 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1139 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1140 for (i = 0; i < ira_reg_class_cover_size; i++)
1142 cl = ira_reg_class_cover[i];
1143 gcc_assert (curr_reg_pressure[cl] >= 0);
1144 change = (int) pressure_info[i].set_increase - death[cl];
1145 before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1146 after = MAX (0, max_reg_pressure[i] + change
1147 - ira_available_class_regs[cl]);
1148 hard_regno = ira_class_hard_regs[cl][0];
1149 gcc_assert (hard_regno >= 0);
1150 mode = reg_raw_mode[hard_regno];
1151 excess_cost_change += ((after - before)
1152 * (ira_memory_move_cost[mode][cl][0]
1153 + ira_memory_move_cost[mode][cl][1]));
1155 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1158 /* Returns a positive value if x is preferred; returns a negative value if
1159 y is preferred. Should never return 0, since that will make the sort
1160 unstable. */
1162 static int
1163 rank_for_schedule (const void *x, const void *y)
1165 rtx tmp = *(const rtx *) y;
1166 rtx tmp2 = *(const rtx *) x;
1167 rtx last;
1168 int tmp_class, tmp2_class;
1169 int val, priority_val, info_val;
1171 if (MAY_HAVE_DEBUG_INSNS)
1173 /* Schedule debug insns as early as possible. */
1174 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1175 return -1;
1176 else if (DEBUG_INSN_P (tmp2))
1177 return 1;
1180 /* The insn in a schedule group should be issued the first. */
1181 if (flag_sched_group_heuristic &&
1182 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1183 return SCHED_GROUP_P (tmp2) ? 1 : -1;
1185 /* Make sure that priority of TMP and TMP2 are initialized. */
1186 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1188 if (sched_pressure_p)
1190 int diff;
1192 /* Prefer insn whose scheduling results in the smallest register
1193 pressure excess. */
1194 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1195 + (INSN_TICK (tmp) > clock_var
1196 ? INSN_TICK (tmp) - clock_var : 0)
1197 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1198 - (INSN_TICK (tmp2) > clock_var
1199 ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1200 return diff;
1204 if (sched_pressure_p
1205 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1207 if (INSN_TICK (tmp) <= clock_var)
1208 return -1;
1209 else if (INSN_TICK (tmp2) <= clock_var)
1210 return 1;
1211 else
1212 return INSN_TICK (tmp) - INSN_TICK (tmp2);
1214 /* Prefer insn with higher priority. */
1215 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1217 if (flag_sched_critical_path_heuristic && priority_val)
1218 return priority_val;
1220 /* Prefer speculative insn with greater dependencies weakness. */
1221 if (flag_sched_spec_insn_heuristic && spec_info)
1223 ds_t ds1, ds2;
1224 dw_t dw1, dw2;
1225 int dw;
1227 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1228 if (ds1)
1229 dw1 = ds_weak (ds1);
1230 else
1231 dw1 = NO_DEP_WEAK;
1233 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1234 if (ds2)
1235 dw2 = ds_weak (ds2);
1236 else
1237 dw2 = NO_DEP_WEAK;
1239 dw = dw2 - dw1;
1240 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1241 return dw;
1244 info_val = (*current_sched_info->rank) (tmp, tmp2);
1245 if(flag_sched_rank_heuristic && info_val)
1246 return info_val;
1248 if (flag_sched_last_insn_heuristic)
1250 last = last_scheduled_insn;
1252 if (DEBUG_INSN_P (last) && last != current_sched_info->prev_head)
1254 last = PREV_INSN (last);
1255 while (!NONDEBUG_INSN_P (last)
1256 && last != current_sched_info->prev_head);
1259 /* Compare insns based on their relation to the last scheduled
1260 non-debug insn. */
1261 if (flag_sched_last_insn_heuristic && NONDEBUG_INSN_P (last))
1263 dep_t dep1;
1264 dep_t dep2;
1266 /* Classify the instructions into three classes:
1267 1) Data dependent on last schedule insn.
1268 2) Anti/Output dependent on last scheduled insn.
1269 3) Independent of last scheduled insn, or has latency of one.
1270 Choose the insn from the highest numbered class if different. */
1271 dep1 = sd_find_dep_between (last, tmp, true);
1273 if (dep1 == NULL || dep_cost (dep1) == 1)
1274 tmp_class = 3;
1275 else if (/* Data dependence. */
1276 DEP_TYPE (dep1) == REG_DEP_TRUE)
1277 tmp_class = 1;
1278 else
1279 tmp_class = 2;
1281 dep2 = sd_find_dep_between (last, tmp2, true);
1283 if (dep2 == NULL || dep_cost (dep2) == 1)
1284 tmp2_class = 3;
1285 else if (/* Data dependence. */
1286 DEP_TYPE (dep2) == REG_DEP_TRUE)
1287 tmp2_class = 1;
1288 else
1289 tmp2_class = 2;
1291 if ((val = tmp2_class - tmp_class))
1292 return val;
1295 /* Prefer the insn which has more later insns that depend on it.
1296 This gives the scheduler more freedom when scheduling later
1297 instructions at the expense of added register pressure. */
1299 val = (dep_list_size (tmp2) - dep_list_size (tmp));
1301 if (flag_sched_dep_count_heuristic && val != 0)
1302 return val;
1304 /* If insns are equally good, sort by INSN_LUID (original insn order),
1305 so that we make the sort stable. This minimizes instruction movement,
1306 thus minimizing sched's effect on debugging and cross-jumping. */
1307 return INSN_LUID (tmp) - INSN_LUID (tmp2);
1310 /* Resort the array A in which only element at index N may be out of order. */
1312 HAIFA_INLINE static void
1313 swap_sort (rtx *a, int n)
1315 rtx insn = a[n - 1];
1316 int i = n - 2;
1318 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1320 a[i + 1] = a[i];
1321 i -= 1;
1323 a[i + 1] = insn;
1326 /* Add INSN to the insn queue so that it can be executed at least
1327 N_CYCLES after the currently executing insn. Preserve insns
1328 chain for debugging purposes. */
1330 HAIFA_INLINE static void
1331 queue_insn (rtx insn, int n_cycles)
1333 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1334 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1336 gcc_assert (n_cycles <= max_insn_queue_index);
1337 gcc_assert (!DEBUG_INSN_P (insn));
1339 insn_queue[next_q] = link;
1340 q_size += 1;
1342 if (sched_verbose >= 2)
1344 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1345 (*current_sched_info->print_insn) (insn, 0));
1347 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1350 QUEUE_INDEX (insn) = next_q;
1353 /* Remove INSN from queue. */
1354 static void
1355 queue_remove (rtx insn)
1357 gcc_assert (QUEUE_INDEX (insn) >= 0);
1358 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1359 q_size--;
1360 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1363 /* Return a pointer to the bottom of the ready list, i.e. the insn
1364 with the lowest priority. */
1366 rtx *
1367 ready_lastpos (struct ready_list *ready)
1369 gcc_assert (ready->n_ready >= 1);
1370 return ready->vec + ready->first - ready->n_ready + 1;
1373 /* Add an element INSN to the ready list so that it ends up with the
1374 lowest/highest priority depending on FIRST_P. */
1376 HAIFA_INLINE static void
1377 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1379 if (!first_p)
1381 if (ready->first == ready->n_ready)
1383 memmove (ready->vec + ready->veclen - ready->n_ready,
1384 ready_lastpos (ready),
1385 ready->n_ready * sizeof (rtx));
1386 ready->first = ready->veclen - 1;
1388 ready->vec[ready->first - ready->n_ready] = insn;
1390 else
1392 if (ready->first == ready->veclen - 1)
1394 if (ready->n_ready)
1395 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1396 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1397 ready_lastpos (ready),
1398 ready->n_ready * sizeof (rtx));
1399 ready->first = ready->veclen - 2;
1401 ready->vec[++(ready->first)] = insn;
1404 ready->n_ready++;
1405 if (DEBUG_INSN_P (insn))
1406 ready->n_debug++;
1408 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1409 QUEUE_INDEX (insn) = QUEUE_READY;
1412 /* Remove the element with the highest priority from the ready list and
1413 return it. */
1415 HAIFA_INLINE static rtx
1416 ready_remove_first (struct ready_list *ready)
1418 rtx t;
1420 gcc_assert (ready->n_ready);
1421 t = ready->vec[ready->first--];
1422 ready->n_ready--;
1423 if (DEBUG_INSN_P (t))
1424 ready->n_debug--;
1425 /* If the queue becomes empty, reset it. */
1426 if (ready->n_ready == 0)
1427 ready->first = ready->veclen - 1;
1429 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1430 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1432 return t;
1435 /* The following code implements multi-pass scheduling for the first
1436 cycle. In other words, we will try to choose ready insn which
1437 permits to start maximum number of insns on the same cycle. */
1439 /* Return a pointer to the element INDEX from the ready. INDEX for
1440 insn with the highest priority is 0, and the lowest priority has
1441 N_READY - 1. */
1444 ready_element (struct ready_list *ready, int index)
1446 gcc_assert (ready->n_ready && index < ready->n_ready);
1448 return ready->vec[ready->first - index];
1451 /* Remove the element INDEX from the ready list and return it. INDEX
1452 for insn with the highest priority is 0, and the lowest priority
1453 has N_READY - 1. */
1455 HAIFA_INLINE static rtx
1456 ready_remove (struct ready_list *ready, int index)
1458 rtx t;
1459 int i;
1461 if (index == 0)
1462 return ready_remove_first (ready);
1463 gcc_assert (ready->n_ready && index < ready->n_ready);
1464 t = ready->vec[ready->first - index];
1465 ready->n_ready--;
1466 if (DEBUG_INSN_P (t))
1467 ready->n_debug--;
1468 for (i = index; i < ready->n_ready; i++)
1469 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1470 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1471 return t;
1474 /* Remove INSN from the ready list. */
1475 static void
1476 ready_remove_insn (rtx insn)
1478 int i;
1480 for (i = 0; i < readyp->n_ready; i++)
1481 if (ready_element (readyp, i) == insn)
1483 ready_remove (readyp, i);
1484 return;
1486 gcc_unreachable ();
1489 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1490 macro. */
1492 void
1493 ready_sort (struct ready_list *ready)
1495 int i;
1496 rtx *first = ready_lastpos (ready);
1498 if (sched_pressure_p)
1500 for (i = 0; i < ready->n_ready; i++)
1501 setup_insn_reg_pressure_info (first[i]);
1503 SCHED_SORT (first, ready->n_ready);
1506 /* PREV is an insn that is ready to execute. Adjust its priority if that
1507 will help shorten or lengthen register lifetimes as appropriate. Also
1508 provide a hook for the target to tweak itself. */
1510 HAIFA_INLINE static void
1511 adjust_priority (rtx prev)
1513 /* ??? There used to be code here to try and estimate how an insn
1514 affected register lifetimes, but it did it by looking at REG_DEAD
1515 notes, which we removed in schedule_region. Nor did it try to
1516 take into account register pressure or anything useful like that.
1518 Revisit when we have a machine model to work with and not before. */
1520 if (targetm.sched.adjust_priority)
1521 INSN_PRIORITY (prev) =
1522 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1525 /* Advance DFA state STATE on one cycle. */
1526 void
1527 advance_state (state_t state)
1529 if (targetm.sched.dfa_pre_advance_cycle)
1530 targetm.sched.dfa_pre_advance_cycle ();
1532 if (targetm.sched.dfa_pre_cycle_insn)
1533 state_transition (state,
1534 targetm.sched.dfa_pre_cycle_insn ());
1536 state_transition (state, NULL);
1538 if (targetm.sched.dfa_post_cycle_insn)
1539 state_transition (state,
1540 targetm.sched.dfa_post_cycle_insn ());
1542 if (targetm.sched.dfa_post_advance_cycle)
1543 targetm.sched.dfa_post_advance_cycle ();
1546 /* Advance time on one cycle. */
1547 HAIFA_INLINE static void
1548 advance_one_cycle (void)
1550 advance_state (curr_state);
1551 if (sched_verbose >= 6)
1552 fprintf (sched_dump, ";;\tAdvanced a state.\n");
1555 /* Clock at which the previous instruction was issued. */
1556 static int last_clock_var;
1558 /* Update register pressure after scheduling INSN. */
1559 static void
1560 update_register_pressure (rtx insn)
1562 struct reg_use_data *use;
1563 struct reg_set_data *set;
1565 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1566 if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
1567 mark_regno_birth_or_death (use->regno, false);
1568 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
1569 mark_regno_birth_or_death (set->regno, true);
1572 /* Set up or update (if UPDATE_P) max register pressure (see its
1573 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1574 after insn AFTER. */
1575 static void
1576 setup_insn_max_reg_pressure (rtx after, bool update_p)
1578 int i, p;
1579 bool eq_p;
1580 rtx insn;
1581 static int max_reg_pressure[N_REG_CLASSES];
1583 save_reg_pressure ();
1584 for (i = 0; i < ira_reg_class_cover_size; i++)
1585 max_reg_pressure[ira_reg_class_cover[i]]
1586 = curr_reg_pressure[ira_reg_class_cover[i]];
1587 for (insn = NEXT_INSN (after);
1588 insn != NULL_RTX && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
1589 insn = NEXT_INSN (insn))
1590 if (NONDEBUG_INSN_P (insn))
1592 eq_p = true;
1593 for (i = 0; i < ira_reg_class_cover_size; i++)
1595 p = max_reg_pressure[ira_reg_class_cover[i]];
1596 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
1598 eq_p = false;
1599 INSN_MAX_REG_PRESSURE (insn)[i]
1600 = max_reg_pressure[ira_reg_class_cover[i]];
1603 if (update_p && eq_p)
1604 break;
1605 update_register_pressure (insn);
1606 for (i = 0; i < ira_reg_class_cover_size; i++)
1607 if (max_reg_pressure[ira_reg_class_cover[i]]
1608 < curr_reg_pressure[ira_reg_class_cover[i]])
1609 max_reg_pressure[ira_reg_class_cover[i]]
1610 = curr_reg_pressure[ira_reg_class_cover[i]];
1612 restore_reg_pressure ();
1615 /* Update the current register pressure after scheduling INSN. Update
1616 also max register pressure for unscheduled insns of the current
1617 BB. */
1618 static void
1619 update_reg_and_insn_max_reg_pressure (rtx insn)
1621 int i;
1622 int before[N_REG_CLASSES];
1624 for (i = 0; i < ira_reg_class_cover_size; i++)
1625 before[i] = curr_reg_pressure[ira_reg_class_cover[i]];
1626 update_register_pressure (insn);
1627 for (i = 0; i < ira_reg_class_cover_size; i++)
1628 if (curr_reg_pressure[ira_reg_class_cover[i]] != before[i])
1629 break;
1630 if (i < ira_reg_class_cover_size)
1631 setup_insn_max_reg_pressure (insn, true);
1634 /* Set up register pressure at the beginning of basic block BB whose
1635 insns starting after insn AFTER. Set up also max register pressure
1636 for all insns of the basic block. */
1637 void
1638 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
1640 gcc_assert (sched_pressure_p);
1641 initiate_bb_reg_pressure_info (bb);
1642 setup_insn_max_reg_pressure (after, false);
1645 /* INSN is the "currently executing insn". Launch each insn which was
1646 waiting on INSN. READY is the ready list which contains the insns
1647 that are ready to fire. CLOCK is the current cycle. The function
1648 returns necessary cycle advance after issuing the insn (it is not
1649 zero for insns in a schedule group). */
1651 static int
1652 schedule_insn (rtx insn)
1654 sd_iterator_def sd_it;
1655 dep_t dep;
1656 int i;
1657 int advance = 0;
1659 if (sched_verbose >= 1)
1661 struct reg_pressure_data *pressure_info;
1662 char buf[2048];
1664 print_insn (buf, insn, 0);
1665 buf[40] = 0;
1666 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1668 if (recog_memoized (insn) < 0)
1669 fprintf (sched_dump, "nothing");
1670 else
1671 print_reservation (sched_dump, insn);
1672 pressure_info = INSN_REG_PRESSURE (insn);
1673 if (pressure_info != NULL)
1675 fputc (':', sched_dump);
1676 for (i = 0; i < ira_reg_class_cover_size; i++)
1677 fprintf (sched_dump, "%s%+d(%d)",
1678 reg_class_names[ira_reg_class_cover[i]],
1679 pressure_info[i].set_increase, pressure_info[i].change);
1681 fputc ('\n', sched_dump);
1684 if (sched_pressure_p)
1685 update_reg_and_insn_max_reg_pressure (insn);
1687 /* Scheduling instruction should have all its dependencies resolved and
1688 should have been removed from the ready list. */
1689 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1691 /* Reset debug insns invalidated by moving this insn. */
1692 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
1693 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1694 sd_iterator_cond (&sd_it, &dep);)
1696 rtx dbg = DEP_PRO (dep);
1698 gcc_assert (DEBUG_INSN_P (dbg));
1700 if (sched_verbose >= 6)
1701 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
1702 INSN_UID (dbg));
1704 /* ??? Rather than resetting the debug insn, we might be able
1705 to emit a debug temp before the just-scheduled insn, but
1706 this would involve checking that the expression at the
1707 point of the debug insn is equivalent to the expression
1708 before the just-scheduled insn. They might not be: the
1709 expression in the debug insn may depend on other insns not
1710 yet scheduled that set MEMs, REGs or even other debug
1711 insns. It's not clear that attempting to preserve debug
1712 information in these cases is worth the effort, given how
1713 uncommon these resets are and the likelihood that the debug
1714 temps introduced won't survive the schedule change. */
1715 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
1716 df_insn_rescan (dbg);
1718 /* We delete rather than resolve these deps, otherwise we
1719 crash in sched_free_deps(), because forward deps are
1720 expected to be released before backward deps. */
1721 sd_delete_dep (sd_it);
1724 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1725 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1727 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1728 if (INSN_TICK (insn) > clock_var)
1729 /* INSN has been prematurely moved from the queue to the ready list.
1730 This is possible only if following flag is set. */
1731 gcc_assert (flag_sched_stalled_insns);
1733 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1734 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1735 INSN_TICK (insn) = clock_var;
1737 /* Update dependent instructions. */
1738 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1739 sd_iterator_cond (&sd_it, &dep);)
1741 rtx next = DEP_CON (dep);
1743 /* Resolve the dependence between INSN and NEXT.
1744 sd_resolve_dep () moves current dep to another list thus
1745 advancing the iterator. */
1746 sd_resolve_dep (sd_it);
1748 /* Don't bother trying to mark next as ready if insn is a debug
1749 insn. If insn is the last hard dependency, it will have
1750 already been discounted. */
1751 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
1752 continue;
1754 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1756 int effective_cost;
1758 effective_cost = try_ready (next);
1760 if (effective_cost >= 0
1761 && SCHED_GROUP_P (next)
1762 && advance < effective_cost)
1763 advance = effective_cost;
1765 else
1766 /* Check always has only one forward dependence (to the first insn in
1767 the recovery block), therefore, this will be executed only once. */
1769 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1770 fix_recovery_deps (RECOVERY_BLOCK (insn));
1774 /* This is the place where scheduler doesn't *basically* need backward and
1775 forward dependencies for INSN anymore. Nevertheless they are used in
1776 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1777 some targets (e.g. rs6000). Thus the earliest place where we *can*
1778 remove dependencies is after targetm.sched.md_finish () call in
1779 schedule_block (). But, on the other side, the safest place to remove
1780 dependencies is when we are finishing scheduling entire region. As we
1781 don't generate [many] dependencies during scheduling itself, we won't
1782 need memory until beginning of next region.
1783 Bottom line: Dependencies are removed for all insns in the end of
1784 scheduling the region. */
1786 /* Annotate the instruction with issue information -- TImode
1787 indicates that the instruction is expected not to be able
1788 to issue on the same cycle as the previous insn. A machine
1789 may use this information to decide how the instruction should
1790 be aligned. */
1791 if (issue_rate > 1
1792 && GET_CODE (PATTERN (insn)) != USE
1793 && GET_CODE (PATTERN (insn)) != CLOBBER
1794 && !DEBUG_INSN_P (insn))
1796 if (reload_completed)
1797 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1798 last_clock_var = clock_var;
1801 return advance;
1804 /* Functions for handling of notes. */
1806 /* Insert the INSN note at the end of the notes list. */
1807 static void
1808 add_to_note_list (rtx insn, rtx *note_list_end_p)
1810 PREV_INSN (insn) = *note_list_end_p;
1811 if (*note_list_end_p)
1812 NEXT_INSN (*note_list_end_p) = insn;
1813 *note_list_end_p = insn;
1816 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1817 void
1818 concat_note_lists (rtx from_end, rtx *to_endp)
1820 rtx from_start;
1822 if (from_end == NULL)
1823 /* It's easy when have nothing to concat. */
1824 return;
1826 if (*to_endp == NULL)
1827 /* It's also easy when destination is empty. */
1829 *to_endp = from_end;
1830 return;
1833 from_start = from_end;
1834 /* A note list should be traversed via PREV_INSN. */
1835 while (PREV_INSN (from_start) != NULL)
1836 from_start = PREV_INSN (from_start);
1838 add_to_note_list (from_start, to_endp);
1839 *to_endp = from_end;
1842 /* Delete notes beginning with INSN and put them in the chain
1843 of notes ended by NOTE_LIST.
1844 Returns the insn following the notes. */
1845 static rtx
1846 unlink_other_notes (rtx insn, rtx tail)
1848 rtx prev = PREV_INSN (insn);
1850 while (insn != tail && NOTE_NOT_BB_P (insn))
1852 rtx next = NEXT_INSN (insn);
1853 basic_block bb = BLOCK_FOR_INSN (insn);
1855 /* Delete the note from its current position. */
1856 if (prev)
1857 NEXT_INSN (prev) = next;
1858 if (next)
1859 PREV_INSN (next) = prev;
1861 if (bb)
1863 /* Basic block can begin with either LABEL or
1864 NOTE_INSN_BASIC_BLOCK. */
1865 gcc_assert (BB_HEAD (bb) != insn);
1867 /* Check if we are removing last insn in the BB. */
1868 if (BB_END (bb) == insn)
1869 BB_END (bb) = prev;
1872 /* See sched_analyze to see how these are handled. */
1873 if (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
1874 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END)
1875 add_to_note_list (insn, &note_list);
1877 insn = next;
1880 if (insn == tail)
1882 gcc_assert (sel_sched_p ());
1883 return prev;
1886 return insn;
1889 /* Return the head and tail pointers of ebb starting at BEG and ending
1890 at END. */
1891 void
1892 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1894 rtx beg_head = BB_HEAD (beg);
1895 rtx beg_tail = BB_END (beg);
1896 rtx end_head = BB_HEAD (end);
1897 rtx end_tail = BB_END (end);
1899 /* Don't include any notes or labels at the beginning of the BEG
1900 basic block, or notes at the end of the END basic blocks. */
1902 if (LABEL_P (beg_head))
1903 beg_head = NEXT_INSN (beg_head);
1905 while (beg_head != beg_tail)
1906 if (NOTE_P (beg_head) || BOUNDARY_DEBUG_INSN_P (beg_head))
1907 beg_head = NEXT_INSN (beg_head);
1908 else
1909 break;
1911 *headp = beg_head;
1913 if (beg == end)
1914 end_head = beg_head;
1915 else if (LABEL_P (end_head))
1916 end_head = NEXT_INSN (end_head);
1918 while (end_head != end_tail)
1919 if (NOTE_P (end_tail) || BOUNDARY_DEBUG_INSN_P (end_tail))
1920 end_tail = PREV_INSN (end_tail);
1921 else
1922 break;
1924 *tailp = end_tail;
1927 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1930 no_real_insns_p (const_rtx head, const_rtx tail)
1932 while (head != NEXT_INSN (tail))
1934 if (!NOTE_P (head) && !LABEL_P (head)
1935 && !BOUNDARY_DEBUG_INSN_P (head))
1936 return 0;
1937 head = NEXT_INSN (head);
1939 return 1;
1942 /* Delete notes between HEAD and TAIL and put them in the chain
1943 of notes ended by NOTE_LIST. */
1944 static void
1945 rm_other_notes (rtx head, rtx tail)
1947 rtx next_tail;
1948 rtx insn;
1950 note_list = 0;
1951 if (head == tail && (! INSN_P (head)))
1952 return;
1954 next_tail = NEXT_INSN (tail);
1955 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1957 rtx prev;
1959 /* Farm out notes, and maybe save them in NOTE_LIST.
1960 This is needed to keep the debugger from
1961 getting completely deranged. */
1962 if (NOTE_NOT_BB_P (insn))
1964 prev = insn;
1965 insn = unlink_other_notes (insn, next_tail);
1967 gcc_assert ((sel_sched_p ()
1968 || prev != tail) && prev != head && insn != next_tail);
1973 /* Same as above, but also process REG_SAVE_NOTEs of HEAD. */
1974 void
1975 remove_notes (rtx head, rtx tail)
1977 /* rm_other_notes only removes notes which are _inside_ the
1978 block---that is, it won't remove notes before the first real insn
1979 or after the last real insn of the block. So if the first insn
1980 has a REG_SAVE_NOTE which would otherwise be emitted before the
1981 insn, it is redundant with the note before the start of the
1982 block, and so we have to take it out. */
1983 if (INSN_P (head))
1985 rtx note;
1987 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
1988 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1989 remove_note (head, note);
1992 /* Remove remaining note insns from the block, save them in
1993 note_list. These notes are restored at the end of
1994 schedule_block (). */
1995 rm_other_notes (head, tail);
1998 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1999 previously found among the insns. Insert them just before HEAD. */
2001 restore_other_notes (rtx head, basic_block head_bb)
2003 if (note_list != 0)
2005 rtx note_head = note_list;
2007 if (head)
2008 head_bb = BLOCK_FOR_INSN (head);
2009 else
2010 head = NEXT_INSN (bb_note (head_bb));
2012 while (PREV_INSN (note_head))
2014 set_block_for_insn (note_head, head_bb);
2015 note_head = PREV_INSN (note_head);
2017 /* In the above cycle we've missed this note. */
2018 set_block_for_insn (note_head, head_bb);
2020 PREV_INSN (note_head) = PREV_INSN (head);
2021 NEXT_INSN (PREV_INSN (head)) = note_head;
2022 PREV_INSN (head) = note_list;
2023 NEXT_INSN (note_list) = head;
2025 if (BLOCK_FOR_INSN (head) != head_bb)
2026 BB_END (head_bb) = note_list;
2028 head = note_head;
2031 return head;
2034 /* Move insns that became ready to fire from queue to ready list. */
2036 static void
2037 queue_to_ready (struct ready_list *ready)
2039 rtx insn;
2040 rtx link;
2041 rtx skip_insn;
2043 q_ptr = NEXT_Q (q_ptr);
2045 if (dbg_cnt (sched_insn) == false)
2047 /* If debug counter is activated do not requeue insn next after
2048 last_scheduled_insn. */
2049 skip_insn = next_nonnote_insn (last_scheduled_insn);
2050 while (skip_insn && DEBUG_INSN_P (skip_insn))
2051 skip_insn = next_nonnote_insn (skip_insn);
2053 else
2054 skip_insn = NULL_RTX;
2056 /* Add all pending insns that can be scheduled without stalls to the
2057 ready list. */
2058 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
2060 insn = XEXP (link, 0);
2061 q_size -= 1;
2063 if (sched_verbose >= 2)
2064 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2065 (*current_sched_info->print_insn) (insn, 0));
2067 /* If the ready list is full, delay the insn for 1 cycle.
2068 See the comment in schedule_block for the rationale. */
2069 if (!reload_completed
2070 && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
2071 && !SCHED_GROUP_P (insn)
2072 && insn != skip_insn)
2074 if (sched_verbose >= 2)
2075 fprintf (sched_dump, "requeued because ready full\n");
2076 queue_insn (insn, 1);
2078 else
2080 ready_add (ready, insn, false);
2081 if (sched_verbose >= 2)
2082 fprintf (sched_dump, "moving to ready without stalls\n");
2085 free_INSN_LIST_list (&insn_queue[q_ptr]);
2087 /* If there are no ready insns, stall until one is ready and add all
2088 of the pending insns at that point to the ready list. */
2089 if (ready->n_ready == 0)
2091 int stalls;
2093 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
2095 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2097 for (; link; link = XEXP (link, 1))
2099 insn = XEXP (link, 0);
2100 q_size -= 1;
2102 if (sched_verbose >= 2)
2103 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2104 (*current_sched_info->print_insn) (insn, 0));
2106 ready_add (ready, insn, false);
2107 if (sched_verbose >= 2)
2108 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
2110 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
2112 advance_one_cycle ();
2114 break;
2117 advance_one_cycle ();
2120 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
2121 clock_var += stalls;
2125 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2126 prematurely move INSN from the queue to the ready list. Currently,
2127 if a target defines the hook 'is_costly_dependence', this function
2128 uses the hook to check whether there exist any dependences which are
2129 considered costly by the target, between INSN and other insns that
2130 have already been scheduled. Dependences are checked up to Y cycles
2131 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2132 controlling this value.
2133 (Other considerations could be taken into account instead (or in
2134 addition) depending on user flags and target hooks. */
2136 static bool
2137 ok_for_early_queue_removal (rtx insn)
2139 int n_cycles;
2140 rtx prev_insn = last_scheduled_insn;
2142 if (targetm.sched.is_costly_dependence)
2144 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
2146 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
2148 int cost;
2150 if (prev_insn == current_sched_info->prev_head)
2152 prev_insn = NULL;
2153 break;
2156 if (!NOTE_P (prev_insn))
2158 dep_t dep;
2160 dep = sd_find_dep_between (prev_insn, insn, true);
2162 if (dep != NULL)
2164 cost = dep_cost (dep);
2166 if (targetm.sched.is_costly_dependence (dep, cost,
2167 flag_sched_stalled_insns_dep - n_cycles))
2168 return false;
2172 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
2173 break;
2176 if (!prev_insn)
2177 break;
2178 prev_insn = PREV_INSN (prev_insn);
2182 return true;
2186 /* Remove insns from the queue, before they become "ready" with respect
2187 to FU latency considerations. */
2189 static int
2190 early_queue_to_ready (state_t state, struct ready_list *ready)
2192 rtx insn;
2193 rtx link;
2194 rtx next_link;
2195 rtx prev_link;
2196 bool move_to_ready;
2197 int cost;
2198 state_t temp_state = alloca (dfa_state_size);
2199 int stalls;
2200 int insns_removed = 0;
2203 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2204 function:
2206 X == 0: There is no limit on how many queued insns can be removed
2207 prematurely. (flag_sched_stalled_insns = -1).
2209 X >= 1: Only X queued insns can be removed prematurely in each
2210 invocation. (flag_sched_stalled_insns = X).
2212 Otherwise: Early queue removal is disabled.
2213 (flag_sched_stalled_insns = 0)
2216 if (! flag_sched_stalled_insns)
2217 return 0;
2219 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
2221 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2223 if (sched_verbose > 6)
2224 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
2226 prev_link = 0;
2227 while (link)
2229 next_link = XEXP (link, 1);
2230 insn = XEXP (link, 0);
2231 if (insn && sched_verbose > 6)
2232 print_rtl_single (sched_dump, insn);
2234 memcpy (temp_state, state, dfa_state_size);
2235 if (recog_memoized (insn) < 0)
2236 /* non-negative to indicate that it's not ready
2237 to avoid infinite Q->R->Q->R... */
2238 cost = 0;
2239 else
2240 cost = state_transition (temp_state, insn);
2242 if (sched_verbose >= 6)
2243 fprintf (sched_dump, "transition cost = %d\n", cost);
2245 move_to_ready = false;
2246 if (cost < 0)
2248 move_to_ready = ok_for_early_queue_removal (insn);
2249 if (move_to_ready == true)
2251 /* move from Q to R */
2252 q_size -= 1;
2253 ready_add (ready, insn, false);
2255 if (prev_link)
2256 XEXP (prev_link, 1) = next_link;
2257 else
2258 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
2260 free_INSN_LIST_node (link);
2262 if (sched_verbose >= 2)
2263 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
2264 (*current_sched_info->print_insn) (insn, 0));
2266 insns_removed++;
2267 if (insns_removed == flag_sched_stalled_insns)
2268 /* Remove no more than flag_sched_stalled_insns insns
2269 from Q at a time. */
2270 return insns_removed;
2274 if (move_to_ready == false)
2275 prev_link = link;
2277 link = next_link;
2278 } /* while link */
2279 } /* if link */
2281 } /* for stalls.. */
2283 return insns_removed;
2287 /* Print the ready list for debugging purposes. Callable from debugger. */
2289 static void
2290 debug_ready_list (struct ready_list *ready)
2292 rtx *p;
2293 int i;
2295 if (ready->n_ready == 0)
2297 fprintf (sched_dump, "\n");
2298 return;
2301 p = ready_lastpos (ready);
2302 for (i = 0; i < ready->n_ready; i++)
2304 fprintf (sched_dump, " %s:%d",
2305 (*current_sched_info->print_insn) (p[i], 0),
2306 INSN_LUID (p[i]));
2307 if (sched_pressure_p)
2308 fprintf (sched_dump, "(cost=%d",
2309 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
2310 if (INSN_TICK (p[i]) > clock_var)
2311 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
2312 if (sched_pressure_p)
2313 fprintf (sched_dump, ")");
2315 fprintf (sched_dump, "\n");
2318 /* Search INSN for REG_SAVE_NOTE note pairs for
2319 NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
2320 NOTEs. The REG_SAVE_NOTE note following first one is contains the
2321 saved value for NOTE_BLOCK_NUMBER which is useful for
2322 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. */
2323 void
2324 reemit_notes (rtx insn)
2326 rtx note, last = insn;
2328 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2330 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2332 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
2334 last = emit_note_before (note_type, last);
2335 remove_note (insn, note);
2340 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2341 static void
2342 move_insn (rtx insn, rtx last, rtx nt)
2344 if (PREV_INSN (insn) != last)
2346 basic_block bb;
2347 rtx note;
2348 int jump_p = 0;
2350 bb = BLOCK_FOR_INSN (insn);
2352 /* BB_HEAD is either LABEL or NOTE. */
2353 gcc_assert (BB_HEAD (bb) != insn);
2355 if (BB_END (bb) == insn)
2356 /* If this is last instruction in BB, move end marker one
2357 instruction up. */
2359 /* Jumps are always placed at the end of basic block. */
2360 jump_p = control_flow_insn_p (insn);
2362 gcc_assert (!jump_p
2363 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
2364 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
2365 || (common_sched_info->sched_pass_id
2366 == SCHED_EBB_PASS));
2368 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
2370 BB_END (bb) = PREV_INSN (insn);
2373 gcc_assert (BB_END (bb) != last);
2375 if (jump_p)
2376 /* We move the block note along with jump. */
2378 gcc_assert (nt);
2380 note = NEXT_INSN (insn);
2381 while (NOTE_NOT_BB_P (note) && note != nt)
2382 note = NEXT_INSN (note);
2384 if (note != nt
2385 && (LABEL_P (note)
2386 || BARRIER_P (note)))
2387 note = NEXT_INSN (note);
2389 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
2391 else
2392 note = insn;
2394 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
2395 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
2397 NEXT_INSN (note) = NEXT_INSN (last);
2398 PREV_INSN (NEXT_INSN (last)) = note;
2400 NEXT_INSN (last) = insn;
2401 PREV_INSN (insn) = last;
2403 bb = BLOCK_FOR_INSN (last);
2405 if (jump_p)
2407 fix_jump_move (insn);
2409 if (BLOCK_FOR_INSN (insn) != bb)
2410 move_block_after_check (insn);
2412 gcc_assert (BB_END (bb) == last);
2415 df_insn_change_bb (insn, bb);
2417 /* Update BB_END, if needed. */
2418 if (BB_END (bb) == last)
2419 BB_END (bb) = insn;
2422 SCHED_GROUP_P (insn) = 0;
2425 /* Return true if scheduling INSN will finish current clock cycle. */
2426 static bool
2427 insn_finishes_cycle_p (rtx insn)
2429 if (SCHED_GROUP_P (insn))
2430 /* After issuing INSN, rest of the sched_group will be forced to issue
2431 in order. Don't make any plans for the rest of cycle. */
2432 return true;
2434 /* Finishing the block will, apparently, finish the cycle. */
2435 if (current_sched_info->insn_finishes_block_p
2436 && current_sched_info->insn_finishes_block_p (insn))
2437 return true;
2439 return false;
2442 /* The following structure describe an entry of the stack of choices. */
2443 struct choice_entry
2445 /* Ordinal number of the issued insn in the ready queue. */
2446 int index;
2447 /* The number of the rest insns whose issues we should try. */
2448 int rest;
2449 /* The number of issued essential insns. */
2450 int n;
2451 /* State after issuing the insn. */
2452 state_t state;
2455 /* The following array is used to implement a stack of choices used in
2456 function max_issue. */
2457 static struct choice_entry *choice_stack;
2459 /* The following variable value is number of essential insns issued on
2460 the current cycle. An insn is essential one if it changes the
2461 processors state. */
2462 int cycle_issued_insns;
2464 /* This holds the value of the target dfa_lookahead hook. */
2465 int dfa_lookahead;
2467 /* The following variable value is maximal number of tries of issuing
2468 insns for the first cycle multipass insn scheduling. We define
2469 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2470 need this constraint if all real insns (with non-negative codes)
2471 had reservations because in this case the algorithm complexity is
2472 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2473 might be incomplete and such insn might occur. For such
2474 descriptions, the complexity of algorithm (without the constraint)
2475 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2476 static int max_lookahead_tries;
2478 /* The following value is value of hook
2479 `first_cycle_multipass_dfa_lookahead' at the last call of
2480 `max_issue'. */
2481 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2483 /* The following value is value of `issue_rate' at the last call of
2484 `sched_init'. */
2485 static int cached_issue_rate = 0;
2487 /* The following function returns maximal (or close to maximal) number
2488 of insns which can be issued on the same cycle and one of which
2489 insns is insns with the best rank (the first insn in READY). To
2490 make this function tries different samples of ready insns. READY
2491 is current queue `ready'. Global array READY_TRY reflects what
2492 insns are already issued in this try. MAX_POINTS is the sum of points
2493 of all instructions in READY. The function stops immediately,
2494 if it reached the such a solution, that all instruction can be issued.
2495 INDEX will contain index of the best insn in READY. The following
2496 function is used only for first cycle multipass scheduling.
2498 PRIVILEGED_N >= 0
2500 This function expects recognized insns only. All USEs,
2501 CLOBBERs, etc must be filtered elsewhere. */
2503 max_issue (struct ready_list *ready, int privileged_n, state_t state,
2504 int *index)
2506 int n, i, all, n_ready, best, delay, tries_num, max_points;
2507 int more_issue;
2508 struct choice_entry *top;
2509 rtx insn;
2511 n_ready = ready->n_ready;
2512 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
2513 && privileged_n <= n_ready);
2515 /* Init MAX_LOOKAHEAD_TRIES. */
2516 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
2518 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
2519 max_lookahead_tries = 100;
2520 for (i = 0; i < issue_rate; i++)
2521 max_lookahead_tries *= dfa_lookahead;
2524 /* Init max_points. */
2525 max_points = 0;
2526 more_issue = issue_rate - cycle_issued_insns;
2528 /* ??? We used to assert here that we never issue more insns than issue_rate.
2529 However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
2530 achieved to get better performance. Until these targets are fixed to use
2531 scheduler hooks to manipulate insns priority instead, the assert should
2532 be disabled.
2534 gcc_assert (more_issue >= 0); */
2536 for (i = 0; i < n_ready; i++)
2537 if (!ready_try [i])
2539 if (more_issue-- > 0)
2540 max_points += ISSUE_POINTS (ready_element (ready, i));
2541 else
2542 break;
2545 /* The number of the issued insns in the best solution. */
2546 best = 0;
2548 top = choice_stack;
2550 /* Set initial state of the search. */
2551 memcpy (top->state, state, dfa_state_size);
2552 top->rest = dfa_lookahead;
2553 top->n = 0;
2555 /* Count the number of the insns to search among. */
2556 for (all = i = 0; i < n_ready; i++)
2557 if (!ready_try [i])
2558 all++;
2560 /* I is the index of the insn to try next. */
2561 i = 0;
2562 tries_num = 0;
2563 for (;;)
2565 if (/* If we've reached a dead end or searched enough of what we have
2566 been asked... */
2567 top->rest == 0
2568 /* Or have nothing else to try. */
2569 || i >= n_ready)
2571 /* ??? (... || i == n_ready). */
2572 gcc_assert (i <= n_ready);
2574 if (top == choice_stack)
2575 break;
2577 if (best < top - choice_stack)
2579 if (privileged_n)
2581 n = privileged_n;
2582 /* Try to find issued privileged insn. */
2583 while (n && !ready_try[--n]);
2586 if (/* If all insns are equally good... */
2587 privileged_n == 0
2588 /* Or a privileged insn will be issued. */
2589 || ready_try[n])
2590 /* Then we have a solution. */
2592 best = top - choice_stack;
2593 /* This is the index of the insn issued first in this
2594 solution. */
2595 *index = choice_stack [1].index;
2596 if (top->n == max_points || best == all)
2597 break;
2601 /* Set ready-list index to point to the last insn
2602 ('i++' below will advance it to the next insn). */
2603 i = top->index;
2605 /* Backtrack. */
2606 ready_try [i] = 0;
2607 top--;
2608 memcpy (state, top->state, dfa_state_size);
2610 else if (!ready_try [i])
2612 tries_num++;
2613 if (tries_num > max_lookahead_tries)
2614 break;
2615 insn = ready_element (ready, i);
2616 delay = state_transition (state, insn);
2617 if (delay < 0)
2619 if (state_dead_lock_p (state)
2620 || insn_finishes_cycle_p (insn))
2621 /* We won't issue any more instructions in the next
2622 choice_state. */
2623 top->rest = 0;
2624 else
2625 top->rest--;
2627 n = top->n;
2628 if (memcmp (top->state, state, dfa_state_size) != 0)
2629 n += ISSUE_POINTS (insn);
2631 /* Advance to the next choice_entry. */
2632 top++;
2633 /* Initialize it. */
2634 top->rest = dfa_lookahead;
2635 top->index = i;
2636 top->n = n;
2637 memcpy (top->state, state, dfa_state_size);
2639 ready_try [i] = 1;
2640 i = -1;
2644 /* Increase ready-list index. */
2645 i++;
2648 /* Restore the original state of the DFA. */
2649 memcpy (state, choice_stack->state, dfa_state_size);
2651 return best;
2654 /* The following function chooses insn from READY and modifies
2655 READY. The following function is used only for first
2656 cycle multipass scheduling.
2657 Return:
2658 -1 if cycle should be advanced,
2659 0 if INSN_PTR is set to point to the desirable insn,
2660 1 if choose_ready () should be restarted without advancing the cycle. */
2661 static int
2662 choose_ready (struct ready_list *ready, rtx *insn_ptr)
2664 int lookahead;
2666 if (dbg_cnt (sched_insn) == false)
2668 rtx insn;
2670 insn = next_nonnote_insn (last_scheduled_insn);
2672 if (QUEUE_INDEX (insn) == QUEUE_READY)
2673 /* INSN is in the ready_list. */
2675 ready_remove_insn (insn);
2676 *insn_ptr = insn;
2677 return 0;
2680 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2681 return -1;
2684 lookahead = 0;
2686 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2687 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2688 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
2689 || DEBUG_INSN_P (ready_element (ready, 0)))
2691 *insn_ptr = ready_remove_first (ready);
2692 return 0;
2694 else
2696 /* Try to choose the better insn. */
2697 int index = 0, i, n;
2698 rtx insn;
2699 int try_data = 1, try_control = 1;
2700 ds_t ts;
2702 insn = ready_element (ready, 0);
2703 if (INSN_CODE (insn) < 0)
2705 *insn_ptr = ready_remove_first (ready);
2706 return 0;
2709 if (spec_info
2710 && spec_info->flags & (PREFER_NON_DATA_SPEC
2711 | PREFER_NON_CONTROL_SPEC))
2713 for (i = 0, n = ready->n_ready; i < n; i++)
2715 rtx x;
2716 ds_t s;
2718 x = ready_element (ready, i);
2719 s = TODO_SPEC (x);
2721 if (spec_info->flags & PREFER_NON_DATA_SPEC
2722 && !(s & DATA_SPEC))
2724 try_data = 0;
2725 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2726 || !try_control)
2727 break;
2730 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2731 && !(s & CONTROL_SPEC))
2733 try_control = 0;
2734 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2735 break;
2740 ts = TODO_SPEC (insn);
2741 if ((ts & SPECULATIVE)
2742 && (((!try_data && (ts & DATA_SPEC))
2743 || (!try_control && (ts & CONTROL_SPEC)))
2744 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2745 && !targetm.sched
2746 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
2747 /* Discard speculative instruction that stands first in the ready
2748 list. */
2750 change_queue_index (insn, 1);
2751 return 1;
2754 ready_try[0] = 0;
2756 for (i = 1; i < ready->n_ready; i++)
2758 insn = ready_element (ready, i);
2760 ready_try [i]
2761 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2762 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
2765 /* Let the target filter the search space. */
2766 for (i = 1; i < ready->n_ready; i++)
2767 if (!ready_try[i])
2769 insn = ready_element (ready, i);
2771 #ifdef ENABLE_CHECKING
2772 /* If this insn is recognizable we should have already
2773 recognized it earlier.
2774 ??? Not very clear where this is supposed to be done.
2775 See dep_cost_1. */
2776 gcc_assert (INSN_CODE (insn) >= 0
2777 || recog_memoized (insn) < 0);
2778 #endif
2780 ready_try [i]
2781 = (/* INSN_CODE check can be omitted here as it is also done later
2782 in max_issue (). */
2783 INSN_CODE (insn) < 0
2784 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2785 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2786 (insn)));
2789 if (max_issue (ready, 1, curr_state, &index) == 0)
2791 *insn_ptr = ready_remove_first (ready);
2792 if (sched_verbose >= 4)
2793 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
2794 (*current_sched_info->print_insn) (*insn_ptr, 0));
2795 return 0;
2797 else
2799 if (sched_verbose >= 4)
2800 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
2801 (*current_sched_info->print_insn)
2802 (ready_element (ready, index), 0));
2804 *insn_ptr = ready_remove (ready, index);
2805 return 0;
2810 /* Use forward list scheduling to rearrange insns of block pointed to by
2811 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2812 region. */
2814 void
2815 schedule_block (basic_block *target_bb)
2817 int i, first_cycle_insn_p;
2818 int can_issue_more;
2819 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2820 int sort_p, advance, start_clock_var;
2822 /* Head/tail info for this block. */
2823 rtx prev_head = current_sched_info->prev_head;
2824 rtx next_tail = current_sched_info->next_tail;
2825 rtx head = NEXT_INSN (prev_head);
2826 rtx tail = PREV_INSN (next_tail);
2828 /* We used to have code to avoid getting parameters moved from hard
2829 argument registers into pseudos.
2831 However, it was removed when it proved to be of marginal benefit
2832 and caused problems because schedule_block and compute_forward_dependences
2833 had different notions of what the "head" insn was. */
2835 gcc_assert (head != tail || INSN_P (head));
2837 haifa_recovery_bb_recently_added_p = false;
2839 /* Debug info. */
2840 if (sched_verbose)
2841 dump_new_block_header (0, *target_bb, head, tail);
2843 state_reset (curr_state);
2845 /* Clear the ready list. */
2846 ready.first = ready.veclen - 1;
2847 ready.n_ready = 0;
2848 ready.n_debug = 0;
2850 /* It is used for first cycle multipass scheduling. */
2851 temp_state = alloca (dfa_state_size);
2853 if (targetm.sched.md_init)
2854 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2856 /* We start inserting insns after PREV_HEAD. */
2857 last_scheduled_insn = prev_head;
2859 gcc_assert ((NOTE_P (last_scheduled_insn)
2860 || BOUNDARY_DEBUG_INSN_P (last_scheduled_insn))
2861 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2863 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2864 queue. */
2865 q_ptr = 0;
2866 q_size = 0;
2868 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
2869 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2871 /* Start just before the beginning of time. */
2872 clock_var = -1;
2874 /* We need queue and ready lists and clock_var be initialized
2875 in try_ready () (which is called through init_ready_list ()). */
2876 (*current_sched_info->init_ready_list) ();
2878 /* The algorithm is O(n^2) in the number of ready insns at any given
2879 time in the worst case. Before reload we are more likely to have
2880 big lists so truncate them to a reasonable size. */
2881 if (!reload_completed
2882 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
2884 ready_sort (&ready);
2886 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2887 If there are debug insns, we know they're first. */
2888 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
2889 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2890 break;
2892 if (sched_verbose >= 2)
2894 fprintf (sched_dump,
2895 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2896 fprintf (sched_dump,
2897 ";;\t\t before reload => truncated to %d insns\n", i);
2900 /* Delay all insns past it for 1 cycle. If debug counter is
2901 activated make an exception for the insn right after
2902 last_scheduled_insn. */
2904 rtx skip_insn;
2906 if (dbg_cnt (sched_insn) == false)
2907 skip_insn = next_nonnote_insn (last_scheduled_insn);
2908 else
2909 skip_insn = NULL_RTX;
2911 while (i < ready.n_ready)
2913 rtx insn;
2915 insn = ready_remove (&ready, i);
2917 if (insn != skip_insn)
2918 queue_insn (insn, 1);
2923 /* Now we can restore basic block notes and maintain precise cfg. */
2924 restore_bb_notes (*target_bb);
2926 last_clock_var = -1;
2928 advance = 0;
2930 sort_p = TRUE;
2931 /* Loop until all the insns in BB are scheduled. */
2932 while ((*current_sched_info->schedule_more_p) ())
2936 start_clock_var = clock_var;
2938 clock_var++;
2940 advance_one_cycle ();
2942 /* Add to the ready list all pending insns that can be issued now.
2943 If there are no ready insns, increment clock until one
2944 is ready and add all pending insns at that point to the ready
2945 list. */
2946 queue_to_ready (&ready);
2948 gcc_assert (ready.n_ready);
2950 if (sched_verbose >= 2)
2952 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2953 debug_ready_list (&ready);
2955 advance -= clock_var - start_clock_var;
2957 while (advance > 0);
2959 if (sort_p)
2961 /* Sort the ready list based on priority. */
2962 ready_sort (&ready);
2964 if (sched_verbose >= 2)
2966 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2967 debug_ready_list (&ready);
2971 /* We don't want md sched reorder to even see debug isns, so put
2972 them out right away. */
2973 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2975 if (control_flow_insn_p (last_scheduled_insn))
2977 *target_bb = current_sched_info->advance_target_bb
2978 (*target_bb, 0);
2980 if (sched_verbose)
2982 rtx x;
2984 x = next_real_insn (last_scheduled_insn);
2985 gcc_assert (x);
2986 dump_new_block_header (1, *target_bb, x, tail);
2989 last_scheduled_insn = bb_note (*target_bb);
2992 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2994 rtx insn = ready_remove_first (&ready);
2995 gcc_assert (DEBUG_INSN_P (insn));
2996 (*current_sched_info->begin_schedule_ready) (insn,
2997 last_scheduled_insn);
2998 move_insn (insn, last_scheduled_insn,
2999 current_sched_info->next_tail);
3000 last_scheduled_insn = insn;
3001 advance = schedule_insn (insn);
3002 gcc_assert (advance == 0);
3003 if (ready.n_ready > 0)
3004 ready_sort (&ready);
3007 if (!ready.n_ready)
3008 continue;
3011 /* Allow the target to reorder the list, typically for
3012 better instruction bundling. */
3013 if (sort_p && targetm.sched.reorder
3014 && (ready.n_ready == 0
3015 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3016 can_issue_more =
3017 targetm.sched.reorder (sched_dump, sched_verbose,
3018 ready_lastpos (&ready),
3019 &ready.n_ready, clock_var);
3020 else
3021 can_issue_more = issue_rate;
3023 first_cycle_insn_p = 1;
3024 cycle_issued_insns = 0;
3025 for (;;)
3027 rtx insn;
3028 int cost;
3029 bool asm_p = false;
3031 if (sched_verbose >= 2)
3033 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
3034 clock_var);
3035 debug_ready_list (&ready);
3036 if (sched_pressure_p)
3037 print_curr_reg_pressure ();
3040 if (ready.n_ready == 0
3041 && can_issue_more
3042 && reload_completed)
3044 /* Allow scheduling insns directly from the queue in case
3045 there's nothing better to do (ready list is empty) but
3046 there are still vacant dispatch slots in the current cycle. */
3047 if (sched_verbose >= 6)
3048 fprintf (sched_dump,";;\t\tSecond chance\n");
3049 memcpy (temp_state, curr_state, dfa_state_size);
3050 if (early_queue_to_ready (temp_state, &ready))
3051 ready_sort (&ready);
3054 if (ready.n_ready == 0
3055 || !can_issue_more
3056 || state_dead_lock_p (curr_state)
3057 || !(*current_sched_info->schedule_more_p) ())
3058 break;
3060 /* Select and remove the insn from the ready list. */
3061 if (sort_p)
3063 int res;
3065 insn = NULL_RTX;
3066 res = choose_ready (&ready, &insn);
3068 if (res < 0)
3069 /* Finish cycle. */
3070 break;
3071 if (res > 0)
3072 /* Restart choose_ready (). */
3073 continue;
3075 gcc_assert (insn != NULL_RTX);
3077 else
3078 insn = ready_remove_first (&ready);
3080 if (sched_pressure_p && INSN_TICK (insn) > clock_var)
3082 ready_add (&ready, insn, true);
3083 advance = 1;
3084 break;
3087 if (targetm.sched.dfa_new_cycle
3088 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3089 insn, last_clock_var,
3090 clock_var, &sort_p))
3091 /* SORT_P is used by the target to override sorting
3092 of the ready list. This is needed when the target
3093 has modified its internal structures expecting that
3094 the insn will be issued next. As we need the insn
3095 to have the highest priority (so it will be returned by
3096 the ready_remove_first call above), we invoke
3097 ready_add (&ready, insn, true).
3098 But, still, there is one issue: INSN can be later
3099 discarded by scheduler's front end through
3100 current_sched_info->can_schedule_ready_p, hence, won't
3101 be issued next. */
3103 ready_add (&ready, insn, true);
3104 break;
3107 sort_p = TRUE;
3108 memcpy (temp_state, curr_state, dfa_state_size);
3109 if (recog_memoized (insn) < 0)
3111 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
3112 || asm_noperands (PATTERN (insn)) >= 0);
3113 if (!first_cycle_insn_p && asm_p)
3114 /* This is asm insn which is tried to be issued on the
3115 cycle not first. Issue it on the next cycle. */
3116 cost = 1;
3117 else
3118 /* A USE insn, or something else we don't need to
3119 understand. We can't pass these directly to
3120 state_transition because it will trigger a
3121 fatal error for unrecognizable insns. */
3122 cost = 0;
3124 else if (sched_pressure_p)
3125 cost = 0;
3126 else
3128 cost = state_transition (temp_state, insn);
3129 if (cost < 0)
3130 cost = 0;
3131 else if (cost == 0)
3132 cost = 1;
3135 if (cost >= 1)
3137 queue_insn (insn, cost);
3138 if (SCHED_GROUP_P (insn))
3140 advance = cost;
3141 break;
3144 continue;
3147 if (current_sched_info->can_schedule_ready_p
3148 && ! (*current_sched_info->can_schedule_ready_p) (insn))
3149 /* We normally get here only if we don't want to move
3150 insn from the split block. */
3152 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
3153 continue;
3156 /* DECISION is made. */
3158 if (TODO_SPEC (insn) & SPECULATIVE)
3159 generate_recovery_code (insn);
3161 if (control_flow_insn_p (last_scheduled_insn)
3162 /* This is used to switch basic blocks by request
3163 from scheduler front-end (actually, sched-ebb.c only).
3164 This is used to process blocks with single fallthru
3165 edge. If succeeding block has jump, it [jump] will try
3166 move at the end of current bb, thus corrupting CFG. */
3167 || current_sched_info->advance_target_bb (*target_bb, insn))
3169 *target_bb = current_sched_info->advance_target_bb
3170 (*target_bb, 0);
3172 if (sched_verbose)
3174 rtx x;
3176 x = next_real_insn (last_scheduled_insn);
3177 gcc_assert (x);
3178 dump_new_block_header (1, *target_bb, x, tail);
3181 last_scheduled_insn = bb_note (*target_bb);
3184 /* Update counters, etc in the scheduler's front end. */
3185 (*current_sched_info->begin_schedule_ready) (insn,
3186 last_scheduled_insn);
3188 move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
3189 reemit_notes (insn);
3190 last_scheduled_insn = insn;
3192 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
3194 cycle_issued_insns++;
3195 memcpy (curr_state, temp_state, dfa_state_size);
3198 if (targetm.sched.variable_issue)
3199 can_issue_more =
3200 targetm.sched.variable_issue (sched_dump, sched_verbose,
3201 insn, can_issue_more);
3202 /* A naked CLOBBER or USE generates no instruction, so do
3203 not count them against the issue rate. */
3204 else if (GET_CODE (PATTERN (insn)) != USE
3205 && GET_CODE (PATTERN (insn)) != CLOBBER)
3206 can_issue_more--;
3207 advance = schedule_insn (insn);
3209 /* After issuing an asm insn we should start a new cycle. */
3210 if (advance == 0 && asm_p)
3211 advance = 1;
3212 if (advance != 0)
3213 break;
3215 first_cycle_insn_p = 0;
3217 /* Sort the ready list based on priority. This must be
3218 redone here, as schedule_insn may have readied additional
3219 insns that will not be sorted correctly. */
3220 if (ready.n_ready > 0)
3221 ready_sort (&ready);
3223 /* Quickly go through debug insns such that md sched
3224 reorder2 doesn't have to deal with debug insns. */
3225 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
3226 && (*current_sched_info->schedule_more_p) ())
3228 if (control_flow_insn_p (last_scheduled_insn))
3230 *target_bb = current_sched_info->advance_target_bb
3231 (*target_bb, 0);
3233 if (sched_verbose)
3235 rtx x;
3237 x = next_real_insn (last_scheduled_insn);
3238 gcc_assert (x);
3239 dump_new_block_header (1, *target_bb, x, tail);
3242 last_scheduled_insn = bb_note (*target_bb);
3245 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3247 insn = ready_remove_first (&ready);
3248 gcc_assert (DEBUG_INSN_P (insn));
3249 (*current_sched_info->begin_schedule_ready)
3250 (insn, last_scheduled_insn);
3251 move_insn (insn, last_scheduled_insn,
3252 current_sched_info->next_tail);
3253 advance = schedule_insn (insn);
3254 last_scheduled_insn = insn;
3255 gcc_assert (advance == 0);
3256 if (ready.n_ready > 0)
3257 ready_sort (&ready);
3261 if (targetm.sched.reorder2
3262 && (ready.n_ready == 0
3263 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3265 can_issue_more =
3266 targetm.sched.reorder2 (sched_dump, sched_verbose,
3267 ready.n_ready
3268 ? ready_lastpos (&ready) : NULL,
3269 &ready.n_ready, clock_var);
3274 /* Debug info. */
3275 if (sched_verbose)
3277 fprintf (sched_dump, ";;\tReady list (final): ");
3278 debug_ready_list (&ready);
3281 if (current_sched_info->queue_must_finish_empty)
3282 /* Sanity check -- queue must be empty now. Meaningless if region has
3283 multiple bbs. */
3284 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
3285 else
3287 /* We must maintain QUEUE_INDEX between blocks in region. */
3288 for (i = ready.n_ready - 1; i >= 0; i--)
3290 rtx x;
3292 x = ready_element (&ready, i);
3293 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3294 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3297 if (q_size)
3298 for (i = 0; i <= max_insn_queue_index; i++)
3300 rtx link;
3301 for (link = insn_queue[i]; link; link = XEXP (link, 1))
3303 rtx x;
3305 x = XEXP (link, 0);
3306 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3307 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3309 free_INSN_LIST_list (&insn_queue[i]);
3313 if (sched_verbose)
3314 fprintf (sched_dump, ";; total time = %d\n", clock_var);
3316 if (!current_sched_info->queue_must_finish_empty
3317 || haifa_recovery_bb_recently_added_p)
3319 /* INSN_TICK (minimum clock tick at which the insn becomes
3320 ready) may be not correct for the insn in the subsequent
3321 blocks of the region. We should use a correct value of
3322 `clock_var' or modify INSN_TICK. It is better to keep
3323 clock_var value equal to 0 at the start of a basic block.
3324 Therefore we modify INSN_TICK here. */
3325 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
3328 if (targetm.sched.md_finish)
3330 targetm.sched.md_finish (sched_dump, sched_verbose);
3331 /* Target might have added some instructions to the scheduled block
3332 in its md_finish () hook. These new insns don't have any data
3333 initialized and to identify them we extend h_i_d so that they'll
3334 get zero luids. */
3335 sched_init_luids (NULL, NULL, NULL, NULL);
3338 if (sched_verbose)
3339 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
3340 INSN_UID (head), INSN_UID (tail));
3342 /* Update head/tail boundaries. */
3343 head = NEXT_INSN (prev_head);
3344 tail = last_scheduled_insn;
3346 head = restore_other_notes (head, NULL);
3348 current_sched_info->head = head;
3349 current_sched_info->tail = tail;
3352 /* Set_priorities: compute priority of each insn in the block. */
3355 set_priorities (rtx head, rtx tail)
3357 rtx insn;
3358 int n_insn;
3359 int sched_max_insns_priority =
3360 current_sched_info->sched_max_insns_priority;
3361 rtx prev_head;
3363 if (head == tail && (! INSN_P (head) || BOUNDARY_DEBUG_INSN_P (head)))
3364 gcc_unreachable ();
3366 n_insn = 0;
3368 prev_head = PREV_INSN (head);
3369 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
3371 if (!INSN_P (insn))
3372 continue;
3374 n_insn++;
3375 (void) priority (insn);
3377 gcc_assert (INSN_PRIORITY_KNOWN (insn));
3379 sched_max_insns_priority = MAX (sched_max_insns_priority,
3380 INSN_PRIORITY (insn));
3383 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
3385 return n_insn;
3388 /* Set dump and sched_verbose for the desired debugging output. If no
3389 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3390 For -fsched-verbose=N, N>=10, print everything to stderr. */
3391 void
3392 setup_sched_dump (void)
3394 sched_verbose = sched_verbose_param;
3395 if (sched_verbose_param == 0 && dump_file)
3396 sched_verbose = 1;
3397 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
3398 ? stderr : dump_file);
3401 /* Initialize some global state for the scheduler. This function works
3402 with the common data shared between all the schedulers. It is called
3403 from the scheduler specific initialization routine. */
3405 void
3406 sched_init (void)
3408 /* Disable speculative loads in their presence if cc0 defined. */
3409 #ifdef HAVE_cc0
3410 flag_schedule_speculative_load = 0;
3411 #endif
3413 sched_pressure_p = (flag_sched_pressure && ! reload_completed
3414 && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
3415 if (sched_pressure_p)
3416 ira_setup_eliminable_regset ();
3418 /* Initialize SPEC_INFO. */
3419 if (targetm.sched.set_sched_flags)
3421 spec_info = &spec_info_var;
3422 targetm.sched.set_sched_flags (spec_info);
3424 if (spec_info->mask != 0)
3426 spec_info->data_weakness_cutoff =
3427 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
3428 spec_info->control_weakness_cutoff =
3429 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
3430 * REG_BR_PROB_BASE) / 100;
3432 else
3433 /* So we won't read anything accidentally. */
3434 spec_info = NULL;
3437 else
3438 /* So we won't read anything accidentally. */
3439 spec_info = 0;
3441 /* Initialize issue_rate. */
3442 if (targetm.sched.issue_rate)
3443 issue_rate = targetm.sched.issue_rate ();
3444 else
3445 issue_rate = 1;
3447 if (cached_issue_rate != issue_rate)
3449 cached_issue_rate = issue_rate;
3450 /* To invalidate max_lookahead_tries: */
3451 cached_first_cycle_multipass_dfa_lookahead = 0;
3454 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3455 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3456 else
3457 dfa_lookahead = 0;
3459 if (targetm.sched.init_dfa_pre_cycle_insn)
3460 targetm.sched.init_dfa_pre_cycle_insn ();
3462 if (targetm.sched.init_dfa_post_cycle_insn)
3463 targetm.sched.init_dfa_post_cycle_insn ();
3465 dfa_start ();
3466 dfa_state_size = state_size ();
3468 init_alias_analysis ();
3470 df_set_flags (DF_LR_RUN_DCE);
3471 df_note_add_problem ();
3473 /* More problems needed for interloop dep calculation in SMS. */
3474 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
3476 df_rd_add_problem ();
3477 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
3480 df_analyze ();
3482 /* Do not run DCE after reload, as this can kill nops inserted
3483 by bundling. */
3484 if (reload_completed)
3485 df_clear_flags (DF_LR_RUN_DCE);
3487 regstat_compute_calls_crossed ();
3489 if (targetm.sched.md_init_global)
3490 targetm.sched.md_init_global (sched_dump, sched_verbose,
3491 get_max_uid () + 1);
3493 if (sched_pressure_p)
3495 int i, max_regno = max_reg_num ();
3497 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
3498 sched_regno_cover_class
3499 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
3500 for (i = 0; i < max_regno; i++)
3501 sched_regno_cover_class[i]
3502 = (i < FIRST_PSEUDO_REGISTER
3503 ? ira_class_translate[REGNO_REG_CLASS (i)]
3504 : reg_cover_class (i));
3505 curr_reg_live = BITMAP_ALLOC (NULL);
3506 saved_reg_live = BITMAP_ALLOC (NULL);
3507 region_ref_regs = BITMAP_ALLOC (NULL);
3510 curr_state = xmalloc (dfa_state_size);
3513 static void haifa_init_only_bb (basic_block, basic_block);
3515 /* Initialize data structures specific to the Haifa scheduler. */
3516 void
3517 haifa_sched_init (void)
3519 setup_sched_dump ();
3520 sched_init ();
3522 if (spec_info != NULL)
3524 sched_deps_info->use_deps_list = 1;
3525 sched_deps_info->generate_spec_deps = 1;
3528 /* Initialize luids, dependency caches, target and h_i_d for the
3529 whole function. */
3531 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
3532 basic_block bb;
3534 sched_init_bbs ();
3536 FOR_EACH_BB (bb)
3537 VEC_quick_push (basic_block, bbs, bb);
3538 sched_init_luids (bbs, NULL, NULL, NULL);
3539 sched_deps_init (true);
3540 sched_extend_target ();
3541 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
3543 VEC_free (basic_block, heap, bbs);
3546 sched_init_only_bb = haifa_init_only_bb;
3547 sched_split_block = sched_split_block_1;
3548 sched_create_empty_bb = sched_create_empty_bb_1;
3549 haifa_recovery_bb_ever_added_p = false;
3551 #ifdef ENABLE_CHECKING
3552 /* This is used preferably for finding bugs in check_cfg () itself.
3553 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3554 assumes that the last insn in the last bb has a non-null successor. */
3555 check_cfg (0, 0);
3556 #endif
3558 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
3559 before_recovery = 0;
3560 after_recovery = 0;
3563 /* Finish work with the data specific to the Haifa scheduler. */
3564 void
3565 haifa_sched_finish (void)
3567 sched_create_empty_bb = NULL;
3568 sched_split_block = NULL;
3569 sched_init_only_bb = NULL;
3571 if (spec_info && spec_info->dump)
3573 char c = reload_completed ? 'a' : 'b';
3575 fprintf (spec_info->dump,
3576 ";; %s:\n", current_function_name ());
3578 fprintf (spec_info->dump,
3579 ";; Procedure %cr-begin-data-spec motions == %d\n",
3580 c, nr_begin_data);
3581 fprintf (spec_info->dump,
3582 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3583 c, nr_be_in_data);
3584 fprintf (spec_info->dump,
3585 ";; Procedure %cr-begin-control-spec motions == %d\n",
3586 c, nr_begin_control);
3587 fprintf (spec_info->dump,
3588 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3589 c, nr_be_in_control);
3592 /* Finalize h_i_d, dependency caches, and luids for the whole
3593 function. Target will be finalized in md_global_finish (). */
3594 sched_deps_finish ();
3595 sched_finish_luids ();
3596 current_sched_info = NULL;
3597 sched_finish ();
3600 /* Free global data used during insn scheduling. This function works with
3601 the common data shared between the schedulers. */
3603 void
3604 sched_finish (void)
3606 haifa_finish_h_i_d ();
3607 if (sched_pressure_p)
3609 free (sched_regno_cover_class);
3610 BITMAP_FREE (region_ref_regs);
3611 BITMAP_FREE (saved_reg_live);
3612 BITMAP_FREE (curr_reg_live);
3614 free (curr_state);
3616 if (targetm.sched.md_finish_global)
3617 targetm.sched.md_finish_global (sched_dump, sched_verbose);
3619 end_alias_analysis ();
3621 regstat_free_calls_crossed ();
3623 dfa_finish ();
3625 #ifdef ENABLE_CHECKING
3626 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3627 if (!reload_completed)
3628 check_cfg (0, 0);
3629 #endif
3632 /* Fix INSN_TICKs of the instructions in the current block as well as
3633 INSN_TICKs of their dependents.
3634 HEAD and TAIL are the begin and the end of the current scheduled block. */
3635 static void
3636 fix_inter_tick (rtx head, rtx tail)
3638 /* Set of instructions with corrected INSN_TICK. */
3639 bitmap_head processed;
3640 /* ??? It is doubtful if we should assume that cycle advance happens on
3641 basic block boundaries. Basically insns that are unconditionally ready
3642 on the start of the block are more preferable then those which have
3643 a one cycle dependency over insn from the previous block. */
3644 int next_clock = clock_var + 1;
3646 bitmap_initialize (&processed, 0);
3648 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3649 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3650 across different blocks. */
3651 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
3653 if (INSN_P (head))
3655 int tick;
3656 sd_iterator_def sd_it;
3657 dep_t dep;
3659 tick = INSN_TICK (head);
3660 gcc_assert (tick >= MIN_TICK);
3662 /* Fix INSN_TICK of instruction from just scheduled block. */
3663 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
3665 bitmap_set_bit (&processed, INSN_LUID (head));
3666 tick -= next_clock;
3668 if (tick < MIN_TICK)
3669 tick = MIN_TICK;
3671 INSN_TICK (head) = tick;
3674 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
3676 rtx next;
3678 next = DEP_CON (dep);
3679 tick = INSN_TICK (next);
3681 if (tick != INVALID_TICK
3682 /* If NEXT has its INSN_TICK calculated, fix it.
3683 If not - it will be properly calculated from
3684 scratch later in fix_tick_ready. */
3685 && !bitmap_bit_p (&processed, INSN_LUID (next)))
3687 bitmap_set_bit (&processed, INSN_LUID (next));
3688 tick -= next_clock;
3690 if (tick < MIN_TICK)
3691 tick = MIN_TICK;
3693 if (tick > INTER_TICK (next))
3694 INTER_TICK (next) = tick;
3695 else
3696 tick = INTER_TICK (next);
3698 INSN_TICK (next) = tick;
3703 bitmap_clear (&processed);
3706 static int haifa_speculate_insn (rtx, ds_t, rtx *);
3708 /* Check if NEXT is ready to be added to the ready or queue list.
3709 If "yes", add it to the proper list.
3710 Returns:
3711 -1 - is not ready yet,
3712 0 - added to the ready list,
3713 0 < N - queued for N cycles. */
3715 try_ready (rtx next)
3717 ds_t old_ts, *ts;
3719 ts = &TODO_SPEC (next);
3720 old_ts = *ts;
3722 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
3723 && ((old_ts & HARD_DEP)
3724 || (old_ts & SPECULATIVE)));
3726 if (sd_lists_empty_p (next, SD_LIST_BACK))
3727 /* NEXT has all its dependencies resolved. */
3729 /* Remove HARD_DEP bit from NEXT's status. */
3730 *ts &= ~HARD_DEP;
3732 if (current_sched_info->flags & DO_SPECULATION)
3733 /* Remove all speculative bits from NEXT's status. */
3734 *ts &= ~SPECULATIVE;
3736 else
3738 /* One of the NEXT's dependencies has been resolved.
3739 Recalculate NEXT's status. */
3741 *ts &= ~SPECULATIVE & ~HARD_DEP;
3743 if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
3744 /* Now we've got NEXT with speculative deps only.
3745 1. Look at the deps to see what we have to do.
3746 2. Check if we can do 'todo'. */
3748 sd_iterator_def sd_it;
3749 dep_t dep;
3750 bool first_p = true;
3752 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
3754 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
3756 if (DEBUG_INSN_P (DEP_PRO (dep))
3757 && !DEBUG_INSN_P (next))
3758 continue;
3760 if (first_p)
3762 first_p = false;
3764 *ts = ds;
3766 else
3767 *ts = ds_merge (*ts, ds);
3770 if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
3771 /* Too few points. */
3772 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3774 else
3775 *ts |= HARD_DEP;
3778 if (*ts & HARD_DEP)
3779 gcc_assert (*ts == old_ts
3780 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
3781 else if (current_sched_info->new_ready)
3782 *ts = current_sched_info->new_ready (next, *ts);
3784 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3785 have its original pattern or changed (speculative) one. This is due
3786 to changing ebb in region scheduling.
3787 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3788 has speculative pattern.
3790 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3791 control-speculative NEXT could have been discarded by sched-rgn.c
3792 (the same case as when discarded by can_schedule_ready_p ()). */
3794 if ((*ts & SPECULATIVE)
3795 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3796 need to change anything. */
3797 && *ts != old_ts)
3799 int res;
3800 rtx new_pat;
3802 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3804 res = haifa_speculate_insn (next, *ts, &new_pat);
3806 switch (res)
3808 case -1:
3809 /* It would be nice to change DEP_STATUS of all dependences,
3810 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3811 so we won't reanalyze anything. */
3812 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3813 break;
3815 case 0:
3816 /* We follow the rule, that every speculative insn
3817 has non-null ORIG_PAT. */
3818 if (!ORIG_PAT (next))
3819 ORIG_PAT (next) = PATTERN (next);
3820 break;
3822 case 1:
3823 if (!ORIG_PAT (next))
3824 /* If we gonna to overwrite the original pattern of insn,
3825 save it. */
3826 ORIG_PAT (next) = PATTERN (next);
3828 haifa_change_pattern (next, new_pat);
3829 break;
3831 default:
3832 gcc_unreachable ();
3836 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3837 either correct (*ts & SPECULATIVE),
3838 or we simply don't care (*ts & HARD_DEP). */
3840 gcc_assert (!ORIG_PAT (next)
3841 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3843 if (*ts & HARD_DEP)
3845 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3846 control-speculative NEXT could have been discarded by sched-rgn.c
3847 (the same case as when discarded by can_schedule_ready_p ()). */
3848 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3850 change_queue_index (next, QUEUE_NOWHERE);
3851 return -1;
3853 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3854 /* We should change pattern of every previously speculative
3855 instruction - and we determine if NEXT was speculative by using
3856 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3857 pat too, so skip them. */
3859 haifa_change_pattern (next, ORIG_PAT (next));
3860 ORIG_PAT (next) = 0;
3863 if (sched_verbose >= 2)
3865 int s = TODO_SPEC (next);
3867 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3868 (*current_sched_info->print_insn) (next, 0));
3870 if (spec_info && spec_info->dump)
3872 if (s & BEGIN_DATA)
3873 fprintf (spec_info->dump, "; data-spec;");
3874 if (s & BEGIN_CONTROL)
3875 fprintf (spec_info->dump, "; control-spec;");
3876 if (s & BE_IN_CONTROL)
3877 fprintf (spec_info->dump, "; in-control-spec;");
3880 fprintf (sched_dump, "\n");
3883 adjust_priority (next);
3885 return fix_tick_ready (next);
3888 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3889 static int
3890 fix_tick_ready (rtx next)
3892 int tick, delay;
3894 if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
3896 int full_p;
3897 sd_iterator_def sd_it;
3898 dep_t dep;
3900 tick = INSN_TICK (next);
3901 /* if tick is not equal to INVALID_TICK, then update
3902 INSN_TICK of NEXT with the most recent resolved dependence
3903 cost. Otherwise, recalculate from scratch. */
3904 full_p = (tick == INVALID_TICK);
3906 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
3908 rtx pro = DEP_PRO (dep);
3909 int tick1;
3911 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3913 tick1 = INSN_TICK (pro) + dep_cost (dep);
3914 if (tick1 > tick)
3915 tick = tick1;
3917 if (!full_p)
3918 break;
3921 else
3922 tick = -1;
3924 INSN_TICK (next) = tick;
3926 delay = tick - clock_var;
3927 if (delay <= 0 || sched_pressure_p)
3928 delay = QUEUE_READY;
3930 change_queue_index (next, delay);
3932 return delay;
3935 /* Move NEXT to the proper queue list with (DELAY >= 1),
3936 or add it to the ready list (DELAY == QUEUE_READY),
3937 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3938 static void
3939 change_queue_index (rtx next, int delay)
3941 int i = QUEUE_INDEX (next);
3943 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3944 && delay != 0);
3945 gcc_assert (i != QUEUE_SCHEDULED);
3947 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3948 || (delay < 0 && delay == i))
3949 /* We have nothing to do. */
3950 return;
3952 /* Remove NEXT from wherever it is now. */
3953 if (i == QUEUE_READY)
3954 ready_remove_insn (next);
3955 else if (i >= 0)
3956 queue_remove (next);
3958 /* Add it to the proper place. */
3959 if (delay == QUEUE_READY)
3960 ready_add (readyp, next, false);
3961 else if (delay >= 1)
3962 queue_insn (next, delay);
3964 if (sched_verbose >= 2)
3966 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3967 (*current_sched_info->print_insn) (next, 0));
3969 if (delay == QUEUE_READY)
3970 fprintf (sched_dump, " into ready\n");
3971 else if (delay >= 1)
3972 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3973 else
3974 fprintf (sched_dump, " removed from ready or queue lists\n");
3978 static int sched_ready_n_insns = -1;
3980 /* Initialize per region data structures. */
3981 void
3982 sched_extend_ready_list (int new_sched_ready_n_insns)
3984 int i;
3986 if (sched_ready_n_insns == -1)
3987 /* At the first call we need to initialize one more choice_stack
3988 entry. */
3990 i = 0;
3991 sched_ready_n_insns = 0;
3993 else
3994 i = sched_ready_n_insns + 1;
3996 ready.veclen = new_sched_ready_n_insns + issue_rate;
3997 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
3999 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
4001 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
4002 sched_ready_n_insns, sizeof (*ready_try));
4004 /* We allocate +1 element to save initial state in the choice_stack[0]
4005 entry. */
4006 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
4007 new_sched_ready_n_insns + 1);
4009 for (; i <= new_sched_ready_n_insns; i++)
4010 choice_stack[i].state = xmalloc (dfa_state_size);
4012 sched_ready_n_insns = new_sched_ready_n_insns;
4015 /* Free per region data structures. */
4016 void
4017 sched_finish_ready_list (void)
4019 int i;
4021 free (ready.vec);
4022 ready.vec = NULL;
4023 ready.veclen = 0;
4025 free (ready_try);
4026 ready_try = NULL;
4028 for (i = 0; i <= sched_ready_n_insns; i++)
4029 free (choice_stack [i].state);
4030 free (choice_stack);
4031 choice_stack = NULL;
4033 sched_ready_n_insns = -1;
4036 static int
4037 haifa_luid_for_non_insn (rtx x)
4039 gcc_assert (NOTE_P (x) || LABEL_P (x));
4041 return 0;
4044 /* Generates recovery code for INSN. */
4045 static void
4046 generate_recovery_code (rtx insn)
4048 if (TODO_SPEC (insn) & BEGIN_SPEC)
4049 begin_speculative_block (insn);
4051 /* Here we have insn with no dependencies to
4052 instructions other then CHECK_SPEC ones. */
4054 if (TODO_SPEC (insn) & BE_IN_SPEC)
4055 add_to_speculative_block (insn);
4058 /* Helper function.
4059 Tries to add speculative dependencies of type FS between instructions
4060 in deps_list L and TWIN. */
4061 static void
4062 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
4064 sd_iterator_def sd_it;
4065 dep_t dep;
4067 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
4069 ds_t ds;
4070 rtx consumer;
4072 consumer = DEP_CON (dep);
4074 ds = DEP_STATUS (dep);
4076 if (/* If we want to create speculative dep. */
4078 /* And we can do that because this is a true dep. */
4079 && (ds & DEP_TYPES) == DEP_TRUE)
4081 gcc_assert (!(ds & BE_IN_SPEC));
4083 if (/* If this dep can be overcome with 'begin speculation'. */
4084 ds & BEGIN_SPEC)
4085 /* Then we have a choice: keep the dep 'begin speculative'
4086 or transform it into 'be in speculative'. */
4088 if (/* In try_ready we assert that if insn once became ready
4089 it can be removed from the ready (or queue) list only
4090 due to backend decision. Hence we can't let the
4091 probability of the speculative dep to decrease. */
4092 ds_weak (ds) <= ds_weak (fs))
4094 ds_t new_ds;
4096 new_ds = (ds & ~BEGIN_SPEC) | fs;
4098 if (/* consumer can 'be in speculative'. */
4099 sched_insn_is_legitimate_for_speculation_p (consumer,
4100 new_ds))
4101 /* Transform it to be in speculative. */
4102 ds = new_ds;
4105 else
4106 /* Mark the dep as 'be in speculative'. */
4107 ds |= fs;
4111 dep_def _new_dep, *new_dep = &_new_dep;
4113 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
4114 sd_add_dep (new_dep, false);
4119 /* Generates recovery code for BEGIN speculative INSN. */
4120 static void
4121 begin_speculative_block (rtx insn)
4123 if (TODO_SPEC (insn) & BEGIN_DATA)
4124 nr_begin_data++;
4125 if (TODO_SPEC (insn) & BEGIN_CONTROL)
4126 nr_begin_control++;
4128 create_check_block_twin (insn, false);
4130 TODO_SPEC (insn) &= ~BEGIN_SPEC;
4133 static void haifa_init_insn (rtx);
4135 /* Generates recovery code for BE_IN speculative INSN. */
4136 static void
4137 add_to_speculative_block (rtx insn)
4139 ds_t ts;
4140 sd_iterator_def sd_it;
4141 dep_t dep;
4142 rtx twins = NULL;
4143 rtx_vec_t priorities_roots;
4145 ts = TODO_SPEC (insn);
4146 gcc_assert (!(ts & ~BE_IN_SPEC));
4148 if (ts & BE_IN_DATA)
4149 nr_be_in_data++;
4150 if (ts & BE_IN_CONTROL)
4151 nr_be_in_control++;
4153 TODO_SPEC (insn) &= ~BE_IN_SPEC;
4154 gcc_assert (!TODO_SPEC (insn));
4156 DONE_SPEC (insn) |= ts;
4158 /* First we convert all simple checks to branchy. */
4159 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4160 sd_iterator_cond (&sd_it, &dep);)
4162 rtx check = DEP_PRO (dep);
4164 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
4166 create_check_block_twin (check, true);
4168 /* Restart search. */
4169 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4171 else
4172 /* Continue search. */
4173 sd_iterator_next (&sd_it);
4176 priorities_roots = NULL;
4177 clear_priorities (insn, &priorities_roots);
4179 while (1)
4181 rtx check, twin;
4182 basic_block rec;
4184 /* Get the first backward dependency of INSN. */
4185 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4186 if (!sd_iterator_cond (&sd_it, &dep))
4187 /* INSN has no backward dependencies left. */
4188 break;
4190 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
4191 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
4192 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4194 check = DEP_PRO (dep);
4196 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
4197 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
4199 rec = BLOCK_FOR_INSN (check);
4201 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
4202 haifa_init_insn (twin);
4204 sd_copy_back_deps (twin, insn, true);
4206 if (sched_verbose && spec_info->dump)
4207 /* INSN_BB (insn) isn't determined for twin insns yet.
4208 So we can't use current_sched_info->print_insn. */
4209 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4210 INSN_UID (twin), rec->index);
4212 twins = alloc_INSN_LIST (twin, twins);
4214 /* Add dependences between TWIN and all appropriate
4215 instructions from REC. */
4216 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
4218 rtx pro = DEP_PRO (dep);
4220 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
4222 /* INSN might have dependencies from the instructions from
4223 several recovery blocks. At this iteration we process those
4224 producers that reside in REC. */
4225 if (BLOCK_FOR_INSN (pro) == rec)
4227 dep_def _new_dep, *new_dep = &_new_dep;
4229 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
4230 sd_add_dep (new_dep, false);
4234 process_insn_forw_deps_be_in_spec (insn, twin, ts);
4236 /* Remove all dependencies between INSN and insns in REC. */
4237 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4238 sd_iterator_cond (&sd_it, &dep);)
4240 rtx pro = DEP_PRO (dep);
4242 if (BLOCK_FOR_INSN (pro) == rec)
4243 sd_delete_dep (sd_it);
4244 else
4245 sd_iterator_next (&sd_it);
4249 /* We couldn't have added the dependencies between INSN and TWINS earlier
4250 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
4251 while (twins)
4253 rtx twin;
4255 twin = XEXP (twins, 0);
4258 dep_def _new_dep, *new_dep = &_new_dep;
4260 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4261 sd_add_dep (new_dep, false);
4264 twin = XEXP (twins, 1);
4265 free_INSN_LIST_node (twins);
4266 twins = twin;
4269 calc_priorities (priorities_roots);
4270 VEC_free (rtx, heap, priorities_roots);
4273 /* Extends and fills with zeros (only the new part) array pointed to by P. */
4274 void *
4275 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
4277 gcc_assert (new_nmemb >= old_nmemb);
4278 p = XRESIZEVAR (void, p, new_nmemb * size);
4279 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
4280 return p;
4283 /* Helper function.
4284 Find fallthru edge from PRED. */
4285 edge
4286 find_fallthru_edge (basic_block pred)
4288 edge e;
4289 edge_iterator ei;
4290 basic_block succ;
4292 succ = pred->next_bb;
4293 gcc_assert (succ->prev_bb == pred);
4295 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
4297 FOR_EACH_EDGE (e, ei, pred->succs)
4298 if (e->flags & EDGE_FALLTHRU)
4300 gcc_assert (e->dest == succ);
4301 return e;
4304 else
4306 FOR_EACH_EDGE (e, ei, succ->preds)
4307 if (e->flags & EDGE_FALLTHRU)
4309 gcc_assert (e->src == pred);
4310 return e;
4314 return NULL;
4317 /* Extend per basic block data structures. */
4318 static void
4319 sched_extend_bb (void)
4321 rtx insn;
4323 /* The following is done to keep current_sched_info->next_tail non null. */
4324 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4325 if (NEXT_INSN (insn) == 0
4326 || (!NOTE_P (insn)
4327 && !LABEL_P (insn)
4328 /* Don't emit a NOTE if it would end up before a BARRIER. */
4329 && !BARRIER_P (NEXT_INSN (insn))))
4331 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
4332 /* Make insn appear outside BB. */
4333 set_block_for_insn (note, NULL);
4334 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4338 /* Init per basic block data structures. */
4339 void
4340 sched_init_bbs (void)
4342 sched_extend_bb ();
4345 /* Initialize BEFORE_RECOVERY variable. */
4346 static void
4347 init_before_recovery (basic_block *before_recovery_ptr)
4349 basic_block last;
4350 edge e;
4352 last = EXIT_BLOCK_PTR->prev_bb;
4353 e = find_fallthru_edge (last);
4355 if (e)
4357 /* We create two basic blocks:
4358 1. Single instruction block is inserted right after E->SRC
4359 and has jump to
4360 2. Empty block right before EXIT_BLOCK.
4361 Between these two blocks recovery blocks will be emitted. */
4363 basic_block single, empty;
4364 rtx x, label;
4366 /* If the fallthrough edge to exit we've found is from the block we've
4367 created before, don't do anything more. */
4368 if (last == after_recovery)
4369 return;
4371 adding_bb_to_current_region_p = false;
4373 single = sched_create_empty_bb (last);
4374 empty = sched_create_empty_bb (single);
4376 /* Add new blocks to the root loop. */
4377 if (current_loops != NULL)
4379 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
4380 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
4383 single->count = last->count;
4384 empty->count = last->count;
4385 single->frequency = last->frequency;
4386 empty->frequency = last->frequency;
4387 BB_COPY_PARTITION (single, last);
4388 BB_COPY_PARTITION (empty, last);
4390 redirect_edge_succ (e, single);
4391 make_single_succ_edge (single, empty, 0);
4392 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
4393 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
4395 label = block_label (empty);
4396 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
4397 JUMP_LABEL (x) = label;
4398 LABEL_NUSES (label)++;
4399 haifa_init_insn (x);
4401 emit_barrier_after (x);
4403 sched_init_only_bb (empty, NULL);
4404 sched_init_only_bb (single, NULL);
4405 sched_extend_bb ();
4407 adding_bb_to_current_region_p = true;
4408 before_recovery = single;
4409 after_recovery = empty;
4411 if (before_recovery_ptr)
4412 *before_recovery_ptr = before_recovery;
4414 if (sched_verbose >= 2 && spec_info->dump)
4415 fprintf (spec_info->dump,
4416 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
4417 last->index, single->index, empty->index);
4419 else
4420 before_recovery = last;
4423 /* Returns new recovery block. */
4424 basic_block
4425 sched_create_recovery_block (basic_block *before_recovery_ptr)
4427 rtx label;
4428 rtx barrier;
4429 basic_block rec;
4431 haifa_recovery_bb_recently_added_p = true;
4432 haifa_recovery_bb_ever_added_p = true;
4434 init_before_recovery (before_recovery_ptr);
4436 barrier = get_last_bb_insn (before_recovery);
4437 gcc_assert (BARRIER_P (barrier));
4439 label = emit_label_after (gen_label_rtx (), barrier);
4441 rec = create_basic_block (label, label, before_recovery);
4443 /* A recovery block always ends with an unconditional jump. */
4444 emit_barrier_after (BB_END (rec));
4446 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
4447 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
4449 if (sched_verbose && spec_info->dump)
4450 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
4451 rec->index);
4453 return rec;
4456 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
4457 and emit necessary jumps. */
4458 void
4459 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
4460 basic_block second_bb)
4462 rtx label;
4463 rtx jump;
4464 int edge_flags;
4466 /* This is fixing of incoming edge. */
4467 /* ??? Which other flags should be specified? */
4468 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
4469 /* Partition type is the same, if it is "unpartitioned". */
4470 edge_flags = EDGE_CROSSING;
4471 else
4472 edge_flags = 0;
4474 make_edge (first_bb, rec, edge_flags);
4475 label = block_label (second_bb);
4476 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
4477 JUMP_LABEL (jump) = label;
4478 LABEL_NUSES (label)++;
4480 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
4481 /* Partition type is the same, if it is "unpartitioned". */
4483 /* Rewritten from cfgrtl.c. */
4484 if (flag_reorder_blocks_and_partition
4485 && targetm.have_named_sections)
4487 /* We don't need the same note for the check because
4488 any_condjump_p (check) == true. */
4489 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
4491 edge_flags = EDGE_CROSSING;
4493 else
4494 edge_flags = 0;
4496 make_single_succ_edge (rec, second_bb, edge_flags);
4499 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
4500 INSN is a simple check, that should be converted to branchy one. */
4501 static void
4502 create_check_block_twin (rtx insn, bool mutate_p)
4504 basic_block rec;
4505 rtx label, check, twin;
4506 ds_t fs;
4507 sd_iterator_def sd_it;
4508 dep_t dep;
4509 dep_def _new_dep, *new_dep = &_new_dep;
4510 ds_t todo_spec;
4512 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
4514 if (!mutate_p)
4515 todo_spec = TODO_SPEC (insn);
4516 else
4518 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
4519 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
4521 todo_spec = CHECK_SPEC (insn);
4524 todo_spec &= SPECULATIVE;
4526 /* Create recovery block. */
4527 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
4529 rec = sched_create_recovery_block (NULL);
4530 label = BB_HEAD (rec);
4532 else
4534 rec = EXIT_BLOCK_PTR;
4535 label = NULL_RTX;
4538 /* Emit CHECK. */
4539 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
4541 if (rec != EXIT_BLOCK_PTR)
4543 /* To have mem_reg alive at the beginning of second_bb,
4544 we emit check BEFORE insn, so insn after splitting
4545 insn will be at the beginning of second_bb, which will
4546 provide us with the correct life information. */
4547 check = emit_jump_insn_before (check, insn);
4548 JUMP_LABEL (check) = label;
4549 LABEL_NUSES (label)++;
4551 else
4552 check = emit_insn_before (check, insn);
4554 /* Extend data structures. */
4555 haifa_init_insn (check);
4557 /* CHECK is being added to current region. Extend ready list. */
4558 gcc_assert (sched_ready_n_insns != -1);
4559 sched_extend_ready_list (sched_ready_n_insns + 1);
4561 if (current_sched_info->add_remove_insn)
4562 current_sched_info->add_remove_insn (insn, 0);
4564 RECOVERY_BLOCK (check) = rec;
4566 if (sched_verbose && spec_info->dump)
4567 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
4568 (*current_sched_info->print_insn) (check, 0));
4570 gcc_assert (ORIG_PAT (insn));
4572 /* Initialize TWIN (twin is a duplicate of original instruction
4573 in the recovery block). */
4574 if (rec != EXIT_BLOCK_PTR)
4576 sd_iterator_def sd_it;
4577 dep_t dep;
4579 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
4580 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
4582 struct _dep _dep2, *dep2 = &_dep2;
4584 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
4586 sd_add_dep (dep2, true);
4589 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
4590 haifa_init_insn (twin);
4592 if (sched_verbose && spec_info->dump)
4593 /* INSN_BB (insn) isn't determined for twin insns yet.
4594 So we can't use current_sched_info->print_insn. */
4595 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4596 INSN_UID (twin), rec->index);
4598 else
4600 ORIG_PAT (check) = ORIG_PAT (insn);
4601 HAS_INTERNAL_DEP (check) = 1;
4602 twin = check;
4603 /* ??? We probably should change all OUTPUT dependencies to
4604 (TRUE | OUTPUT). */
4607 /* Copy all resolved back dependencies of INSN to TWIN. This will
4608 provide correct value for INSN_TICK (TWIN). */
4609 sd_copy_back_deps (twin, insn, true);
4611 if (rec != EXIT_BLOCK_PTR)
4612 /* In case of branchy check, fix CFG. */
4614 basic_block first_bb, second_bb;
4615 rtx jump;
4617 first_bb = BLOCK_FOR_INSN (check);
4618 second_bb = sched_split_block (first_bb, check);
4620 sched_create_recovery_edges (first_bb, rec, second_bb);
4622 sched_init_only_bb (second_bb, first_bb);
4623 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
4625 jump = BB_END (rec);
4626 haifa_init_insn (jump);
4629 /* Move backward dependences from INSN to CHECK and
4630 move forward dependences from INSN to TWIN. */
4632 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4633 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4635 rtx pro = DEP_PRO (dep);
4636 ds_t ds;
4638 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4639 check --TRUE--> producer ??? or ANTI ???
4640 twin --TRUE--> producer
4641 twin --ANTI--> check
4643 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4644 check --ANTI--> producer
4645 twin --ANTI--> producer
4646 twin --ANTI--> check
4648 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4649 check ~~TRUE~~> producer
4650 twin ~~TRUE~~> producer
4651 twin --ANTI--> check */
4653 ds = DEP_STATUS (dep);
4655 if (ds & BEGIN_SPEC)
4657 gcc_assert (!mutate_p);
4658 ds &= ~BEGIN_SPEC;
4661 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
4662 sd_add_dep (new_dep, false);
4664 if (rec != EXIT_BLOCK_PTR)
4666 DEP_CON (new_dep) = twin;
4667 sd_add_dep (new_dep, false);
4671 /* Second, remove backward dependencies of INSN. */
4672 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4673 sd_iterator_cond (&sd_it, &dep);)
4675 if ((DEP_STATUS (dep) & BEGIN_SPEC)
4676 || mutate_p)
4677 /* We can delete this dep because we overcome it with
4678 BEGIN_SPECULATION. */
4679 sd_delete_dep (sd_it);
4680 else
4681 sd_iterator_next (&sd_it);
4684 /* Future Speculations. Determine what BE_IN speculations will be like. */
4685 fs = 0;
4687 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4688 here. */
4690 gcc_assert (!DONE_SPEC (insn));
4692 if (!mutate_p)
4694 ds_t ts = TODO_SPEC (insn);
4696 DONE_SPEC (insn) = ts & BEGIN_SPEC;
4697 CHECK_SPEC (check) = ts & BEGIN_SPEC;
4699 /* Luckiness of future speculations solely depends upon initial
4700 BEGIN speculation. */
4701 if (ts & BEGIN_DATA)
4702 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
4703 if (ts & BEGIN_CONTROL)
4704 fs = set_dep_weak (fs, BE_IN_CONTROL,
4705 get_dep_weak (ts, BEGIN_CONTROL));
4707 else
4708 CHECK_SPEC (check) = CHECK_SPEC (insn);
4710 /* Future speculations: call the helper. */
4711 process_insn_forw_deps_be_in_spec (insn, twin, fs);
4713 if (rec != EXIT_BLOCK_PTR)
4715 /* Which types of dependencies should we use here is,
4716 generally, machine-dependent question... But, for now,
4717 it is not. */
4719 if (!mutate_p)
4721 init_dep (new_dep, insn, check, REG_DEP_TRUE);
4722 sd_add_dep (new_dep, false);
4724 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4725 sd_add_dep (new_dep, false);
4727 else
4729 if (spec_info->dump)
4730 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
4731 (*current_sched_info->print_insn) (insn, 0));
4733 /* Remove all dependencies of the INSN. */
4735 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
4736 | SD_LIST_BACK
4737 | SD_LIST_RES_BACK));
4738 while (sd_iterator_cond (&sd_it, &dep))
4739 sd_delete_dep (sd_it);
4742 /* If former check (INSN) already was moved to the ready (or queue)
4743 list, add new check (CHECK) there too. */
4744 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
4745 try_ready (check);
4747 /* Remove old check from instruction stream and free its
4748 data. */
4749 sched_remove_insn (insn);
4752 init_dep (new_dep, check, twin, REG_DEP_ANTI);
4753 sd_add_dep (new_dep, false);
4755 else
4757 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
4758 sd_add_dep (new_dep, false);
4761 if (!mutate_p)
4762 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4763 because it'll be done later in add_to_speculative_block. */
4765 rtx_vec_t priorities_roots = NULL;
4767 clear_priorities (twin, &priorities_roots);
4768 calc_priorities (priorities_roots);
4769 VEC_free (rtx, heap, priorities_roots);
4773 /* Removes dependency between instructions in the recovery block REC
4774 and usual region instructions. It keeps inner dependences so it
4775 won't be necessary to recompute them. */
4776 static void
4777 fix_recovery_deps (basic_block rec)
4779 rtx note, insn, jump, ready_list = 0;
4780 bitmap_head in_ready;
4781 rtx link;
4783 bitmap_initialize (&in_ready, 0);
4785 /* NOTE - a basic block note. */
4786 note = NEXT_INSN (BB_HEAD (rec));
4787 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4788 insn = BB_END (rec);
4789 gcc_assert (JUMP_P (insn));
4790 insn = PREV_INSN (insn);
4794 sd_iterator_def sd_it;
4795 dep_t dep;
4797 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4798 sd_iterator_cond (&sd_it, &dep);)
4800 rtx consumer = DEP_CON (dep);
4802 if (BLOCK_FOR_INSN (consumer) != rec)
4804 sd_delete_dep (sd_it);
4806 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
4808 ready_list = alloc_INSN_LIST (consumer, ready_list);
4809 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
4812 else
4814 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4816 sd_iterator_next (&sd_it);
4820 insn = PREV_INSN (insn);
4822 while (insn != note);
4824 bitmap_clear (&in_ready);
4826 /* Try to add instructions to the ready or queue list. */
4827 for (link = ready_list; link; link = XEXP (link, 1))
4828 try_ready (XEXP (link, 0));
4829 free_INSN_LIST_list (&ready_list);
4831 /* Fixing jump's dependences. */
4832 insn = BB_HEAD (rec);
4833 jump = BB_END (rec);
4835 gcc_assert (LABEL_P (insn));
4836 insn = NEXT_INSN (insn);
4838 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4839 add_jump_dependencies (insn, jump);
4842 /* Change pattern of INSN to NEW_PAT. */
4843 void
4844 sched_change_pattern (rtx insn, rtx new_pat)
4846 int t;
4848 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4849 gcc_assert (t);
4850 dfa_clear_single_insn_cache (insn);
4853 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4854 instruction data. */
4855 static void
4856 haifa_change_pattern (rtx insn, rtx new_pat)
4858 sched_change_pattern (insn, new_pat);
4860 /* Invalidate INSN_COST, so it'll be recalculated. */
4861 INSN_COST (insn) = -1;
4862 /* Invalidate INSN_TICK, so it'll be recalculated. */
4863 INSN_TICK (insn) = INVALID_TICK;
4866 /* -1 - can't speculate,
4867 0 - for speculation with REQUEST mode it is OK to use
4868 current instruction pattern,
4869 1 - need to change pattern for *NEW_PAT to be speculative. */
4871 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4873 gcc_assert (current_sched_info->flags & DO_SPECULATION
4874 && (request & SPECULATIVE)
4875 && sched_insn_is_legitimate_for_speculation_p (insn, request));
4877 if ((request & spec_info->mask) != request)
4878 return -1;
4880 if (request & BE_IN_SPEC
4881 && !(request & BEGIN_SPEC))
4882 return 0;
4884 return targetm.sched.speculate_insn (insn, request, new_pat);
4887 static int
4888 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4890 gcc_assert (sched_deps_info->generate_spec_deps
4891 && !IS_SPECULATION_CHECK_P (insn));
4893 if (HAS_INTERNAL_DEP (insn)
4894 || SCHED_GROUP_P (insn))
4895 return -1;
4897 return sched_speculate_insn (insn, request, new_pat);
4900 /* Print some information about block BB, which starts with HEAD and
4901 ends with TAIL, before scheduling it.
4902 I is zero, if scheduler is about to start with the fresh ebb. */
4903 static void
4904 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4906 if (!i)
4907 fprintf (sched_dump,
4908 ";; ======================================================\n");
4909 else
4910 fprintf (sched_dump,
4911 ";; =====================ADVANCING TO=====================\n");
4912 fprintf (sched_dump,
4913 ";; -- basic block %d from %d to %d -- %s reload\n",
4914 bb->index, INSN_UID (head), INSN_UID (tail),
4915 (reload_completed ? "after" : "before"));
4916 fprintf (sched_dump,
4917 ";; ======================================================\n");
4918 fprintf (sched_dump, "\n");
4921 /* Unlink basic block notes and labels and saves them, so they
4922 can be easily restored. We unlink basic block notes in EBB to
4923 provide back-compatibility with the previous code, as target backends
4924 assume, that there'll be only instructions between
4925 current_sched_info->{head and tail}. We restore these notes as soon
4926 as we can.
4927 FIRST (LAST) is the first (last) basic block in the ebb.
4928 NB: In usual case (FIRST == LAST) nothing is really done. */
4929 void
4930 unlink_bb_notes (basic_block first, basic_block last)
4932 /* We DON'T unlink basic block notes of the first block in the ebb. */
4933 if (first == last)
4934 return;
4936 bb_header = XNEWVEC (rtx, last_basic_block);
4938 /* Make a sentinel. */
4939 if (last->next_bb != EXIT_BLOCK_PTR)
4940 bb_header[last->next_bb->index] = 0;
4942 first = first->next_bb;
4945 rtx prev, label, note, next;
4947 label = BB_HEAD (last);
4948 if (LABEL_P (label))
4949 note = NEXT_INSN (label);
4950 else
4951 note = label;
4952 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4954 prev = PREV_INSN (label);
4955 next = NEXT_INSN (note);
4956 gcc_assert (prev && next);
4958 NEXT_INSN (prev) = next;
4959 PREV_INSN (next) = prev;
4961 bb_header[last->index] = label;
4963 if (last == first)
4964 break;
4966 last = last->prev_bb;
4968 while (1);
4971 /* Restore basic block notes.
4972 FIRST is the first basic block in the ebb. */
4973 static void
4974 restore_bb_notes (basic_block first)
4976 if (!bb_header)
4977 return;
4979 /* We DON'T unlink basic block notes of the first block in the ebb. */
4980 first = first->next_bb;
4981 /* Remember: FIRST is actually a second basic block in the ebb. */
4983 while (first != EXIT_BLOCK_PTR
4984 && bb_header[first->index])
4986 rtx prev, label, note, next;
4988 label = bb_header[first->index];
4989 prev = PREV_INSN (label);
4990 next = NEXT_INSN (prev);
4992 if (LABEL_P (label))
4993 note = NEXT_INSN (label);
4994 else
4995 note = label;
4996 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4998 bb_header[first->index] = 0;
5000 NEXT_INSN (prev) = label;
5001 NEXT_INSN (note) = next;
5002 PREV_INSN (next) = note;
5004 first = first->next_bb;
5007 free (bb_header);
5008 bb_header = 0;
5011 /* Helper function.
5012 Fix CFG after both in- and inter-block movement of
5013 control_flow_insn_p JUMP. */
5014 static void
5015 fix_jump_move (rtx jump)
5017 basic_block bb, jump_bb, jump_bb_next;
5019 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5020 jump_bb = BLOCK_FOR_INSN (jump);
5021 jump_bb_next = jump_bb->next_bb;
5023 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
5024 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
5026 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
5027 /* if jump_bb_next is not empty. */
5028 BB_END (jump_bb) = BB_END (jump_bb_next);
5030 if (BB_END (bb) != PREV_INSN (jump))
5031 /* Then there are instruction after jump that should be placed
5032 to jump_bb_next. */
5033 BB_END (jump_bb_next) = BB_END (bb);
5034 else
5035 /* Otherwise jump_bb_next is empty. */
5036 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
5038 /* To make assertion in move_insn happy. */
5039 BB_END (bb) = PREV_INSN (jump);
5041 update_bb_for_insn (jump_bb_next);
5044 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
5045 static void
5046 move_block_after_check (rtx jump)
5048 basic_block bb, jump_bb, jump_bb_next;
5049 VEC(edge,gc) *t;
5051 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5052 jump_bb = BLOCK_FOR_INSN (jump);
5053 jump_bb_next = jump_bb->next_bb;
5055 update_bb_for_insn (jump_bb);
5057 gcc_assert (IS_SPECULATION_CHECK_P (jump)
5058 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
5060 unlink_block (jump_bb_next);
5061 link_block (jump_bb_next, bb);
5063 t = bb->succs;
5064 bb->succs = 0;
5065 move_succs (&(jump_bb->succs), bb);
5066 move_succs (&(jump_bb_next->succs), jump_bb);
5067 move_succs (&t, jump_bb_next);
5069 df_mark_solutions_dirty ();
5071 common_sched_info->fix_recovery_cfg
5072 (bb->index, jump_bb->index, jump_bb_next->index);
5075 /* Helper function for move_block_after_check.
5076 This functions attaches edge vector pointed to by SUCCSP to
5077 block TO. */
5078 static void
5079 move_succs (VEC(edge,gc) **succsp, basic_block to)
5081 edge e;
5082 edge_iterator ei;
5084 gcc_assert (to->succs == 0);
5086 to->succs = *succsp;
5088 FOR_EACH_EDGE (e, ei, to->succs)
5089 e->src = to;
5091 *succsp = 0;
5094 /* Remove INSN from the instruction stream.
5095 INSN should have any dependencies. */
5096 static void
5097 sched_remove_insn (rtx insn)
5099 sd_finish_insn (insn);
5101 change_queue_index (insn, QUEUE_NOWHERE);
5102 current_sched_info->add_remove_insn (insn, 1);
5103 remove_insn (insn);
5106 /* Clear priorities of all instructions, that are forward dependent on INSN.
5107 Store in vector pointed to by ROOTS_PTR insns on which priority () should
5108 be invoked to initialize all cleared priorities. */
5109 static void
5110 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
5112 sd_iterator_def sd_it;
5113 dep_t dep;
5114 bool insn_is_root_p = true;
5116 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
5118 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
5120 rtx pro = DEP_PRO (dep);
5122 if (INSN_PRIORITY_STATUS (pro) >= 0
5123 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
5125 /* If DEP doesn't contribute to priority then INSN itself should
5126 be added to priority roots. */
5127 if (contributes_to_priority_p (dep))
5128 insn_is_root_p = false;
5130 INSN_PRIORITY_STATUS (pro) = -1;
5131 clear_priorities (pro, roots_ptr);
5135 if (insn_is_root_p)
5136 VEC_safe_push (rtx, heap, *roots_ptr, insn);
5139 /* Recompute priorities of instructions, whose priorities might have been
5140 changed. ROOTS is a vector of instructions whose priority computation will
5141 trigger initialization of all cleared priorities. */
5142 static void
5143 calc_priorities (rtx_vec_t roots)
5145 int i;
5146 rtx insn;
5148 for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
5149 priority (insn);
5153 /* Add dependences between JUMP and other instructions in the recovery
5154 block. INSN is the first insn the recovery block. */
5155 static void
5156 add_jump_dependencies (rtx insn, rtx jump)
5160 insn = NEXT_INSN (insn);
5161 if (insn == jump)
5162 break;
5164 if (dep_list_size (insn) == 0)
5166 dep_def _new_dep, *new_dep = &_new_dep;
5168 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
5169 sd_add_dep (new_dep, false);
5172 while (1);
5174 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
5177 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
5179 bb_note (basic_block bb)
5181 rtx note;
5183 note = BB_HEAD (bb);
5184 if (LABEL_P (note))
5185 note = NEXT_INSN (note);
5187 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5188 return note;
5191 #ifdef ENABLE_CHECKING
5192 /* Helper function for check_cfg.
5193 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
5194 its flags. */
5195 static int
5196 has_edge_p (VEC(edge,gc) *el, int type)
5198 edge e;
5199 edge_iterator ei;
5201 FOR_EACH_EDGE (e, ei, el)
5202 if (e->flags & type)
5203 return 1;
5204 return 0;
5207 /* Search back, starting at INSN, for an insn that is not a
5208 NOTE_INSN_VAR_LOCATION. Don't search beyond HEAD, and return it if
5209 no such insn can be found. */
5210 static inline rtx
5211 prev_non_location_insn (rtx insn, rtx head)
5213 while (insn != head && NOTE_P (insn)
5214 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
5215 insn = PREV_INSN (insn);
5217 return insn;
5220 /* Check few properties of CFG between HEAD and TAIL.
5221 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
5222 instruction stream. */
5223 static void
5224 check_cfg (rtx head, rtx tail)
5226 rtx next_tail;
5227 basic_block bb = 0;
5228 int not_first = 0, not_last;
5230 if (head == NULL)
5231 head = get_insns ();
5232 if (tail == NULL)
5233 tail = get_last_insn ();
5234 next_tail = NEXT_INSN (tail);
5238 not_last = head != tail;
5240 if (not_first)
5241 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
5242 if (not_last)
5243 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
5245 if (LABEL_P (head)
5246 || (NOTE_INSN_BASIC_BLOCK_P (head)
5247 && (!not_first
5248 || (not_first && !LABEL_P (PREV_INSN (head))))))
5250 gcc_assert (bb == 0);
5251 bb = BLOCK_FOR_INSN (head);
5252 if (bb != 0)
5253 gcc_assert (BB_HEAD (bb) == head);
5254 else
5255 /* This is the case of jump table. See inside_basic_block_p (). */
5256 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
5259 if (bb == 0)
5261 gcc_assert (!inside_basic_block_p (head));
5262 head = NEXT_INSN (head);
5264 else
5266 gcc_assert (inside_basic_block_p (head)
5267 || NOTE_P (head));
5268 gcc_assert (BLOCK_FOR_INSN (head) == bb);
5270 if (LABEL_P (head))
5272 head = NEXT_INSN (head);
5273 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
5275 else
5277 if (control_flow_insn_p (head))
5279 gcc_assert (prev_non_location_insn (BB_END (bb), head)
5280 == head);
5282 if (any_uncondjump_p (head))
5283 gcc_assert (EDGE_COUNT (bb->succs) == 1
5284 && BARRIER_P (NEXT_INSN (head)));
5285 else if (any_condjump_p (head))
5286 gcc_assert (/* Usual case. */
5287 (EDGE_COUNT (bb->succs) > 1
5288 && !BARRIER_P (NEXT_INSN (head)))
5289 /* Or jump to the next instruction. */
5290 || (EDGE_COUNT (bb->succs) == 1
5291 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
5292 == JUMP_LABEL (head))));
5294 if (BB_END (bb) == head)
5296 if (EDGE_COUNT (bb->succs) > 1)
5297 gcc_assert (control_flow_insn_p (prev_non_location_insn
5298 (head, BB_HEAD (bb)))
5299 || has_edge_p (bb->succs, EDGE_COMPLEX));
5300 bb = 0;
5303 head = NEXT_INSN (head);
5307 not_first = 1;
5309 while (head != next_tail);
5311 gcc_assert (bb == 0);
5314 #endif /* ENABLE_CHECKING */
5316 /* Extend per basic block data structures. */
5317 static void
5318 extend_bb (void)
5320 if (sched_scan_info->extend_bb)
5321 sched_scan_info->extend_bb ();
5324 /* Init data for BB. */
5325 static void
5326 init_bb (basic_block bb)
5328 if (sched_scan_info->init_bb)
5329 sched_scan_info->init_bb (bb);
5332 /* Extend per insn data structures. */
5333 static void
5334 extend_insn (void)
5336 if (sched_scan_info->extend_insn)
5337 sched_scan_info->extend_insn ();
5340 /* Init data structures for INSN. */
5341 static void
5342 init_insn (rtx insn)
5344 if (sched_scan_info->init_insn)
5345 sched_scan_info->init_insn (insn);
5348 /* Init all insns in BB. */
5349 static void
5350 init_insns_in_bb (basic_block bb)
5352 rtx insn;
5354 FOR_BB_INSNS (bb, insn)
5355 init_insn (insn);
5358 /* A driver function to add a set of basic blocks (BBS),
5359 a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
5360 to the scheduling region. */
5361 void
5362 sched_scan (const struct sched_scan_info_def *ssi,
5363 bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5365 sched_scan_info = ssi;
5367 if (bbs != NULL || bb != NULL)
5369 extend_bb ();
5371 if (bbs != NULL)
5373 unsigned i;
5374 basic_block x;
5376 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
5377 init_bb (x);
5380 if (bb != NULL)
5381 init_bb (bb);
5384 extend_insn ();
5386 if (bbs != NULL)
5388 unsigned i;
5389 basic_block x;
5391 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
5392 init_insns_in_bb (x);
5395 if (bb != NULL)
5396 init_insns_in_bb (bb);
5398 if (insns != NULL)
5400 unsigned i;
5401 rtx x;
5403 for (i = 0; VEC_iterate (rtx, insns, i, x); i++)
5404 init_insn (x);
5407 if (insn != NULL)
5408 init_insn (insn);
5412 /* Extend data structures for logical insn UID. */
5413 static void
5414 luids_extend_insn (void)
5416 int new_luids_max_uid = get_max_uid () + 1;
5418 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
5421 /* Initialize LUID for INSN. */
5422 static void
5423 luids_init_insn (rtx insn)
5425 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
5426 int luid;
5428 if (i >= 0)
5430 luid = sched_max_luid;
5431 sched_max_luid += i;
5433 else
5434 luid = -1;
5436 SET_INSN_LUID (insn, luid);
5439 /* Initialize luids for BBS, BB, INSNS and INSN.
5440 The hook common_sched_info->luid_for_non_insn () is used to determine
5441 if notes, labels, etc. need luids. */
5442 void
5443 sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5445 const struct sched_scan_info_def ssi =
5447 NULL, /* extend_bb */
5448 NULL, /* init_bb */
5449 luids_extend_insn, /* extend_insn */
5450 luids_init_insn /* init_insn */
5453 sched_scan (&ssi, bbs, bb, insns, insn);
5456 /* Free LUIDs. */
5457 void
5458 sched_finish_luids (void)
5460 VEC_free (int, heap, sched_luids);
5461 sched_max_luid = 1;
5464 /* Return logical uid of INSN. Helpful while debugging. */
5466 insn_luid (rtx insn)
5468 return INSN_LUID (insn);
5471 /* Extend per insn data in the target. */
5472 void
5473 sched_extend_target (void)
5475 if (targetm.sched.h_i_d_extended)
5476 targetm.sched.h_i_d_extended ();
5479 /* Extend global scheduler structures (those, that live across calls to
5480 schedule_block) to include information about just emitted INSN. */
5481 static void
5482 extend_h_i_d (void)
5484 int reserve = (get_max_uid () + 1
5485 - VEC_length (haifa_insn_data_def, h_i_d));
5486 if (reserve > 0
5487 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
5489 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
5490 3 * get_max_uid () / 2);
5491 sched_extend_target ();
5495 /* Initialize h_i_d entry of the INSN with default values.
5496 Values, that are not explicitly initialized here, hold zero. */
5497 static void
5498 init_h_i_d (rtx insn)
5500 if (INSN_LUID (insn) > 0)
5502 INSN_COST (insn) = -1;
5503 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
5504 INSN_TICK (insn) = INVALID_TICK;
5505 INTER_TICK (insn) = INVALID_TICK;
5506 TODO_SPEC (insn) = HARD_DEP;
5510 /* Initialize haifa_insn_data for BBS, BB, INSNS and INSN. */
5511 void
5512 haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5514 const struct sched_scan_info_def ssi =
5516 NULL, /* extend_bb */
5517 NULL, /* init_bb */
5518 extend_h_i_d, /* extend_insn */
5519 init_h_i_d /* init_insn */
5522 sched_scan (&ssi, bbs, bb, insns, insn);
5525 /* Finalize haifa_insn_data. */
5526 void
5527 haifa_finish_h_i_d (void)
5529 int i;
5530 haifa_insn_data_t data;
5531 struct reg_use_data *use, *next;
5533 for (i = 0; VEC_iterate (haifa_insn_data_def, h_i_d, i, data); i++)
5535 if (data->reg_pressure != NULL)
5536 free (data->reg_pressure);
5537 for (use = data->reg_use_list; use != NULL; use = next)
5539 next = use->next_insn_use;
5540 free (use);
5543 VEC_free (haifa_insn_data_def, heap, h_i_d);
5546 /* Init data for the new insn INSN. */
5547 static void
5548 haifa_init_insn (rtx insn)
5550 gcc_assert (insn != NULL);
5552 sched_init_luids (NULL, NULL, NULL, insn);
5553 sched_extend_target ();
5554 sched_deps_init (false);
5555 haifa_init_h_i_d (NULL, NULL, NULL, insn);
5557 if (adding_bb_to_current_region_p)
5559 sd_init_insn (insn);
5561 /* Extend dependency caches by one element. */
5562 extend_dependency_caches (1, false);
5566 /* Init data for the new basic block BB which comes after AFTER. */
5567 static void
5568 haifa_init_only_bb (basic_block bb, basic_block after)
5570 gcc_assert (bb != NULL);
5572 sched_init_bbs ();
5574 if (common_sched_info->add_block)
5575 /* This changes only data structures of the front-end. */
5576 common_sched_info->add_block (bb, after);
5579 /* A generic version of sched_split_block (). */
5580 basic_block
5581 sched_split_block_1 (basic_block first_bb, rtx after)
5583 edge e;
5585 e = split_block (first_bb, after);
5586 gcc_assert (e->src == first_bb);
5588 /* sched_split_block emits note if *check == BB_END. Probably it
5589 is better to rip that note off. */
5591 return e->dest;
5594 /* A generic version of sched_create_empty_bb (). */
5595 basic_block
5596 sched_create_empty_bb_1 (basic_block after)
5598 return create_empty_bb (after);
5601 /* Insert PAT as an INSN into the schedule and update the necessary data
5602 structures to account for it. */
5604 sched_emit_insn (rtx pat)
5606 rtx insn = emit_insn_after (pat, last_scheduled_insn);
5607 last_scheduled_insn = insn;
5608 haifa_init_insn (insn);
5609 return insn;
5612 #endif /* INSN_SCHEDULING */