Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / explow.c
blob4d1d24e501dc3d0ba86f5cf496b7eaaf07769db4
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 int width = GET_MODE_BITSIZE (mode);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C. */
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (CONST_INT_P (XEXP (x, 1)))
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (CONST_INT_P (XEXP (x, 1))
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && CONST_INT_P (tem))
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && CONST_INT_P (tem))
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size;
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
249 size = tree_expr_size (exp);
250 gcc_assert (size);
251 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258 if the size can vary or is larger than an integer. */
260 HOST_WIDE_INT
261 int_expr_size (tree exp)
263 tree size;
265 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266 size = TREE_OPERAND (exp, 1);
267 else
269 size = tree_expr_size (exp);
270 gcc_assert (size);
273 if (size == 0 || !host_integerp (size, 0))
274 return -1;
276 return tree_low_cst (size, 0);
279 /* Return a copy of X in which all memory references
280 and all constants that involve symbol refs
281 have been replaced with new temporary registers.
282 Also emit code to load the memory locations and constants
283 into those registers.
285 If X contains no such constants or memory references,
286 X itself (not a copy) is returned.
288 If a constant is found in the address that is not a legitimate constant
289 in an insn, it is left alone in the hope that it might be valid in the
290 address.
292 X may contain no arithmetic except addition, subtraction and multiplication.
293 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295 static rtx
296 break_out_memory_refs (rtx x)
298 if (MEM_P (x)
299 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 && GET_MODE (x) != VOIDmode))
301 x = force_reg (GET_MODE (x), x);
302 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 || GET_CODE (x) == MULT)
305 rtx op0 = break_out_memory_refs (XEXP (x, 0));
306 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
312 return x;
315 /* Given X, a memory address in address space AS' pointer mode, convert it to
316 an address in the address space's address mode, or vice versa (TO_MODE says
317 which way). We take advantage of the fact that pointers are not allowed to
318 overflow by commuting arithmetic operations over conversions so that address
319 arithmetic insns can be used. */
322 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325 #ifndef POINTERS_EXTEND_UNSIGNED
326 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327 return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329 enum machine_mode pointer_mode, address_mode, from_mode;
330 rtx temp;
331 enum rtx_code code;
333 /* If X already has the right mode, just return it. */
334 if (GET_MODE (x) == to_mode)
335 return x;
337 pointer_mode = targetm.addr_space.pointer_mode (as);
338 address_mode = targetm.addr_space.address_mode (as);
339 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341 /* Here we handle some special cases. If none of them apply, fall through
342 to the default case. */
343 switch (GET_CODE (x))
345 case CONST_INT:
346 case CONST_DOUBLE:
347 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
348 code = TRUNCATE;
349 else if (POINTERS_EXTEND_UNSIGNED < 0)
350 break;
351 else if (POINTERS_EXTEND_UNSIGNED > 0)
352 code = ZERO_EXTEND;
353 else
354 code = SIGN_EXTEND;
355 temp = simplify_unary_operation (code, to_mode, x, from_mode);
356 if (temp)
357 return temp;
358 break;
360 case SUBREG:
361 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
362 && GET_MODE (SUBREG_REG (x)) == to_mode)
363 return SUBREG_REG (x);
364 break;
366 case LABEL_REF:
367 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
368 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
369 return temp;
370 break;
372 case SYMBOL_REF:
373 temp = shallow_copy_rtx (x);
374 PUT_MODE (temp, to_mode);
375 return temp;
376 break;
378 case CONST:
379 return gen_rtx_CONST (to_mode,
380 convert_memory_address_addr_space
381 (to_mode, XEXP (x, 0), as));
382 break;
384 case PLUS:
385 case MULT:
386 /* For addition we can safely permute the conversion and addition
387 operation if one operand is a constant and converting the constant
388 does not change it or if one operand is a constant and we are
389 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
390 We can always safely permute them if we are making the address
391 narrower. */
392 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
393 || (GET_CODE (x) == PLUS
394 && CONST_INT_P (XEXP (x, 1))
395 && (XEXP (x, 1) == convert_memory_address_addr_space
396 (to_mode, XEXP (x, 1), as)
397 || POINTERS_EXTEND_UNSIGNED < 0)))
398 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
399 convert_memory_address_addr_space
400 (to_mode, XEXP (x, 0), as),
401 XEXP (x, 1));
402 break;
404 default:
405 break;
408 return convert_modes (to_mode, from_mode,
409 x, POINTERS_EXTEND_UNSIGNED);
410 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
413 /* Return something equivalent to X but valid as a memory address for something
414 of mode MODE in the named address space AS. When X is not itself valid,
415 this works by copying X or subexpressions of it into registers. */
418 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
420 rtx oldx = x;
421 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
423 x = convert_memory_address_addr_space (address_mode, x, as);
425 /* By passing constant addresses through registers
426 we get a chance to cse them. */
427 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
428 x = force_reg (address_mode, x);
430 /* We get better cse by rejecting indirect addressing at this stage.
431 Let the combiner create indirect addresses where appropriate.
432 For now, generate the code so that the subexpressions useful to share
433 are visible. But not if cse won't be done! */
434 else
436 if (! cse_not_expected && !REG_P (x))
437 x = break_out_memory_refs (x);
439 /* At this point, any valid address is accepted. */
440 if (memory_address_addr_space_p (mode, x, as))
441 goto done;
443 /* If it was valid before but breaking out memory refs invalidated it,
444 use it the old way. */
445 if (memory_address_addr_space_p (mode, oldx, as))
447 x = oldx;
448 goto done;
451 /* Perform machine-dependent transformations on X
452 in certain cases. This is not necessary since the code
453 below can handle all possible cases, but machine-dependent
454 transformations can make better code. */
456 rtx orig_x = x;
457 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
458 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
459 goto done;
462 /* PLUS and MULT can appear in special ways
463 as the result of attempts to make an address usable for indexing.
464 Usually they are dealt with by calling force_operand, below.
465 But a sum containing constant terms is special
466 if removing them makes the sum a valid address:
467 then we generate that address in a register
468 and index off of it. We do this because it often makes
469 shorter code, and because the addresses thus generated
470 in registers often become common subexpressions. */
471 if (GET_CODE (x) == PLUS)
473 rtx constant_term = const0_rtx;
474 rtx y = eliminate_constant_term (x, &constant_term);
475 if (constant_term == const0_rtx
476 || ! memory_address_addr_space_p (mode, y, as))
477 x = force_operand (x, NULL_RTX);
478 else
480 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
481 if (! memory_address_addr_space_p (mode, y, as))
482 x = force_operand (x, NULL_RTX);
483 else
484 x = y;
488 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
489 x = force_operand (x, NULL_RTX);
491 /* If we have a register that's an invalid address,
492 it must be a hard reg of the wrong class. Copy it to a pseudo. */
493 else if (REG_P (x))
494 x = copy_to_reg (x);
496 /* Last resort: copy the value to a register, since
497 the register is a valid address. */
498 else
499 x = force_reg (address_mode, x);
502 done:
504 gcc_assert (memory_address_addr_space_p (mode, x, as));
505 /* If we didn't change the address, we are done. Otherwise, mark
506 a reg as a pointer if we have REG or REG + CONST_INT. */
507 if (oldx == x)
508 return x;
509 else if (REG_P (x))
510 mark_reg_pointer (x, BITS_PER_UNIT);
511 else if (GET_CODE (x) == PLUS
512 && REG_P (XEXP (x, 0))
513 && CONST_INT_P (XEXP (x, 1)))
514 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
516 /* OLDX may have been the address on a temporary. Update the address
517 to indicate that X is now used. */
518 update_temp_slot_address (oldx, x);
520 return x;
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
527 validize_mem (rtx ref)
529 if (!MEM_P (ref))
530 return ref;
531 ref = use_anchored_address (ref);
532 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
533 MEM_ADDR_SPACE (ref)))
534 return ref;
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref, XEXP (ref, 0));
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
545 use_anchored_address (rtx x)
547 rtx base;
548 HOST_WIDE_INT offset;
550 if (!flag_section_anchors)
551 return x;
553 if (!MEM_P (x))
554 return x;
556 /* Split the address into a base and offset. */
557 base = XEXP (x, 0);
558 offset = 0;
559 if (GET_CODE (base) == CONST
560 && GET_CODE (XEXP (base, 0)) == PLUS
561 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
563 offset += INTVAL (XEXP (XEXP (base, 0), 1));
564 base = XEXP (XEXP (base, 0), 0);
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base) != SYMBOL_REF
569 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570 || SYMBOL_REF_ANCHOR_P (base)
571 || SYMBOL_REF_BLOCK (base) == NULL
572 || !targetm.use_anchors_for_symbol_p (base))
573 return x;
575 /* Decide where BASE is going to be. */
576 place_block_symbol (base);
578 /* Get the anchor we need to use. */
579 offset += SYMBOL_REF_BLOCK_OFFSET (base);
580 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581 SYMBOL_REF_TLS_MODEL (base));
583 /* Work out the offset from the anchor. */
584 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586 /* If we're going to run a CSE pass, force the anchor into a register.
587 We will then be able to reuse registers for several accesses, if the
588 target costs say that that's worthwhile. */
589 if (!cse_not_expected)
590 base = force_reg (GET_MODE (base), base);
592 return replace_equiv_address (x, plus_constant (base, offset));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
598 copy_to_reg (rtx x)
600 rtx temp = gen_reg_rtx (GET_MODE (x));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 if (x != temp)
608 emit_move_insn (temp, x);
610 return temp;
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x)
619 return copy_to_mode_reg (Pmode, x);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 rtx temp = gen_reg_rtx (mode);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode, rtx x)
652 rtx temp, insn, set;
654 if (REG_P (x))
655 return x;
657 if (general_operand (x, mode))
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
662 else
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
711 align = MIN (sa, ca);
714 if (align || (MEM_P (x) && MEM_POINTER (x)))
715 mark_reg_pointer (temp, align);
718 return temp;
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
725 force_not_mem (rtx x)
727 rtx temp;
729 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730 return x;
732 temp = gen_reg_rtx (GET_MODE (x));
734 if (MEM_POINTER (x))
735 REG_POINTER (temp) = 1;
737 emit_move_insn (temp, x);
738 return temp;
741 /* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
746 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
748 rtx temp;
750 if (target && REG_P (target))
751 temp = target;
752 else
753 temp = gen_reg_rtx (mode);
755 emit_move_insn (temp, x);
756 return temp;
759 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
763 FOR_RETURN is nonzero if the caller is promoting the return value
764 of FNDECL, else it is for promoting args. */
766 enum machine_mode
767 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
768 const_tree funtype, int for_return)
770 switch (TREE_CODE (type))
772 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
773 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
774 case POINTER_TYPE: case REFERENCE_TYPE:
775 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
776 for_return);
778 default:
779 return mode;
782 /* Return the mode to use to store a scalar of TYPE and MODE.
783 PUNSIGNEDP points to the signedness of the type and may be adjusted
784 to show what signedness to use on extension operations. */
786 enum machine_mode
787 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
788 int *punsignedp ATTRIBUTE_UNUSED)
790 /* FIXME: this is the same logic that was there until GCC 4.4, but we
791 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
792 is not defined. The affected targets are M32C, S390, SPARC. */
793 #ifdef PROMOTE_MODE
794 const enum tree_code code = TREE_CODE (type);
795 int unsignedp = *punsignedp;
797 switch (code)
799 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
800 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
801 PROMOTE_MODE (mode, unsignedp, type);
802 *punsignedp = unsignedp;
803 return mode;
804 break;
806 #ifdef POINTERS_EXTEND_UNSIGNED
807 case REFERENCE_TYPE:
808 case POINTER_TYPE:
809 *punsignedp = POINTERS_EXTEND_UNSIGNED;
810 return targetm.addr_space.address_mode
811 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
812 break;
813 #endif
815 default:
816 return mode;
818 #else
819 return mode;
820 #endif
824 /* Use one of promote_mode or promote_function_mode to find the promoted
825 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
826 of DECL after promotion. */
828 enum machine_mode
829 promote_decl_mode (const_tree decl, int *punsignedp)
831 tree type = TREE_TYPE (decl);
832 int unsignedp = TYPE_UNSIGNED (type);
833 enum machine_mode mode = DECL_MODE (decl);
834 enum machine_mode pmode;
836 if (TREE_CODE (decl) == RESULT_DECL
837 || TREE_CODE (decl) == PARM_DECL)
838 pmode = promote_function_mode (type, mode, &unsignedp,
839 TREE_TYPE (current_function_decl), 2);
840 else
841 pmode = promote_mode (type, mode, &unsignedp);
843 if (punsignedp)
844 *punsignedp = unsignedp;
845 return pmode;
849 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
850 This pops when ADJUST is positive. ADJUST need not be constant. */
852 void
853 adjust_stack (rtx adjust)
855 rtx temp;
857 if (adjust == const0_rtx)
858 return;
860 /* We expect all variable sized adjustments to be multiple of
861 PREFERRED_STACK_BOUNDARY. */
862 if (CONST_INT_P (adjust))
863 stack_pointer_delta -= INTVAL (adjust);
865 temp = expand_binop (Pmode,
866 #ifdef STACK_GROWS_DOWNWARD
867 add_optab,
868 #else
869 sub_optab,
870 #endif
871 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
872 OPTAB_LIB_WIDEN);
874 if (temp != stack_pointer_rtx)
875 emit_move_insn (stack_pointer_rtx, temp);
878 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
879 This pushes when ADJUST is positive. ADJUST need not be constant. */
881 void
882 anti_adjust_stack (rtx adjust)
884 rtx temp;
886 if (adjust == const0_rtx)
887 return;
889 /* We expect all variable sized adjustments to be multiple of
890 PREFERRED_STACK_BOUNDARY. */
891 if (CONST_INT_P (adjust))
892 stack_pointer_delta += INTVAL (adjust);
894 temp = expand_binop (Pmode,
895 #ifdef STACK_GROWS_DOWNWARD
896 sub_optab,
897 #else
898 add_optab,
899 #endif
900 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
901 OPTAB_LIB_WIDEN);
903 if (temp != stack_pointer_rtx)
904 emit_move_insn (stack_pointer_rtx, temp);
907 /* Round the size of a block to be pushed up to the boundary required
908 by this machine. SIZE is the desired size, which need not be constant. */
910 static rtx
911 round_push (rtx size)
913 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
915 if (align == 1)
916 return size;
918 if (CONST_INT_P (size))
920 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
922 if (INTVAL (size) != new_size)
923 size = GEN_INT (new_size);
925 else
927 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
928 but we know it can't. So add ourselves and then do
929 TRUNC_DIV_EXPR. */
930 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
931 NULL_RTX, 1, OPTAB_LIB_WIDEN);
932 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
933 NULL_RTX, 1);
934 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
937 return size;
940 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
941 to a previously-created save area. If no save area has been allocated,
942 this function will allocate one. If a save area is specified, it
943 must be of the proper mode.
945 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
946 are emitted at the current position. */
948 void
949 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
951 rtx sa = *psave;
952 /* The default is that we use a move insn and save in a Pmode object. */
953 rtx (*fcn) (rtx, rtx) = gen_move_insn;
954 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
956 /* See if this machine has anything special to do for this kind of save. */
957 switch (save_level)
959 #ifdef HAVE_save_stack_block
960 case SAVE_BLOCK:
961 if (HAVE_save_stack_block)
962 fcn = gen_save_stack_block;
963 break;
964 #endif
965 #ifdef HAVE_save_stack_function
966 case SAVE_FUNCTION:
967 if (HAVE_save_stack_function)
968 fcn = gen_save_stack_function;
969 break;
970 #endif
971 #ifdef HAVE_save_stack_nonlocal
972 case SAVE_NONLOCAL:
973 if (HAVE_save_stack_nonlocal)
974 fcn = gen_save_stack_nonlocal;
975 break;
976 #endif
977 default:
978 break;
981 /* If there is no save area and we have to allocate one, do so. Otherwise
982 verify the save area is the proper mode. */
984 if (sa == 0)
986 if (mode != VOIDmode)
988 if (save_level == SAVE_NONLOCAL)
989 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
990 else
991 *psave = sa = gen_reg_rtx (mode);
995 if (after)
997 rtx seq;
999 start_sequence ();
1000 do_pending_stack_adjust ();
1001 /* We must validize inside the sequence, to ensure that any instructions
1002 created by the validize call also get moved to the right place. */
1003 if (sa != 0)
1004 sa = validize_mem (sa);
1005 emit_insn (fcn (sa, stack_pointer_rtx));
1006 seq = get_insns ();
1007 end_sequence ();
1008 emit_insn_after (seq, after);
1010 else
1012 do_pending_stack_adjust ();
1013 if (sa != 0)
1014 sa = validize_mem (sa);
1015 emit_insn (fcn (sa, stack_pointer_rtx));
1019 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1020 area made by emit_stack_save. If it is zero, we have nothing to do.
1022 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1023 current position. */
1025 void
1026 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1028 /* The default is that we use a move insn. */
1029 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1031 /* See if this machine has anything special to do for this kind of save. */
1032 switch (save_level)
1034 #ifdef HAVE_restore_stack_block
1035 case SAVE_BLOCK:
1036 if (HAVE_restore_stack_block)
1037 fcn = gen_restore_stack_block;
1038 break;
1039 #endif
1040 #ifdef HAVE_restore_stack_function
1041 case SAVE_FUNCTION:
1042 if (HAVE_restore_stack_function)
1043 fcn = gen_restore_stack_function;
1044 break;
1045 #endif
1046 #ifdef HAVE_restore_stack_nonlocal
1047 case SAVE_NONLOCAL:
1048 if (HAVE_restore_stack_nonlocal)
1049 fcn = gen_restore_stack_nonlocal;
1050 break;
1051 #endif
1052 default:
1053 break;
1056 if (sa != 0)
1058 sa = validize_mem (sa);
1059 /* These clobbers prevent the scheduler from moving
1060 references to variable arrays below the code
1061 that deletes (pops) the arrays. */
1062 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1063 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1066 discard_pending_stack_adjust ();
1068 if (after)
1070 rtx seq;
1072 start_sequence ();
1073 emit_insn (fcn (stack_pointer_rtx, sa));
1074 seq = get_insns ();
1075 end_sequence ();
1076 emit_insn_after (seq, after);
1078 else
1079 emit_insn (fcn (stack_pointer_rtx, sa));
1082 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1083 function. This function should be called whenever we allocate or
1084 deallocate dynamic stack space. */
1086 void
1087 update_nonlocal_goto_save_area (void)
1089 tree t_save;
1090 rtx r_save;
1092 /* The nonlocal_goto_save_area object is an array of N pointers. The
1093 first one is used for the frame pointer save; the rest are sized by
1094 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1095 of the stack save area slots. */
1096 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1097 integer_one_node, NULL_TREE, NULL_TREE);
1098 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1100 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1103 /* Return an rtx representing the address of an area of memory dynamically
1104 pushed on the stack. This region of memory is always aligned to
1105 a multiple of BIGGEST_ALIGNMENT.
1107 Any required stack pointer alignment is preserved.
1109 SIZE is an rtx representing the size of the area.
1110 TARGET is a place in which the address can be placed.
1112 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1115 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1117 /* If we're asking for zero bytes, it doesn't matter what we point
1118 to since we can't dereference it. But return a reasonable
1119 address anyway. */
1120 if (size == const0_rtx)
1121 return virtual_stack_dynamic_rtx;
1123 /* Otherwise, show we're calling alloca or equivalent. */
1124 cfun->calls_alloca = 1;
1126 /* Ensure the size is in the proper mode. */
1127 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1128 size = convert_to_mode (Pmode, size, 1);
1130 /* We can't attempt to minimize alignment necessary, because we don't
1131 know the final value of preferred_stack_boundary yet while executing
1132 this code. */
1133 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1135 /* We will need to ensure that the address we return is aligned to
1136 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1137 always know its final value at this point in the compilation (it
1138 might depend on the size of the outgoing parameter lists, for
1139 example), so we must align the value to be returned in that case.
1140 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1141 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1142 We must also do an alignment operation on the returned value if
1143 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1145 If we have to align, we must leave space in SIZE for the hole
1146 that might result from the alignment operation. */
1148 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1149 #define MUST_ALIGN 1
1150 #else
1151 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1152 #endif
1154 if (MUST_ALIGN)
1155 size
1156 = force_operand (plus_constant (size,
1157 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1158 NULL_RTX);
1160 #ifdef SETJMP_VIA_SAVE_AREA
1161 /* If setjmp restores regs from a save area in the stack frame,
1162 avoid clobbering the reg save area. Note that the offset of
1163 virtual_incoming_args_rtx includes the preallocated stack args space.
1164 It would be no problem to clobber that, but it's on the wrong side
1165 of the old save area.
1167 What used to happen is that, since we did not know for sure
1168 whether setjmp() was invoked until after RTL generation, we
1169 would use reg notes to store the "optimized" size and fix things
1170 up later. These days we know this information before we ever
1171 start building RTL so the reg notes are unnecessary. */
1172 if (!cfun->calls_setjmp)
1174 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1176 /* ??? Code below assumes that the save area needs maximal
1177 alignment. This constraint may be too strong. */
1178 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1180 if (CONST_INT_P (size))
1182 HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1184 if (INTVAL (size) != new_size)
1185 size = GEN_INT (new_size);
1187 else
1189 /* Since we know overflow is not possible, we avoid using
1190 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1191 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1192 GEN_INT (align), NULL_RTX, 1);
1193 size = expand_mult (Pmode, size,
1194 GEN_INT (align), NULL_RTX, 1);
1197 else
1199 rtx dynamic_offset
1200 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1201 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1203 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1204 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1206 #endif /* SETJMP_VIA_SAVE_AREA */
1208 /* Round the size to a multiple of the required stack alignment.
1209 Since the stack if presumed to be rounded before this allocation,
1210 this will maintain the required alignment.
1212 If the stack grows downward, we could save an insn by subtracting
1213 SIZE from the stack pointer and then aligning the stack pointer.
1214 The problem with this is that the stack pointer may be unaligned
1215 between the execution of the subtraction and alignment insns and
1216 some machines do not allow this. Even on those that do, some
1217 signal handlers malfunction if a signal should occur between those
1218 insns. Since this is an extremely rare event, we have no reliable
1219 way of knowing which systems have this problem. So we avoid even
1220 momentarily mis-aligning the stack. */
1222 /* If we added a variable amount to SIZE,
1223 we can no longer assume it is aligned. */
1224 #if !defined (SETJMP_VIA_SAVE_AREA)
1225 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1226 #endif
1227 size = round_push (size);
1229 do_pending_stack_adjust ();
1231 /* We ought to be called always on the toplevel and stack ought to be aligned
1232 properly. */
1233 gcc_assert (!(stack_pointer_delta
1234 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1236 /* If needed, check that we have the required amount of stack. Take into
1237 account what has already been checked. */
1238 if (STACK_CHECK_MOVING_SP)
1240 else if (flag_stack_check == GENERIC_STACK_CHECK)
1241 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1242 size);
1243 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1244 probe_stack_range (STACK_CHECK_PROTECT, size);
1246 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1247 if (target == 0 || !REG_P (target)
1248 || REGNO (target) < FIRST_PSEUDO_REGISTER
1249 || GET_MODE (target) != Pmode)
1250 target = gen_reg_rtx (Pmode);
1252 mark_reg_pointer (target, known_align);
1254 /* Perform the required allocation from the stack. Some systems do
1255 this differently than simply incrementing/decrementing from the
1256 stack pointer, such as acquiring the space by calling malloc(). */
1257 #ifdef HAVE_allocate_stack
1258 if (HAVE_allocate_stack)
1260 enum machine_mode mode = STACK_SIZE_MODE;
1261 insn_operand_predicate_fn pred;
1263 /* We don't have to check against the predicate for operand 0 since
1264 TARGET is known to be a pseudo of the proper mode, which must
1265 be valid for the operand. For operand 1, convert to the
1266 proper mode and validate. */
1267 if (mode == VOIDmode)
1268 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1270 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1271 if (pred && ! ((*pred) (size, mode)))
1272 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1274 emit_insn (gen_allocate_stack (target, size));
1276 else
1277 #endif
1279 #ifndef STACK_GROWS_DOWNWARD
1280 emit_move_insn (target, virtual_stack_dynamic_rtx);
1281 #endif
1283 /* Check stack bounds if necessary. */
1284 if (crtl->limit_stack)
1286 rtx available;
1287 rtx space_available = gen_label_rtx ();
1288 #ifdef STACK_GROWS_DOWNWARD
1289 available = expand_binop (Pmode, sub_optab,
1290 stack_pointer_rtx, stack_limit_rtx,
1291 NULL_RTX, 1, OPTAB_WIDEN);
1292 #else
1293 available = expand_binop (Pmode, sub_optab,
1294 stack_limit_rtx, stack_pointer_rtx,
1295 NULL_RTX, 1, OPTAB_WIDEN);
1296 #endif
1297 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1298 space_available);
1299 #ifdef HAVE_trap
1300 if (HAVE_trap)
1301 emit_insn (gen_trap ());
1302 else
1303 #endif
1304 error ("stack limits not supported on this target");
1305 emit_barrier ();
1306 emit_label (space_available);
1309 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1310 anti_adjust_stack_and_probe (size, false);
1311 else
1312 anti_adjust_stack (size);
1314 #ifdef STACK_GROWS_DOWNWARD
1315 emit_move_insn (target, virtual_stack_dynamic_rtx);
1316 #endif
1319 if (MUST_ALIGN)
1321 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1322 but we know it can't. So add ourselves and then do
1323 TRUNC_DIV_EXPR. */
1324 target = expand_binop (Pmode, add_optab, target,
1325 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1326 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1327 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1328 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1329 NULL_RTX, 1);
1330 target = expand_mult (Pmode, target,
1331 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1332 NULL_RTX, 1);
1335 /* Record the new stack level for nonlocal gotos. */
1336 if (cfun->nonlocal_goto_save_area != 0)
1337 update_nonlocal_goto_save_area ();
1339 return target;
1342 /* A front end may want to override GCC's stack checking by providing a
1343 run-time routine to call to check the stack, so provide a mechanism for
1344 calling that routine. */
1346 static GTY(()) rtx stack_check_libfunc;
1348 void
1349 set_stack_check_libfunc (rtx libfunc)
1351 stack_check_libfunc = libfunc;
1354 /* Emit one stack probe at ADDRESS, an address within the stack. */
1356 static void
1357 emit_stack_probe (rtx address)
1359 rtx memref = gen_rtx_MEM (word_mode, address);
1361 MEM_VOLATILE_P (memref) = 1;
1363 /* See if we have an insn to probe the stack. */
1364 #ifdef HAVE_probe_stack
1365 if (HAVE_probe_stack)
1366 emit_insn (gen_probe_stack (memref));
1367 else
1368 #endif
1369 if (STACK_CHECK_PROBE_LOAD)
1370 emit_move_insn (gen_reg_rtx (word_mode), memref);
1371 else
1372 emit_move_insn (memref, const0_rtx);
1375 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1376 FIRST is a constant and size is a Pmode RTX. These are offsets from
1377 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1378 or subtract them from the stack pointer. */
1380 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1382 #ifdef STACK_GROWS_DOWNWARD
1383 #define STACK_GROW_OP MINUS
1384 #define STACK_GROW_OPTAB sub_optab
1385 #define STACK_GROW_OFF(off) -(off)
1386 #else
1387 #define STACK_GROW_OP PLUS
1388 #define STACK_GROW_OPTAB add_optab
1389 #define STACK_GROW_OFF(off) (off)
1390 #endif
1392 void
1393 probe_stack_range (HOST_WIDE_INT first, rtx size)
1395 /* First ensure SIZE is Pmode. */
1396 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1397 size = convert_to_mode (Pmode, size, 1);
1399 /* Next see if we have a function to check the stack. */
1400 if (stack_check_libfunc)
1402 rtx addr = memory_address (Pmode,
1403 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1404 stack_pointer_rtx,
1405 plus_constant (size, first)));
1406 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1407 Pmode);
1410 /* Next see if we have an insn to check the stack. */
1411 #ifdef HAVE_check_stack
1412 else if (HAVE_check_stack)
1414 rtx addr = memory_address (Pmode,
1415 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1416 stack_pointer_rtx,
1417 plus_constant (size, first)));
1418 insn_operand_predicate_fn pred
1419 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1420 if (pred && !((*pred) (addr, Pmode)))
1421 addr = copy_to_mode_reg (Pmode, addr);
1423 emit_insn (gen_check_stack (addr));
1425 #endif
1427 /* Otherwise we have to generate explicit probes. If we have a constant
1428 small number of them to generate, that's the easy case. */
1429 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1431 HOST_WIDE_INT isize = INTVAL (size), i;
1432 rtx addr;
1434 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1435 it exceeds SIZE. If only one probe is needed, this will not
1436 generate any code. Then probe at FIRST + SIZE. */
1437 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1439 addr = memory_address (Pmode,
1440 plus_constant (stack_pointer_rtx,
1441 STACK_GROW_OFF (first + i)));
1442 emit_stack_probe (addr);
1445 addr = memory_address (Pmode,
1446 plus_constant (stack_pointer_rtx,
1447 STACK_GROW_OFF (first + isize)));
1448 emit_stack_probe (addr);
1451 /* In the variable case, do the same as above, but in a loop. Note that we
1452 must be extra careful with variables wrapping around because we might be
1453 at the very top (or the very bottom) of the address space and we have to
1454 be able to handle this case properly; in particular, we use an equality
1455 test for the loop condition. */
1456 else
1458 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1459 rtx loop_lab = gen_label_rtx ();
1460 rtx end_lab = gen_label_rtx ();
1463 /* Step 1: round SIZE to the previous multiple of the interval. */
1465 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1466 rounded_size
1467 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1468 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1471 /* Step 2: compute initial and final value of the loop counter. */
1473 /* TEST_ADDR = SP + FIRST. */
1474 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1475 stack_pointer_rtx,
1476 GEN_INT (first)), NULL_RTX);
1478 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1479 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1480 test_addr,
1481 rounded_size_op), NULL_RTX);
1484 /* Step 3: the loop
1486 while (TEST_ADDR != LAST_ADDR)
1488 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1489 probe at TEST_ADDR
1492 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1493 until it is equal to ROUNDED_SIZE. */
1495 emit_label (loop_lab);
1497 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1498 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1499 end_lab);
1501 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1502 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1503 GEN_INT (PROBE_INTERVAL), test_addr,
1504 1, OPTAB_WIDEN);
1506 gcc_assert (temp == test_addr);
1508 /* Probe at TEST_ADDR. */
1509 emit_stack_probe (test_addr);
1511 emit_jump (loop_lab);
1513 emit_label (end_lab);
1516 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1517 that SIZE is equal to ROUNDED_SIZE. */
1519 /* TEMP = SIZE - ROUNDED_SIZE. */
1520 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1521 if (temp != const0_rtx)
1523 rtx addr;
1525 if (GET_CODE (temp) == CONST_INT)
1527 /* Use [base + disp} addressing mode if supported. */
1528 HOST_WIDE_INT offset = INTVAL (temp);
1529 addr = memory_address (Pmode,
1530 plus_constant (last_addr,
1531 STACK_GROW_OFF (offset)));
1533 else
1535 /* Manual CSE if the difference is not known at compile-time. */
1536 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1537 addr = memory_address (Pmode,
1538 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1539 last_addr, temp));
1542 emit_stack_probe (addr);
1547 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1548 while probing it. This pushes when SIZE is positive. SIZE need not
1549 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1550 by plus SIZE at the end. */
1552 void
1553 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1555 /* We skip the probe for the first interval + a small dope of 4 words and
1556 probe that many bytes past the specified size to maintain a protection
1557 area at the botton of the stack. */
1558 const int dope = 4 * UNITS_PER_WORD;
1560 /* First ensure SIZE is Pmode. */
1561 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1562 size = convert_to_mode (Pmode, size, 1);
1564 /* If we have a constant small number of probes to generate, that's the
1565 easy case. */
1566 if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1568 HOST_WIDE_INT isize = INTVAL (size), i;
1569 bool first_probe = true;
1571 /* Adjust SP and probe to PROBE_INTERVAL + N * PROBE_INTERVAL for
1572 values of N from 1 until it exceeds SIZE. If only one probe is
1573 needed, this will not generate any code. Then adjust and probe
1574 to PROBE_INTERVAL + SIZE. */
1575 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1577 if (first_probe)
1579 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1580 first_probe = false;
1582 else
1583 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1584 emit_stack_probe (stack_pointer_rtx);
1587 if (first_probe)
1588 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1589 else
1590 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1591 emit_stack_probe (stack_pointer_rtx);
1594 /* In the variable case, do the same as above, but in a loop. Note that we
1595 must be extra careful with variables wrapping around because we might be
1596 at the very top (or the very bottom) of the address space and we have to
1597 be able to handle this case properly; in particular, we use an equality
1598 test for the loop condition. */
1599 else
1601 rtx rounded_size, rounded_size_op, last_addr, temp;
1602 rtx loop_lab = gen_label_rtx ();
1603 rtx end_lab = gen_label_rtx ();
1606 /* Step 1: round SIZE to the previous multiple of the interval. */
1608 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1609 rounded_size
1610 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1611 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1614 /* Step 2: compute initial and final value of the loop counter. */
1616 /* SP = SP_0 + PROBE_INTERVAL. */
1617 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1619 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1620 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1621 stack_pointer_rtx,
1622 rounded_size_op), NULL_RTX);
1625 /* Step 3: the loop
1627 while (SP != LAST_ADDR)
1629 SP = SP + PROBE_INTERVAL
1630 probe at SP
1633 adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
1634 values of N from 1 until it is equal to ROUNDED_SIZE. */
1636 emit_label (loop_lab);
1638 /* Jump to END_LAB if SP == LAST_ADDR. */
1639 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1640 Pmode, 1, end_lab);
1642 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1643 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1644 emit_stack_probe (stack_pointer_rtx);
1646 emit_jump (loop_lab);
1648 emit_label (end_lab);
1651 /* Step 4: adjust SP and probe to PROBE_INTERVAL + SIZE if we cannot
1652 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1654 /* TEMP = SIZE - ROUNDED_SIZE. */
1655 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1656 if (temp != const0_rtx)
1658 /* Manual CSE if the difference is not known at compile-time. */
1659 if (GET_CODE (temp) != CONST_INT)
1660 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1661 anti_adjust_stack (temp);
1662 emit_stack_probe (stack_pointer_rtx);
1666 /* Adjust back and account for the additional first interval. */
1667 if (adjust_back)
1668 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1669 else
1670 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1673 /* Return an rtx representing the register or memory location
1674 in which a scalar value of data type VALTYPE
1675 was returned by a function call to function FUNC.
1676 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1677 function is known, otherwise 0.
1678 OUTGOING is 1 if on a machine with register windows this function
1679 should return the register in which the function will put its result
1680 and 0 otherwise. */
1683 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1684 int outgoing ATTRIBUTE_UNUSED)
1686 rtx val;
1688 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1690 if (REG_P (val)
1691 && GET_MODE (val) == BLKmode)
1693 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1694 enum machine_mode tmpmode;
1696 /* int_size_in_bytes can return -1. We don't need a check here
1697 since the value of bytes will then be large enough that no
1698 mode will match anyway. */
1700 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1701 tmpmode != VOIDmode;
1702 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1704 /* Have we found a large enough mode? */
1705 if (GET_MODE_SIZE (tmpmode) >= bytes)
1706 break;
1709 /* No suitable mode found. */
1710 gcc_assert (tmpmode != VOIDmode);
1712 PUT_MODE (val, tmpmode);
1714 return val;
1717 /* Return an rtx representing the register or memory location
1718 in which a scalar value of mode MODE was returned by a library call. */
1721 hard_libcall_value (enum machine_mode mode, rtx fun)
1723 return targetm.calls.libcall_value (mode, fun);
1726 /* Look up the tree code for a given rtx code
1727 to provide the arithmetic operation for REAL_ARITHMETIC.
1728 The function returns an int because the caller may not know
1729 what `enum tree_code' means. */
1732 rtx_to_tree_code (enum rtx_code code)
1734 enum tree_code tcode;
1736 switch (code)
1738 case PLUS:
1739 tcode = PLUS_EXPR;
1740 break;
1741 case MINUS:
1742 tcode = MINUS_EXPR;
1743 break;
1744 case MULT:
1745 tcode = MULT_EXPR;
1746 break;
1747 case DIV:
1748 tcode = RDIV_EXPR;
1749 break;
1750 case SMIN:
1751 tcode = MIN_EXPR;
1752 break;
1753 case SMAX:
1754 tcode = MAX_EXPR;
1755 break;
1756 default:
1757 tcode = LAST_AND_UNUSED_TREE_CODE;
1758 break;
1760 return ((int) tcode);
1763 #include "gt-explow.h"