Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / function.c
blob88e036c0857ed1ecde9e67b6e372734919fae884
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 tree types_used_by_cur_var_decl = NULL;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
231 HOST_WIDE_INT
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
258 return FALSE;
261 /* Return stack slot alignment in bits for TYPE and MODE. */
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
266 unsigned int alignment;
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282 with machine mode MODE.
284 ALIGN controls the amount of alignment for the address of the slot:
285 0 means according to MODE,
286 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287 -2 means use BITS_PER_UNIT,
288 positive specifies alignment boundary in bits.
290 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
292 We do not round to stack_boundary here. */
295 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
296 int align,
297 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
299 rtx x, addr;
300 int bigend_correction = 0;
301 unsigned int alignment, alignment_in_bits;
302 int frame_off, frame_alignment, frame_phase;
304 if (align == 0)
306 alignment = get_stack_local_alignment (NULL, mode);
307 alignment /= BITS_PER_UNIT;
309 else if (align == -1)
311 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
312 size = CEIL_ROUND (size, alignment);
314 else if (align == -2)
315 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
316 else
317 alignment = align / BITS_PER_UNIT;
319 alignment_in_bits = alignment * BITS_PER_UNIT;
321 if (FRAME_GROWS_DOWNWARD)
322 frame_offset -= size;
324 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
325 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
327 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
328 alignment = alignment_in_bits / BITS_PER_UNIT;
331 if (SUPPORTS_STACK_ALIGNMENT)
333 if (crtl->stack_alignment_estimated < alignment_in_bits)
335 if (!crtl->stack_realign_processed)
336 crtl->stack_alignment_estimated = alignment_in_bits;
337 else
339 /* If stack is realigned and stack alignment value
340 hasn't been finalized, it is OK not to increase
341 stack_alignment_estimated. The bigger alignment
342 requirement is recorded in stack_alignment_needed
343 below. */
344 gcc_assert (!crtl->stack_realign_finalized);
345 if (!crtl->stack_realign_needed)
347 /* It is OK to reduce the alignment as long as the
348 requested size is 0 or the estimated stack
349 alignment >= mode alignment. */
350 gcc_assert (reduce_alignment_ok
351 || size == 0
352 || (crtl->stack_alignment_estimated
353 >= GET_MODE_ALIGNMENT (mode)));
354 alignment_in_bits = crtl->stack_alignment_estimated;
355 alignment = alignment_in_bits / BITS_PER_UNIT;
361 if (crtl->stack_alignment_needed < alignment_in_bits)
362 crtl->stack_alignment_needed = alignment_in_bits;
363 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
364 crtl->max_used_stack_slot_alignment = alignment_in_bits;
366 /* Calculate how many bytes the start of local variables is off from
367 stack alignment. */
368 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
369 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
370 frame_phase = frame_off ? frame_alignment - frame_off : 0;
372 /* Round the frame offset to the specified alignment. The default is
373 to always honor requests to align the stack but a port may choose to
374 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
375 if (STACK_ALIGNMENT_NEEDED
376 || mode != BLKmode
377 || size != 0)
379 /* We must be careful here, since FRAME_OFFSET might be negative and
380 division with a negative dividend isn't as well defined as we might
381 like. So we instead assume that ALIGNMENT is a power of two and
382 use logical operations which are unambiguous. */
383 if (FRAME_GROWS_DOWNWARD)
384 frame_offset
385 = (FLOOR_ROUND (frame_offset - frame_phase,
386 (unsigned HOST_WIDE_INT) alignment)
387 + frame_phase);
388 else
389 frame_offset
390 = (CEIL_ROUND (frame_offset - frame_phase,
391 (unsigned HOST_WIDE_INT) alignment)
392 + frame_phase);
395 /* On a big-endian machine, if we are allocating more space than we will use,
396 use the least significant bytes of those that are allocated. */
397 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
398 bigend_correction = size - GET_MODE_SIZE (mode);
400 /* If we have already instantiated virtual registers, return the actual
401 address relative to the frame pointer. */
402 if (virtuals_instantiated)
403 addr = plus_constant (frame_pointer_rtx,
404 trunc_int_for_mode
405 (frame_offset + bigend_correction
406 + STARTING_FRAME_OFFSET, Pmode));
407 else
408 addr = plus_constant (virtual_stack_vars_rtx,
409 trunc_int_for_mode
410 (frame_offset + bigend_correction,
411 Pmode));
413 if (!FRAME_GROWS_DOWNWARD)
414 frame_offset += size;
416 x = gen_rtx_MEM (mode, addr);
417 set_mem_align (x, alignment_in_bits);
418 MEM_NOTRAP_P (x) = 1;
420 stack_slot_list
421 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
423 if (frame_offset_overflow (frame_offset, current_function_decl))
424 frame_offset = 0;
426 return x;
429 /* Wrap up assign_stack_local_1 with last parameter as false. */
432 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
434 return assign_stack_local_1 (mode, size, align, false);
438 /* In order to evaluate some expressions, such as function calls returning
439 structures in memory, we need to temporarily allocate stack locations.
440 We record each allocated temporary in the following structure.
442 Associated with each temporary slot is a nesting level. When we pop up
443 one level, all temporaries associated with the previous level are freed.
444 Normally, all temporaries are freed after the execution of the statement
445 in which they were created. However, if we are inside a ({...}) grouping,
446 the result may be in a temporary and hence must be preserved. If the
447 result could be in a temporary, we preserve it if we can determine which
448 one it is in. If we cannot determine which temporary may contain the
449 result, all temporaries are preserved. A temporary is preserved by
450 pretending it was allocated at the previous nesting level.
452 Automatic variables are also assigned temporary slots, at the nesting
453 level where they are defined. They are marked a "kept" so that
454 free_temp_slots will not free them. */
456 struct GTY(()) temp_slot {
457 /* Points to next temporary slot. */
458 struct temp_slot *next;
459 /* Points to previous temporary slot. */
460 struct temp_slot *prev;
461 /* The rtx to used to reference the slot. */
462 rtx slot;
463 /* The size, in units, of the slot. */
464 HOST_WIDE_INT size;
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
469 tree type;
470 /* The alignment (in bits) of the slot. */
471 unsigned int align;
472 /* Nonzero if this temporary is currently in use. */
473 char in_use;
474 /* Nonzero if this temporary has its address taken. */
475 char addr_taken;
476 /* Nesting level at which this slot is being used. */
477 int level;
478 /* Nonzero if this should survive a call to free_temp_slots. */
479 int keep;
480 /* The offset of the slot from the frame_pointer, including extra space
481 for alignment. This info is for combine_temp_slots. */
482 HOST_WIDE_INT base_offset;
483 /* The size of the slot, including extra space for alignment. This
484 info is for combine_temp_slots. */
485 HOST_WIDE_INT full_size;
488 /* A table of addresses that represent a stack slot. The table is a mapping
489 from address RTXen to a temp slot. */
490 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
492 /* Entry for the above hash table. */
493 struct GTY(()) temp_slot_address_entry {
494 hashval_t hash;
495 rtx address;
496 struct temp_slot *temp_slot;
499 /* Removes temporary slot TEMP from LIST. */
501 static void
502 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
504 if (temp->next)
505 temp->next->prev = temp->prev;
506 if (temp->prev)
507 temp->prev->next = temp->next;
508 else
509 *list = temp->next;
511 temp->prev = temp->next = NULL;
514 /* Inserts temporary slot TEMP to LIST. */
516 static void
517 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
519 temp->next = *list;
520 if (*list)
521 (*list)->prev = temp;
522 temp->prev = NULL;
523 *list = temp;
526 /* Returns the list of used temp slots at LEVEL. */
528 static struct temp_slot **
529 temp_slots_at_level (int level)
531 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
532 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
534 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VEC_length (temp_slot_p, used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Compute the hash value for an address -> temp slot mapping.
570 The value is cached on the mapping entry. */
571 static hashval_t
572 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
574 int do_not_record = 0;
575 return hash_rtx (t->address, GET_MODE (t->address),
576 &do_not_record, NULL, false);
579 /* Return the hash value for an address -> temp slot mapping. */
580 static hashval_t
581 temp_slot_address_hash (const void *p)
583 const struct temp_slot_address_entry *t;
584 t = (const struct temp_slot_address_entry *) p;
585 return t->hash;
588 /* Compare two address -> temp slot mapping entries. */
589 static int
590 temp_slot_address_eq (const void *p1, const void *p2)
592 const struct temp_slot_address_entry *t1, *t2;
593 t1 = (const struct temp_slot_address_entry *) p1;
594 t2 = (const struct temp_slot_address_entry *) p2;
595 return exp_equiv_p (t1->address, t2->address, 0, true);
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
599 static void
600 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
602 void **slot;
603 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
604 t->address = address;
605 t->temp_slot = temp_slot;
606 t->hash = temp_slot_address_compute_hash (t);
607 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
608 *slot = t;
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
613 static int
614 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
616 const struct temp_slot_address_entry *t;
617 t = (const struct temp_slot_address_entry *) *slot;
618 if (! t->temp_slot->in_use)
619 *slot = NULL;
620 return 1;
623 /* Remove all mappings of addresses to unused temp slots. */
624 static void
625 remove_unused_temp_slot_addresses (void)
627 htab_traverse (temp_slot_address_table,
628 remove_unused_temp_slot_addresses_1,
629 NULL);
632 /* Find the temp slot corresponding to the object at address X. */
634 static struct temp_slot *
635 find_temp_slot_from_address (rtx x)
637 struct temp_slot *p;
638 struct temp_slot_address_entry tmp, *t;
640 /* First try the easy way:
641 See if X exists in the address -> temp slot mapping. */
642 tmp.address = x;
643 tmp.temp_slot = NULL;
644 tmp.hash = temp_slot_address_compute_hash (&tmp);
645 t = (struct temp_slot_address_entry *)
646 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
647 if (t)
648 return t->temp_slot;
650 /* If we have a sum involving a register, see if it points to a temp
651 slot. */
652 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
653 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
654 return p;
655 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
656 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
657 return p;
659 /* Last resort: Address is a virtual stack var address. */
660 if (GET_CODE (x) == PLUS
661 && XEXP (x, 0) == virtual_stack_vars_rtx
662 && CONST_INT_P (XEXP (x, 1)))
664 int i;
665 for (i = max_slot_level (); i >= 0; i--)
666 for (p = *temp_slots_at_level (i); p; p = p->next)
668 if (INTVAL (XEXP (x, 1)) >= p->base_offset
669 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
670 return p;
674 return NULL;
677 /* Allocate a temporary stack slot and record it for possible later
678 reuse.
680 MODE is the machine mode to be given to the returned rtx.
682 SIZE is the size in units of the space required. We do no rounding here
683 since assign_stack_local will do any required rounding.
685 KEEP is 1 if this slot is to be retained after a call to
686 free_temp_slots. Automatic variables for a block are allocated
687 with this flag. KEEP values of 2 or 3 were needed respectively
688 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689 or for SAVE_EXPRs, but they are now unused.
691 TYPE is the type that will be used for the stack slot. */
694 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
695 int keep, tree type)
697 unsigned int align;
698 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
699 rtx slot;
701 /* If SIZE is -1 it means that somebody tried to allocate a temporary
702 of a variable size. */
703 gcc_assert (size != -1);
705 /* These are now unused. */
706 gcc_assert (keep <= 1);
708 align = get_stack_local_alignment (type, mode);
710 /* Try to find an available, already-allocated temporary of the proper
711 mode which meets the size and alignment requirements. Choose the
712 smallest one with the closest alignment.
714 If assign_stack_temp is called outside of the tree->rtl expansion,
715 we cannot reuse the stack slots (that may still refer to
716 VIRTUAL_STACK_VARS_REGNUM). */
717 if (!virtuals_instantiated)
719 for (p = avail_temp_slots; p; p = p->next)
721 if (p->align >= align && p->size >= size
722 && GET_MODE (p->slot) == mode
723 && objects_must_conflict_p (p->type, type)
724 && (best_p == 0 || best_p->size > p->size
725 || (best_p->size == p->size && best_p->align > p->align)))
727 if (p->align == align && p->size == size)
729 selected = p;
730 cut_slot_from_list (selected, &avail_temp_slots);
731 best_p = 0;
732 break;
734 best_p = p;
739 /* Make our best, if any, the one to use. */
740 if (best_p)
742 selected = best_p;
743 cut_slot_from_list (selected, &avail_temp_slots);
745 /* If there are enough aligned bytes left over, make them into a new
746 temp_slot so that the extra bytes don't get wasted. Do this only
747 for BLKmode slots, so that we can be sure of the alignment. */
748 if (GET_MODE (best_p->slot) == BLKmode)
750 int alignment = best_p->align / BITS_PER_UNIT;
751 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
753 if (best_p->size - rounded_size >= alignment)
755 p = GGC_NEW (struct temp_slot);
756 p->in_use = p->addr_taken = 0;
757 p->size = best_p->size - rounded_size;
758 p->base_offset = best_p->base_offset + rounded_size;
759 p->full_size = best_p->full_size - rounded_size;
760 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
761 p->align = best_p->align;
762 p->type = best_p->type;
763 insert_slot_to_list (p, &avail_temp_slots);
765 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
766 stack_slot_list);
768 best_p->size = rounded_size;
769 best_p->full_size = rounded_size;
774 /* If we still didn't find one, make a new temporary. */
775 if (selected == 0)
777 HOST_WIDE_INT frame_offset_old = frame_offset;
779 p = GGC_NEW (struct temp_slot);
781 /* We are passing an explicit alignment request to assign_stack_local.
782 One side effect of that is assign_stack_local will not round SIZE
783 to ensure the frame offset remains suitably aligned.
785 So for requests which depended on the rounding of SIZE, we go ahead
786 and round it now. We also make sure ALIGNMENT is at least
787 BIGGEST_ALIGNMENT. */
788 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
789 p->slot = assign_stack_local (mode,
790 (mode == BLKmode
791 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
792 : size),
793 align);
795 p->align = align;
797 /* The following slot size computation is necessary because we don't
798 know the actual size of the temporary slot until assign_stack_local
799 has performed all the frame alignment and size rounding for the
800 requested temporary. Note that extra space added for alignment
801 can be either above or below this stack slot depending on which
802 way the frame grows. We include the extra space if and only if it
803 is above this slot. */
804 if (FRAME_GROWS_DOWNWARD)
805 p->size = frame_offset_old - frame_offset;
806 else
807 p->size = size;
809 /* Now define the fields used by combine_temp_slots. */
810 if (FRAME_GROWS_DOWNWARD)
812 p->base_offset = frame_offset;
813 p->full_size = frame_offset_old - frame_offset;
815 else
817 p->base_offset = frame_offset_old;
818 p->full_size = frame_offset - frame_offset_old;
821 selected = p;
824 p = selected;
825 p->in_use = 1;
826 p->addr_taken = 0;
827 p->type = type;
828 p->level = temp_slot_level;
829 p->keep = keep;
831 pp = temp_slots_at_level (p->level);
832 insert_slot_to_list (p, pp);
833 insert_temp_slot_address (XEXP (p->slot, 0), p);
835 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
836 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
837 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
839 /* If we know the alias set for the memory that will be used, use
840 it. If there's no TYPE, then we don't know anything about the
841 alias set for the memory. */
842 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
843 set_mem_align (slot, align);
845 /* If a type is specified, set the relevant flags. */
846 if (type != 0)
848 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
849 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
850 || TREE_CODE (type) == COMPLEX_TYPE));
852 MEM_NOTRAP_P (slot) = 1;
854 return slot;
857 /* Allocate a temporary stack slot and record it for possible later
858 reuse. First three arguments are same as in preceding function. */
861 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
863 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
866 /* Assign a temporary.
867 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868 and so that should be used in error messages. In either case, we
869 allocate of the given type.
870 KEEP is as for assign_stack_temp.
871 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872 it is 0 if a register is OK.
873 DONT_PROMOTE is 1 if we should not promote values in register
874 to wider modes. */
877 assign_temp (tree type_or_decl, int keep, int memory_required,
878 int dont_promote ATTRIBUTE_UNUSED)
880 tree type, decl;
881 enum machine_mode mode;
882 #ifdef PROMOTE_MODE
883 int unsignedp;
884 #endif
886 if (DECL_P (type_or_decl))
887 decl = type_or_decl, type = TREE_TYPE (decl);
888 else
889 decl = NULL, type = type_or_decl;
891 mode = TYPE_MODE (type);
892 #ifdef PROMOTE_MODE
893 unsignedp = TYPE_UNSIGNED (type);
894 #endif
896 if (mode == BLKmode || memory_required)
898 HOST_WIDE_INT size = int_size_in_bytes (type);
899 rtx tmp;
901 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
902 problems with allocating the stack space. */
903 if (size == 0)
904 size = 1;
906 /* Unfortunately, we don't yet know how to allocate variable-sized
907 temporaries. However, sometimes we can find a fixed upper limit on
908 the size, so try that instead. */
909 else if (size == -1)
910 size = max_int_size_in_bytes (type);
912 /* The size of the temporary may be too large to fit into an integer. */
913 /* ??? Not sure this should happen except for user silliness, so limit
914 this to things that aren't compiler-generated temporaries. The
915 rest of the time we'll die in assign_stack_temp_for_type. */
916 if (decl && size == -1
917 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
919 error ("size of variable %q+D is too large", decl);
920 size = 1;
923 tmp = assign_stack_temp_for_type (mode, size, keep, type);
924 return tmp;
927 #ifdef PROMOTE_MODE
928 if (! dont_promote)
929 mode = promote_mode (type, mode, &unsignedp);
930 #endif
932 return gen_reg_rtx (mode);
935 /* Combine temporary stack slots which are adjacent on the stack.
937 This allows for better use of already allocated stack space. This is only
938 done for BLKmode slots because we can be sure that we won't have alignment
939 problems in this case. */
941 static void
942 combine_temp_slots (void)
944 struct temp_slot *p, *q, *next, *next_q;
945 int num_slots;
947 /* We can't combine slots, because the information about which slot
948 is in which alias set will be lost. */
949 if (flag_strict_aliasing)
950 return;
952 /* If there are a lot of temp slots, don't do anything unless
953 high levels of optimization. */
954 if (! flag_expensive_optimizations)
955 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
956 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
957 return;
959 for (p = avail_temp_slots; p; p = next)
961 int delete_p = 0;
963 next = p->next;
965 if (GET_MODE (p->slot) != BLKmode)
966 continue;
968 for (q = p->next; q; q = next_q)
970 int delete_q = 0;
972 next_q = q->next;
974 if (GET_MODE (q->slot) != BLKmode)
975 continue;
977 if (p->base_offset + p->full_size == q->base_offset)
979 /* Q comes after P; combine Q into P. */
980 p->size += q->size;
981 p->full_size += q->full_size;
982 delete_q = 1;
984 else if (q->base_offset + q->full_size == p->base_offset)
986 /* P comes after Q; combine P into Q. */
987 q->size += p->size;
988 q->full_size += p->full_size;
989 delete_p = 1;
990 break;
992 if (delete_q)
993 cut_slot_from_list (q, &avail_temp_slots);
996 /* Either delete P or advance past it. */
997 if (delete_p)
998 cut_slot_from_list (p, &avail_temp_slots);
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003 slot that previously was known by OLD_RTX. */
1005 void
1006 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1008 struct temp_slot *p;
1010 if (rtx_equal_p (old_rtx, new_rtx))
1011 return;
1013 p = find_temp_slot_from_address (old_rtx);
1015 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1016 NEW_RTX is a register, see if one operand of the PLUS is a
1017 temporary location. If so, NEW_RTX points into it. Otherwise,
1018 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019 in common between them. If so, try a recursive call on those
1020 values. */
1021 if (p == 0)
1023 if (GET_CODE (old_rtx) != PLUS)
1024 return;
1026 if (REG_P (new_rtx))
1028 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1029 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1030 return;
1032 else if (GET_CODE (new_rtx) != PLUS)
1033 return;
1035 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1039 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1040 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1041 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1042 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1044 return;
1047 /* Otherwise add an alias for the temp's address. */
1048 insert_temp_slot_address (new_rtx, p);
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052 address was taken. */
1054 void
1055 mark_temp_addr_taken (rtx x)
1057 struct temp_slot *p;
1059 if (x == 0)
1060 return;
1062 /* If X is not in memory or is at a constant address, it cannot be in
1063 a temporary slot. */
1064 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1065 return;
1067 p = find_temp_slot_from_address (XEXP (x, 0));
1068 if (p != 0)
1069 p->addr_taken = 1;
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073 belonging to the to one level higher than the current level. If X
1074 matched one of our slots, just mark that one. Otherwise, we can't
1075 easily predict which it is, so upgrade all of them. Kept slots
1076 need not be touched.
1078 This is called when an ({...}) construct occurs and a statement
1079 returns a value in memory. */
1081 void
1082 preserve_temp_slots (rtx x)
1084 struct temp_slot *p = 0, *next;
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1090 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1092 next = p->next;
1094 if (p->addr_taken)
1095 move_slot_to_level (p, temp_slot_level - 1);
1098 return;
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (REG_P (x) && REG_POINTER (x))
1106 p = find_temp_slot_from_address (x);
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1110 taken. */
1111 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1113 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1115 next = p->next;
1117 if (p->addr_taken)
1118 move_slot_to_level (p, temp_slot_level - 1);
1121 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1134 if (p->level == temp_slot_level)
1136 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1138 next = q->next;
1140 if (p != q && q->addr_taken)
1141 move_slot_to_level (q, temp_slot_level - 1);
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 p->addr_taken = 0;
1147 return;
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1153 next = p->next;
1155 if (!p->keep)
1156 move_slot_to_level (p, temp_slot_level - 1);
1160 /* Free all temporaries used so far. This is normally called at the
1161 end of generating code for a statement. */
1163 void
1164 free_temp_slots (void)
1166 struct temp_slot *p, *next;
1168 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1170 next = p->next;
1172 if (!p->keep)
1173 make_slot_available (p);
1176 remove_unused_temp_slot_addresses ();
1177 combine_temp_slots ();
1180 /* Push deeper into the nesting level for stack temporaries. */
1182 void
1183 push_temp_slots (void)
1185 temp_slot_level++;
1188 /* Pop a temporary nesting level. All slots in use in the current level
1189 are freed. */
1191 void
1192 pop_temp_slots (void)
1194 struct temp_slot *p, *next;
1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1198 next = p->next;
1199 make_slot_available (p);
1202 remove_unused_temp_slot_addresses ();
1203 combine_temp_slots ();
1205 temp_slot_level--;
1208 /* Initialize temporary slots. */
1210 void
1211 init_temp_slots (void)
1213 /* We have not allocated any temporaries yet. */
1214 avail_temp_slots = 0;
1215 used_temp_slots = 0;
1216 temp_slot_level = 0;
1218 /* Set up the table to map addresses to temp slots. */
1219 if (! temp_slot_address_table)
1220 temp_slot_address_table = htab_create_ggc (32,
1221 temp_slot_address_hash,
1222 temp_slot_address_eq,
1223 NULL);
1224 else
1225 htab_empty (temp_slot_address_table);
1228 /* These routines are responsible for converting virtual register references
1229 to the actual hard register references once RTL generation is complete.
1231 The following four variables are used for communication between the
1232 routines. They contain the offsets of the virtual registers from their
1233 respective hard registers. */
1235 static int in_arg_offset;
1236 static int var_offset;
1237 static int dynamic_offset;
1238 static int out_arg_offset;
1239 static int cfa_offset;
1241 /* In most machines, the stack pointer register is equivalent to the bottom
1242 of the stack. */
1244 #ifndef STACK_POINTER_OFFSET
1245 #define STACK_POINTER_OFFSET 0
1246 #endif
1248 /* If not defined, pick an appropriate default for the offset of dynamically
1249 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1250 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1252 #ifndef STACK_DYNAMIC_OFFSET
1254 /* The bottom of the stack points to the actual arguments. If
1255 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1256 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1257 stack space for register parameters is not pushed by the caller, but
1258 rather part of the fixed stack areas and hence not included in
1259 `crtl->outgoing_args_size'. Nevertheless, we must allow
1260 for it when allocating stack dynamic objects. */
1262 #if defined(REG_PARM_STACK_SPACE)
1263 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1264 ((ACCUMULATE_OUTGOING_ARGS \
1265 ? (crtl->outgoing_args_size \
1266 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1267 : REG_PARM_STACK_SPACE (FNDECL))) \
1268 : 0) + (STACK_POINTER_OFFSET))
1269 #else
1270 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1271 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1272 + (STACK_POINTER_OFFSET))
1273 #endif
1274 #endif
1277 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1278 is a virtual register, return the equivalent hard register and set the
1279 offset indirectly through the pointer. Otherwise, return 0. */
1281 static rtx
1282 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1284 rtx new_rtx;
1285 HOST_WIDE_INT offset;
1287 if (x == virtual_incoming_args_rtx)
1289 if (stack_realign_drap)
1291 /* Replace virtual_incoming_args_rtx with internal arg
1292 pointer if DRAP is used to realign stack. */
1293 new_rtx = crtl->args.internal_arg_pointer;
1294 offset = 0;
1296 else
1297 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1299 else if (x == virtual_stack_vars_rtx)
1300 new_rtx = frame_pointer_rtx, offset = var_offset;
1301 else if (x == virtual_stack_dynamic_rtx)
1302 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1303 else if (x == virtual_outgoing_args_rtx)
1304 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1305 else if (x == virtual_cfa_rtx)
1307 #ifdef FRAME_POINTER_CFA_OFFSET
1308 new_rtx = frame_pointer_rtx;
1309 #else
1310 new_rtx = arg_pointer_rtx;
1311 #endif
1312 offset = cfa_offset;
1314 else
1315 return NULL_RTX;
1317 *poffset = offset;
1318 return new_rtx;
1321 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1322 Instantiate any virtual registers present inside of *LOC. The expression
1323 is simplified, as much as possible, but is not to be considered "valid"
1324 in any sense implied by the target. If any change is made, set CHANGED
1325 to true. */
1327 static int
1328 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1330 HOST_WIDE_INT offset;
1331 bool *changed = (bool *) data;
1332 rtx x, new_rtx;
1334 x = *loc;
1335 if (x == 0)
1336 return 0;
1338 switch (GET_CODE (x))
1340 case REG:
1341 new_rtx = instantiate_new_reg (x, &offset);
1342 if (new_rtx)
1344 *loc = plus_constant (new_rtx, offset);
1345 if (changed)
1346 *changed = true;
1348 return -1;
1350 case PLUS:
1351 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1352 if (new_rtx)
1354 new_rtx = plus_constant (new_rtx, offset);
1355 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1356 if (changed)
1357 *changed = true;
1358 return -1;
1361 /* FIXME -- from old code */
1362 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1363 we can commute the PLUS and SUBREG because pointers into the
1364 frame are well-behaved. */
1365 break;
1367 default:
1368 break;
1371 return 0;
1374 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1375 matches the predicate for insn CODE operand OPERAND. */
1377 static int
1378 safe_insn_predicate (int code, int operand, rtx x)
1380 const struct insn_operand_data *op_data;
1382 if (code < 0)
1383 return true;
1385 op_data = &insn_data[code].operand[operand];
1386 if (op_data->predicate == NULL)
1387 return true;
1389 return op_data->predicate (x, op_data->mode);
1392 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1393 registers present inside of insn. The result will be a valid insn. */
1395 static void
1396 instantiate_virtual_regs_in_insn (rtx insn)
1398 HOST_WIDE_INT offset;
1399 int insn_code, i;
1400 bool any_change = false;
1401 rtx set, new_rtx, x, seq;
1403 /* There are some special cases to be handled first. */
1404 set = single_set (insn);
1405 if (set)
1407 /* We're allowed to assign to a virtual register. This is interpreted
1408 to mean that the underlying register gets assigned the inverse
1409 transformation. This is used, for example, in the handling of
1410 non-local gotos. */
1411 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1412 if (new_rtx)
1414 start_sequence ();
1416 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1417 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1418 GEN_INT (-offset));
1419 x = force_operand (x, new_rtx);
1420 if (x != new_rtx)
1421 emit_move_insn (new_rtx, x);
1423 seq = get_insns ();
1424 end_sequence ();
1426 emit_insn_before (seq, insn);
1427 delete_insn (insn);
1428 return;
1431 /* Handle a straight copy from a virtual register by generating a
1432 new add insn. The difference between this and falling through
1433 to the generic case is avoiding a new pseudo and eliminating a
1434 move insn in the initial rtl stream. */
1435 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1436 if (new_rtx && offset != 0
1437 && REG_P (SET_DEST (set))
1438 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1440 start_sequence ();
1442 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1443 new_rtx, GEN_INT (offset), SET_DEST (set),
1444 1, OPTAB_LIB_WIDEN);
1445 if (x != SET_DEST (set))
1446 emit_move_insn (SET_DEST (set), x);
1448 seq = get_insns ();
1449 end_sequence ();
1451 emit_insn_before (seq, insn);
1452 delete_insn (insn);
1453 return;
1456 extract_insn (insn);
1457 insn_code = INSN_CODE (insn);
1459 /* Handle a plus involving a virtual register by determining if the
1460 operands remain valid if they're modified in place. */
1461 if (GET_CODE (SET_SRC (set)) == PLUS
1462 && recog_data.n_operands >= 3
1463 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1464 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1465 && CONST_INT_P (recog_data.operand[2])
1466 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1468 offset += INTVAL (recog_data.operand[2]);
1470 /* If the sum is zero, then replace with a plain move. */
1471 if (offset == 0
1472 && REG_P (SET_DEST (set))
1473 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1475 start_sequence ();
1476 emit_move_insn (SET_DEST (set), new_rtx);
1477 seq = get_insns ();
1478 end_sequence ();
1480 emit_insn_before (seq, insn);
1481 delete_insn (insn);
1482 return;
1485 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1487 /* Using validate_change and apply_change_group here leaves
1488 recog_data in an invalid state. Since we know exactly what
1489 we want to check, do those two by hand. */
1490 if (safe_insn_predicate (insn_code, 1, new_rtx)
1491 && safe_insn_predicate (insn_code, 2, x))
1493 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1494 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1495 any_change = true;
1497 /* Fall through into the regular operand fixup loop in
1498 order to take care of operands other than 1 and 2. */
1502 else
1504 extract_insn (insn);
1505 insn_code = INSN_CODE (insn);
1508 /* In the general case, we expect virtual registers to appear only in
1509 operands, and then only as either bare registers or inside memories. */
1510 for (i = 0; i < recog_data.n_operands; ++i)
1512 x = recog_data.operand[i];
1513 switch (GET_CODE (x))
1515 case MEM:
1517 rtx addr = XEXP (x, 0);
1518 bool changed = false;
1520 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1521 if (!changed)
1522 continue;
1524 start_sequence ();
1525 x = replace_equiv_address (x, addr);
1526 /* It may happen that the address with the virtual reg
1527 was valid (e.g. based on the virtual stack reg, which might
1528 be acceptable to the predicates with all offsets), whereas
1529 the address now isn't anymore, for instance when the address
1530 is still offsetted, but the base reg isn't virtual-stack-reg
1531 anymore. Below we would do a force_reg on the whole operand,
1532 but this insn might actually only accept memory. Hence,
1533 before doing that last resort, try to reload the address into
1534 a register, so this operand stays a MEM. */
1535 if (!safe_insn_predicate (insn_code, i, x))
1537 addr = force_reg (GET_MODE (addr), addr);
1538 x = replace_equiv_address (x, addr);
1540 seq = get_insns ();
1541 end_sequence ();
1542 if (seq)
1543 emit_insn_before (seq, insn);
1545 break;
1547 case REG:
1548 new_rtx = instantiate_new_reg (x, &offset);
1549 if (new_rtx == NULL)
1550 continue;
1551 if (offset == 0)
1552 x = new_rtx;
1553 else
1555 start_sequence ();
1557 /* Careful, special mode predicates may have stuff in
1558 insn_data[insn_code].operand[i].mode that isn't useful
1559 to us for computing a new value. */
1560 /* ??? Recognize address_operand and/or "p" constraints
1561 to see if (plus new offset) is a valid before we put
1562 this through expand_simple_binop. */
1563 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1564 GEN_INT (offset), NULL_RTX,
1565 1, OPTAB_LIB_WIDEN);
1566 seq = get_insns ();
1567 end_sequence ();
1568 emit_insn_before (seq, insn);
1570 break;
1572 case SUBREG:
1573 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1574 if (new_rtx == NULL)
1575 continue;
1576 if (offset != 0)
1578 start_sequence ();
1579 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1580 GEN_INT (offset), NULL_RTX,
1581 1, OPTAB_LIB_WIDEN);
1582 seq = get_insns ();
1583 end_sequence ();
1584 emit_insn_before (seq, insn);
1586 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1587 GET_MODE (new_rtx), SUBREG_BYTE (x));
1588 gcc_assert (x);
1589 break;
1591 default:
1592 continue;
1595 /* At this point, X contains the new value for the operand.
1596 Validate the new value vs the insn predicate. Note that
1597 asm insns will have insn_code -1 here. */
1598 if (!safe_insn_predicate (insn_code, i, x))
1600 start_sequence ();
1601 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1602 seq = get_insns ();
1603 end_sequence ();
1604 if (seq)
1605 emit_insn_before (seq, insn);
1608 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1609 any_change = true;
1612 if (any_change)
1614 /* Propagate operand changes into the duplicates. */
1615 for (i = 0; i < recog_data.n_dups; ++i)
1616 *recog_data.dup_loc[i]
1617 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1619 /* Force re-recognition of the instruction for validation. */
1620 INSN_CODE (insn) = -1;
1623 if (asm_noperands (PATTERN (insn)) >= 0)
1625 if (!check_asm_operands (PATTERN (insn)))
1627 error_for_asm (insn, "impossible constraint in %<asm%>");
1628 delete_insn (insn);
1631 else
1633 if (recog_memoized (insn) < 0)
1634 fatal_insn_not_found (insn);
1638 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1639 do any instantiation required. */
1641 void
1642 instantiate_decl_rtl (rtx x)
1644 rtx addr;
1646 if (x == 0)
1647 return;
1649 /* If this is a CONCAT, recurse for the pieces. */
1650 if (GET_CODE (x) == CONCAT)
1652 instantiate_decl_rtl (XEXP (x, 0));
1653 instantiate_decl_rtl (XEXP (x, 1));
1654 return;
1657 /* If this is not a MEM, no need to do anything. Similarly if the
1658 address is a constant or a register that is not a virtual register. */
1659 if (!MEM_P (x))
1660 return;
1662 addr = XEXP (x, 0);
1663 if (CONSTANT_P (addr)
1664 || (REG_P (addr)
1665 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1666 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1667 return;
1669 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1672 /* Helper for instantiate_decls called via walk_tree: Process all decls
1673 in the given DECL_VALUE_EXPR. */
1675 static tree
1676 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1678 tree t = *tp;
1679 if (! EXPR_P (t))
1681 *walk_subtrees = 0;
1682 if (DECL_P (t) && DECL_RTL_SET_P (t))
1683 instantiate_decl_rtl (DECL_RTL (t));
1685 return NULL;
1688 /* Subroutine of instantiate_decls: Process all decls in the given
1689 BLOCK node and all its subblocks. */
1691 static void
1692 instantiate_decls_1 (tree let)
1694 tree t;
1696 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1698 if (DECL_RTL_SET_P (t))
1699 instantiate_decl_rtl (DECL_RTL (t));
1700 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1702 tree v = DECL_VALUE_EXPR (t);
1703 walk_tree (&v, instantiate_expr, NULL, NULL);
1707 /* Process all subblocks. */
1708 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1709 instantiate_decls_1 (t);
1712 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1713 all virtual registers in their DECL_RTL's. */
1715 static void
1716 instantiate_decls (tree fndecl)
1718 tree decl, t, next;
1720 /* Process all parameters of the function. */
1721 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1723 instantiate_decl_rtl (DECL_RTL (decl));
1724 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1725 if (DECL_HAS_VALUE_EXPR_P (decl))
1727 tree v = DECL_VALUE_EXPR (decl);
1728 walk_tree (&v, instantiate_expr, NULL, NULL);
1732 /* Now process all variables defined in the function or its subblocks. */
1733 instantiate_decls_1 (DECL_INITIAL (fndecl));
1735 t = cfun->local_decls;
1736 cfun->local_decls = NULL_TREE;
1737 for (; t; t = next)
1739 next = TREE_CHAIN (t);
1740 decl = TREE_VALUE (t);
1741 if (DECL_RTL_SET_P (decl))
1742 instantiate_decl_rtl (DECL_RTL (decl));
1743 ggc_free (t);
1747 /* Pass through the INSNS of function FNDECL and convert virtual register
1748 references to hard register references. */
1750 static unsigned int
1751 instantiate_virtual_regs (void)
1753 rtx insn;
1755 /* Compute the offsets to use for this function. */
1756 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1757 var_offset = STARTING_FRAME_OFFSET;
1758 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1759 out_arg_offset = STACK_POINTER_OFFSET;
1760 #ifdef FRAME_POINTER_CFA_OFFSET
1761 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1762 #else
1763 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1764 #endif
1766 /* Initialize recognition, indicating that volatile is OK. */
1767 init_recog ();
1769 /* Scan through all the insns, instantiating every virtual register still
1770 present. */
1771 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1772 if (INSN_P (insn))
1774 /* These patterns in the instruction stream can never be recognized.
1775 Fortunately, they shouldn't contain virtual registers either. */
1776 if (GET_CODE (PATTERN (insn)) == USE
1777 || GET_CODE (PATTERN (insn)) == CLOBBER
1778 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1779 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1780 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1781 continue;
1782 else if (DEBUG_INSN_P (insn))
1783 for_each_rtx (&INSN_VAR_LOCATION (insn),
1784 instantiate_virtual_regs_in_rtx, NULL);
1785 else
1786 instantiate_virtual_regs_in_insn (insn);
1788 if (INSN_DELETED_P (insn))
1789 continue;
1791 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1793 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1794 if (CALL_P (insn))
1795 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1796 instantiate_virtual_regs_in_rtx, NULL);
1799 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1800 instantiate_decls (current_function_decl);
1802 targetm.instantiate_decls ();
1804 /* Indicate that, from now on, assign_stack_local should use
1805 frame_pointer_rtx. */
1806 virtuals_instantiated = 1;
1807 return 0;
1810 struct rtl_opt_pass pass_instantiate_virtual_regs =
1813 RTL_PASS,
1814 "vregs", /* name */
1815 NULL, /* gate */
1816 instantiate_virtual_regs, /* execute */
1817 NULL, /* sub */
1818 NULL, /* next */
1819 0, /* static_pass_number */
1820 TV_NONE, /* tv_id */
1821 0, /* properties_required */
1822 0, /* properties_provided */
1823 0, /* properties_destroyed */
1824 0, /* todo_flags_start */
1825 TODO_dump_func /* todo_flags_finish */
1830 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1831 This means a type for which function calls must pass an address to the
1832 function or get an address back from the function.
1833 EXP may be a type node or an expression (whose type is tested). */
1836 aggregate_value_p (const_tree exp, const_tree fntype)
1838 int i, regno, nregs;
1839 rtx reg;
1841 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1843 /* DECL node associated with FNTYPE when relevant, which we might need to
1844 check for by-invisible-reference returns, typically for CALL_EXPR input
1845 EXPressions. */
1846 const_tree fndecl = NULL_TREE;
1848 if (fntype)
1849 switch (TREE_CODE (fntype))
1851 case CALL_EXPR:
1852 fndecl = get_callee_fndecl (fntype);
1853 fntype = (fndecl
1854 ? TREE_TYPE (fndecl)
1855 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1856 break;
1857 case FUNCTION_DECL:
1858 fndecl = fntype;
1859 fntype = TREE_TYPE (fndecl);
1860 break;
1861 case FUNCTION_TYPE:
1862 case METHOD_TYPE:
1863 break;
1864 case IDENTIFIER_NODE:
1865 fntype = 0;
1866 break;
1867 default:
1868 /* We don't expect other rtl types here. */
1869 gcc_unreachable ();
1872 if (TREE_CODE (type) == VOID_TYPE)
1873 return 0;
1875 /* If the front end has decided that this needs to be passed by
1876 reference, do so. */
1877 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1878 && DECL_BY_REFERENCE (exp))
1879 return 1;
1881 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1882 called function RESULT_DECL, meaning the function returns in memory by
1883 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1884 on the function type, which used to be the way to request such a return
1885 mechanism but might now be causing troubles at gimplification time if
1886 temporaries with the function type need to be created. */
1887 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1888 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1889 return 1;
1891 if (targetm.calls.return_in_memory (type, fntype))
1892 return 1;
1893 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1894 and thus can't be returned in registers. */
1895 if (TREE_ADDRESSABLE (type))
1896 return 1;
1897 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1898 return 1;
1899 /* Make sure we have suitable call-clobbered regs to return
1900 the value in; if not, we must return it in memory. */
1901 reg = hard_function_value (type, 0, fntype, 0);
1903 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1904 it is OK. */
1905 if (!REG_P (reg))
1906 return 0;
1908 regno = REGNO (reg);
1909 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1910 for (i = 0; i < nregs; i++)
1911 if (! call_used_regs[regno + i])
1912 return 1;
1913 return 0;
1916 /* Return true if we should assign DECL a pseudo register; false if it
1917 should live on the local stack. */
1919 bool
1920 use_register_for_decl (const_tree decl)
1922 if (!targetm.calls.allocate_stack_slots_for_args())
1923 return true;
1925 /* Honor volatile. */
1926 if (TREE_SIDE_EFFECTS (decl))
1927 return false;
1929 /* Honor addressability. */
1930 if (TREE_ADDRESSABLE (decl))
1931 return false;
1933 /* Only register-like things go in registers. */
1934 if (DECL_MODE (decl) == BLKmode)
1935 return false;
1937 /* If -ffloat-store specified, don't put explicit float variables
1938 into registers. */
1939 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1940 propagates values across these stores, and it probably shouldn't. */
1941 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1942 return false;
1944 /* If we're not interested in tracking debugging information for
1945 this decl, then we can certainly put it in a register. */
1946 if (DECL_IGNORED_P (decl))
1947 return true;
1949 if (optimize)
1950 return true;
1952 if (!DECL_REGISTER (decl))
1953 return false;
1955 switch (TREE_CODE (TREE_TYPE (decl)))
1957 case RECORD_TYPE:
1958 case UNION_TYPE:
1959 case QUAL_UNION_TYPE:
1960 /* When not optimizing, disregard register keyword for variables with
1961 types containing methods, otherwise the methods won't be callable
1962 from the debugger. */
1963 if (TYPE_METHODS (TREE_TYPE (decl)))
1964 return false;
1965 break;
1966 default:
1967 break;
1970 return true;
1973 /* Return true if TYPE should be passed by invisible reference. */
1975 bool
1976 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1977 tree type, bool named_arg)
1979 if (type)
1981 /* If this type contains non-trivial constructors, then it is
1982 forbidden for the middle-end to create any new copies. */
1983 if (TREE_ADDRESSABLE (type))
1984 return true;
1986 /* GCC post 3.4 passes *all* variable sized types by reference. */
1987 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1988 return true;
1991 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1994 /* Return true if TYPE, which is passed by reference, should be callee
1995 copied instead of caller copied. */
1997 bool
1998 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1999 tree type, bool named_arg)
2001 if (type && TREE_ADDRESSABLE (type))
2002 return false;
2003 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2006 /* Structures to communicate between the subroutines of assign_parms.
2007 The first holds data persistent across all parameters, the second
2008 is cleared out for each parameter. */
2010 struct assign_parm_data_all
2012 CUMULATIVE_ARGS args_so_far;
2013 struct args_size stack_args_size;
2014 tree function_result_decl;
2015 tree orig_fnargs;
2016 rtx first_conversion_insn;
2017 rtx last_conversion_insn;
2018 HOST_WIDE_INT pretend_args_size;
2019 HOST_WIDE_INT extra_pretend_bytes;
2020 int reg_parm_stack_space;
2023 struct assign_parm_data_one
2025 tree nominal_type;
2026 tree passed_type;
2027 rtx entry_parm;
2028 rtx stack_parm;
2029 enum machine_mode nominal_mode;
2030 enum machine_mode passed_mode;
2031 enum machine_mode promoted_mode;
2032 struct locate_and_pad_arg_data locate;
2033 int partial;
2034 BOOL_BITFIELD named_arg : 1;
2035 BOOL_BITFIELD passed_pointer : 1;
2036 BOOL_BITFIELD on_stack : 1;
2037 BOOL_BITFIELD loaded_in_reg : 1;
2040 /* A subroutine of assign_parms. Initialize ALL. */
2042 static void
2043 assign_parms_initialize_all (struct assign_parm_data_all *all)
2045 tree fntype;
2047 memset (all, 0, sizeof (*all));
2049 fntype = TREE_TYPE (current_function_decl);
2051 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2052 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2053 #else
2054 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2055 current_function_decl, -1);
2056 #endif
2058 #ifdef REG_PARM_STACK_SPACE
2059 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2060 #endif
2063 /* If ARGS contains entries with complex types, split the entry into two
2064 entries of the component type. Return a new list of substitutions are
2065 needed, else the old list. */
2067 static tree
2068 split_complex_args (tree args)
2070 tree p;
2072 /* Before allocating memory, check for the common case of no complex. */
2073 for (p = args; p; p = TREE_CHAIN (p))
2075 tree type = TREE_TYPE (p);
2076 if (TREE_CODE (type) == COMPLEX_TYPE
2077 && targetm.calls.split_complex_arg (type))
2078 goto found;
2080 return args;
2082 found:
2083 args = copy_list (args);
2085 for (p = args; p; p = TREE_CHAIN (p))
2087 tree type = TREE_TYPE (p);
2088 if (TREE_CODE (type) == COMPLEX_TYPE
2089 && targetm.calls.split_complex_arg (type))
2091 tree decl;
2092 tree subtype = TREE_TYPE (type);
2093 bool addressable = TREE_ADDRESSABLE (p);
2095 /* Rewrite the PARM_DECL's type with its component. */
2096 TREE_TYPE (p) = subtype;
2097 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2098 DECL_MODE (p) = VOIDmode;
2099 DECL_SIZE (p) = NULL;
2100 DECL_SIZE_UNIT (p) = NULL;
2101 /* If this arg must go in memory, put it in a pseudo here.
2102 We can't allow it to go in memory as per normal parms,
2103 because the usual place might not have the imag part
2104 adjacent to the real part. */
2105 DECL_ARTIFICIAL (p) = addressable;
2106 DECL_IGNORED_P (p) = addressable;
2107 TREE_ADDRESSABLE (p) = 0;
2108 layout_decl (p, 0);
2110 /* Build a second synthetic decl. */
2111 decl = build_decl (EXPR_LOCATION (p),
2112 PARM_DECL, NULL_TREE, subtype);
2113 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2114 DECL_ARTIFICIAL (decl) = addressable;
2115 DECL_IGNORED_P (decl) = addressable;
2116 layout_decl (decl, 0);
2118 /* Splice it in; skip the new decl. */
2119 TREE_CHAIN (decl) = TREE_CHAIN (p);
2120 TREE_CHAIN (p) = decl;
2121 p = decl;
2125 return args;
2128 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2129 the hidden struct return argument, and (abi willing) complex args.
2130 Return the new parameter list. */
2132 static tree
2133 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2135 tree fndecl = current_function_decl;
2136 tree fntype = TREE_TYPE (fndecl);
2137 tree fnargs = DECL_ARGUMENTS (fndecl);
2139 /* If struct value address is treated as the first argument, make it so. */
2140 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2141 && ! cfun->returns_pcc_struct
2142 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2144 tree type = build_pointer_type (TREE_TYPE (fntype));
2145 tree decl;
2147 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2148 PARM_DECL, NULL_TREE, type);
2149 DECL_ARG_TYPE (decl) = type;
2150 DECL_ARTIFICIAL (decl) = 1;
2151 DECL_IGNORED_P (decl) = 1;
2153 TREE_CHAIN (decl) = fnargs;
2154 fnargs = decl;
2155 all->function_result_decl = decl;
2158 all->orig_fnargs = fnargs;
2160 /* If the target wants to split complex arguments into scalars, do so. */
2161 if (targetm.calls.split_complex_arg)
2162 fnargs = split_complex_args (fnargs);
2164 return fnargs;
2167 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2168 data for the parameter. Incorporate ABI specifics such as pass-by-
2169 reference and type promotion. */
2171 static void
2172 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2173 struct assign_parm_data_one *data)
2175 tree nominal_type, passed_type;
2176 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2177 int unsignedp;
2179 memset (data, 0, sizeof (*data));
2181 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2182 if (!cfun->stdarg)
2183 data->named_arg = 1; /* No variadic parms. */
2184 else if (TREE_CHAIN (parm))
2185 data->named_arg = 1; /* Not the last non-variadic parm. */
2186 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2187 data->named_arg = 1; /* Only variadic ones are unnamed. */
2188 else
2189 data->named_arg = 0; /* Treat as variadic. */
2191 nominal_type = TREE_TYPE (parm);
2192 passed_type = DECL_ARG_TYPE (parm);
2194 /* Look out for errors propagating this far. Also, if the parameter's
2195 type is void then its value doesn't matter. */
2196 if (TREE_TYPE (parm) == error_mark_node
2197 /* This can happen after weird syntax errors
2198 or if an enum type is defined among the parms. */
2199 || TREE_CODE (parm) != PARM_DECL
2200 || passed_type == NULL
2201 || VOID_TYPE_P (nominal_type))
2203 nominal_type = passed_type = void_type_node;
2204 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2205 goto egress;
2208 /* Find mode of arg as it is passed, and mode of arg as it should be
2209 during execution of this function. */
2210 passed_mode = TYPE_MODE (passed_type);
2211 nominal_mode = TYPE_MODE (nominal_type);
2213 /* If the parm is to be passed as a transparent union, use the type of
2214 the first field for the tests below. We have already verified that
2215 the modes are the same. */
2216 if (TREE_CODE (passed_type) == UNION_TYPE
2217 && TYPE_TRANSPARENT_UNION (passed_type))
2218 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2220 /* See if this arg was passed by invisible reference. */
2221 if (pass_by_reference (&all->args_so_far, passed_mode,
2222 passed_type, data->named_arg))
2224 passed_type = nominal_type = build_pointer_type (passed_type);
2225 data->passed_pointer = true;
2226 passed_mode = nominal_mode = Pmode;
2229 /* Find mode as it is passed by the ABI. */
2230 unsignedp = TYPE_UNSIGNED (passed_type);
2231 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2232 TREE_TYPE (current_function_decl), 0);
2234 egress:
2235 data->nominal_type = nominal_type;
2236 data->passed_type = passed_type;
2237 data->nominal_mode = nominal_mode;
2238 data->passed_mode = passed_mode;
2239 data->promoted_mode = promoted_mode;
2242 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2244 static void
2245 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2246 struct assign_parm_data_one *data, bool no_rtl)
2248 int varargs_pretend_bytes = 0;
2250 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2251 data->promoted_mode,
2252 data->passed_type,
2253 &varargs_pretend_bytes, no_rtl);
2255 /* If the back-end has requested extra stack space, record how much is
2256 needed. Do not change pretend_args_size otherwise since it may be
2257 nonzero from an earlier partial argument. */
2258 if (varargs_pretend_bytes > 0)
2259 all->pretend_args_size = varargs_pretend_bytes;
2262 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2263 the incoming location of the current parameter. */
2265 static void
2266 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2267 struct assign_parm_data_one *data)
2269 HOST_WIDE_INT pretend_bytes = 0;
2270 rtx entry_parm;
2271 bool in_regs;
2273 if (data->promoted_mode == VOIDmode)
2275 data->entry_parm = data->stack_parm = const0_rtx;
2276 return;
2279 #ifdef FUNCTION_INCOMING_ARG
2280 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2281 data->passed_type, data->named_arg);
2282 #else
2283 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2284 data->passed_type, data->named_arg);
2285 #endif
2287 if (entry_parm == 0)
2288 data->promoted_mode = data->passed_mode;
2290 /* Determine parm's home in the stack, in case it arrives in the stack
2291 or we should pretend it did. Compute the stack position and rtx where
2292 the argument arrives and its size.
2294 There is one complexity here: If this was a parameter that would
2295 have been passed in registers, but wasn't only because it is
2296 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2297 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2298 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2299 as it was the previous time. */
2300 in_regs = entry_parm != 0;
2301 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2302 in_regs = true;
2303 #endif
2304 if (!in_regs && !data->named_arg)
2306 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2308 rtx tem;
2309 #ifdef FUNCTION_INCOMING_ARG
2310 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2311 data->passed_type, true);
2312 #else
2313 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2314 data->passed_type, true);
2315 #endif
2316 in_regs = tem != NULL;
2320 /* If this parameter was passed both in registers and in the stack, use
2321 the copy on the stack. */
2322 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2323 data->passed_type))
2324 entry_parm = 0;
2326 if (entry_parm)
2328 int partial;
2330 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2331 data->promoted_mode,
2332 data->passed_type,
2333 data->named_arg);
2334 data->partial = partial;
2336 /* The caller might already have allocated stack space for the
2337 register parameters. */
2338 if (partial != 0 && all->reg_parm_stack_space == 0)
2340 /* Part of this argument is passed in registers and part
2341 is passed on the stack. Ask the prologue code to extend
2342 the stack part so that we can recreate the full value.
2344 PRETEND_BYTES is the size of the registers we need to store.
2345 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2346 stack space that the prologue should allocate.
2348 Internally, gcc assumes that the argument pointer is aligned
2349 to STACK_BOUNDARY bits. This is used both for alignment
2350 optimizations (see init_emit) and to locate arguments that are
2351 aligned to more than PARM_BOUNDARY bits. We must preserve this
2352 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2353 a stack boundary. */
2355 /* We assume at most one partial arg, and it must be the first
2356 argument on the stack. */
2357 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2359 pretend_bytes = partial;
2360 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2362 /* We want to align relative to the actual stack pointer, so
2363 don't include this in the stack size until later. */
2364 all->extra_pretend_bytes = all->pretend_args_size;
2368 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2369 entry_parm ? data->partial : 0, current_function_decl,
2370 &all->stack_args_size, &data->locate);
2372 /* Update parm_stack_boundary if this parameter is passed in the
2373 stack. */
2374 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2375 crtl->parm_stack_boundary = data->locate.boundary;
2377 /* Adjust offsets to include the pretend args. */
2378 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2379 data->locate.slot_offset.constant += pretend_bytes;
2380 data->locate.offset.constant += pretend_bytes;
2382 data->entry_parm = entry_parm;
2385 /* A subroutine of assign_parms. If there is actually space on the stack
2386 for this parm, count it in stack_args_size and return true. */
2388 static bool
2389 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2390 struct assign_parm_data_one *data)
2392 /* Trivially true if we've no incoming register. */
2393 if (data->entry_parm == NULL)
2395 /* Also true if we're partially in registers and partially not,
2396 since we've arranged to drop the entire argument on the stack. */
2397 else if (data->partial != 0)
2399 /* Also true if the target says that it's passed in both registers
2400 and on the stack. */
2401 else if (GET_CODE (data->entry_parm) == PARALLEL
2402 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2404 /* Also true if the target says that there's stack allocated for
2405 all register parameters. */
2406 else if (all->reg_parm_stack_space > 0)
2408 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2409 else
2410 return false;
2412 all->stack_args_size.constant += data->locate.size.constant;
2413 if (data->locate.size.var)
2414 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2416 return true;
2419 /* A subroutine of assign_parms. Given that this parameter is allocated
2420 stack space by the ABI, find it. */
2422 static void
2423 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2425 rtx offset_rtx, stack_parm;
2426 unsigned int align, boundary;
2428 /* If we're passing this arg using a reg, make its stack home the
2429 aligned stack slot. */
2430 if (data->entry_parm)
2431 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2432 else
2433 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2435 stack_parm = crtl->args.internal_arg_pointer;
2436 if (offset_rtx != const0_rtx)
2437 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2438 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2440 if (!data->passed_pointer)
2442 set_mem_attributes (stack_parm, parm, 1);
2443 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2444 while promoted mode's size is needed. */
2445 if (data->promoted_mode != BLKmode
2446 && data->promoted_mode != DECL_MODE (parm))
2448 set_mem_size (stack_parm,
2449 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2450 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2452 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2453 data->promoted_mode);
2454 if (offset)
2455 set_mem_offset (stack_parm,
2456 plus_constant (MEM_OFFSET (stack_parm),
2457 -offset));
2462 boundary = data->locate.boundary;
2463 align = BITS_PER_UNIT;
2465 /* If we're padding upward, we know that the alignment of the slot
2466 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2467 intentionally forcing upward padding. Otherwise we have to come
2468 up with a guess at the alignment based on OFFSET_RTX. */
2469 if (data->locate.where_pad != downward || data->entry_parm)
2470 align = boundary;
2471 else if (CONST_INT_P (offset_rtx))
2473 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2474 align = align & -align;
2476 set_mem_align (stack_parm, align);
2478 if (data->entry_parm)
2479 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2481 data->stack_parm = stack_parm;
2484 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2485 always valid and contiguous. */
2487 static void
2488 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2490 rtx entry_parm = data->entry_parm;
2491 rtx stack_parm = data->stack_parm;
2493 /* If this parm was passed part in regs and part in memory, pretend it
2494 arrived entirely in memory by pushing the register-part onto the stack.
2495 In the special case of a DImode or DFmode that is split, we could put
2496 it together in a pseudoreg directly, but for now that's not worth
2497 bothering with. */
2498 if (data->partial != 0)
2500 /* Handle calls that pass values in multiple non-contiguous
2501 locations. The Irix 6 ABI has examples of this. */
2502 if (GET_CODE (entry_parm) == PARALLEL)
2503 emit_group_store (validize_mem (stack_parm), entry_parm,
2504 data->passed_type,
2505 int_size_in_bytes (data->passed_type));
2506 else
2508 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2509 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2510 data->partial / UNITS_PER_WORD);
2513 entry_parm = stack_parm;
2516 /* If we didn't decide this parm came in a register, by default it came
2517 on the stack. */
2518 else if (entry_parm == NULL)
2519 entry_parm = stack_parm;
2521 /* When an argument is passed in multiple locations, we can't make use
2522 of this information, but we can save some copying if the whole argument
2523 is passed in a single register. */
2524 else if (GET_CODE (entry_parm) == PARALLEL
2525 && data->nominal_mode != BLKmode
2526 && data->passed_mode != BLKmode)
2528 size_t i, len = XVECLEN (entry_parm, 0);
2530 for (i = 0; i < len; i++)
2531 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2532 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2533 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2534 == data->passed_mode)
2535 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2537 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2538 break;
2542 data->entry_parm = entry_parm;
2545 /* A subroutine of assign_parms. Reconstitute any values which were
2546 passed in multiple registers and would fit in a single register. */
2548 static void
2549 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2551 rtx entry_parm = data->entry_parm;
2553 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2554 This can be done with register operations rather than on the
2555 stack, even if we will store the reconstituted parameter on the
2556 stack later. */
2557 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2559 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2560 emit_group_store (parmreg, entry_parm, data->passed_type,
2561 GET_MODE_SIZE (GET_MODE (entry_parm)));
2562 entry_parm = parmreg;
2565 data->entry_parm = entry_parm;
2568 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2569 always valid and properly aligned. */
2571 static void
2572 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2574 rtx stack_parm = data->stack_parm;
2576 /* If we can't trust the parm stack slot to be aligned enough for its
2577 ultimate type, don't use that slot after entry. We'll make another
2578 stack slot, if we need one. */
2579 if (stack_parm
2580 && ((STRICT_ALIGNMENT
2581 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2582 || (data->nominal_type
2583 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2584 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2585 stack_parm = NULL;
2587 /* If parm was passed in memory, and we need to convert it on entry,
2588 don't store it back in that same slot. */
2589 else if (data->entry_parm == stack_parm
2590 && data->nominal_mode != BLKmode
2591 && data->nominal_mode != data->passed_mode)
2592 stack_parm = NULL;
2594 /* If stack protection is in effect for this function, don't leave any
2595 pointers in their passed stack slots. */
2596 else if (crtl->stack_protect_guard
2597 && (flag_stack_protect == 2
2598 || data->passed_pointer
2599 || POINTER_TYPE_P (data->nominal_type)))
2600 stack_parm = NULL;
2602 data->stack_parm = stack_parm;
2605 /* A subroutine of assign_parms. Return true if the current parameter
2606 should be stored as a BLKmode in the current frame. */
2608 static bool
2609 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2611 if (data->nominal_mode == BLKmode)
2612 return true;
2613 if (GET_MODE (data->entry_parm) == BLKmode)
2614 return true;
2616 #ifdef BLOCK_REG_PADDING
2617 /* Only assign_parm_setup_block knows how to deal with register arguments
2618 that are padded at the least significant end. */
2619 if (REG_P (data->entry_parm)
2620 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2621 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2622 == (BYTES_BIG_ENDIAN ? upward : downward)))
2623 return true;
2624 #endif
2626 return false;
2629 /* A subroutine of assign_parms. Arrange for the parameter to be
2630 present and valid in DATA->STACK_RTL. */
2632 static void
2633 assign_parm_setup_block (struct assign_parm_data_all *all,
2634 tree parm, struct assign_parm_data_one *data)
2636 rtx entry_parm = data->entry_parm;
2637 rtx stack_parm = data->stack_parm;
2638 HOST_WIDE_INT size;
2639 HOST_WIDE_INT size_stored;
2641 if (GET_CODE (entry_parm) == PARALLEL)
2642 entry_parm = emit_group_move_into_temps (entry_parm);
2644 size = int_size_in_bytes (data->passed_type);
2645 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2646 if (stack_parm == 0)
2648 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2649 stack_parm = assign_stack_local (BLKmode, size_stored,
2650 DECL_ALIGN (parm));
2651 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2652 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2653 set_mem_attributes (stack_parm, parm, 1);
2656 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2657 calls that pass values in multiple non-contiguous locations. */
2658 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2660 rtx mem;
2662 /* Note that we will be storing an integral number of words.
2663 So we have to be careful to ensure that we allocate an
2664 integral number of words. We do this above when we call
2665 assign_stack_local if space was not allocated in the argument
2666 list. If it was, this will not work if PARM_BOUNDARY is not
2667 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2668 if it becomes a problem. Exception is when BLKmode arrives
2669 with arguments not conforming to word_mode. */
2671 if (data->stack_parm == 0)
2673 else if (GET_CODE (entry_parm) == PARALLEL)
2675 else
2676 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2678 mem = validize_mem (stack_parm);
2680 /* Handle values in multiple non-contiguous locations. */
2681 if (GET_CODE (entry_parm) == PARALLEL)
2683 push_to_sequence2 (all->first_conversion_insn,
2684 all->last_conversion_insn);
2685 emit_group_store (mem, entry_parm, data->passed_type, size);
2686 all->first_conversion_insn = get_insns ();
2687 all->last_conversion_insn = get_last_insn ();
2688 end_sequence ();
2691 else if (size == 0)
2694 /* If SIZE is that of a mode no bigger than a word, just use
2695 that mode's store operation. */
2696 else if (size <= UNITS_PER_WORD)
2698 enum machine_mode mode
2699 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2701 if (mode != BLKmode
2702 #ifdef BLOCK_REG_PADDING
2703 && (size == UNITS_PER_WORD
2704 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2705 != (BYTES_BIG_ENDIAN ? upward : downward)))
2706 #endif
2709 rtx reg;
2711 /* We are really truncating a word_mode value containing
2712 SIZE bytes into a value of mode MODE. If such an
2713 operation requires no actual instructions, we can refer
2714 to the value directly in mode MODE, otherwise we must
2715 start with the register in word_mode and explicitly
2716 convert it. */
2717 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2718 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2719 else
2721 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2722 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2724 emit_move_insn (change_address (mem, mode, 0), reg);
2727 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2728 machine must be aligned to the left before storing
2729 to memory. Note that the previous test doesn't
2730 handle all cases (e.g. SIZE == 3). */
2731 else if (size != UNITS_PER_WORD
2732 #ifdef BLOCK_REG_PADDING
2733 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2734 == downward)
2735 #else
2736 && BYTES_BIG_ENDIAN
2737 #endif
2740 rtx tem, x;
2741 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2742 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2744 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2745 build_int_cst (NULL_TREE, by),
2746 NULL_RTX, 1);
2747 tem = change_address (mem, word_mode, 0);
2748 emit_move_insn (tem, x);
2750 else
2751 move_block_from_reg (REGNO (entry_parm), mem,
2752 size_stored / UNITS_PER_WORD);
2754 else
2755 move_block_from_reg (REGNO (entry_parm), mem,
2756 size_stored / UNITS_PER_WORD);
2758 else if (data->stack_parm == 0)
2760 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2761 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2762 BLOCK_OP_NORMAL);
2763 all->first_conversion_insn = get_insns ();
2764 all->last_conversion_insn = get_last_insn ();
2765 end_sequence ();
2768 data->stack_parm = stack_parm;
2769 SET_DECL_RTL (parm, stack_parm);
2772 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2773 parameter. Get it there. Perform all ABI specified conversions. */
2775 static void
2776 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2777 struct assign_parm_data_one *data)
2779 rtx parmreg;
2780 enum machine_mode promoted_nominal_mode;
2781 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2782 bool did_conversion = false;
2784 /* Store the parm in a pseudoregister during the function, but we may
2785 need to do it in a wider mode. Using 2 here makes the result
2786 consistent with promote_decl_mode and thus expand_expr_real_1. */
2787 promoted_nominal_mode
2788 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2789 TREE_TYPE (current_function_decl), 2);
2791 parmreg = gen_reg_rtx (promoted_nominal_mode);
2793 if (!DECL_ARTIFICIAL (parm))
2794 mark_user_reg (parmreg);
2796 /* If this was an item that we received a pointer to,
2797 set DECL_RTL appropriately. */
2798 if (data->passed_pointer)
2800 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2801 set_mem_attributes (x, parm, 1);
2802 SET_DECL_RTL (parm, x);
2804 else
2805 SET_DECL_RTL (parm, parmreg);
2807 assign_parm_remove_parallels (data);
2809 /* Copy the value into the register, thus bridging between
2810 assign_parm_find_data_types and expand_expr_real_1. */
2811 if (data->nominal_mode != data->passed_mode
2812 || promoted_nominal_mode != data->promoted_mode)
2814 int save_tree_used;
2816 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2817 mode, by the caller. We now have to convert it to
2818 NOMINAL_MODE, if different. However, PARMREG may be in
2819 a different mode than NOMINAL_MODE if it is being stored
2820 promoted.
2822 If ENTRY_PARM is a hard register, it might be in a register
2823 not valid for operating in its mode (e.g., an odd-numbered
2824 register for a DFmode). In that case, moves are the only
2825 thing valid, so we can't do a convert from there. This
2826 occurs when the calling sequence allow such misaligned
2827 usages.
2829 In addition, the conversion may involve a call, which could
2830 clobber parameters which haven't been copied to pseudo
2831 registers yet. Therefore, we must first copy the parm to
2832 a pseudo reg here, and save the conversion until after all
2833 parameters have been moved. */
2835 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2837 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2839 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2840 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2842 if (GET_CODE (tempreg) == SUBREG
2843 && GET_MODE (tempreg) == data->nominal_mode
2844 && REG_P (SUBREG_REG (tempreg))
2845 && data->nominal_mode == data->passed_mode
2846 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2847 && GET_MODE_SIZE (GET_MODE (tempreg))
2848 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2850 /* The argument is already sign/zero extended, so note it
2851 into the subreg. */
2852 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2853 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2856 /* TREE_USED gets set erroneously during expand_assignment. */
2857 save_tree_used = TREE_USED (parm);
2858 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2859 TREE_USED (parm) = save_tree_used;
2860 all->first_conversion_insn = get_insns ();
2861 all->last_conversion_insn = get_last_insn ();
2862 end_sequence ();
2864 did_conversion = true;
2866 else
2867 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2869 /* If we were passed a pointer but the actual value can safely live
2870 in a register, put it in one. */
2871 if (data->passed_pointer
2872 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2873 /* If by-reference argument was promoted, demote it. */
2874 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2875 || use_register_for_decl (parm)))
2877 /* We can't use nominal_mode, because it will have been set to
2878 Pmode above. We must use the actual mode of the parm. */
2879 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2880 mark_user_reg (parmreg);
2882 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2884 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2885 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2887 push_to_sequence2 (all->first_conversion_insn,
2888 all->last_conversion_insn);
2889 emit_move_insn (tempreg, DECL_RTL (parm));
2890 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2891 emit_move_insn (parmreg, tempreg);
2892 all->first_conversion_insn = get_insns ();
2893 all->last_conversion_insn = get_last_insn ();
2894 end_sequence ();
2896 did_conversion = true;
2898 else
2899 emit_move_insn (parmreg, DECL_RTL (parm));
2901 SET_DECL_RTL (parm, parmreg);
2903 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2904 now the parm. */
2905 data->stack_parm = NULL;
2908 /* Mark the register as eliminable if we did no conversion and it was
2909 copied from memory at a fixed offset, and the arg pointer was not
2910 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2911 offset formed an invalid address, such memory-equivalences as we
2912 make here would screw up life analysis for it. */
2913 if (data->nominal_mode == data->passed_mode
2914 && !did_conversion
2915 && data->stack_parm != 0
2916 && MEM_P (data->stack_parm)
2917 && data->locate.offset.var == 0
2918 && reg_mentioned_p (virtual_incoming_args_rtx,
2919 XEXP (data->stack_parm, 0)))
2921 rtx linsn = get_last_insn ();
2922 rtx sinsn, set;
2924 /* Mark complex types separately. */
2925 if (GET_CODE (parmreg) == CONCAT)
2927 enum machine_mode submode
2928 = GET_MODE_INNER (GET_MODE (parmreg));
2929 int regnor = REGNO (XEXP (parmreg, 0));
2930 int regnoi = REGNO (XEXP (parmreg, 1));
2931 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2932 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2933 GET_MODE_SIZE (submode));
2935 /* Scan backwards for the set of the real and
2936 imaginary parts. */
2937 for (sinsn = linsn; sinsn != 0;
2938 sinsn = prev_nonnote_insn (sinsn))
2940 set = single_set (sinsn);
2941 if (set == 0)
2942 continue;
2944 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2945 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2946 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2947 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2950 else if ((set = single_set (linsn)) != 0
2951 && SET_DEST (set) == parmreg)
2952 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2955 /* For pointer data type, suggest pointer register. */
2956 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2957 mark_reg_pointer (parmreg,
2958 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2961 /* A subroutine of assign_parms. Allocate stack space to hold the current
2962 parameter. Get it there. Perform all ABI specified conversions. */
2964 static void
2965 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2966 struct assign_parm_data_one *data)
2968 /* Value must be stored in the stack slot STACK_PARM during function
2969 execution. */
2970 bool to_conversion = false;
2972 assign_parm_remove_parallels (data);
2974 if (data->promoted_mode != data->nominal_mode)
2976 /* Conversion is required. */
2977 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2979 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2981 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2982 to_conversion = true;
2984 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2985 TYPE_UNSIGNED (TREE_TYPE (parm)));
2987 if (data->stack_parm)
2989 int offset = subreg_lowpart_offset (data->nominal_mode,
2990 GET_MODE (data->stack_parm));
2991 /* ??? This may need a big-endian conversion on sparc64. */
2992 data->stack_parm
2993 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2994 if (offset && MEM_OFFSET (data->stack_parm))
2995 set_mem_offset (data->stack_parm,
2996 plus_constant (MEM_OFFSET (data->stack_parm),
2997 offset));
3001 if (data->entry_parm != data->stack_parm)
3003 rtx src, dest;
3005 if (data->stack_parm == 0)
3007 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3008 GET_MODE (data->entry_parm),
3009 TYPE_ALIGN (data->passed_type));
3010 data->stack_parm
3011 = assign_stack_local (GET_MODE (data->entry_parm),
3012 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3013 align);
3014 set_mem_attributes (data->stack_parm, parm, 1);
3017 dest = validize_mem (data->stack_parm);
3018 src = validize_mem (data->entry_parm);
3020 if (MEM_P (src))
3022 /* Use a block move to handle potentially misaligned entry_parm. */
3023 if (!to_conversion)
3024 push_to_sequence2 (all->first_conversion_insn,
3025 all->last_conversion_insn);
3026 to_conversion = true;
3028 emit_block_move (dest, src,
3029 GEN_INT (int_size_in_bytes (data->passed_type)),
3030 BLOCK_OP_NORMAL);
3032 else
3033 emit_move_insn (dest, src);
3036 if (to_conversion)
3038 all->first_conversion_insn = get_insns ();
3039 all->last_conversion_insn = get_last_insn ();
3040 end_sequence ();
3043 SET_DECL_RTL (parm, data->stack_parm);
3046 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3047 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3049 static void
3050 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3052 tree parm;
3053 tree orig_fnargs = all->orig_fnargs;
3055 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3057 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3058 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3060 rtx tmp, real, imag;
3061 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3063 real = DECL_RTL (fnargs);
3064 imag = DECL_RTL (TREE_CHAIN (fnargs));
3065 if (inner != GET_MODE (real))
3067 real = gen_lowpart_SUBREG (inner, real);
3068 imag = gen_lowpart_SUBREG (inner, imag);
3071 if (TREE_ADDRESSABLE (parm))
3073 rtx rmem, imem;
3074 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3075 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3076 DECL_MODE (parm),
3077 TYPE_ALIGN (TREE_TYPE (parm)));
3079 /* split_complex_arg put the real and imag parts in
3080 pseudos. Move them to memory. */
3081 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3082 set_mem_attributes (tmp, parm, 1);
3083 rmem = adjust_address_nv (tmp, inner, 0);
3084 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3085 push_to_sequence2 (all->first_conversion_insn,
3086 all->last_conversion_insn);
3087 emit_move_insn (rmem, real);
3088 emit_move_insn (imem, imag);
3089 all->first_conversion_insn = get_insns ();
3090 all->last_conversion_insn = get_last_insn ();
3091 end_sequence ();
3093 else
3094 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3095 SET_DECL_RTL (parm, tmp);
3097 real = DECL_INCOMING_RTL (fnargs);
3098 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3099 if (inner != GET_MODE (real))
3101 real = gen_lowpart_SUBREG (inner, real);
3102 imag = gen_lowpart_SUBREG (inner, imag);
3104 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3105 set_decl_incoming_rtl (parm, tmp, false);
3106 fnargs = TREE_CHAIN (fnargs);
3108 else
3110 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3111 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3113 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3114 instead of the copy of decl, i.e. FNARGS. */
3115 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3116 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3119 fnargs = TREE_CHAIN (fnargs);
3123 /* Assign RTL expressions to the function's parameters. This may involve
3124 copying them into registers and using those registers as the DECL_RTL. */
3126 static void
3127 assign_parms (tree fndecl)
3129 struct assign_parm_data_all all;
3130 tree fnargs, parm;
3132 crtl->args.internal_arg_pointer
3133 = targetm.calls.internal_arg_pointer ();
3135 assign_parms_initialize_all (&all);
3136 fnargs = assign_parms_augmented_arg_list (&all);
3138 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3140 struct assign_parm_data_one data;
3142 /* Extract the type of PARM; adjust it according to ABI. */
3143 assign_parm_find_data_types (&all, parm, &data);
3145 /* Early out for errors and void parameters. */
3146 if (data.passed_mode == VOIDmode)
3148 SET_DECL_RTL (parm, const0_rtx);
3149 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3150 continue;
3153 /* Estimate stack alignment from parameter alignment. */
3154 if (SUPPORTS_STACK_ALIGNMENT)
3156 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3157 data.passed_type);
3158 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3159 align);
3160 if (TYPE_ALIGN (data.nominal_type) > align)
3161 align = MINIMUM_ALIGNMENT (data.nominal_type,
3162 TYPE_MODE (data.nominal_type),
3163 TYPE_ALIGN (data.nominal_type));
3164 if (crtl->stack_alignment_estimated < align)
3166 gcc_assert (!crtl->stack_realign_processed);
3167 crtl->stack_alignment_estimated = align;
3171 if (cfun->stdarg && !TREE_CHAIN (parm))
3172 assign_parms_setup_varargs (&all, &data, false);
3174 /* Find out where the parameter arrives in this function. */
3175 assign_parm_find_entry_rtl (&all, &data);
3177 /* Find out where stack space for this parameter might be. */
3178 if (assign_parm_is_stack_parm (&all, &data))
3180 assign_parm_find_stack_rtl (parm, &data);
3181 assign_parm_adjust_entry_rtl (&data);
3184 /* Record permanently how this parm was passed. */
3185 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3187 /* Update info on where next arg arrives in registers. */
3188 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3189 data.passed_type, data.named_arg);
3191 assign_parm_adjust_stack_rtl (&data);
3193 if (assign_parm_setup_block_p (&data))
3194 assign_parm_setup_block (&all, parm, &data);
3195 else if (data.passed_pointer || use_register_for_decl (parm))
3196 assign_parm_setup_reg (&all, parm, &data);
3197 else
3198 assign_parm_setup_stack (&all, parm, &data);
3201 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3202 assign_parms_unsplit_complex (&all, fnargs);
3204 /* Output all parameter conversion instructions (possibly including calls)
3205 now that all parameters have been copied out of hard registers. */
3206 emit_insn (all.first_conversion_insn);
3208 /* Estimate reload stack alignment from scalar return mode. */
3209 if (SUPPORTS_STACK_ALIGNMENT)
3211 if (DECL_RESULT (fndecl))
3213 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3214 enum machine_mode mode = TYPE_MODE (type);
3216 if (mode != BLKmode
3217 && mode != VOIDmode
3218 && !AGGREGATE_TYPE_P (type))
3220 unsigned int align = GET_MODE_ALIGNMENT (mode);
3221 if (crtl->stack_alignment_estimated < align)
3223 gcc_assert (!crtl->stack_realign_processed);
3224 crtl->stack_alignment_estimated = align;
3230 /* If we are receiving a struct value address as the first argument, set up
3231 the RTL for the function result. As this might require code to convert
3232 the transmitted address to Pmode, we do this here to ensure that possible
3233 preliminary conversions of the address have been emitted already. */
3234 if (all.function_result_decl)
3236 tree result = DECL_RESULT (current_function_decl);
3237 rtx addr = DECL_RTL (all.function_result_decl);
3238 rtx x;
3240 if (DECL_BY_REFERENCE (result))
3241 x = addr;
3242 else
3244 addr = convert_memory_address (Pmode, addr);
3245 x = gen_rtx_MEM (DECL_MODE (result), addr);
3246 set_mem_attributes (x, result, 1);
3248 SET_DECL_RTL (result, x);
3251 /* We have aligned all the args, so add space for the pretend args. */
3252 crtl->args.pretend_args_size = all.pretend_args_size;
3253 all.stack_args_size.constant += all.extra_pretend_bytes;
3254 crtl->args.size = all.stack_args_size.constant;
3256 /* Adjust function incoming argument size for alignment and
3257 minimum length. */
3259 #ifdef REG_PARM_STACK_SPACE
3260 crtl->args.size = MAX (crtl->args.size,
3261 REG_PARM_STACK_SPACE (fndecl));
3262 #endif
3264 crtl->args.size = CEIL_ROUND (crtl->args.size,
3265 PARM_BOUNDARY / BITS_PER_UNIT);
3267 #ifdef ARGS_GROW_DOWNWARD
3268 crtl->args.arg_offset_rtx
3269 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3270 : expand_expr (size_diffop (all.stack_args_size.var,
3271 size_int (-all.stack_args_size.constant)),
3272 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3273 #else
3274 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3275 #endif
3277 /* See how many bytes, if any, of its args a function should try to pop
3278 on return. */
3280 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3281 crtl->args.size);
3283 /* For stdarg.h function, save info about
3284 regs and stack space used by the named args. */
3286 crtl->args.info = all.args_so_far;
3288 /* Set the rtx used for the function return value. Put this in its
3289 own variable so any optimizers that need this information don't have
3290 to include tree.h. Do this here so it gets done when an inlined
3291 function gets output. */
3293 crtl->return_rtx
3294 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3295 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3297 /* If scalar return value was computed in a pseudo-reg, or was a named
3298 return value that got dumped to the stack, copy that to the hard
3299 return register. */
3300 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3302 tree decl_result = DECL_RESULT (fndecl);
3303 rtx decl_rtl = DECL_RTL (decl_result);
3305 if (REG_P (decl_rtl)
3306 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3307 : DECL_REGISTER (decl_result))
3309 rtx real_decl_rtl;
3311 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3312 fndecl, true);
3313 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3314 /* The delay slot scheduler assumes that crtl->return_rtx
3315 holds the hard register containing the return value, not a
3316 temporary pseudo. */
3317 crtl->return_rtx = real_decl_rtl;
3322 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3323 For all seen types, gimplify their sizes. */
3325 static tree
3326 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3328 tree t = *tp;
3330 *walk_subtrees = 0;
3331 if (TYPE_P (t))
3333 if (POINTER_TYPE_P (t))
3334 *walk_subtrees = 1;
3335 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3336 && !TYPE_SIZES_GIMPLIFIED (t))
3338 gimplify_type_sizes (t, (gimple_seq *) data);
3339 *walk_subtrees = 1;
3343 return NULL;
3346 /* Gimplify the parameter list for current_function_decl. This involves
3347 evaluating SAVE_EXPRs of variable sized parameters and generating code
3348 to implement callee-copies reference parameters. Returns a sequence of
3349 statements to add to the beginning of the function. */
3351 gimple_seq
3352 gimplify_parameters (void)
3354 struct assign_parm_data_all all;
3355 tree fnargs, parm;
3356 gimple_seq stmts = NULL;
3358 assign_parms_initialize_all (&all);
3359 fnargs = assign_parms_augmented_arg_list (&all);
3361 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3363 struct assign_parm_data_one data;
3365 /* Extract the type of PARM; adjust it according to ABI. */
3366 assign_parm_find_data_types (&all, parm, &data);
3368 /* Early out for errors and void parameters. */
3369 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3370 continue;
3372 /* Update info on where next arg arrives in registers. */
3373 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3374 data.passed_type, data.named_arg);
3376 /* ??? Once upon a time variable_size stuffed parameter list
3377 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3378 turned out to be less than manageable in the gimple world.
3379 Now we have to hunt them down ourselves. */
3380 walk_tree_without_duplicates (&data.passed_type,
3381 gimplify_parm_type, &stmts);
3383 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3385 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3386 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3389 if (data.passed_pointer)
3391 tree type = TREE_TYPE (data.passed_type);
3392 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3393 type, data.named_arg))
3395 tree local, t;
3397 /* For constant-sized objects, this is trivial; for
3398 variable-sized objects, we have to play games. */
3399 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3400 && !(flag_stack_check == GENERIC_STACK_CHECK
3401 && compare_tree_int (DECL_SIZE_UNIT (parm),
3402 STACK_CHECK_MAX_VAR_SIZE) > 0))
3404 local = create_tmp_var (type, get_name (parm));
3405 DECL_IGNORED_P (local) = 0;
3406 /* If PARM was addressable, move that flag over
3407 to the local copy, as its address will be taken,
3408 not the PARMs. */
3409 if (TREE_ADDRESSABLE (parm))
3411 TREE_ADDRESSABLE (parm) = 0;
3412 TREE_ADDRESSABLE (local) = 1;
3415 else
3417 tree ptr_type, addr;
3419 ptr_type = build_pointer_type (type);
3420 addr = create_tmp_var (ptr_type, get_name (parm));
3421 DECL_IGNORED_P (addr) = 0;
3422 local = build_fold_indirect_ref (addr);
3424 t = built_in_decls[BUILT_IN_ALLOCA];
3425 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3426 t = fold_convert (ptr_type, t);
3427 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3428 gimplify_and_add (t, &stmts);
3431 gimplify_assign (local, parm, &stmts);
3433 SET_DECL_VALUE_EXPR (parm, local);
3434 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3439 return stmts;
3442 /* Compute the size and offset from the start of the stacked arguments for a
3443 parm passed in mode PASSED_MODE and with type TYPE.
3445 INITIAL_OFFSET_PTR points to the current offset into the stacked
3446 arguments.
3448 The starting offset and size for this parm are returned in
3449 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3450 nonzero, the offset is that of stack slot, which is returned in
3451 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3452 padding required from the initial offset ptr to the stack slot.
3454 IN_REGS is nonzero if the argument will be passed in registers. It will
3455 never be set if REG_PARM_STACK_SPACE is not defined.
3457 FNDECL is the function in which the argument was defined.
3459 There are two types of rounding that are done. The first, controlled by
3460 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3461 list to be aligned to the specific boundary (in bits). This rounding
3462 affects the initial and starting offsets, but not the argument size.
3464 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3465 optionally rounds the size of the parm to PARM_BOUNDARY. The
3466 initial offset is not affected by this rounding, while the size always
3467 is and the starting offset may be. */
3469 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3470 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3471 callers pass in the total size of args so far as
3472 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3474 void
3475 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3476 int partial, tree fndecl ATTRIBUTE_UNUSED,
3477 struct args_size *initial_offset_ptr,
3478 struct locate_and_pad_arg_data *locate)
3480 tree sizetree;
3481 enum direction where_pad;
3482 unsigned int boundary;
3483 int reg_parm_stack_space = 0;
3484 int part_size_in_regs;
3486 #ifdef REG_PARM_STACK_SPACE
3487 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3489 /* If we have found a stack parm before we reach the end of the
3490 area reserved for registers, skip that area. */
3491 if (! in_regs)
3493 if (reg_parm_stack_space > 0)
3495 if (initial_offset_ptr->var)
3497 initial_offset_ptr->var
3498 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3499 ssize_int (reg_parm_stack_space));
3500 initial_offset_ptr->constant = 0;
3502 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3503 initial_offset_ptr->constant = reg_parm_stack_space;
3506 #endif /* REG_PARM_STACK_SPACE */
3508 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3510 sizetree
3511 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3512 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3513 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3514 locate->where_pad = where_pad;
3516 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3517 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3518 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3520 locate->boundary = boundary;
3522 if (SUPPORTS_STACK_ALIGNMENT)
3524 /* stack_alignment_estimated can't change after stack has been
3525 realigned. */
3526 if (crtl->stack_alignment_estimated < boundary)
3528 if (!crtl->stack_realign_processed)
3529 crtl->stack_alignment_estimated = boundary;
3530 else
3532 /* If stack is realigned and stack alignment value
3533 hasn't been finalized, it is OK not to increase
3534 stack_alignment_estimated. The bigger alignment
3535 requirement is recorded in stack_alignment_needed
3536 below. */
3537 gcc_assert (!crtl->stack_realign_finalized
3538 && crtl->stack_realign_needed);
3543 /* Remember if the outgoing parameter requires extra alignment on the
3544 calling function side. */
3545 if (crtl->stack_alignment_needed < boundary)
3546 crtl->stack_alignment_needed = boundary;
3547 if (crtl->preferred_stack_boundary < boundary)
3548 crtl->preferred_stack_boundary = boundary;
3550 #ifdef ARGS_GROW_DOWNWARD
3551 locate->slot_offset.constant = -initial_offset_ptr->constant;
3552 if (initial_offset_ptr->var)
3553 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3554 initial_offset_ptr->var);
3557 tree s2 = sizetree;
3558 if (where_pad != none
3559 && (!host_integerp (sizetree, 1)
3560 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3561 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3562 SUB_PARM_SIZE (locate->slot_offset, s2);
3565 locate->slot_offset.constant += part_size_in_regs;
3567 if (!in_regs
3568 #ifdef REG_PARM_STACK_SPACE
3569 || REG_PARM_STACK_SPACE (fndecl) > 0
3570 #endif
3572 pad_to_arg_alignment (&locate->slot_offset, boundary,
3573 &locate->alignment_pad);
3575 locate->size.constant = (-initial_offset_ptr->constant
3576 - locate->slot_offset.constant);
3577 if (initial_offset_ptr->var)
3578 locate->size.var = size_binop (MINUS_EXPR,
3579 size_binop (MINUS_EXPR,
3580 ssize_int (0),
3581 initial_offset_ptr->var),
3582 locate->slot_offset.var);
3584 /* Pad_below needs the pre-rounded size to know how much to pad
3585 below. */
3586 locate->offset = locate->slot_offset;
3587 if (where_pad == downward)
3588 pad_below (&locate->offset, passed_mode, sizetree);
3590 #else /* !ARGS_GROW_DOWNWARD */
3591 if (!in_regs
3592 #ifdef REG_PARM_STACK_SPACE
3593 || REG_PARM_STACK_SPACE (fndecl) > 0
3594 #endif
3596 pad_to_arg_alignment (initial_offset_ptr, boundary,
3597 &locate->alignment_pad);
3598 locate->slot_offset = *initial_offset_ptr;
3600 #ifdef PUSH_ROUNDING
3601 if (passed_mode != BLKmode)
3602 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3603 #endif
3605 /* Pad_below needs the pre-rounded size to know how much to pad below
3606 so this must be done before rounding up. */
3607 locate->offset = locate->slot_offset;
3608 if (where_pad == downward)
3609 pad_below (&locate->offset, passed_mode, sizetree);
3611 if (where_pad != none
3612 && (!host_integerp (sizetree, 1)
3613 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3614 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3616 ADD_PARM_SIZE (locate->size, sizetree);
3618 locate->size.constant -= part_size_in_regs;
3619 #endif /* ARGS_GROW_DOWNWARD */
3621 #ifdef FUNCTION_ARG_OFFSET
3622 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3623 #endif
3626 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3627 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3629 static void
3630 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3631 struct args_size *alignment_pad)
3633 tree save_var = NULL_TREE;
3634 HOST_WIDE_INT save_constant = 0;
3635 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3636 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3638 #ifdef SPARC_STACK_BOUNDARY_HACK
3639 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3640 the real alignment of %sp. However, when it does this, the
3641 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3642 if (SPARC_STACK_BOUNDARY_HACK)
3643 sp_offset = 0;
3644 #endif
3646 if (boundary > PARM_BOUNDARY)
3648 save_var = offset_ptr->var;
3649 save_constant = offset_ptr->constant;
3652 alignment_pad->var = NULL_TREE;
3653 alignment_pad->constant = 0;
3655 if (boundary > BITS_PER_UNIT)
3657 if (offset_ptr->var)
3659 tree sp_offset_tree = ssize_int (sp_offset);
3660 tree offset = size_binop (PLUS_EXPR,
3661 ARGS_SIZE_TREE (*offset_ptr),
3662 sp_offset_tree);
3663 #ifdef ARGS_GROW_DOWNWARD
3664 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3665 #else
3666 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3667 #endif
3669 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3670 /* ARGS_SIZE_TREE includes constant term. */
3671 offset_ptr->constant = 0;
3672 if (boundary > PARM_BOUNDARY)
3673 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3674 save_var);
3676 else
3678 offset_ptr->constant = -sp_offset +
3679 #ifdef ARGS_GROW_DOWNWARD
3680 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3681 #else
3682 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3683 #endif
3684 if (boundary > PARM_BOUNDARY)
3685 alignment_pad->constant = offset_ptr->constant - save_constant;
3690 static void
3691 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3693 if (passed_mode != BLKmode)
3695 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3696 offset_ptr->constant
3697 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3698 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3699 - GET_MODE_SIZE (passed_mode));
3701 else
3703 if (TREE_CODE (sizetree) != INTEGER_CST
3704 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3706 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3707 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3708 /* Add it in. */
3709 ADD_PARM_SIZE (*offset_ptr, s2);
3710 SUB_PARM_SIZE (*offset_ptr, sizetree);
3716 /* True if register REGNO was alive at a place where `setjmp' was
3717 called and was set more than once or is an argument. Such regs may
3718 be clobbered by `longjmp'. */
3720 static bool
3721 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3723 /* There appear to be cases where some local vars never reach the
3724 backend but have bogus regnos. */
3725 if (regno >= max_reg_num ())
3726 return false;
3728 return ((REG_N_SETS (regno) > 1
3729 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3730 && REGNO_REG_SET_P (setjmp_crosses, regno));
3733 /* Walk the tree of blocks describing the binding levels within a
3734 function and warn about variables the might be killed by setjmp or
3735 vfork. This is done after calling flow_analysis before register
3736 allocation since that will clobber the pseudo-regs to hard
3737 regs. */
3739 static void
3740 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3742 tree decl, sub;
3744 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3746 if (TREE_CODE (decl) == VAR_DECL
3747 && DECL_RTL_SET_P (decl)
3748 && REG_P (DECL_RTL (decl))
3749 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3750 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3751 " %<longjmp%> or %<vfork%>", decl);
3754 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3755 setjmp_vars_warning (setjmp_crosses, sub);
3758 /* Do the appropriate part of setjmp_vars_warning
3759 but for arguments instead of local variables. */
3761 static void
3762 setjmp_args_warning (bitmap setjmp_crosses)
3764 tree decl;
3765 for (decl = DECL_ARGUMENTS (current_function_decl);
3766 decl; decl = TREE_CHAIN (decl))
3767 if (DECL_RTL (decl) != 0
3768 && REG_P (DECL_RTL (decl))
3769 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3770 warning (OPT_Wclobbered,
3771 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3772 decl);
3775 /* Generate warning messages for variables live across setjmp. */
3777 void
3778 generate_setjmp_warnings (void)
3780 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3782 if (n_basic_blocks == NUM_FIXED_BLOCKS
3783 || bitmap_empty_p (setjmp_crosses))
3784 return;
3786 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3787 setjmp_args_warning (setjmp_crosses);
3791 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3792 and create duplicate blocks. */
3793 /* ??? Need an option to either create block fragments or to create
3794 abstract origin duplicates of a source block. It really depends
3795 on what optimization has been performed. */
3797 void
3798 reorder_blocks (void)
3800 tree block = DECL_INITIAL (current_function_decl);
3801 VEC(tree,heap) *block_stack;
3803 if (block == NULL_TREE)
3804 return;
3806 block_stack = VEC_alloc (tree, heap, 10);
3808 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3809 clear_block_marks (block);
3811 /* Prune the old trees away, so that they don't get in the way. */
3812 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3813 BLOCK_CHAIN (block) = NULL_TREE;
3815 /* Recreate the block tree from the note nesting. */
3816 reorder_blocks_1 (get_insns (), block, &block_stack);
3817 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3819 VEC_free (tree, heap, block_stack);
3822 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3824 void
3825 clear_block_marks (tree block)
3827 while (block)
3829 TREE_ASM_WRITTEN (block) = 0;
3830 clear_block_marks (BLOCK_SUBBLOCKS (block));
3831 block = BLOCK_CHAIN (block);
3835 static void
3836 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3838 rtx insn;
3840 for (insn = insns; insn; insn = NEXT_INSN (insn))
3842 if (NOTE_P (insn))
3844 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3846 tree block = NOTE_BLOCK (insn);
3847 tree origin;
3849 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3850 ? BLOCK_FRAGMENT_ORIGIN (block)
3851 : block);
3853 /* If we have seen this block before, that means it now
3854 spans multiple address regions. Create a new fragment. */
3855 if (TREE_ASM_WRITTEN (block))
3857 tree new_block = copy_node (block);
3859 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3860 BLOCK_FRAGMENT_CHAIN (new_block)
3861 = BLOCK_FRAGMENT_CHAIN (origin);
3862 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3864 NOTE_BLOCK (insn) = new_block;
3865 block = new_block;
3868 BLOCK_SUBBLOCKS (block) = 0;
3869 TREE_ASM_WRITTEN (block) = 1;
3870 /* When there's only one block for the entire function,
3871 current_block == block and we mustn't do this, it
3872 will cause infinite recursion. */
3873 if (block != current_block)
3875 if (block != origin)
3876 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3878 BLOCK_SUPERCONTEXT (block) = current_block;
3879 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3880 BLOCK_SUBBLOCKS (current_block) = block;
3881 current_block = origin;
3883 VEC_safe_push (tree, heap, *p_block_stack, block);
3885 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3887 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3888 BLOCK_SUBBLOCKS (current_block)
3889 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3890 current_block = BLOCK_SUPERCONTEXT (current_block);
3896 /* Reverse the order of elements in the chain T of blocks,
3897 and return the new head of the chain (old last element). */
3899 tree
3900 blocks_nreverse (tree t)
3902 tree prev = 0, decl, next;
3903 for (decl = t; decl; decl = next)
3905 next = BLOCK_CHAIN (decl);
3906 BLOCK_CHAIN (decl) = prev;
3907 prev = decl;
3909 return prev;
3912 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3913 non-NULL, list them all into VECTOR, in a depth-first preorder
3914 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3915 blocks. */
3917 static int
3918 all_blocks (tree block, tree *vector)
3920 int n_blocks = 0;
3922 while (block)
3924 TREE_ASM_WRITTEN (block) = 0;
3926 /* Record this block. */
3927 if (vector)
3928 vector[n_blocks] = block;
3930 ++n_blocks;
3932 /* Record the subblocks, and their subblocks... */
3933 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3934 vector ? vector + n_blocks : 0);
3935 block = BLOCK_CHAIN (block);
3938 return n_blocks;
3941 /* Return a vector containing all the blocks rooted at BLOCK. The
3942 number of elements in the vector is stored in N_BLOCKS_P. The
3943 vector is dynamically allocated; it is the caller's responsibility
3944 to call `free' on the pointer returned. */
3946 static tree *
3947 get_block_vector (tree block, int *n_blocks_p)
3949 tree *block_vector;
3951 *n_blocks_p = all_blocks (block, NULL);
3952 block_vector = XNEWVEC (tree, *n_blocks_p);
3953 all_blocks (block, block_vector);
3955 return block_vector;
3958 static GTY(()) int next_block_index = 2;
3960 /* Set BLOCK_NUMBER for all the blocks in FN. */
3962 void
3963 number_blocks (tree fn)
3965 int i;
3966 int n_blocks;
3967 tree *block_vector;
3969 /* For SDB and XCOFF debugging output, we start numbering the blocks
3970 from 1 within each function, rather than keeping a running
3971 count. */
3972 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3973 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3974 next_block_index = 1;
3975 #endif
3977 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3979 /* The top-level BLOCK isn't numbered at all. */
3980 for (i = 1; i < n_blocks; ++i)
3981 /* We number the blocks from two. */
3982 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3984 free (block_vector);
3986 return;
3989 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3991 tree
3992 debug_find_var_in_block_tree (tree var, tree block)
3994 tree t;
3996 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3997 if (t == var)
3998 return block;
4000 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4002 tree ret = debug_find_var_in_block_tree (var, t);
4003 if (ret)
4004 return ret;
4007 return NULL_TREE;
4010 /* Keep track of whether we're in a dummy function context. If we are,
4011 we don't want to invoke the set_current_function hook, because we'll
4012 get into trouble if the hook calls target_reinit () recursively or
4013 when the initial initialization is not yet complete. */
4015 static bool in_dummy_function;
4017 /* Invoke the target hook when setting cfun. Update the optimization options
4018 if the function uses different options than the default. */
4020 static void
4021 invoke_set_current_function_hook (tree fndecl)
4023 if (!in_dummy_function)
4025 tree opts = ((fndecl)
4026 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4027 : optimization_default_node);
4029 if (!opts)
4030 opts = optimization_default_node;
4032 /* Change optimization options if needed. */
4033 if (optimization_current_node != opts)
4035 optimization_current_node = opts;
4036 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4039 targetm.set_current_function (fndecl);
4043 /* cfun should never be set directly; use this function. */
4045 void
4046 set_cfun (struct function *new_cfun)
4048 if (cfun != new_cfun)
4050 cfun = new_cfun;
4051 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4055 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4057 static VEC(function_p,heap) *cfun_stack;
4059 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4061 void
4062 push_cfun (struct function *new_cfun)
4064 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4065 set_cfun (new_cfun);
4068 /* Pop cfun from the stack. */
4070 void
4071 pop_cfun (void)
4073 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4074 set_cfun (new_cfun);
4077 /* Return value of funcdef and increase it. */
4079 get_next_funcdef_no (void)
4081 return funcdef_no++;
4084 /* Allocate a function structure for FNDECL and set its contents
4085 to the defaults. Set cfun to the newly-allocated object.
4086 Some of the helper functions invoked during initialization assume
4087 that cfun has already been set. Therefore, assign the new object
4088 directly into cfun and invoke the back end hook explicitly at the
4089 very end, rather than initializing a temporary and calling set_cfun
4090 on it.
4092 ABSTRACT_P is true if this is a function that will never be seen by
4093 the middle-end. Such functions are front-end concepts (like C++
4094 function templates) that do not correspond directly to functions
4095 placed in object files. */
4097 void
4098 allocate_struct_function (tree fndecl, bool abstract_p)
4100 tree result;
4101 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4103 cfun = GGC_CNEW (struct function);
4105 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4107 init_eh_for_function ();
4109 if (init_machine_status)
4110 cfun->machine = (*init_machine_status) ();
4112 #ifdef OVERRIDE_ABI_FORMAT
4113 OVERRIDE_ABI_FORMAT (fndecl);
4114 #endif
4116 invoke_set_current_function_hook (fndecl);
4118 if (fndecl != NULL_TREE)
4120 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4121 cfun->decl = fndecl;
4122 current_function_funcdef_no = get_next_funcdef_no ();
4124 result = DECL_RESULT (fndecl);
4125 if (!abstract_p && aggregate_value_p (result, fndecl))
4127 #ifdef PCC_STATIC_STRUCT_RETURN
4128 cfun->returns_pcc_struct = 1;
4129 #endif
4130 cfun->returns_struct = 1;
4133 cfun->stdarg
4134 = (fntype
4135 && TYPE_ARG_TYPES (fntype) != 0
4136 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4137 != void_type_node));
4139 /* Assume all registers in stdarg functions need to be saved. */
4140 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4141 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4145 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4146 instead of just setting it. */
4148 void
4149 push_struct_function (tree fndecl)
4151 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4152 allocate_struct_function (fndecl, false);
4155 /* Reset cfun, and other non-struct-function variables to defaults as
4156 appropriate for emitting rtl at the start of a function. */
4158 static void
4159 prepare_function_start (void)
4161 gcc_assert (!crtl->emit.x_last_insn);
4162 init_temp_slots ();
4163 init_emit ();
4164 init_varasm_status ();
4165 init_expr ();
4166 default_rtl_profile ();
4168 cse_not_expected = ! optimize;
4170 /* Caller save not needed yet. */
4171 caller_save_needed = 0;
4173 /* We haven't done register allocation yet. */
4174 reg_renumber = 0;
4176 /* Indicate that we have not instantiated virtual registers yet. */
4177 virtuals_instantiated = 0;
4179 /* Indicate that we want CONCATs now. */
4180 generating_concat_p = 1;
4182 /* Indicate we have no need of a frame pointer yet. */
4183 frame_pointer_needed = 0;
4186 /* Initialize the rtl expansion mechanism so that we can do simple things
4187 like generate sequences. This is used to provide a context during global
4188 initialization of some passes. You must call expand_dummy_function_end
4189 to exit this context. */
4191 void
4192 init_dummy_function_start (void)
4194 gcc_assert (!in_dummy_function);
4195 in_dummy_function = true;
4196 push_struct_function (NULL_TREE);
4197 prepare_function_start ();
4200 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4201 and initialize static variables for generating RTL for the statements
4202 of the function. */
4204 void
4205 init_function_start (tree subr)
4207 if (subr && DECL_STRUCT_FUNCTION (subr))
4208 set_cfun (DECL_STRUCT_FUNCTION (subr));
4209 else
4210 allocate_struct_function (subr, false);
4211 prepare_function_start ();
4213 /* Warn if this value is an aggregate type,
4214 regardless of which calling convention we are using for it. */
4215 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4216 warning (OPT_Waggregate_return, "function returns an aggregate");
4219 /* Make sure all values used by the optimization passes have sane defaults. */
4220 unsigned int
4221 init_function_for_compilation (void)
4223 reg_renumber = 0;
4224 return 0;
4227 struct rtl_opt_pass pass_init_function =
4230 RTL_PASS,
4231 "*init_function", /* name */
4232 NULL, /* gate */
4233 init_function_for_compilation, /* execute */
4234 NULL, /* sub */
4235 NULL, /* next */
4236 0, /* static_pass_number */
4237 TV_NONE, /* tv_id */
4238 0, /* properties_required */
4239 0, /* properties_provided */
4240 0, /* properties_destroyed */
4241 0, /* todo_flags_start */
4242 0 /* todo_flags_finish */
4247 void
4248 expand_main_function (void)
4250 #if (defined(INVOKE__main) \
4251 || (!defined(HAS_INIT_SECTION) \
4252 && !defined(INIT_SECTION_ASM_OP) \
4253 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4254 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4255 #endif
4258 /* Expand code to initialize the stack_protect_guard. This is invoked at
4259 the beginning of a function to be protected. */
4261 #ifndef HAVE_stack_protect_set
4262 # define HAVE_stack_protect_set 0
4263 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4264 #endif
4266 void
4267 stack_protect_prologue (void)
4269 tree guard_decl = targetm.stack_protect_guard ();
4270 rtx x, y;
4272 x = expand_normal (crtl->stack_protect_guard);
4273 y = expand_normal (guard_decl);
4275 /* Allow the target to copy from Y to X without leaking Y into a
4276 register. */
4277 if (HAVE_stack_protect_set)
4279 rtx insn = gen_stack_protect_set (x, y);
4280 if (insn)
4282 emit_insn (insn);
4283 return;
4287 /* Otherwise do a straight move. */
4288 emit_move_insn (x, y);
4291 /* Expand code to verify the stack_protect_guard. This is invoked at
4292 the end of a function to be protected. */
4294 #ifndef HAVE_stack_protect_test
4295 # define HAVE_stack_protect_test 0
4296 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4297 #endif
4299 void
4300 stack_protect_epilogue (void)
4302 tree guard_decl = targetm.stack_protect_guard ();
4303 rtx label = gen_label_rtx ();
4304 rtx x, y, tmp;
4306 x = expand_normal (crtl->stack_protect_guard);
4307 y = expand_normal (guard_decl);
4309 /* Allow the target to compare Y with X without leaking either into
4310 a register. */
4311 switch (HAVE_stack_protect_test != 0)
4313 case 1:
4314 tmp = gen_stack_protect_test (x, y, label);
4315 if (tmp)
4317 emit_insn (tmp);
4318 break;
4320 /* FALLTHRU */
4322 default:
4323 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4324 break;
4327 /* The noreturn predictor has been moved to the tree level. The rtl-level
4328 predictors estimate this branch about 20%, which isn't enough to get
4329 things moved out of line. Since this is the only extant case of adding
4330 a noreturn function at the rtl level, it doesn't seem worth doing ought
4331 except adding the prediction by hand. */
4332 tmp = get_last_insn ();
4333 if (JUMP_P (tmp))
4334 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4336 expand_expr_stmt (targetm.stack_protect_fail ());
4337 emit_label (label);
4340 /* Start the RTL for a new function, and set variables used for
4341 emitting RTL.
4342 SUBR is the FUNCTION_DECL node.
4343 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4344 the function's parameters, which must be run at any return statement. */
4346 void
4347 expand_function_start (tree subr)
4349 /* Make sure volatile mem refs aren't considered
4350 valid operands of arithmetic insns. */
4351 init_recog_no_volatile ();
4353 crtl->profile
4354 = (profile_flag
4355 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4357 crtl->limit_stack
4358 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4360 /* Make the label for return statements to jump to. Do not special
4361 case machines with special return instructions -- they will be
4362 handled later during jump, ifcvt, or epilogue creation. */
4363 return_label = gen_label_rtx ();
4365 /* Initialize rtx used to return the value. */
4366 /* Do this before assign_parms so that we copy the struct value address
4367 before any library calls that assign parms might generate. */
4369 /* Decide whether to return the value in memory or in a register. */
4370 if (aggregate_value_p (DECL_RESULT (subr), subr))
4372 /* Returning something that won't go in a register. */
4373 rtx value_address = 0;
4375 #ifdef PCC_STATIC_STRUCT_RETURN
4376 if (cfun->returns_pcc_struct)
4378 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4379 value_address = assemble_static_space (size);
4381 else
4382 #endif
4384 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4385 /* Expect to be passed the address of a place to store the value.
4386 If it is passed as an argument, assign_parms will take care of
4387 it. */
4388 if (sv)
4390 value_address = gen_reg_rtx (Pmode);
4391 emit_move_insn (value_address, sv);
4394 if (value_address)
4396 rtx x = value_address;
4397 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4399 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4400 set_mem_attributes (x, DECL_RESULT (subr), 1);
4402 SET_DECL_RTL (DECL_RESULT (subr), x);
4405 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4406 /* If return mode is void, this decl rtl should not be used. */
4407 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4408 else
4410 /* Compute the return values into a pseudo reg, which we will copy
4411 into the true return register after the cleanups are done. */
4412 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4413 if (TYPE_MODE (return_type) != BLKmode
4414 && targetm.calls.return_in_msb (return_type))
4415 /* expand_function_end will insert the appropriate padding in
4416 this case. Use the return value's natural (unpadded) mode
4417 within the function proper. */
4418 SET_DECL_RTL (DECL_RESULT (subr),
4419 gen_reg_rtx (TYPE_MODE (return_type)));
4420 else
4422 /* In order to figure out what mode to use for the pseudo, we
4423 figure out what the mode of the eventual return register will
4424 actually be, and use that. */
4425 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4427 /* Structures that are returned in registers are not
4428 aggregate_value_p, so we may see a PARALLEL or a REG. */
4429 if (REG_P (hard_reg))
4430 SET_DECL_RTL (DECL_RESULT (subr),
4431 gen_reg_rtx (GET_MODE (hard_reg)));
4432 else
4434 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4435 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4439 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4440 result to the real return register(s). */
4441 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4444 /* Initialize rtx for parameters and local variables.
4445 In some cases this requires emitting insns. */
4446 assign_parms (subr);
4448 /* If function gets a static chain arg, store it. */
4449 if (cfun->static_chain_decl)
4451 tree parm = cfun->static_chain_decl;
4452 rtx local, chain, insn;
4454 local = gen_reg_rtx (Pmode);
4455 chain = targetm.calls.static_chain (current_function_decl, true);
4457 set_decl_incoming_rtl (parm, chain, false);
4458 SET_DECL_RTL (parm, local);
4459 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4461 insn = emit_move_insn (local, chain);
4463 /* Mark the register as eliminable, similar to parameters. */
4464 if (MEM_P (chain)
4465 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4466 set_unique_reg_note (insn, REG_EQUIV, chain);
4469 /* If the function receives a non-local goto, then store the
4470 bits we need to restore the frame pointer. */
4471 if (cfun->nonlocal_goto_save_area)
4473 tree t_save;
4474 rtx r_save;
4476 /* ??? We need to do this save early. Unfortunately here is
4477 before the frame variable gets declared. Help out... */
4478 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4479 if (!DECL_RTL_SET_P (var))
4480 expand_decl (var);
4482 t_save = build4 (ARRAY_REF, ptr_type_node,
4483 cfun->nonlocal_goto_save_area,
4484 integer_zero_node, NULL_TREE, NULL_TREE);
4485 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4486 r_save = convert_memory_address (Pmode, r_save);
4488 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4489 update_nonlocal_goto_save_area ();
4492 /* The following was moved from init_function_start.
4493 The move is supposed to make sdb output more accurate. */
4494 /* Indicate the beginning of the function body,
4495 as opposed to parm setup. */
4496 emit_note (NOTE_INSN_FUNCTION_BEG);
4498 gcc_assert (NOTE_P (get_last_insn ()));
4500 parm_birth_insn = get_last_insn ();
4502 if (crtl->profile)
4504 #ifdef PROFILE_HOOK
4505 PROFILE_HOOK (current_function_funcdef_no);
4506 #endif
4509 /* After the display initializations is where the stack checking
4510 probe should go. */
4511 if(flag_stack_check)
4512 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4514 /* Make sure there is a line number after the function entry setup code. */
4515 force_next_line_note ();
4518 /* Undo the effects of init_dummy_function_start. */
4519 void
4520 expand_dummy_function_end (void)
4522 gcc_assert (in_dummy_function);
4524 /* End any sequences that failed to be closed due to syntax errors. */
4525 while (in_sequence_p ())
4526 end_sequence ();
4528 /* Outside function body, can't compute type's actual size
4529 until next function's body starts. */
4531 free_after_parsing (cfun);
4532 free_after_compilation (cfun);
4533 pop_cfun ();
4534 in_dummy_function = false;
4537 /* Call DOIT for each hard register used as a return value from
4538 the current function. */
4540 void
4541 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4543 rtx outgoing = crtl->return_rtx;
4545 if (! outgoing)
4546 return;
4548 if (REG_P (outgoing))
4549 (*doit) (outgoing, arg);
4550 else if (GET_CODE (outgoing) == PARALLEL)
4552 int i;
4554 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4556 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4558 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4559 (*doit) (x, arg);
4564 static void
4565 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4567 emit_clobber (reg);
4570 void
4571 clobber_return_register (void)
4573 diddle_return_value (do_clobber_return_reg, NULL);
4575 /* In case we do use pseudo to return value, clobber it too. */
4576 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4578 tree decl_result = DECL_RESULT (current_function_decl);
4579 rtx decl_rtl = DECL_RTL (decl_result);
4580 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4582 do_clobber_return_reg (decl_rtl, NULL);
4587 static void
4588 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4590 emit_use (reg);
4593 static void
4594 use_return_register (void)
4596 diddle_return_value (do_use_return_reg, NULL);
4599 /* Possibly warn about unused parameters. */
4600 void
4601 do_warn_unused_parameter (tree fn)
4603 tree decl;
4605 for (decl = DECL_ARGUMENTS (fn);
4606 decl; decl = TREE_CHAIN (decl))
4607 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4608 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4609 && !TREE_NO_WARNING (decl))
4610 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4613 static GTY(()) rtx initial_trampoline;
4615 /* Generate RTL for the end of the current function. */
4617 void
4618 expand_function_end (void)
4620 rtx clobber_after;
4622 /* If arg_pointer_save_area was referenced only from a nested
4623 function, we will not have initialized it yet. Do that now. */
4624 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4625 get_arg_pointer_save_area ();
4627 /* If we are doing generic stack checking and this function makes calls,
4628 do a stack probe at the start of the function to ensure we have enough
4629 space for another stack frame. */
4630 if (flag_stack_check == GENERIC_STACK_CHECK)
4632 rtx insn, seq;
4634 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4635 if (CALL_P (insn))
4637 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4638 start_sequence ();
4639 if (STACK_CHECK_MOVING_SP)
4640 anti_adjust_stack_and_probe (max_frame_size, true);
4641 else
4642 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4643 seq = get_insns ();
4644 end_sequence ();
4645 emit_insn_before (seq, stack_check_probe_note);
4646 break;
4650 /* End any sequences that failed to be closed due to syntax errors. */
4651 while (in_sequence_p ())
4652 end_sequence ();
4654 clear_pending_stack_adjust ();
4655 do_pending_stack_adjust ();
4657 /* Output a linenumber for the end of the function.
4658 SDB depends on this. */
4659 force_next_line_note ();
4660 set_curr_insn_source_location (input_location);
4662 /* Before the return label (if any), clobber the return
4663 registers so that they are not propagated live to the rest of
4664 the function. This can only happen with functions that drop
4665 through; if there had been a return statement, there would
4666 have either been a return rtx, or a jump to the return label.
4668 We delay actual code generation after the current_function_value_rtx
4669 is computed. */
4670 clobber_after = get_last_insn ();
4672 /* Output the label for the actual return from the function. */
4673 emit_label (return_label);
4675 if (USING_SJLJ_EXCEPTIONS)
4677 /* Let except.c know where it should emit the call to unregister
4678 the function context for sjlj exceptions. */
4679 if (flag_exceptions)
4680 sjlj_emit_function_exit_after (get_last_insn ());
4682 else
4684 /* We want to ensure that instructions that may trap are not
4685 moved into the epilogue by scheduling, because we don't
4686 always emit unwind information for the epilogue. */
4687 if (flag_non_call_exceptions)
4688 emit_insn (gen_blockage ());
4691 /* If this is an implementation of throw, do what's necessary to
4692 communicate between __builtin_eh_return and the epilogue. */
4693 expand_eh_return ();
4695 /* If scalar return value was computed in a pseudo-reg, or was a named
4696 return value that got dumped to the stack, copy that to the hard
4697 return register. */
4698 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4700 tree decl_result = DECL_RESULT (current_function_decl);
4701 rtx decl_rtl = DECL_RTL (decl_result);
4703 if (REG_P (decl_rtl)
4704 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4705 : DECL_REGISTER (decl_result))
4707 rtx real_decl_rtl = crtl->return_rtx;
4709 /* This should be set in assign_parms. */
4710 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4712 /* If this is a BLKmode structure being returned in registers,
4713 then use the mode computed in expand_return. Note that if
4714 decl_rtl is memory, then its mode may have been changed,
4715 but that crtl->return_rtx has not. */
4716 if (GET_MODE (real_decl_rtl) == BLKmode)
4717 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4719 /* If a non-BLKmode return value should be padded at the least
4720 significant end of the register, shift it left by the appropriate
4721 amount. BLKmode results are handled using the group load/store
4722 machinery. */
4723 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4724 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4726 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4727 REGNO (real_decl_rtl)),
4728 decl_rtl);
4729 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4731 /* If a named return value dumped decl_return to memory, then
4732 we may need to re-do the PROMOTE_MODE signed/unsigned
4733 extension. */
4734 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4736 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4737 promote_function_mode (TREE_TYPE (decl_result),
4738 GET_MODE (decl_rtl), &unsignedp,
4739 TREE_TYPE (current_function_decl), 1);
4741 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4743 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4745 /* If expand_function_start has created a PARALLEL for decl_rtl,
4746 move the result to the real return registers. Otherwise, do
4747 a group load from decl_rtl for a named return. */
4748 if (GET_CODE (decl_rtl) == PARALLEL)
4749 emit_group_move (real_decl_rtl, decl_rtl);
4750 else
4751 emit_group_load (real_decl_rtl, decl_rtl,
4752 TREE_TYPE (decl_result),
4753 int_size_in_bytes (TREE_TYPE (decl_result)));
4755 /* In the case of complex integer modes smaller than a word, we'll
4756 need to generate some non-trivial bitfield insertions. Do that
4757 on a pseudo and not the hard register. */
4758 else if (GET_CODE (decl_rtl) == CONCAT
4759 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4760 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4762 int old_generating_concat_p;
4763 rtx tmp;
4765 old_generating_concat_p = generating_concat_p;
4766 generating_concat_p = 0;
4767 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4768 generating_concat_p = old_generating_concat_p;
4770 emit_move_insn (tmp, decl_rtl);
4771 emit_move_insn (real_decl_rtl, tmp);
4773 else
4774 emit_move_insn (real_decl_rtl, decl_rtl);
4778 /* If returning a structure, arrange to return the address of the value
4779 in a place where debuggers expect to find it.
4781 If returning a structure PCC style,
4782 the caller also depends on this value.
4783 And cfun->returns_pcc_struct is not necessarily set. */
4784 if (cfun->returns_struct
4785 || cfun->returns_pcc_struct)
4787 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4788 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4789 rtx outgoing;
4791 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4792 type = TREE_TYPE (type);
4793 else
4794 value_address = XEXP (value_address, 0);
4796 outgoing = targetm.calls.function_value (build_pointer_type (type),
4797 current_function_decl, true);
4799 /* Mark this as a function return value so integrate will delete the
4800 assignment and USE below when inlining this function. */
4801 REG_FUNCTION_VALUE_P (outgoing) = 1;
4803 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4804 value_address = convert_memory_address (GET_MODE (outgoing),
4805 value_address);
4807 emit_move_insn (outgoing, value_address);
4809 /* Show return register used to hold result (in this case the address
4810 of the result. */
4811 crtl->return_rtx = outgoing;
4814 /* Emit the actual code to clobber return register. */
4816 rtx seq;
4818 start_sequence ();
4819 clobber_return_register ();
4820 seq = get_insns ();
4821 end_sequence ();
4823 emit_insn_after (seq, clobber_after);
4826 /* Output the label for the naked return from the function. */
4827 if (naked_return_label)
4828 emit_label (naked_return_label);
4830 /* @@@ This is a kludge. We want to ensure that instructions that
4831 may trap are not moved into the epilogue by scheduling, because
4832 we don't always emit unwind information for the epilogue. */
4833 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4834 emit_insn (gen_blockage ());
4836 /* If stack protection is enabled for this function, check the guard. */
4837 if (crtl->stack_protect_guard)
4838 stack_protect_epilogue ();
4840 /* If we had calls to alloca, and this machine needs
4841 an accurate stack pointer to exit the function,
4842 insert some code to save and restore the stack pointer. */
4843 if (! EXIT_IGNORE_STACK
4844 && cfun->calls_alloca)
4846 rtx tem = 0;
4848 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4849 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4852 /* ??? This should no longer be necessary since stupid is no longer with
4853 us, but there are some parts of the compiler (eg reload_combine, and
4854 sh mach_dep_reorg) that still try and compute their own lifetime info
4855 instead of using the general framework. */
4856 use_return_register ();
4860 get_arg_pointer_save_area (void)
4862 rtx ret = arg_pointer_save_area;
4864 if (! ret)
4866 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4867 arg_pointer_save_area = ret;
4870 if (! crtl->arg_pointer_save_area_init)
4872 rtx seq;
4874 /* Save the arg pointer at the beginning of the function. The
4875 generated stack slot may not be a valid memory address, so we
4876 have to check it and fix it if necessary. */
4877 start_sequence ();
4878 emit_move_insn (validize_mem (ret),
4879 crtl->args.internal_arg_pointer);
4880 seq = get_insns ();
4881 end_sequence ();
4883 push_topmost_sequence ();
4884 emit_insn_after (seq, entry_of_function ());
4885 pop_topmost_sequence ();
4888 return ret;
4891 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4892 for the first time. */
4894 static void
4895 record_insns (rtx insns, rtx end, htab_t *hashp)
4897 rtx tmp;
4898 htab_t hash = *hashp;
4900 if (hash == NULL)
4901 *hashp = hash
4902 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4904 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4906 void **slot = htab_find_slot (hash, tmp, INSERT);
4907 gcc_assert (*slot == NULL);
4908 *slot = tmp;
4912 /* INSN has been duplicated as COPY, as part of duping a basic block.
4913 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4915 void
4916 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4918 void **slot;
4920 if (epilogue_insn_hash == NULL
4921 || htab_find (epilogue_insn_hash, insn) == NULL)
4922 return;
4924 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4925 gcc_assert (*slot == NULL);
4926 *slot = copy;
4929 /* Set the locator of the insn chain starting at INSN to LOC. */
4930 static void
4931 set_insn_locators (rtx insn, int loc)
4933 while (insn != NULL_RTX)
4935 if (INSN_P (insn))
4936 INSN_LOCATOR (insn) = loc;
4937 insn = NEXT_INSN (insn);
4941 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4942 we can be running after reorg, SEQUENCE rtl is possible. */
4944 static bool
4945 contains (const_rtx insn, htab_t hash)
4947 if (hash == NULL)
4948 return false;
4950 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4952 int i;
4953 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4954 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4955 return true;
4956 return false;
4959 return htab_find (hash, insn) != NULL;
4963 prologue_epilogue_contains (const_rtx insn)
4965 if (contains (insn, prologue_insn_hash))
4966 return 1;
4967 if (contains (insn, epilogue_insn_hash))
4968 return 1;
4969 return 0;
4972 #ifdef HAVE_return
4973 /* Insert gen_return at the end of block BB. This also means updating
4974 block_for_insn appropriately. */
4976 static void
4977 emit_return_into_block (basic_block bb)
4979 emit_jump_insn_after (gen_return (), BB_END (bb));
4981 #endif /* HAVE_return */
4983 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4984 this into place with notes indicating where the prologue ends and where
4985 the epilogue begins. Update the basic block information when possible. */
4987 static void
4988 thread_prologue_and_epilogue_insns (void)
4990 int inserted = 0;
4991 edge e;
4992 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4993 rtx seq;
4994 #endif
4995 #if defined (HAVE_epilogue) || defined(HAVE_return)
4996 rtx epilogue_end = NULL_RTX;
4997 #endif
4998 edge_iterator ei;
5000 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5001 #ifdef HAVE_prologue
5002 if (HAVE_prologue)
5004 start_sequence ();
5005 seq = gen_prologue ();
5006 emit_insn (seq);
5008 /* Insert an explicit USE for the frame pointer
5009 if the profiling is on and the frame pointer is required. */
5010 if (crtl->profile && frame_pointer_needed)
5011 emit_use (hard_frame_pointer_rtx);
5013 /* Retain a map of the prologue insns. */
5014 record_insns (seq, NULL, &prologue_insn_hash);
5015 emit_note (NOTE_INSN_PROLOGUE_END);
5017 #ifndef PROFILE_BEFORE_PROLOGUE
5018 /* Ensure that instructions are not moved into the prologue when
5019 profiling is on. The call to the profiling routine can be
5020 emitted within the live range of a call-clobbered register. */
5021 if (crtl->profile)
5022 emit_insn (gen_blockage ());
5023 #endif
5025 seq = get_insns ();
5026 end_sequence ();
5027 set_insn_locators (seq, prologue_locator);
5029 /* Can't deal with multiple successors of the entry block
5030 at the moment. Function should always have at least one
5031 entry point. */
5032 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5034 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5035 inserted = 1;
5037 #endif
5039 /* If the exit block has no non-fake predecessors, we don't need
5040 an epilogue. */
5041 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5042 if ((e->flags & EDGE_FAKE) == 0)
5043 break;
5044 if (e == NULL)
5045 goto epilogue_done;
5047 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5048 #ifdef HAVE_return
5049 if (optimize && HAVE_return)
5051 /* If we're allowed to generate a simple return instruction,
5052 then by definition we don't need a full epilogue. Examine
5053 the block that falls through to EXIT. If it does not
5054 contain any code, examine its predecessors and try to
5055 emit (conditional) return instructions. */
5057 basic_block last;
5058 rtx label;
5060 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5061 if (e->flags & EDGE_FALLTHRU)
5062 break;
5063 if (e == NULL)
5064 goto epilogue_done;
5065 last = e->src;
5067 /* Verify that there are no active instructions in the last block. */
5068 label = BB_END (last);
5069 while (label && !LABEL_P (label))
5071 if (active_insn_p (label))
5072 break;
5073 label = PREV_INSN (label);
5076 if (BB_HEAD (last) == label && LABEL_P (label))
5078 edge_iterator ei2;
5080 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5082 basic_block bb = e->src;
5083 rtx jump;
5085 if (bb == ENTRY_BLOCK_PTR)
5087 ei_next (&ei2);
5088 continue;
5091 jump = BB_END (bb);
5092 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5094 ei_next (&ei2);
5095 continue;
5098 /* If we have an unconditional jump, we can replace that
5099 with a simple return instruction. */
5100 if (simplejump_p (jump))
5102 emit_return_into_block (bb);
5103 delete_insn (jump);
5106 /* If we have a conditional jump, we can try to replace
5107 that with a conditional return instruction. */
5108 else if (condjump_p (jump))
5110 if (! redirect_jump (jump, 0, 0))
5112 ei_next (&ei2);
5113 continue;
5116 /* If this block has only one successor, it both jumps
5117 and falls through to the fallthru block, so we can't
5118 delete the edge. */
5119 if (single_succ_p (bb))
5121 ei_next (&ei2);
5122 continue;
5125 else
5127 ei_next (&ei2);
5128 continue;
5131 /* Fix up the CFG for the successful change we just made. */
5132 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5135 /* Emit a return insn for the exit fallthru block. Whether
5136 this is still reachable will be determined later. */
5138 emit_barrier_after (BB_END (last));
5139 emit_return_into_block (last);
5140 epilogue_end = BB_END (last);
5141 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5142 goto epilogue_done;
5145 #endif
5147 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5148 this marker for the splits of EH_RETURN patterns, and nothing else
5149 uses the flag in the meantime. */
5150 epilogue_completed = 1;
5152 #ifdef HAVE_eh_return
5153 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5154 some targets, these get split to a special version of the epilogue
5155 code. In order to be able to properly annotate these with unwind
5156 info, try to split them now. If we get a valid split, drop an
5157 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5160 rtx prev, last, trial;
5162 if (e->flags & EDGE_FALLTHRU)
5163 continue;
5164 last = BB_END (e->src);
5165 if (!eh_returnjump_p (last))
5166 continue;
5168 prev = PREV_INSN (last);
5169 trial = try_split (PATTERN (last), last, 1);
5170 if (trial == last)
5171 continue;
5173 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5174 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5176 #endif
5178 /* Find the edge that falls through to EXIT. Other edges may exist
5179 due to RETURN instructions, but those don't need epilogues.
5180 There really shouldn't be a mixture -- either all should have
5181 been converted or none, however... */
5183 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5184 if (e->flags & EDGE_FALLTHRU)
5185 break;
5186 if (e == NULL)
5187 goto epilogue_done;
5189 #ifdef HAVE_epilogue
5190 if (HAVE_epilogue)
5192 start_sequence ();
5193 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5194 seq = gen_epilogue ();
5195 emit_jump_insn (seq);
5197 /* Retain a map of the epilogue insns. */
5198 record_insns (seq, NULL, &epilogue_insn_hash);
5199 set_insn_locators (seq, epilogue_locator);
5201 seq = get_insns ();
5202 end_sequence ();
5204 insert_insn_on_edge (seq, e);
5205 inserted = 1;
5207 else
5208 #endif
5210 basic_block cur_bb;
5212 if (! next_active_insn (BB_END (e->src)))
5213 goto epilogue_done;
5214 /* We have a fall-through edge to the exit block, the source is not
5215 at the end of the function, and there will be an assembler epilogue
5216 at the end of the function.
5217 We can't use force_nonfallthru here, because that would try to
5218 use return. Inserting a jump 'by hand' is extremely messy, so
5219 we take advantage of cfg_layout_finalize using
5220 fixup_fallthru_exit_predecessor. */
5221 cfg_layout_initialize (0);
5222 FOR_EACH_BB (cur_bb)
5223 if (cur_bb->index >= NUM_FIXED_BLOCKS
5224 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5225 cur_bb->aux = cur_bb->next_bb;
5226 cfg_layout_finalize ();
5228 epilogue_done:
5229 default_rtl_profile ();
5231 if (inserted)
5233 commit_edge_insertions ();
5235 /* The epilogue insns we inserted may cause the exit edge to no longer
5236 be fallthru. */
5237 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5239 if (((e->flags & EDGE_FALLTHRU) != 0)
5240 && returnjump_p (BB_END (e->src)))
5241 e->flags &= ~EDGE_FALLTHRU;
5245 #ifdef HAVE_sibcall_epilogue
5246 /* Emit sibling epilogues before any sibling call sites. */
5247 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5249 basic_block bb = e->src;
5250 rtx insn = BB_END (bb);
5252 if (!CALL_P (insn)
5253 || ! SIBLING_CALL_P (insn))
5255 ei_next (&ei);
5256 continue;
5259 start_sequence ();
5260 emit_note (NOTE_INSN_EPILOGUE_BEG);
5261 emit_insn (gen_sibcall_epilogue ());
5262 seq = get_insns ();
5263 end_sequence ();
5265 /* Retain a map of the epilogue insns. Used in life analysis to
5266 avoid getting rid of sibcall epilogue insns. Do this before we
5267 actually emit the sequence. */
5268 record_insns (seq, NULL, &epilogue_insn_hash);
5269 set_insn_locators (seq, epilogue_locator);
5271 emit_insn_before (seq, insn);
5272 ei_next (&ei);
5274 #endif
5276 #ifdef HAVE_epilogue
5277 if (epilogue_end)
5279 rtx insn, next;
5281 /* Similarly, move any line notes that appear after the epilogue.
5282 There is no need, however, to be quite so anal about the existence
5283 of such a note. Also possibly move
5284 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5285 info generation. */
5286 for (insn = epilogue_end; insn; insn = next)
5288 next = NEXT_INSN (insn);
5289 if (NOTE_P (insn)
5290 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5291 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5294 #endif
5296 /* Threading the prologue and epilogue changes the artificial refs
5297 in the entry and exit blocks. */
5298 epilogue_completed = 1;
5299 df_update_entry_exit_and_calls ();
5302 /* Reposition the prologue-end and epilogue-begin notes after
5303 instruction scheduling. */
5305 void
5306 reposition_prologue_and_epilogue_notes (void)
5308 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5309 || defined (HAVE_sibcall_epilogue)
5310 /* Since the hash table is created on demand, the fact that it is
5311 non-null is a signal that it is non-empty. */
5312 if (prologue_insn_hash != NULL)
5314 size_t len = htab_elements (prologue_insn_hash);
5315 rtx insn, last = NULL, note = NULL;
5317 /* Scan from the beginning until we reach the last prologue insn. */
5318 /* ??? While we do have the CFG intact, there are two problems:
5319 (1) The prologue can contain loops (typically probing the stack),
5320 which means that the end of the prologue isn't in the first bb.
5321 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5322 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5324 if (NOTE_P (insn))
5326 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5327 note = insn;
5329 else if (contains (insn, prologue_insn_hash))
5331 last = insn;
5332 if (--len == 0)
5333 break;
5337 if (last)
5339 if (note == NULL)
5341 /* Scan forward looking for the PROLOGUE_END note. It should
5342 be right at the beginning of the block, possibly with other
5343 insn notes that got moved there. */
5344 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5346 if (NOTE_P (note)
5347 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5348 break;
5352 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5353 if (LABEL_P (last))
5354 last = NEXT_INSN (last);
5355 reorder_insns (note, note, last);
5359 if (epilogue_insn_hash != NULL)
5361 edge_iterator ei;
5362 edge e;
5364 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5366 rtx insn, first = NULL, note = NULL;
5367 basic_block bb = e->src;
5369 /* Scan from the beginning until we reach the first epilogue insn. */
5370 FOR_BB_INSNS (bb, insn)
5372 if (NOTE_P (insn))
5374 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5376 note = insn;
5377 if (first != NULL)
5378 break;
5381 else if (first == NULL && contains (insn, epilogue_insn_hash))
5383 first = insn;
5384 if (note != NULL)
5385 break;
5389 if (note)
5391 /* If the function has a single basic block, and no real
5392 epilogue insns (e.g. sibcall with no cleanup), the
5393 epilogue note can get scheduled before the prologue
5394 note. If we have frame related prologue insns, having
5395 them scanned during the epilogue will result in a crash.
5396 In this case re-order the epilogue note to just before
5397 the last insn in the block. */
5398 if (first == NULL)
5399 first = BB_END (bb);
5401 if (PREV_INSN (first) != note)
5402 reorder_insns (note, note, PREV_INSN (first));
5406 #endif /* HAVE_prologue or HAVE_epilogue */
5409 /* Returns the name of the current function. */
5410 const char *
5411 current_function_name (void)
5413 if (cfun == NULL)
5414 return "<none>";
5415 return lang_hooks.decl_printable_name (cfun->decl, 2);
5419 static unsigned int
5420 rest_of_handle_check_leaf_regs (void)
5422 #ifdef LEAF_REGISTERS
5423 current_function_uses_only_leaf_regs
5424 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5425 #endif
5426 return 0;
5429 /* Insert a TYPE into the used types hash table of CFUN. */
5431 static void
5432 used_types_insert_helper (tree type, struct function *func)
5434 if (type != NULL && func != NULL)
5436 void **slot;
5438 if (func->used_types_hash == NULL)
5439 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5440 htab_eq_pointer, NULL);
5441 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5442 if (*slot == NULL)
5443 *slot = type;
5447 /* Given a type, insert it into the used hash table in cfun. */
5448 void
5449 used_types_insert (tree t)
5451 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5452 t = TREE_TYPE (t);
5453 t = TYPE_MAIN_VARIANT (t);
5454 if (debug_info_level > DINFO_LEVEL_NONE)
5456 if (cfun)
5457 used_types_insert_helper (t, cfun);
5458 else
5459 /* So this might be a type referenced by a global variable.
5460 Record that type so that we can later decide to emit its debug
5461 information. */
5462 types_used_by_cur_var_decl =
5463 tree_cons (t, NULL, types_used_by_cur_var_decl);
5468 /* Helper to Hash a struct types_used_by_vars_entry. */
5470 static hashval_t
5471 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5473 gcc_assert (entry && entry->var_decl && entry->type);
5475 return iterative_hash_object (entry->type,
5476 iterative_hash_object (entry->var_decl, 0));
5479 /* Hash function of the types_used_by_vars_entry hash table. */
5481 hashval_t
5482 types_used_by_vars_do_hash (const void *x)
5484 const struct types_used_by_vars_entry *entry =
5485 (const struct types_used_by_vars_entry *) x;
5487 return hash_types_used_by_vars_entry (entry);
5490 /*Equality function of the types_used_by_vars_entry hash table. */
5493 types_used_by_vars_eq (const void *x1, const void *x2)
5495 const struct types_used_by_vars_entry *e1 =
5496 (const struct types_used_by_vars_entry *) x1;
5497 const struct types_used_by_vars_entry *e2 =
5498 (const struct types_used_by_vars_entry *)x2;
5500 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5503 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5505 void
5506 types_used_by_var_decl_insert (tree type, tree var_decl)
5508 if (type != NULL && var_decl != NULL)
5510 void **slot;
5511 struct types_used_by_vars_entry e;
5512 e.var_decl = var_decl;
5513 e.type = type;
5514 if (types_used_by_vars_hash == NULL)
5515 types_used_by_vars_hash =
5516 htab_create_ggc (37, types_used_by_vars_do_hash,
5517 types_used_by_vars_eq, NULL);
5518 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5519 hash_types_used_by_vars_entry (&e), INSERT);
5520 if (*slot == NULL)
5522 struct types_used_by_vars_entry *entry;
5523 entry = (struct types_used_by_vars_entry*) ggc_alloc
5524 (sizeof (struct types_used_by_vars_entry));
5525 entry->type = type;
5526 entry->var_decl = var_decl;
5527 *slot = entry;
5532 struct rtl_opt_pass pass_leaf_regs =
5535 RTL_PASS,
5536 "*leaf_regs", /* name */
5537 NULL, /* gate */
5538 rest_of_handle_check_leaf_regs, /* execute */
5539 NULL, /* sub */
5540 NULL, /* next */
5541 0, /* static_pass_number */
5542 TV_NONE, /* tv_id */
5543 0, /* properties_required */
5544 0, /* properties_provided */
5545 0, /* properties_destroyed */
5546 0, /* todo_flags_start */
5547 0 /* todo_flags_finish */
5551 static unsigned int
5552 rest_of_handle_thread_prologue_and_epilogue (void)
5554 if (optimize)
5555 cleanup_cfg (CLEANUP_EXPENSIVE);
5556 /* On some machines, the prologue and epilogue code, or parts thereof,
5557 can be represented as RTL. Doing so lets us schedule insns between
5558 it and the rest of the code and also allows delayed branch
5559 scheduling to operate in the epilogue. */
5561 thread_prologue_and_epilogue_insns ();
5562 return 0;
5565 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5568 RTL_PASS,
5569 "pro_and_epilogue", /* name */
5570 NULL, /* gate */
5571 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5572 NULL, /* sub */
5573 NULL, /* next */
5574 0, /* static_pass_number */
5575 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5576 0, /* properties_required */
5577 0, /* properties_provided */
5578 0, /* properties_destroyed */
5579 TODO_verify_flow, /* todo_flags_start */
5580 TODO_dump_func |
5581 TODO_df_verify |
5582 TODO_df_finish | TODO_verify_rtl_sharing |
5583 TODO_ggc_collect /* todo_flags_finish */
5588 /* This mini-pass fixes fall-out from SSA in asm statements that have
5589 in-out constraints. Say you start with
5591 orig = inout;
5592 asm ("": "+mr" (inout));
5593 use (orig);
5595 which is transformed very early to use explicit output and match operands:
5597 orig = inout;
5598 asm ("": "=mr" (inout) : "0" (inout));
5599 use (orig);
5601 Or, after SSA and copyprop,
5603 asm ("": "=mr" (inout_2) : "0" (inout_1));
5604 use (inout_1);
5606 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5607 they represent two separate values, so they will get different pseudo
5608 registers during expansion. Then, since the two operands need to match
5609 per the constraints, but use different pseudo registers, reload can
5610 only register a reload for these operands. But reloads can only be
5611 satisfied by hardregs, not by memory, so we need a register for this
5612 reload, just because we are presented with non-matching operands.
5613 So, even though we allow memory for this operand, no memory can be
5614 used for it, just because the two operands don't match. This can
5615 cause reload failures on register-starved targets.
5617 So it's a symptom of reload not being able to use memory for reloads
5618 or, alternatively it's also a symptom of both operands not coming into
5619 reload as matching (in which case the pseudo could go to memory just
5620 fine, as the alternative allows it, and no reload would be necessary).
5621 We fix the latter problem here, by transforming
5623 asm ("": "=mr" (inout_2) : "0" (inout_1));
5625 back to
5627 inout_2 = inout_1;
5628 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5630 static void
5631 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5633 int i;
5634 bool changed = false;
5635 rtx op = SET_SRC (p_sets[0]);
5636 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5637 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5638 bool *output_matched = XALLOCAVEC (bool, noutputs);
5640 memset (output_matched, 0, noutputs * sizeof (bool));
5641 for (i = 0; i < ninputs; i++)
5643 rtx input, output, insns;
5644 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5645 char *end;
5646 int match, j;
5648 if (*constraint == '%')
5649 constraint++;
5651 match = strtoul (constraint, &end, 10);
5652 if (end == constraint)
5653 continue;
5655 gcc_assert (match < noutputs);
5656 output = SET_DEST (p_sets[match]);
5657 input = RTVEC_ELT (inputs, i);
5658 /* Only do the transformation for pseudos. */
5659 if (! REG_P (output)
5660 || rtx_equal_p (output, input)
5661 || (GET_MODE (input) != VOIDmode
5662 && GET_MODE (input) != GET_MODE (output)))
5663 continue;
5665 /* We can't do anything if the output is also used as input,
5666 as we're going to overwrite it. */
5667 for (j = 0; j < ninputs; j++)
5668 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5669 break;
5670 if (j != ninputs)
5671 continue;
5673 /* Avoid changing the same input several times. For
5674 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5675 only change in once (to out1), rather than changing it
5676 first to out1 and afterwards to out2. */
5677 if (i > 0)
5679 for (j = 0; j < noutputs; j++)
5680 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5681 break;
5682 if (j != noutputs)
5683 continue;
5685 output_matched[match] = true;
5687 start_sequence ();
5688 emit_move_insn (output, input);
5689 insns = get_insns ();
5690 end_sequence ();
5691 emit_insn_before (insns, insn);
5693 /* Now replace all mentions of the input with output. We can't
5694 just replace the occurrence in inputs[i], as the register might
5695 also be used in some other input (or even in an address of an
5696 output), which would mean possibly increasing the number of
5697 inputs by one (namely 'output' in addition), which might pose
5698 a too complicated problem for reload to solve. E.g. this situation:
5700 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5702 Here 'input' is used in two occurrences as input (once for the
5703 input operand, once for the address in the second output operand).
5704 If we would replace only the occurrence of the input operand (to
5705 make the matching) we would be left with this:
5707 output = input
5708 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5710 Now we suddenly have two different input values (containing the same
5711 value, but different pseudos) where we formerly had only one.
5712 With more complicated asms this might lead to reload failures
5713 which wouldn't have happen without this pass. So, iterate over
5714 all operands and replace all occurrences of the register used. */
5715 for (j = 0; j < noutputs; j++)
5716 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5717 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5718 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5719 input, output);
5720 for (j = 0; j < ninputs; j++)
5721 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5722 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5723 input, output);
5725 changed = true;
5728 if (changed)
5729 df_insn_rescan (insn);
5732 static unsigned
5733 rest_of_match_asm_constraints (void)
5735 basic_block bb;
5736 rtx insn, pat, *p_sets;
5737 int noutputs;
5739 if (!crtl->has_asm_statement)
5740 return 0;
5742 df_set_flags (DF_DEFER_INSN_RESCAN);
5743 FOR_EACH_BB (bb)
5745 FOR_BB_INSNS (bb, insn)
5747 if (!INSN_P (insn))
5748 continue;
5750 pat = PATTERN (insn);
5751 if (GET_CODE (pat) == PARALLEL)
5752 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5753 else if (GET_CODE (pat) == SET)
5754 p_sets = &PATTERN (insn), noutputs = 1;
5755 else
5756 continue;
5758 if (GET_CODE (*p_sets) == SET
5759 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5760 match_asm_constraints_1 (insn, p_sets, noutputs);
5764 return TODO_df_finish;
5767 struct rtl_opt_pass pass_match_asm_constraints =
5770 RTL_PASS,
5771 "asmcons", /* name */
5772 NULL, /* gate */
5773 rest_of_match_asm_constraints, /* execute */
5774 NULL, /* sub */
5775 NULL, /* next */
5776 0, /* static_pass_number */
5777 TV_NONE, /* tv_id */
5778 0, /* properties_required */
5779 0, /* properties_provided */
5780 0, /* properties_destroyed */
5781 0, /* todo_flags_start */
5782 TODO_dump_func /* todo_flags_finish */
5787 #include "gt-function.h"