Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / emit-rtl.c
blob6e1f9490614e3c3069f7acafbd5fb863dc0eca3d
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62 #include "target.h"
64 /* Commonly used modes. */
66 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
67 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
68 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
69 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
71 /* Datastructures maintained for currently processed function in RTL form. */
73 struct rtl_data x_rtl;
75 /* Indexed by pseudo register number, gives the rtx for that pseudo.
76 Allocated in parallel with regno_pointer_align.
77 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
78 with length attribute nested in top level structures. */
80 rtx * regno_reg_rtx;
82 /* This is *not* reset after each function. It gives each CODE_LABEL
83 in the entire compilation a unique label number. */
85 static GTY(()) int label_num = 1;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
92 rtx global_rtl[GR_MAX];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
106 rtx const_true_rtx;
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112 REAL_VALUE_TYPE dconsthalf;
114 /* Record fixed-point constant 0 and 1. */
115 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
116 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
118 /* All references to the following fixed hard registers go through
119 these unique rtl objects. On machines where the frame-pointer and
120 arg-pointer are the same register, they use the same unique object.
122 After register allocation, other rtl objects which used to be pseudo-regs
123 may be clobbered to refer to the frame-pointer register.
124 But references that were originally to the frame-pointer can be
125 distinguished from the others because they contain frame_pointer_rtx.
127 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
128 tricky: until register elimination has taken place hard_frame_pointer_rtx
129 should be used if it is being set, and frame_pointer_rtx otherwise. After
130 register elimination hard_frame_pointer_rtx should always be used.
131 On machines where the two registers are same (most) then these are the
132 same.
134 In an inline procedure, the stack and frame pointer rtxs may not be
135 used for anything else. */
136 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
159 /* A hash table storing register attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161 htab_t reg_attrs_htab;
163 /* A hash table storing all CONST_DOUBLEs. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165 htab_t const_double_htab;
167 /* A hash table storing all CONST_FIXEDs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_fixed_htab;
171 #define first_insn (crtl->emit.x_first_insn)
172 #define last_insn (crtl->emit.x_last_insn)
173 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
174 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
175 #define last_location (crtl->emit.x_last_location)
176 #define first_label_num (crtl->emit.x_first_label_num)
178 static rtx make_call_insn_raw (rtx);
179 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180 static void set_used_decls (tree);
181 static void mark_label_nuses (rtx);
182 static hashval_t const_int_htab_hash (const void *);
183 static int const_int_htab_eq (const void *, const void *);
184 static hashval_t const_double_htab_hash (const void *);
185 static int const_double_htab_eq (const void *, const void *);
186 static rtx lookup_const_double (rtx);
187 static hashval_t const_fixed_htab_hash (const void *);
188 static int const_fixed_htab_eq (const void *, const void *);
189 static rtx lookup_const_fixed (rtx);
190 static hashval_t mem_attrs_htab_hash (const void *);
191 static int mem_attrs_htab_eq (const void *, const void *);
192 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
193 addr_space_t, enum machine_mode);
194 static hashval_t reg_attrs_htab_hash (const void *);
195 static int reg_attrs_htab_eq (const void *, const void *);
196 static reg_attrs *get_reg_attrs (tree, int);
197 static rtx gen_const_vector (enum machine_mode, int);
198 static void copy_rtx_if_shared_1 (rtx *orig);
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
204 /* Returns a hash code for X (which is a really a CONST_INT). */
206 static hashval_t
207 const_int_htab_hash (const void *x)
209 return (hashval_t) INTVAL ((const_rtx) x);
212 /* Returns nonzero if the value represented by X (which is really a
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
216 static int
217 const_int_htab_eq (const void *x, const void *y)
219 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
222 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
223 static hashval_t
224 const_double_htab_hash (const void *x)
226 const_rtx const value = (const_rtx) x;
227 hashval_t h;
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
237 return h;
240 /* Returns nonzero if the value represented by X (really a ...)
241 is the same as that represented by Y (really a ...) */
242 static int
243 const_double_htab_eq (const void *x, const void *y)
245 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
257 /* Returns a hash code for X (which is really a CONST_FIXED). */
259 static hashval_t
260 const_fixed_htab_hash (const void *x)
262 const_rtx const value = (const_rtx) x;
263 hashval_t h;
265 h = fixed_hash (CONST_FIXED_VALUE (value));
266 /* MODE is used in the comparison, so it should be in the hash. */
267 h ^= GET_MODE (value);
268 return h;
271 /* Returns nonzero if the value represented by X (really a ...)
272 is the same as that represented by Y (really a ...). */
274 static int
275 const_fixed_htab_eq (const void *x, const void *y)
277 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
279 if (GET_MODE (a) != GET_MODE (b))
280 return 0;
281 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
284 /* Returns a hash code for X (which is a really a mem_attrs *). */
286 static hashval_t
287 mem_attrs_htab_hash (const void *x)
289 const mem_attrs *const p = (const mem_attrs *) x;
291 return (p->alias ^ (p->align * 1000)
292 ^ (p->addrspace * 4000)
293 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
294 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
295 ^ (size_t) iterative_hash_expr (p->expr, 0));
298 /* Returns nonzero if the value represented by X (which is really a
299 mem_attrs *) is the same as that given by Y (which is also really a
300 mem_attrs *). */
302 static int
303 mem_attrs_htab_eq (const void *x, const void *y)
305 const mem_attrs *const p = (const mem_attrs *) x;
306 const mem_attrs *const q = (const mem_attrs *) y;
308 return (p->alias == q->alias && p->offset == q->offset
309 && p->size == q->size && p->align == q->align
310 && p->addrspace == q->addrspace
311 && (p->expr == q->expr
312 || (p->expr != NULL_TREE && q->expr != NULL_TREE
313 && operand_equal_p (p->expr, q->expr, 0))));
316 /* Allocate a new mem_attrs structure and insert it into the hash table if
317 one identical to it is not already in the table. We are doing this for
318 MEM of mode MODE. */
320 static mem_attrs *
321 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
322 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
324 mem_attrs attrs;
325 void **slot;
327 /* If everything is the default, we can just return zero.
328 This must match what the corresponding MEM_* macros return when the
329 field is not present. */
330 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
331 && (size == 0
332 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
333 && (STRICT_ALIGNMENT && mode != BLKmode
334 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
335 return 0;
337 attrs.alias = alias;
338 attrs.expr = expr;
339 attrs.offset = offset;
340 attrs.size = size;
341 attrs.align = align;
342 attrs.addrspace = addrspace;
344 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345 if (*slot == 0)
347 *slot = ggc_alloc (sizeof (mem_attrs));
348 memcpy (*slot, &attrs, sizeof (mem_attrs));
351 return (mem_attrs *) *slot;
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
356 static hashval_t
357 reg_attrs_htab_hash (const void *x)
359 const reg_attrs *const p = (const reg_attrs *) x;
361 return ((p->offset * 1000) ^ (long) p->decl);
364 /* Returns nonzero if the value represented by X (which is really a
365 reg_attrs *) is the same as that given by Y (which is also really a
366 reg_attrs *). */
368 static int
369 reg_attrs_htab_eq (const void *x, const void *y)
371 const reg_attrs *const p = (const reg_attrs *) x;
372 const reg_attrs *const q = (const reg_attrs *) y;
374 return (p->decl == q->decl && p->offset == q->offset);
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
378 MEM of mode MODE. */
380 static reg_attrs *
381 get_reg_attrs (tree decl, int offset)
383 reg_attrs attrs;
384 void **slot;
386 /* If everything is the default, we can just return zero. */
387 if (decl == 0 && offset == 0)
388 return 0;
390 attrs.decl = decl;
391 attrs.offset = offset;
393 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394 if (*slot == 0)
396 *slot = ggc_alloc (sizeof (reg_attrs));
397 memcpy (*slot, &attrs, sizeof (reg_attrs));
400 return (reg_attrs *) *slot;
404 #if !HAVE_blockage
405 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406 across this insn. */
409 gen_blockage (void)
411 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412 MEM_VOLATILE_P (x) = true;
413 return x;
415 #endif
418 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
419 don't attempt to share with the various global pieces of rtl (such as
420 frame_pointer_rtx). */
423 gen_raw_REG (enum machine_mode mode, int regno)
425 rtx x = gen_rtx_raw_REG (mode, regno);
426 ORIGINAL_REGNO (x) = regno;
427 return x;
430 /* There are some RTL codes that require special attention; the generation
431 functions do the raw handling. If you add to this list, modify
432 special_rtx in gengenrtl.c as well. */
435 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
437 void **slot;
439 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
442 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443 if (const_true_rtx && arg == STORE_FLAG_VALUE)
444 return const_true_rtx;
445 #endif
447 /* Look up the CONST_INT in the hash table. */
448 slot = htab_find_slot_with_hash (const_int_htab, &arg,
449 (hashval_t) arg, INSERT);
450 if (*slot == 0)
451 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
453 return (rtx) *slot;
457 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
459 return GEN_INT (trunc_int_for_mode (c, mode));
462 /* CONST_DOUBLEs might be created from pairs of integers, or from
463 REAL_VALUE_TYPEs. Also, their length is known only at run time,
464 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
467 hash table. If so, return its counterpart; otherwise add it
468 to the hash table and return it. */
469 static rtx
470 lookup_const_double (rtx real)
472 void **slot = htab_find_slot (const_double_htab, real, INSERT);
473 if (*slot == 0)
474 *slot = real;
476 return (rtx) *slot;
479 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
480 VALUE in mode MODE. */
482 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
484 rtx real = rtx_alloc (CONST_DOUBLE);
485 PUT_MODE (real, mode);
487 real->u.rv = value;
489 return lookup_const_double (real);
492 /* Determine whether FIXED, a CONST_FIXED, already exists in the
493 hash table. If so, return its counterpart; otherwise add it
494 to the hash table and return it. */
496 static rtx
497 lookup_const_fixed (rtx fixed)
499 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500 if (*slot == 0)
501 *slot = fixed;
503 return (rtx) *slot;
506 /* Return a CONST_FIXED rtx for a fixed-point value specified by
507 VALUE in mode MODE. */
510 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512 rtx fixed = rtx_alloc (CONST_FIXED);
513 PUT_MODE (fixed, mode);
515 fixed->u.fv = value;
517 return lookup_const_fixed (fixed);
520 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521 of ints: I0 is the low-order word and I1 is the high-order word.
522 Do not use this routine for non-integer modes; convert to
523 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
526 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
528 rtx value;
529 unsigned int i;
531 /* There are the following cases (note that there are no modes with
532 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535 gen_int_mode.
536 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538 from copies of the sign bit, and sign of i0 and i1 are the same), then
539 we return a CONST_INT for i0.
540 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
541 if (mode != VOIDmode)
543 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545 /* We can get a 0 for an error mark. */
546 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
549 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550 return gen_int_mode (i0, mode);
552 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
555 /* If this integer fits in one word, return a CONST_INT. */
556 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557 return GEN_INT (i0);
559 /* We use VOIDmode for integers. */
560 value = rtx_alloc (CONST_DOUBLE);
561 PUT_MODE (value, VOIDmode);
563 CONST_DOUBLE_LOW (value) = i0;
564 CONST_DOUBLE_HIGH (value) = i1;
566 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567 XWINT (value, i) = 0;
569 return lookup_const_double (value);
573 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
575 /* In case the MD file explicitly references the frame pointer, have
576 all such references point to the same frame pointer. This is
577 used during frame pointer elimination to distinguish the explicit
578 references to these registers from pseudos that happened to be
579 assigned to them.
581 If we have eliminated the frame pointer or arg pointer, we will
582 be using it as a normal register, for example as a spill
583 register. In such cases, we might be accessing it in a mode that
584 is not Pmode and therefore cannot use the pre-allocated rtx.
586 Also don't do this when we are making new REGs in reload, since
587 we don't want to get confused with the real pointers. */
589 if (mode == Pmode && !reload_in_progress)
591 if (regno == FRAME_POINTER_REGNUM
592 && (!reload_completed || frame_pointer_needed))
593 return frame_pointer_rtx;
594 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595 if (regno == HARD_FRAME_POINTER_REGNUM
596 && (!reload_completed || frame_pointer_needed))
597 return hard_frame_pointer_rtx;
598 #endif
599 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600 if (regno == ARG_POINTER_REGNUM)
601 return arg_pointer_rtx;
602 #endif
603 #ifdef RETURN_ADDRESS_POINTER_REGNUM
604 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605 return return_address_pointer_rtx;
606 #endif
607 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609 return pic_offset_table_rtx;
610 if (regno == STACK_POINTER_REGNUM)
611 return stack_pointer_rtx;
614 #if 0
615 /* If the per-function register table has been set up, try to re-use
616 an existing entry in that table to avoid useless generation of RTL.
618 This code is disabled for now until we can fix the various backends
619 which depend on having non-shared hard registers in some cases. Long
620 term we want to re-enable this code as it can significantly cut down
621 on the amount of useless RTL that gets generated.
623 We'll also need to fix some code that runs after reload that wants to
624 set ORIGINAL_REGNO. */
626 if (cfun
627 && cfun->emit
628 && regno_reg_rtx
629 && regno < FIRST_PSEUDO_REGISTER
630 && reg_raw_mode[regno] == mode)
631 return regno_reg_rtx[regno];
632 #endif
634 return gen_raw_REG (mode, regno);
638 gen_rtx_MEM (enum machine_mode mode, rtx addr)
640 rtx rt = gen_rtx_raw_MEM (mode, addr);
642 /* This field is not cleared by the mere allocation of the rtx, so
643 we clear it here. */
644 MEM_ATTRS (rt) = 0;
646 return rt;
649 /* Generate a memory referring to non-trapping constant memory. */
652 gen_const_mem (enum machine_mode mode, rtx addr)
654 rtx mem = gen_rtx_MEM (mode, addr);
655 MEM_READONLY_P (mem) = 1;
656 MEM_NOTRAP_P (mem) = 1;
657 return mem;
660 /* Generate a MEM referring to fixed portions of the frame, e.g., register
661 save areas. */
664 gen_frame_mem (enum machine_mode mode, rtx addr)
666 rtx mem = gen_rtx_MEM (mode, addr);
667 MEM_NOTRAP_P (mem) = 1;
668 set_mem_alias_set (mem, get_frame_alias_set ());
669 return mem;
672 /* Generate a MEM referring to a temporary use of the stack, not part
673 of the fixed stack frame. For example, something which is pushed
674 by a target splitter. */
676 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678 rtx mem = gen_rtx_MEM (mode, addr);
679 MEM_NOTRAP_P (mem) = 1;
680 if (!cfun->calls_alloca)
681 set_mem_alias_set (mem, get_frame_alias_set ());
682 return mem;
685 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
686 this construct would be valid, and false otherwise. */
688 bool
689 validate_subreg (enum machine_mode omode, enum machine_mode imode,
690 const_rtx reg, unsigned int offset)
692 unsigned int isize = GET_MODE_SIZE (imode);
693 unsigned int osize = GET_MODE_SIZE (omode);
695 /* All subregs must be aligned. */
696 if (offset % osize != 0)
697 return false;
699 /* The subreg offset cannot be outside the inner object. */
700 if (offset >= isize)
701 return false;
703 /* ??? This should not be here. Temporarily continue to allow word_mode
704 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
705 Generally, backends are doing something sketchy but it'll take time to
706 fix them all. */
707 if (omode == word_mode)
709 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
710 is the culprit here, and not the backends. */
711 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 /* Allow component subregs of complex and vector. Though given the below
714 extraction rules, it's not always clear what that means. */
715 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716 && GET_MODE_INNER (imode) == omode)
718 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
720 represent this. It's questionable if this ought to be represented at
721 all -- why can't this all be hidden in post-reload splitters that make
722 arbitrarily mode changes to the registers themselves. */
723 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 /* Subregs involving floating point modes are not allowed to
726 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
727 (subreg:SI (reg:DF) 0) isn't. */
728 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 if (isize != osize)
731 return false;
734 /* Paradoxical subregs must have offset zero. */
735 if (osize > isize)
736 return offset == 0;
738 /* This is a normal subreg. Verify that the offset is representable. */
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 unsigned int regno = REGNO (reg);
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748 && GET_MODE_INNER (imode) == omode)
750 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751 return false;
752 #endif
754 return subreg_offset_representable_p (regno, imode, offset, omode);
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize < UNITS_PER_WORD)
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
770 return true;
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 enum machine_mode inmode;
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798 rtvec
799 gen_rtvec (int n, ...)
801 int i;
802 rtvec rt_val;
803 va_list p;
805 va_start (p, n);
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
809 return NULL_RTVEC;
811 rt_val = rtvec_alloc (n);
813 for (i = 0; i < n; i++)
814 rt_val->elem[i] = va_arg (p, rtx);
816 va_end (p);
817 return rt_val;
820 rtvec
821 gen_rtvec_v (int n, rtx *argp)
823 int i;
824 rtvec rt_val;
826 /* Don't allocate an empty rtvec... */
827 if (n == 0)
828 return NULL_RTVEC;
830 rt_val = rtvec_alloc (n);
832 for (i = 0; i < n; i++)
833 rt_val->elem[i] = *argp++;
835 return rt_val;
838 /* Return the number of bytes between the start of an OUTER_MODE
839 in-memory value and the start of an INNER_MODE in-memory value,
840 given that the former is a lowpart of the latter. It may be a
841 paradoxical lowpart, in which case the offset will be negative
842 on big-endian targets. */
845 byte_lowpart_offset (enum machine_mode outer_mode,
846 enum machine_mode inner_mode)
848 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849 return subreg_lowpart_offset (outer_mode, inner_mode);
850 else
851 return -subreg_lowpart_offset (inner_mode, outer_mode);
854 /* Generate a REG rtx for a new pseudo register of mode MODE.
855 This pseudo is assigned the next sequential register number. */
858 gen_reg_rtx (enum machine_mode mode)
860 rtx val;
861 unsigned int align = GET_MODE_ALIGNMENT (mode);
863 gcc_assert (can_create_pseudo_p ());
865 /* If a virtual register with bigger mode alignment is generated,
866 increase stack alignment estimation because it might be spilled
867 to stack later. */
868 if (SUPPORTS_STACK_ALIGNMENT
869 && crtl->stack_alignment_estimated < align
870 && !crtl->stack_realign_processed)
872 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873 if (crtl->stack_alignment_estimated < min_align)
874 crtl->stack_alignment_estimated = min_align;
877 if (generating_concat_p
878 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
881 /* For complex modes, don't make a single pseudo.
882 Instead, make a CONCAT of two pseudos.
883 This allows noncontiguous allocation of the real and imaginary parts,
884 which makes much better code. Besides, allocating DCmode
885 pseudos overstrains reload on some machines like the 386. */
886 rtx realpart, imagpart;
887 enum machine_mode partmode = GET_MODE_INNER (mode);
889 realpart = gen_reg_rtx (partmode);
890 imagpart = gen_reg_rtx (partmode);
891 return gen_rtx_CONCAT (mode, realpart, imagpart);
894 /* Make sure regno_pointer_align, and regno_reg_rtx are large
895 enough to have an element for this pseudo reg number. */
897 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
899 int old_size = crtl->emit.regno_pointer_align_length;
900 char *tmp;
901 rtx *new1;
903 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904 memset (tmp + old_size, 0, old_size);
905 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
907 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908 memset (new1 + old_size, 0, old_size * sizeof (rtx));
909 regno_reg_rtx = new1;
911 crtl->emit.regno_pointer_align_length = old_size * 2;
914 val = gen_raw_REG (mode, reg_rtx_no);
915 regno_reg_rtx[reg_rtx_no++] = val;
916 return val;
919 /* Update NEW with the same attributes as REG, but with OFFSET added
920 to the REG_OFFSET. */
922 static void
923 update_reg_offset (rtx new_rtx, rtx reg, int offset)
925 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926 REG_OFFSET (reg) + offset);
929 /* Generate a register with same attributes as REG, but with OFFSET
930 added to the REG_OFFSET. */
933 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934 int offset)
936 rtx new_rtx = gen_rtx_REG (mode, regno);
938 update_reg_offset (new_rtx, reg, offset);
939 return new_rtx;
942 /* Generate a new pseudo-register with the same attributes as REG, but
943 with OFFSET added to the REG_OFFSET. */
946 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
948 rtx new_rtx = gen_reg_rtx (mode);
950 update_reg_offset (new_rtx, reg, offset);
951 return new_rtx;
954 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
955 new register is a (possibly paradoxical) lowpart of the old one. */
957 void
958 adjust_reg_mode (rtx reg, enum machine_mode mode)
960 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961 PUT_MODE (reg, mode);
964 /* Copy REG's attributes from X, if X has any attributes. If REG and X
965 have different modes, REG is a (possibly paradoxical) lowpart of X. */
967 void
968 set_reg_attrs_from_value (rtx reg, rtx x)
970 int offset;
972 /* Hard registers can be reused for multiple purposes within the same
973 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974 on them is wrong. */
975 if (HARD_REGISTER_P (reg))
976 return;
978 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979 if (MEM_P (x))
981 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982 REG_ATTRS (reg)
983 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984 if (MEM_POINTER (x))
985 mark_reg_pointer (reg, 0);
987 else if (REG_P (x))
989 if (REG_ATTRS (x))
990 update_reg_offset (reg, x, offset);
991 if (REG_POINTER (x))
992 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
996 /* Generate a REG rtx for a new pseudo register, copying the mode
997 and attributes from X. */
1000 gen_reg_rtx_and_attrs (rtx x)
1002 rtx reg = gen_reg_rtx (GET_MODE (x));
1003 set_reg_attrs_from_value (reg, x);
1004 return reg;
1007 /* Set the register attributes for registers contained in PARM_RTX.
1008 Use needed values from memory attributes of MEM. */
1010 void
1011 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1013 if (REG_P (parm_rtx))
1014 set_reg_attrs_from_value (parm_rtx, mem);
1015 else if (GET_CODE (parm_rtx) == PARALLEL)
1017 /* Check for a NULL entry in the first slot, used to indicate that the
1018 parameter goes both on the stack and in registers. */
1019 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020 for (; i < XVECLEN (parm_rtx, 0); i++)
1022 rtx x = XVECEXP (parm_rtx, 0, i);
1023 if (REG_P (XEXP (x, 0)))
1024 REG_ATTRS (XEXP (x, 0))
1025 = get_reg_attrs (MEM_EXPR (mem),
1026 INTVAL (XEXP (x, 1)));
1031 /* Set the REG_ATTRS for registers in value X, given that X represents
1032 decl T. */
1034 void
1035 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1037 if (GET_CODE (x) == SUBREG)
1039 gcc_assert (subreg_lowpart_p (x));
1040 x = SUBREG_REG (x);
1042 if (REG_P (x))
1043 REG_ATTRS (x)
1044 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045 DECL_MODE (t)));
1046 if (GET_CODE (x) == CONCAT)
1048 if (REG_P (XEXP (x, 0)))
1049 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050 if (REG_P (XEXP (x, 1)))
1051 REG_ATTRS (XEXP (x, 1))
1052 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1054 if (GET_CODE (x) == PARALLEL)
1056 int i, start;
1058 /* Check for a NULL entry, used to indicate that the parameter goes
1059 both on the stack and in registers. */
1060 if (XEXP (XVECEXP (x, 0, 0), 0))
1061 start = 0;
1062 else
1063 start = 1;
1065 for (i = start; i < XVECLEN (x, 0); i++)
1067 rtx y = XVECEXP (x, 0, i);
1068 if (REG_P (XEXP (y, 0)))
1069 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1074 /* Assign the RTX X to declaration T. */
1076 void
1077 set_decl_rtl (tree t, rtx x)
1079 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080 if (x)
1081 set_reg_attrs_for_decl_rtl (t, x);
1084 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1085 if the ABI requires the parameter to be passed by reference. */
1087 void
1088 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1090 DECL_INCOMING_RTL (t) = x;
1091 if (x && !by_reference_p)
1092 set_reg_attrs_for_decl_rtl (t, x);
1095 /* Identify REG (which may be a CONCAT) as a user register. */
1097 void
1098 mark_user_reg (rtx reg)
1100 if (GET_CODE (reg) == CONCAT)
1102 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1105 else
1107 gcc_assert (REG_P (reg));
1108 REG_USERVAR_P (reg) = 1;
1112 /* Identify REG as a probable pointer register and show its alignment
1113 as ALIGN, if nonzero. */
1115 void
1116 mark_reg_pointer (rtx reg, int align)
1118 if (! REG_POINTER (reg))
1120 REG_POINTER (reg) = 1;
1122 if (align)
1123 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1125 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126 /* We can no-longer be sure just how aligned this pointer is. */
1127 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1130 /* Return 1 plus largest pseudo reg number used in the current function. */
1133 max_reg_num (void)
1135 return reg_rtx_no;
1138 /* Return 1 + the largest label number used so far in the current function. */
1141 max_label_num (void)
1143 return label_num;
1146 /* Return first label number used in this function (if any were used). */
1149 get_first_label_num (void)
1151 return first_label_num;
1154 /* If the rtx for label was created during the expansion of a nested
1155 function, then first_label_num won't include this label number.
1156 Fix this now so that array indices work later. */
1158 void
1159 maybe_set_first_label_num (rtx x)
1161 if (CODE_LABEL_NUMBER (x) < first_label_num)
1162 first_label_num = CODE_LABEL_NUMBER (x);
1165 /* Return a value representing some low-order bits of X, where the number
1166 of low-order bits is given by MODE. Note that no conversion is done
1167 between floating-point and fixed-point values, rather, the bit
1168 representation is returned.
1170 This function handles the cases in common between gen_lowpart, below,
1171 and two variants in cse.c and combine.c. These are the cases that can
1172 be safely handled at all points in the compilation.
1174 If this is not a case we can handle, return 0. */
1177 gen_lowpart_common (enum machine_mode mode, rtx x)
1179 int msize = GET_MODE_SIZE (mode);
1180 int xsize;
1181 int offset = 0;
1182 enum machine_mode innermode;
1184 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185 so we have to make one up. Yuk. */
1186 innermode = GET_MODE (x);
1187 if (CONST_INT_P (x)
1188 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190 else if (innermode == VOIDmode)
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1193 xsize = GET_MODE_SIZE (innermode);
1195 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1197 if (innermode == mode)
1198 return x;
1200 /* MODE must occupy no more words than the mode of X. */
1201 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203 return 0;
1205 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1206 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207 return 0;
1209 offset = subreg_lowpart_offset (mode, innermode);
1211 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212 && (GET_MODE_CLASS (mode) == MODE_INT
1213 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1215 /* If we are getting the low-order part of something that has been
1216 sign- or zero-extended, we can either just use the object being
1217 extended or make a narrower extension. If we want an even smaller
1218 piece than the size of the object being extended, call ourselves
1219 recursively.
1221 This case is used mostly by combine and cse. */
1223 if (GET_MODE (XEXP (x, 0)) == mode)
1224 return XEXP (x, 0);
1225 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226 return gen_lowpart_common (mode, XEXP (x, 0));
1227 else if (msize < xsize)
1228 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1230 else if (GET_CODE (x) == SUBREG || REG_P (x)
1231 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233 return simplify_gen_subreg (mode, x, innermode, offset);
1235 /* Otherwise, we can't do this. */
1236 return 0;
1240 gen_highpart (enum machine_mode mode, rtx x)
1242 unsigned int msize = GET_MODE_SIZE (mode);
1243 rtx result;
1245 /* This case loses if X is a subreg. To catch bugs early,
1246 complain if an invalid MODE is used even in other cases. */
1247 gcc_assert (msize <= UNITS_PER_WORD
1248 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1250 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251 subreg_highpart_offset (mode, GET_MODE (x)));
1252 gcc_assert (result);
1254 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255 the target if we have a MEM. gen_highpart must return a valid operand,
1256 emitting code if necessary to do so. */
1257 if (MEM_P (result))
1259 result = validize_mem (result);
1260 gcc_assert (result);
1263 return result;
1266 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267 be VOIDmode constant. */
1269 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1271 if (GET_MODE (exp) != VOIDmode)
1273 gcc_assert (GET_MODE (exp) == innermode);
1274 return gen_highpart (outermode, exp);
1276 return simplify_gen_subreg (outermode, exp, innermode,
1277 subreg_highpart_offset (outermode, innermode));
1280 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1282 unsigned int
1283 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1285 unsigned int offset = 0;
1286 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1288 if (difference > 0)
1290 if (WORDS_BIG_ENDIAN)
1291 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292 if (BYTES_BIG_ENDIAN)
1293 offset += difference % UNITS_PER_WORD;
1296 return offset;
1299 /* Return offset in bytes to get OUTERMODE high part
1300 of the value in mode INNERMODE stored in memory in target format. */
1301 unsigned int
1302 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1307 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1309 if (difference > 0)
1311 if (! WORDS_BIG_ENDIAN)
1312 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313 if (! BYTES_BIG_ENDIAN)
1314 offset += difference % UNITS_PER_WORD;
1317 return offset;
1320 /* Return 1 iff X, assumed to be a SUBREG,
1321 refers to the least significant part of its containing reg.
1322 If X is not a SUBREG, always return 1 (it is its own low part!). */
1325 subreg_lowpart_p (const_rtx x)
1327 if (GET_CODE (x) != SUBREG)
1328 return 1;
1329 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330 return 0;
1332 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333 == SUBREG_BYTE (x));
1336 /* Return subword OFFSET of operand OP.
1337 The word number, OFFSET, is interpreted as the word number starting
1338 at the low-order address. OFFSET 0 is the low-order word if not
1339 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1341 If we cannot extract the required word, we return zero. Otherwise,
1342 an rtx corresponding to the requested word will be returned.
1344 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1345 reload has completed, a valid address will always be returned. After
1346 reload, if a valid address cannot be returned, we return zero.
1348 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349 it is the responsibility of the caller.
1351 MODE is the mode of OP in case it is a CONST_INT.
1353 ??? This is still rather broken for some cases. The problem for the
1354 moment is that all callers of this thing provide no 'goal mode' to
1355 tell us to work with. This exists because all callers were written
1356 in a word based SUBREG world.
1357 Now use of this function can be deprecated by simplify_subreg in most
1358 cases.
1362 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1364 if (mode == VOIDmode)
1365 mode = GET_MODE (op);
1367 gcc_assert (mode != VOIDmode);
1369 /* If OP is narrower than a word, fail. */
1370 if (mode != BLKmode
1371 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372 return 0;
1374 /* If we want a word outside OP, return zero. */
1375 if (mode != BLKmode
1376 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377 return const0_rtx;
1379 /* Form a new MEM at the requested address. */
1380 if (MEM_P (op))
1382 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1384 if (! validate_address)
1385 return new_rtx;
1387 else if (reload_completed)
1389 if (! strict_memory_address_addr_space_p (word_mode,
1390 XEXP (new_rtx, 0),
1391 MEM_ADDR_SPACE (op)))
1392 return 0;
1394 else
1395 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1398 /* Rest can be handled by simplify_subreg. */
1399 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1402 /* Similar to `operand_subword', but never return 0. If we can't
1403 extract the required subword, put OP into a register and try again.
1404 The second attempt must succeed. We always validate the address in
1405 this case.
1407 MODE is the mode of OP, in case it is CONST_INT. */
1410 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1412 rtx result = operand_subword (op, offset, 1, mode);
1414 if (result)
1415 return result;
1417 if (mode != BLKmode && mode != VOIDmode)
1419 /* If this is a register which can not be accessed by words, copy it
1420 to a pseudo register. */
1421 if (REG_P (op))
1422 op = copy_to_reg (op);
1423 else
1424 op = force_reg (mode, op);
1427 result = operand_subword (op, offset, 1, mode);
1428 gcc_assert (result);
1430 return result;
1433 /* Returns 1 if both MEM_EXPR can be considered equal
1434 and 0 otherwise. */
1437 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1439 if (expr1 == expr2)
1440 return 1;
1442 if (! expr1 || ! expr2)
1443 return 0;
1445 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1446 return 0;
1448 return operand_equal_p (expr1, expr2, 0);
1451 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1452 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1453 -1 if not known. */
1456 get_mem_align_offset (rtx mem, unsigned int align)
1458 tree expr;
1459 unsigned HOST_WIDE_INT offset;
1461 /* This function can't use
1462 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1463 || !CONST_INT_P (MEM_OFFSET (mem))
1464 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1465 < align))
1466 return -1;
1467 else
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 for two reasons:
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem));
1477 expr = MEM_EXPR (mem);
1478 if (expr == NULL_TREE
1479 || MEM_OFFSET (mem) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem)))
1481 return -1;
1483 offset = INTVAL (MEM_OFFSET (mem));
1484 if (DECL_P (expr))
1486 if (DECL_ALIGN (expr) < align)
1487 return -1;
1489 else if (INDIRECT_REF_P (expr))
1491 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 return -1;
1494 else if (TREE_CODE (expr) == COMPONENT_REF)
1496 while (1)
1498 tree inner = TREE_OPERAND (expr, 0);
1499 tree field = TREE_OPERAND (expr, 1);
1500 tree byte_offset = component_ref_field_offset (expr);
1501 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1503 if (!byte_offset
1504 || !host_integerp (byte_offset, 1)
1505 || !host_integerp (bit_offset, 1))
1506 return -1;
1508 offset += tree_low_cst (byte_offset, 1);
1509 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1511 if (inner == NULL_TREE)
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 < (unsigned int) align)
1515 return -1;
1516 break;
1518 else if (DECL_P (inner))
1520 if (DECL_ALIGN (inner) < align)
1521 return -1;
1522 break;
1524 else if (TREE_CODE (inner) != COMPONENT_REF)
1525 return -1;
1526 expr = inner;
1529 else
1530 return -1;
1532 return offset & ((align / BITS_PER_UNIT) - 1);
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 HOST_WIDE_INT bitpos)
1544 alias_set_type alias = MEM_ALIAS_SET (ref);
1545 tree expr = MEM_EXPR (ref);
1546 rtx offset = MEM_OFFSET (ref);
1547 rtx size = MEM_SIZE (ref);
1548 unsigned int align = MEM_ALIGN (ref);
1549 HOST_WIDE_INT apply_bitpos = 0;
1550 tree type;
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias = get_alias_set (t);
1572 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573 MEM_IN_STRUCT_P (ref)
1574 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp || DECL_P (t))
1580 && ! AGGREGATE_TYPE_P (type)
1581 && TREE_CODE (type) != COMPLEX_TYPE)
1582 MEM_SCALAR_P (ref) = 1;
1584 /* We can set the alignment from the type if we are making an object,
1585 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1586 if (objectp || TREE_CODE (t) == INDIRECT_REF
1587 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1588 || TYPE_ALIGN_OK (type))
1589 align = MAX (align, TYPE_ALIGN (type));
1590 else
1591 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1593 if (integer_zerop (TREE_OPERAND (t, 1)))
1594 /* We don't know anything about the alignment. */
1595 align = BITS_PER_UNIT;
1596 else
1597 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1600 /* If the size is known, we can set that. */
1601 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1602 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1604 /* If T is not a type, we may be able to deduce some more information about
1605 the expression. */
1606 if (! TYPE_P (t))
1608 tree base;
1609 bool align_computed = false;
1611 if (TREE_THIS_VOLATILE (t))
1612 MEM_VOLATILE_P (ref) = 1;
1614 /* Now remove any conversions: they don't change what the underlying
1615 object is. Likewise for SAVE_EXPR. */
1616 while (CONVERT_EXPR_P (t)
1617 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1618 || TREE_CODE (t) == SAVE_EXPR)
1619 t = TREE_OPERAND (t, 0);
1621 /* We may look through structure-like accesses for the purposes of
1622 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1623 base = t;
1624 while (TREE_CODE (base) == COMPONENT_REF
1625 || TREE_CODE (base) == REALPART_EXPR
1626 || TREE_CODE (base) == IMAGPART_EXPR
1627 || TREE_CODE (base) == BIT_FIELD_REF)
1628 base = TREE_OPERAND (base, 0);
1630 if (DECL_P (base))
1632 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1633 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1634 else
1635 MEM_NOTRAP_P (ref) = 1;
1637 else
1638 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1640 base = get_base_address (base);
1641 if (base && DECL_P (base)
1642 && TREE_READONLY (base)
1643 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1645 tree base_type = TREE_TYPE (base);
1646 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1647 || DECL_ARTIFICIAL (base));
1648 MEM_READONLY_P (ref) = 1;
1651 /* If this expression uses it's parent's alias set, mark it such
1652 that we won't change it. */
1653 if (component_uses_parent_alias_set (t))
1654 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1656 /* If this is a decl, set the attributes of the MEM from it. */
1657 if (DECL_P (t))
1659 expr = t;
1660 offset = const0_rtx;
1661 apply_bitpos = bitpos;
1662 size = (DECL_SIZE_UNIT (t)
1663 && host_integerp (DECL_SIZE_UNIT (t), 1)
1664 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1665 align = DECL_ALIGN (t);
1666 align_computed = true;
1669 /* If this is a constant, we know the alignment. */
1670 else if (CONSTANT_CLASS_P (t))
1672 align = TYPE_ALIGN (type);
1673 #ifdef CONSTANT_ALIGNMENT
1674 align = CONSTANT_ALIGNMENT (t, align);
1675 #endif
1676 align_computed = true;
1679 /* If this is a field reference and not a bit-field, record it. */
1680 /* ??? There is some information that can be gleaned from bit-fields,
1681 such as the word offset in the structure that might be modified.
1682 But skip it for now. */
1683 else if (TREE_CODE (t) == COMPONENT_REF
1684 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1686 expr = t;
1687 offset = const0_rtx;
1688 apply_bitpos = bitpos;
1689 /* ??? Any reason the field size would be different than
1690 the size we got from the type? */
1693 /* If this is an array reference, look for an outer field reference. */
1694 else if (TREE_CODE (t) == ARRAY_REF)
1696 tree off_tree = size_zero_node;
1697 /* We can't modify t, because we use it at the end of the
1698 function. */
1699 tree t2 = t;
1703 tree index = TREE_OPERAND (t2, 1);
1704 tree low_bound = array_ref_low_bound (t2);
1705 tree unit_size = array_ref_element_size (t2);
1707 /* We assume all arrays have sizes that are a multiple of a byte.
1708 First subtract the lower bound, if any, in the type of the
1709 index, then convert to sizetype and multiply by the size of
1710 the array element. */
1711 if (! integer_zerop (low_bound))
1712 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1713 index, low_bound);
1715 off_tree = size_binop (PLUS_EXPR,
1716 size_binop (MULT_EXPR,
1717 fold_convert (sizetype,
1718 index),
1719 unit_size),
1720 off_tree);
1721 t2 = TREE_OPERAND (t2, 0);
1723 while (TREE_CODE (t2) == ARRAY_REF);
1725 if (DECL_P (t2))
1727 expr = t2;
1728 offset = NULL;
1729 if (host_integerp (off_tree, 1))
1731 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1732 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1733 align = DECL_ALIGN (t2);
1734 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1735 align = aoff;
1736 align_computed = true;
1737 offset = GEN_INT (ioff);
1738 apply_bitpos = bitpos;
1741 else if (TREE_CODE (t2) == COMPONENT_REF)
1743 expr = t2;
1744 offset = NULL;
1745 if (host_integerp (off_tree, 1))
1747 offset = GEN_INT (tree_low_cst (off_tree, 1));
1748 apply_bitpos = bitpos;
1750 /* ??? Any reason the field size would be different than
1751 the size we got from the type? */
1753 else if (flag_argument_noalias > 1
1754 && (INDIRECT_REF_P (t2))
1755 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1757 expr = t2;
1758 offset = NULL;
1762 /* If this is a Fortran indirect argument reference, record the
1763 parameter decl. */
1764 else if (flag_argument_noalias > 1
1765 && (INDIRECT_REF_P (t))
1766 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1768 expr = t;
1769 offset = NULL;
1772 if (!align_computed && !INDIRECT_REF_P (t))
1774 unsigned int obj_align
1775 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1776 align = MAX (align, obj_align);
1780 /* If we modified OFFSET based on T, then subtract the outstanding
1781 bit position offset. Similarly, increase the size of the accessed
1782 object to contain the negative offset. */
1783 if (apply_bitpos)
1785 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1786 if (size)
1787 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1790 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1792 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1793 we're overlapping. */
1794 offset = NULL;
1795 expr = NULL;
1798 /* Now set the attributes we computed above. */
1799 MEM_ATTRS (ref)
1800 = get_mem_attrs (alias, expr, offset, size, align,
1801 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1803 /* If this is already known to be a scalar or aggregate, we are done. */
1804 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1805 return;
1807 /* If it is a reference into an aggregate, this is part of an aggregate.
1808 Otherwise we don't know. */
1809 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1810 || TREE_CODE (t) == ARRAY_RANGE_REF
1811 || TREE_CODE (t) == BIT_FIELD_REF)
1812 MEM_IN_STRUCT_P (ref) = 1;
1815 void
1816 set_mem_attributes (rtx ref, tree t, int objectp)
1818 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1821 /* Set the alias set of MEM to SET. */
1823 void
1824 set_mem_alias_set (rtx mem, alias_set_type set)
1826 #ifdef ENABLE_CHECKING
1827 /* If the new and old alias sets don't conflict, something is wrong. */
1828 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1829 #endif
1831 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1832 MEM_SIZE (mem), MEM_ALIGN (mem),
1833 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1836 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1838 void
1839 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1841 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1842 MEM_OFFSET (mem), MEM_SIZE (mem),
1843 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1846 /* Set the alignment of MEM to ALIGN bits. */
1848 void
1849 set_mem_align (rtx mem, unsigned int align)
1851 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1852 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1853 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1856 /* Set the expr for MEM to EXPR. */
1858 void
1859 set_mem_expr (rtx mem, tree expr)
1861 MEM_ATTRS (mem)
1862 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1863 MEM_SIZE (mem), MEM_ALIGN (mem),
1864 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1867 /* Set the offset of MEM to OFFSET. */
1869 void
1870 set_mem_offset (rtx mem, rtx offset)
1872 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1873 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1874 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1877 /* Set the size of MEM to SIZE. */
1879 void
1880 set_mem_size (rtx mem, rtx size)
1882 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1884 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1887 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1888 and its address changed to ADDR. (VOIDmode means don't change the mode.
1889 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1890 returned memory location is required to be valid. The memory
1891 attributes are not changed. */
1893 static rtx
1894 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1896 addr_space_t as;
1897 rtx new_rtx;
1899 gcc_assert (MEM_P (memref));
1900 as = MEM_ADDR_SPACE (memref);
1901 if (mode == VOIDmode)
1902 mode = GET_MODE (memref);
1903 if (addr == 0)
1904 addr = XEXP (memref, 0);
1905 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1906 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1907 return memref;
1909 if (validate)
1911 if (reload_in_progress || reload_completed)
1912 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1913 else
1914 addr = memory_address_addr_space (mode, addr, as);
1917 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1918 return memref;
1920 new_rtx = gen_rtx_MEM (mode, addr);
1921 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1922 return new_rtx;
1925 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1926 way we are changing MEMREF, so we only preserve the alias set. */
1929 change_address (rtx memref, enum machine_mode mode, rtx addr)
1931 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1932 enum machine_mode mmode = GET_MODE (new_rtx);
1933 unsigned int align;
1935 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1936 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1938 /* If there are no changes, just return the original memory reference. */
1939 if (new_rtx == memref)
1941 if (MEM_ATTRS (memref) == 0
1942 || (MEM_EXPR (memref) == NULL
1943 && MEM_OFFSET (memref) == NULL
1944 && MEM_SIZE (memref) == size
1945 && MEM_ALIGN (memref) == align))
1946 return new_rtx;
1948 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1949 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1952 MEM_ATTRS (new_rtx)
1953 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1954 MEM_ADDR_SPACE (memref), mmode);
1956 return new_rtx;
1959 /* Return a memory reference like MEMREF, but with its mode changed
1960 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1961 nonzero, the memory address is forced to be valid.
1962 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1963 and caller is responsible for adjusting MEMREF base register. */
1966 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1967 int validate, int adjust)
1969 rtx addr = XEXP (memref, 0);
1970 rtx new_rtx;
1971 rtx memoffset = MEM_OFFSET (memref);
1972 rtx size = 0;
1973 unsigned int memalign = MEM_ALIGN (memref);
1974 addr_space_t as = MEM_ADDR_SPACE (memref);
1975 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1976 int pbits;
1978 /* If there are no changes, just return the original memory reference. */
1979 if (mode == GET_MODE (memref) && !offset
1980 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1981 return memref;
1983 /* ??? Prefer to create garbage instead of creating shared rtl.
1984 This may happen even if offset is nonzero -- consider
1985 (plus (plus reg reg) const_int) -- so do this always. */
1986 addr = copy_rtx (addr);
1988 /* Convert a possibly large offset to a signed value within the
1989 range of the target address space. */
1990 pbits = GET_MODE_BITSIZE (address_mode);
1991 if (HOST_BITS_PER_WIDE_INT > pbits)
1993 int shift = HOST_BITS_PER_WIDE_INT - pbits;
1994 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1995 >> shift);
1998 if (adjust)
2000 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2001 object, we can merge it into the LO_SUM. */
2002 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2003 && offset >= 0
2004 && (unsigned HOST_WIDE_INT) offset
2005 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2006 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2007 plus_constant (XEXP (addr, 1), offset));
2008 else
2009 addr = plus_constant (addr, offset);
2012 new_rtx = change_address_1 (memref, mode, addr, validate);
2014 /* If the address is a REG, change_address_1 rightfully returns memref,
2015 but this would destroy memref's MEM_ATTRS. */
2016 if (new_rtx == memref && offset != 0)
2017 new_rtx = copy_rtx (new_rtx);
2019 /* Compute the new values of the memory attributes due to this adjustment.
2020 We add the offsets and update the alignment. */
2021 if (memoffset)
2022 memoffset = GEN_INT (offset + INTVAL (memoffset));
2024 /* Compute the new alignment by taking the MIN of the alignment and the
2025 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2026 if zero. */
2027 if (offset != 0)
2028 memalign
2029 = MIN (memalign,
2030 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2032 /* We can compute the size in a number of ways. */
2033 if (GET_MODE (new_rtx) != BLKmode)
2034 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2035 else if (MEM_SIZE (memref))
2036 size = plus_constant (MEM_SIZE (memref), -offset);
2038 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2039 memoffset, size, memalign, as,
2040 GET_MODE (new_rtx));
2042 /* At some point, we should validate that this offset is within the object,
2043 if all the appropriate values are known. */
2044 return new_rtx;
2047 /* Return a memory reference like MEMREF, but with its mode changed
2048 to MODE and its address changed to ADDR, which is assumed to be
2049 MEMREF offset by OFFSET bytes. If VALIDATE is
2050 nonzero, the memory address is forced to be valid. */
2053 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2054 HOST_WIDE_INT offset, int validate)
2056 memref = change_address_1 (memref, VOIDmode, addr, validate);
2057 return adjust_address_1 (memref, mode, offset, validate, 0);
2060 /* Return a memory reference like MEMREF, but whose address is changed by
2061 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2062 known to be in OFFSET (possibly 1). */
2065 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2067 rtx new_rtx, addr = XEXP (memref, 0);
2068 addr_space_t as = MEM_ADDR_SPACE (memref);
2069 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2071 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2073 /* At this point we don't know _why_ the address is invalid. It
2074 could have secondary memory references, multiplies or anything.
2076 However, if we did go and rearrange things, we can wind up not
2077 being able to recognize the magic around pic_offset_table_rtx.
2078 This stuff is fragile, and is yet another example of why it is
2079 bad to expose PIC machinery too early. */
2080 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2081 && GET_CODE (addr) == PLUS
2082 && XEXP (addr, 0) == pic_offset_table_rtx)
2084 addr = force_reg (GET_MODE (addr), addr);
2085 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2088 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2089 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2091 /* If there are no changes, just return the original memory reference. */
2092 if (new_rtx == memref)
2093 return new_rtx;
2095 /* Update the alignment to reflect the offset. Reset the offset, which
2096 we don't know. */
2097 MEM_ATTRS (new_rtx)
2098 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2099 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2100 as, GET_MODE (new_rtx));
2101 return new_rtx;
2104 /* Return a memory reference like MEMREF, but with its address changed to
2105 ADDR. The caller is asserting that the actual piece of memory pointed
2106 to is the same, just the form of the address is being changed, such as
2107 by putting something into a register. */
2110 replace_equiv_address (rtx memref, rtx addr)
2112 /* change_address_1 copies the memory attribute structure without change
2113 and that's exactly what we want here. */
2114 update_temp_slot_address (XEXP (memref, 0), addr);
2115 return change_address_1 (memref, VOIDmode, addr, 1);
2118 /* Likewise, but the reference is not required to be valid. */
2121 replace_equiv_address_nv (rtx memref, rtx addr)
2123 return change_address_1 (memref, VOIDmode, addr, 0);
2126 /* Return a memory reference like MEMREF, but with its mode widened to
2127 MODE and offset by OFFSET. This would be used by targets that e.g.
2128 cannot issue QImode memory operations and have to use SImode memory
2129 operations plus masking logic. */
2132 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2134 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2135 tree expr = MEM_EXPR (new_rtx);
2136 rtx memoffset = MEM_OFFSET (new_rtx);
2137 unsigned int size = GET_MODE_SIZE (mode);
2139 /* If there are no changes, just return the original memory reference. */
2140 if (new_rtx == memref)
2141 return new_rtx;
2143 /* If we don't know what offset we were at within the expression, then
2144 we can't know if we've overstepped the bounds. */
2145 if (! memoffset)
2146 expr = NULL_TREE;
2148 while (expr)
2150 if (TREE_CODE (expr) == COMPONENT_REF)
2152 tree field = TREE_OPERAND (expr, 1);
2153 tree offset = component_ref_field_offset (expr);
2155 if (! DECL_SIZE_UNIT (field))
2157 expr = NULL_TREE;
2158 break;
2161 /* Is the field at least as large as the access? If so, ok,
2162 otherwise strip back to the containing structure. */
2163 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2164 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2165 && INTVAL (memoffset) >= 0)
2166 break;
2168 if (! host_integerp (offset, 1))
2170 expr = NULL_TREE;
2171 break;
2174 expr = TREE_OPERAND (expr, 0);
2175 memoffset
2176 = (GEN_INT (INTVAL (memoffset)
2177 + tree_low_cst (offset, 1)
2178 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2179 / BITS_PER_UNIT)));
2181 /* Similarly for the decl. */
2182 else if (DECL_P (expr)
2183 && DECL_SIZE_UNIT (expr)
2184 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2185 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2186 && (! memoffset || INTVAL (memoffset) >= 0))
2187 break;
2188 else
2190 /* The widened memory access overflows the expression, which means
2191 that it could alias another expression. Zap it. */
2192 expr = NULL_TREE;
2193 break;
2197 if (! expr)
2198 memoffset = NULL_RTX;
2200 /* The widened memory may alias other stuff, so zap the alias set. */
2201 /* ??? Maybe use get_alias_set on any remaining expression. */
2203 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2204 MEM_ALIGN (new_rtx),
2205 MEM_ADDR_SPACE (new_rtx), mode);
2207 return new_rtx;
2210 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2211 static GTY(()) tree spill_slot_decl;
2213 tree
2214 get_spill_slot_decl (bool force_build_p)
2216 tree d = spill_slot_decl;
2217 rtx rd;
2219 if (d || !force_build_p)
2220 return d;
2222 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2223 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2224 DECL_ARTIFICIAL (d) = 1;
2225 DECL_IGNORED_P (d) = 1;
2226 TREE_USED (d) = 1;
2227 TREE_THIS_NOTRAP (d) = 1;
2228 spill_slot_decl = d;
2230 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2231 MEM_NOTRAP_P (rd) = 1;
2232 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2233 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2234 SET_DECL_RTL (d, rd);
2236 return d;
2239 /* Given MEM, a result from assign_stack_local, fill in the memory
2240 attributes as appropriate for a register allocator spill slot.
2241 These slots are not aliasable by other memory. We arrange for
2242 them all to use a single MEM_EXPR, so that the aliasing code can
2243 work properly in the case of shared spill slots. */
2245 void
2246 set_mem_attrs_for_spill (rtx mem)
2248 alias_set_type alias;
2249 rtx addr, offset;
2250 tree expr;
2252 expr = get_spill_slot_decl (true);
2253 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2255 /* We expect the incoming memory to be of the form:
2256 (mem:MODE (plus (reg sfp) (const_int offset)))
2257 with perhaps the plus missing for offset = 0. */
2258 addr = XEXP (mem, 0);
2259 offset = const0_rtx;
2260 if (GET_CODE (addr) == PLUS
2261 && CONST_INT_P (XEXP (addr, 1)))
2262 offset = XEXP (addr, 1);
2264 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2265 MEM_SIZE (mem), MEM_ALIGN (mem),
2266 ADDR_SPACE_GENERIC, GET_MODE (mem));
2267 MEM_NOTRAP_P (mem) = 1;
2270 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2273 gen_label_rtx (void)
2275 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2276 NULL, label_num++, NULL);
2279 /* For procedure integration. */
2281 /* Install new pointers to the first and last insns in the chain.
2282 Also, set cur_insn_uid to one higher than the last in use.
2283 Used for an inline-procedure after copying the insn chain. */
2285 void
2286 set_new_first_and_last_insn (rtx first, rtx last)
2288 rtx insn;
2290 first_insn = first;
2291 last_insn = last;
2292 cur_insn_uid = 0;
2294 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2296 int debug_count = 0;
2298 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2299 cur_debug_insn_uid = 0;
2301 for (insn = first; insn; insn = NEXT_INSN (insn))
2302 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2303 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2304 else
2306 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2307 if (DEBUG_INSN_P (insn))
2308 debug_count++;
2311 if (debug_count)
2312 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2313 else
2314 cur_debug_insn_uid++;
2316 else
2317 for (insn = first; insn; insn = NEXT_INSN (insn))
2318 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2320 cur_insn_uid++;
2323 /* Go through all the RTL insn bodies and copy any invalid shared
2324 structure. This routine should only be called once. */
2326 static void
2327 unshare_all_rtl_1 (rtx insn)
2329 /* Unshare just about everything else. */
2330 unshare_all_rtl_in_chain (insn);
2332 /* Make sure the addresses of stack slots found outside the insn chain
2333 (such as, in DECL_RTL of a variable) are not shared
2334 with the insn chain.
2336 This special care is necessary when the stack slot MEM does not
2337 actually appear in the insn chain. If it does appear, its address
2338 is unshared from all else at that point. */
2339 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2342 /* Go through all the RTL insn bodies and copy any invalid shared
2343 structure, again. This is a fairly expensive thing to do so it
2344 should be done sparingly. */
2346 void
2347 unshare_all_rtl_again (rtx insn)
2349 rtx p;
2350 tree decl;
2352 for (p = insn; p; p = NEXT_INSN (p))
2353 if (INSN_P (p))
2355 reset_used_flags (PATTERN (p));
2356 reset_used_flags (REG_NOTES (p));
2359 /* Make sure that virtual stack slots are not shared. */
2360 set_used_decls (DECL_INITIAL (cfun->decl));
2362 /* Make sure that virtual parameters are not shared. */
2363 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2364 set_used_flags (DECL_RTL (decl));
2366 reset_used_flags (stack_slot_list);
2368 unshare_all_rtl_1 (insn);
2371 unsigned int
2372 unshare_all_rtl (void)
2374 unshare_all_rtl_1 (get_insns ());
2375 return 0;
2378 struct rtl_opt_pass pass_unshare_all_rtl =
2381 RTL_PASS,
2382 "unshare", /* name */
2383 NULL, /* gate */
2384 unshare_all_rtl, /* execute */
2385 NULL, /* sub */
2386 NULL, /* next */
2387 0, /* static_pass_number */
2388 TV_NONE, /* tv_id */
2389 0, /* properties_required */
2390 0, /* properties_provided */
2391 0, /* properties_destroyed */
2392 0, /* todo_flags_start */
2393 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2398 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2399 Recursively does the same for subexpressions. */
2401 static void
2402 verify_rtx_sharing (rtx orig, rtx insn)
2404 rtx x = orig;
2405 int i;
2406 enum rtx_code code;
2407 const char *format_ptr;
2409 if (x == 0)
2410 return;
2412 code = GET_CODE (x);
2414 /* These types may be freely shared. */
2416 switch (code)
2418 case REG:
2419 case DEBUG_EXPR:
2420 case VALUE:
2421 case CONST_INT:
2422 case CONST_DOUBLE:
2423 case CONST_FIXED:
2424 case CONST_VECTOR:
2425 case SYMBOL_REF:
2426 case LABEL_REF:
2427 case CODE_LABEL:
2428 case PC:
2429 case CC0:
2430 case SCRATCH:
2431 return;
2432 /* SCRATCH must be shared because they represent distinct values. */
2433 case CLOBBER:
2434 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2435 return;
2436 break;
2438 case CONST:
2439 if (shared_const_p (orig))
2440 return;
2441 break;
2443 case MEM:
2444 /* A MEM is allowed to be shared if its address is constant. */
2445 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2446 || reload_completed || reload_in_progress)
2447 return;
2449 break;
2451 default:
2452 break;
2455 /* This rtx may not be shared. If it has already been seen,
2456 replace it with a copy of itself. */
2457 #ifdef ENABLE_CHECKING
2458 if (RTX_FLAG (x, used))
2460 error ("invalid rtl sharing found in the insn");
2461 debug_rtx (insn);
2462 error ("shared rtx");
2463 debug_rtx (x);
2464 internal_error ("internal consistency failure");
2466 #endif
2467 gcc_assert (!RTX_FLAG (x, used));
2469 RTX_FLAG (x, used) = 1;
2471 /* Now scan the subexpressions recursively. */
2473 format_ptr = GET_RTX_FORMAT (code);
2475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2477 switch (*format_ptr++)
2479 case 'e':
2480 verify_rtx_sharing (XEXP (x, i), insn);
2481 break;
2483 case 'E':
2484 if (XVEC (x, i) != NULL)
2486 int j;
2487 int len = XVECLEN (x, i);
2489 for (j = 0; j < len; j++)
2491 /* We allow sharing of ASM_OPERANDS inside single
2492 instruction. */
2493 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2494 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2495 == ASM_OPERANDS))
2496 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2497 else
2498 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2501 break;
2504 return;
2507 /* Go through all the RTL insn bodies and check that there is no unexpected
2508 sharing in between the subexpressions. */
2510 void
2511 verify_rtl_sharing (void)
2513 rtx p;
2515 for (p = get_insns (); p; p = NEXT_INSN (p))
2516 if (INSN_P (p))
2518 reset_used_flags (PATTERN (p));
2519 reset_used_flags (REG_NOTES (p));
2520 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2522 int i;
2523 rtx q, sequence = PATTERN (p);
2525 for (i = 0; i < XVECLEN (sequence, 0); i++)
2527 q = XVECEXP (sequence, 0, i);
2528 gcc_assert (INSN_P (q));
2529 reset_used_flags (PATTERN (q));
2530 reset_used_flags (REG_NOTES (q));
2535 for (p = get_insns (); p; p = NEXT_INSN (p))
2536 if (INSN_P (p))
2538 verify_rtx_sharing (PATTERN (p), p);
2539 verify_rtx_sharing (REG_NOTES (p), p);
2543 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2544 Assumes the mark bits are cleared at entry. */
2546 void
2547 unshare_all_rtl_in_chain (rtx insn)
2549 for (; insn; insn = NEXT_INSN (insn))
2550 if (INSN_P (insn))
2552 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2553 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2557 /* Go through all virtual stack slots of a function and mark them as
2558 shared. We never replace the DECL_RTLs themselves with a copy,
2559 but expressions mentioned into a DECL_RTL cannot be shared with
2560 expressions in the instruction stream.
2562 Note that reload may convert pseudo registers into memories in-place.
2563 Pseudo registers are always shared, but MEMs never are. Thus if we
2564 reset the used flags on MEMs in the instruction stream, we must set
2565 them again on MEMs that appear in DECL_RTLs. */
2567 static void
2568 set_used_decls (tree blk)
2570 tree t;
2572 /* Mark decls. */
2573 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2574 if (DECL_RTL_SET_P (t))
2575 set_used_flags (DECL_RTL (t));
2577 /* Now process sub-blocks. */
2578 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2579 set_used_decls (t);
2582 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2583 Recursively does the same for subexpressions. Uses
2584 copy_rtx_if_shared_1 to reduce stack space. */
2587 copy_rtx_if_shared (rtx orig)
2589 copy_rtx_if_shared_1 (&orig);
2590 return orig;
2593 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2594 use. Recursively does the same for subexpressions. */
2596 static void
2597 copy_rtx_if_shared_1 (rtx *orig1)
2599 rtx x;
2600 int i;
2601 enum rtx_code code;
2602 rtx *last_ptr;
2603 const char *format_ptr;
2604 int copied = 0;
2605 int length;
2607 /* Repeat is used to turn tail-recursion into iteration. */
2608 repeat:
2609 x = *orig1;
2611 if (x == 0)
2612 return;
2614 code = GET_CODE (x);
2616 /* These types may be freely shared. */
2618 switch (code)
2620 case REG:
2621 case DEBUG_EXPR:
2622 case VALUE:
2623 case CONST_INT:
2624 case CONST_DOUBLE:
2625 case CONST_FIXED:
2626 case CONST_VECTOR:
2627 case SYMBOL_REF:
2628 case LABEL_REF:
2629 case CODE_LABEL:
2630 case PC:
2631 case CC0:
2632 case SCRATCH:
2633 /* SCRATCH must be shared because they represent distinct values. */
2634 return;
2635 case CLOBBER:
2636 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2637 return;
2638 break;
2640 case CONST:
2641 if (shared_const_p (x))
2642 return;
2643 break;
2645 case DEBUG_INSN:
2646 case INSN:
2647 case JUMP_INSN:
2648 case CALL_INSN:
2649 case NOTE:
2650 case BARRIER:
2651 /* The chain of insns is not being copied. */
2652 return;
2654 default:
2655 break;
2658 /* This rtx may not be shared. If it has already been seen,
2659 replace it with a copy of itself. */
2661 if (RTX_FLAG (x, used))
2663 x = shallow_copy_rtx (x);
2664 copied = 1;
2666 RTX_FLAG (x, used) = 1;
2668 /* Now scan the subexpressions recursively.
2669 We can store any replaced subexpressions directly into X
2670 since we know X is not shared! Any vectors in X
2671 must be copied if X was copied. */
2673 format_ptr = GET_RTX_FORMAT (code);
2674 length = GET_RTX_LENGTH (code);
2675 last_ptr = NULL;
2677 for (i = 0; i < length; i++)
2679 switch (*format_ptr++)
2681 case 'e':
2682 if (last_ptr)
2683 copy_rtx_if_shared_1 (last_ptr);
2684 last_ptr = &XEXP (x, i);
2685 break;
2687 case 'E':
2688 if (XVEC (x, i) != NULL)
2690 int j;
2691 int len = XVECLEN (x, i);
2693 /* Copy the vector iff I copied the rtx and the length
2694 is nonzero. */
2695 if (copied && len > 0)
2696 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2698 /* Call recursively on all inside the vector. */
2699 for (j = 0; j < len; j++)
2701 if (last_ptr)
2702 copy_rtx_if_shared_1 (last_ptr);
2703 last_ptr = &XVECEXP (x, i, j);
2706 break;
2709 *orig1 = x;
2710 if (last_ptr)
2712 orig1 = last_ptr;
2713 goto repeat;
2715 return;
2718 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2719 to look for shared sub-parts. */
2721 void
2722 reset_used_flags (rtx x)
2724 int i, j;
2725 enum rtx_code code;
2726 const char *format_ptr;
2727 int length;
2729 /* Repeat is used to turn tail-recursion into iteration. */
2730 repeat:
2731 if (x == 0)
2732 return;
2734 code = GET_CODE (x);
2736 /* These types may be freely shared so we needn't do any resetting
2737 for them. */
2739 switch (code)
2741 case REG:
2742 case DEBUG_EXPR:
2743 case VALUE:
2744 case CONST_INT:
2745 case CONST_DOUBLE:
2746 case CONST_FIXED:
2747 case CONST_VECTOR:
2748 case SYMBOL_REF:
2749 case CODE_LABEL:
2750 case PC:
2751 case CC0:
2752 return;
2754 case DEBUG_INSN:
2755 case INSN:
2756 case JUMP_INSN:
2757 case CALL_INSN:
2758 case NOTE:
2759 case LABEL_REF:
2760 case BARRIER:
2761 /* The chain of insns is not being copied. */
2762 return;
2764 default:
2765 break;
2768 RTX_FLAG (x, used) = 0;
2770 format_ptr = GET_RTX_FORMAT (code);
2771 length = GET_RTX_LENGTH (code);
2773 for (i = 0; i < length; i++)
2775 switch (*format_ptr++)
2777 case 'e':
2778 if (i == length-1)
2780 x = XEXP (x, i);
2781 goto repeat;
2783 reset_used_flags (XEXP (x, i));
2784 break;
2786 case 'E':
2787 for (j = 0; j < XVECLEN (x, i); j++)
2788 reset_used_flags (XVECEXP (x, i, j));
2789 break;
2794 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2795 to look for shared sub-parts. */
2797 void
2798 set_used_flags (rtx x)
2800 int i, j;
2801 enum rtx_code code;
2802 const char *format_ptr;
2804 if (x == 0)
2805 return;
2807 code = GET_CODE (x);
2809 /* These types may be freely shared so we needn't do any resetting
2810 for them. */
2812 switch (code)
2814 case REG:
2815 case DEBUG_EXPR:
2816 case VALUE:
2817 case CONST_INT:
2818 case CONST_DOUBLE:
2819 case CONST_FIXED:
2820 case CONST_VECTOR:
2821 case SYMBOL_REF:
2822 case CODE_LABEL:
2823 case PC:
2824 case CC0:
2825 return;
2827 case DEBUG_INSN:
2828 case INSN:
2829 case JUMP_INSN:
2830 case CALL_INSN:
2831 case NOTE:
2832 case LABEL_REF:
2833 case BARRIER:
2834 /* The chain of insns is not being copied. */
2835 return;
2837 default:
2838 break;
2841 RTX_FLAG (x, used) = 1;
2843 format_ptr = GET_RTX_FORMAT (code);
2844 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2846 switch (*format_ptr++)
2848 case 'e':
2849 set_used_flags (XEXP (x, i));
2850 break;
2852 case 'E':
2853 for (j = 0; j < XVECLEN (x, i); j++)
2854 set_used_flags (XVECEXP (x, i, j));
2855 break;
2860 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2861 Return X or the rtx for the pseudo reg the value of X was copied into.
2862 OTHER must be valid as a SET_DEST. */
2865 make_safe_from (rtx x, rtx other)
2867 while (1)
2868 switch (GET_CODE (other))
2870 case SUBREG:
2871 other = SUBREG_REG (other);
2872 break;
2873 case STRICT_LOW_PART:
2874 case SIGN_EXTEND:
2875 case ZERO_EXTEND:
2876 other = XEXP (other, 0);
2877 break;
2878 default:
2879 goto done;
2881 done:
2882 if ((MEM_P (other)
2883 && ! CONSTANT_P (x)
2884 && !REG_P (x)
2885 && GET_CODE (x) != SUBREG)
2886 || (REG_P (other)
2887 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2888 || reg_mentioned_p (other, x))))
2890 rtx temp = gen_reg_rtx (GET_MODE (x));
2891 emit_move_insn (temp, x);
2892 return temp;
2894 return x;
2897 /* Emission of insns (adding them to the doubly-linked list). */
2899 /* Return the first insn of the current sequence or current function. */
2902 get_insns (void)
2904 return first_insn;
2907 /* Specify a new insn as the first in the chain. */
2909 void
2910 set_first_insn (rtx insn)
2912 gcc_assert (!PREV_INSN (insn));
2913 first_insn = insn;
2916 /* Return the last insn emitted in current sequence or current function. */
2919 get_last_insn (void)
2921 return last_insn;
2924 /* Specify a new insn as the last in the chain. */
2926 void
2927 set_last_insn (rtx insn)
2929 gcc_assert (!NEXT_INSN (insn));
2930 last_insn = insn;
2933 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2936 get_last_insn_anywhere (void)
2938 struct sequence_stack *stack;
2939 if (last_insn)
2940 return last_insn;
2941 for (stack = seq_stack; stack; stack = stack->next)
2942 if (stack->last != 0)
2943 return stack->last;
2944 return 0;
2947 /* Return the first nonnote insn emitted in current sequence or current
2948 function. This routine looks inside SEQUENCEs. */
2951 get_first_nonnote_insn (void)
2953 rtx insn = first_insn;
2955 if (insn)
2957 if (NOTE_P (insn))
2958 for (insn = next_insn (insn);
2959 insn && NOTE_P (insn);
2960 insn = next_insn (insn))
2961 continue;
2962 else
2964 if (NONJUMP_INSN_P (insn)
2965 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2966 insn = XVECEXP (PATTERN (insn), 0, 0);
2970 return insn;
2973 /* Return the last nonnote insn emitted in current sequence or current
2974 function. This routine looks inside SEQUENCEs. */
2977 get_last_nonnote_insn (void)
2979 rtx insn = last_insn;
2981 if (insn)
2983 if (NOTE_P (insn))
2984 for (insn = previous_insn (insn);
2985 insn && NOTE_P (insn);
2986 insn = previous_insn (insn))
2987 continue;
2988 else
2990 if (NONJUMP_INSN_P (insn)
2991 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2992 insn = XVECEXP (PATTERN (insn), 0,
2993 XVECLEN (PATTERN (insn), 0) - 1);
2997 return insn;
3000 /* Return a number larger than any instruction's uid in this function. */
3003 get_max_uid (void)
3005 return cur_insn_uid;
3008 /* Return the number of actual (non-debug) insns emitted in this
3009 function. */
3012 get_max_insn_count (void)
3014 int n = cur_insn_uid;
3016 /* The table size must be stable across -g, to avoid codegen
3017 differences due to debug insns, and not be affected by
3018 -fmin-insn-uid, to avoid excessive table size and to simplify
3019 debugging of -fcompare-debug failures. */
3020 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3021 n -= cur_debug_insn_uid;
3022 else
3023 n -= MIN_NONDEBUG_INSN_UID;
3025 return n;
3029 /* Return the next insn. If it is a SEQUENCE, return the first insn
3030 of the sequence. */
3033 next_insn (rtx insn)
3035 if (insn)
3037 insn = NEXT_INSN (insn);
3038 if (insn && NONJUMP_INSN_P (insn)
3039 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040 insn = XVECEXP (PATTERN (insn), 0, 0);
3043 return insn;
3046 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3047 of the sequence. */
3050 previous_insn (rtx insn)
3052 if (insn)
3054 insn = PREV_INSN (insn);
3055 if (insn && NONJUMP_INSN_P (insn)
3056 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3057 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3060 return insn;
3063 /* Return the next insn after INSN that is not a NOTE. This routine does not
3064 look inside SEQUENCEs. */
3067 next_nonnote_insn (rtx insn)
3069 while (insn)
3071 insn = NEXT_INSN (insn);
3072 if (insn == 0 || !NOTE_P (insn))
3073 break;
3076 return insn;
3079 /* Return the next insn after INSN that is not a NOTE, but stop the
3080 search before we enter another basic block. This routine does not
3081 look inside SEQUENCEs. */
3084 next_nonnote_insn_bb (rtx insn)
3086 while (insn)
3088 insn = NEXT_INSN (insn);
3089 if (insn == 0 || !NOTE_P (insn))
3090 break;
3091 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3092 return NULL_RTX;
3095 return insn;
3098 /* Return the previous insn before INSN that is not a NOTE. This routine does
3099 not look inside SEQUENCEs. */
3102 prev_nonnote_insn (rtx insn)
3104 while (insn)
3106 insn = PREV_INSN (insn);
3107 if (insn == 0 || !NOTE_P (insn))
3108 break;
3111 return insn;
3114 /* Return the previous insn before INSN that is not a NOTE, but stop
3115 the search before we enter another basic block. This routine does
3116 not look inside SEQUENCEs. */
3119 prev_nonnote_insn_bb (rtx insn)
3121 while (insn)
3123 insn = PREV_INSN (insn);
3124 if (insn == 0 || !NOTE_P (insn))
3125 break;
3126 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3127 return NULL_RTX;
3130 return insn;
3133 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3134 routine does not look inside SEQUENCEs. */
3137 next_nondebug_insn (rtx insn)
3139 while (insn)
3141 insn = NEXT_INSN (insn);
3142 if (insn == 0 || !DEBUG_INSN_P (insn))
3143 break;
3146 return insn;
3149 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3150 This routine does not look inside SEQUENCEs. */
3153 prev_nondebug_insn (rtx insn)
3155 while (insn)
3157 insn = PREV_INSN (insn);
3158 if (insn == 0 || !DEBUG_INSN_P (insn))
3159 break;
3162 return insn;
3165 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3166 or 0, if there is none. This routine does not look inside
3167 SEQUENCEs. */
3170 next_real_insn (rtx insn)
3172 while (insn)
3174 insn = NEXT_INSN (insn);
3175 if (insn == 0 || INSN_P (insn))
3176 break;
3179 return insn;
3182 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3183 or 0, if there is none. This routine does not look inside
3184 SEQUENCEs. */
3187 prev_real_insn (rtx insn)
3189 while (insn)
3191 insn = PREV_INSN (insn);
3192 if (insn == 0 || INSN_P (insn))
3193 break;
3196 return insn;
3199 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3200 This routine does not look inside SEQUENCEs. */
3203 last_call_insn (void)
3205 rtx insn;
3207 for (insn = get_last_insn ();
3208 insn && !CALL_P (insn);
3209 insn = PREV_INSN (insn))
3212 return insn;
3215 /* Find the next insn after INSN that really does something. This routine
3216 does not look inside SEQUENCEs. After reload this also skips over
3217 standalone USE and CLOBBER insn. */
3220 active_insn_p (const_rtx insn)
3222 return (CALL_P (insn) || JUMP_P (insn)
3223 || (NONJUMP_INSN_P (insn)
3224 && (! reload_completed
3225 || (GET_CODE (PATTERN (insn)) != USE
3226 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3230 next_active_insn (rtx insn)
3232 while (insn)
3234 insn = NEXT_INSN (insn);
3235 if (insn == 0 || active_insn_p (insn))
3236 break;
3239 return insn;
3242 /* Find the last insn before INSN that really does something. This routine
3243 does not look inside SEQUENCEs. After reload this also skips over
3244 standalone USE and CLOBBER insn. */
3247 prev_active_insn (rtx insn)
3249 while (insn)
3251 insn = PREV_INSN (insn);
3252 if (insn == 0 || active_insn_p (insn))
3253 break;
3256 return insn;
3259 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3262 next_label (rtx insn)
3264 while (insn)
3266 insn = NEXT_INSN (insn);
3267 if (insn == 0 || LABEL_P (insn))
3268 break;
3271 return insn;
3274 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3277 prev_label (rtx insn)
3279 while (insn)
3281 insn = PREV_INSN (insn);
3282 if (insn == 0 || LABEL_P (insn))
3283 break;
3286 return insn;
3289 /* Return the last label to mark the same position as LABEL. Return null
3290 if LABEL itself is null. */
3293 skip_consecutive_labels (rtx label)
3295 rtx insn;
3297 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3298 if (LABEL_P (insn))
3299 label = insn;
3301 return label;
3304 #ifdef HAVE_cc0
3305 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3306 and REG_CC_USER notes so we can find it. */
3308 void
3309 link_cc0_insns (rtx insn)
3311 rtx user = next_nonnote_insn (insn);
3313 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3314 user = XVECEXP (PATTERN (user), 0, 0);
3316 add_reg_note (user, REG_CC_SETTER, insn);
3317 add_reg_note (insn, REG_CC_USER, user);
3320 /* Return the next insn that uses CC0 after INSN, which is assumed to
3321 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3322 applied to the result of this function should yield INSN).
3324 Normally, this is simply the next insn. However, if a REG_CC_USER note
3325 is present, it contains the insn that uses CC0.
3327 Return 0 if we can't find the insn. */
3330 next_cc0_user (rtx insn)
3332 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3334 if (note)
3335 return XEXP (note, 0);
3337 insn = next_nonnote_insn (insn);
3338 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3339 insn = XVECEXP (PATTERN (insn), 0, 0);
3341 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3342 return insn;
3344 return 0;
3347 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3348 note, it is the previous insn. */
3351 prev_cc0_setter (rtx insn)
3353 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3355 if (note)
3356 return XEXP (note, 0);
3358 insn = prev_nonnote_insn (insn);
3359 gcc_assert (sets_cc0_p (PATTERN (insn)));
3361 return insn;
3363 #endif
3365 #ifdef AUTO_INC_DEC
3366 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3368 static int
3369 find_auto_inc (rtx *xp, void *data)
3371 rtx x = *xp;
3372 rtx reg = (rtx) data;
3374 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3375 return 0;
3377 switch (GET_CODE (x))
3379 case PRE_DEC:
3380 case PRE_INC:
3381 case POST_DEC:
3382 case POST_INC:
3383 case PRE_MODIFY:
3384 case POST_MODIFY:
3385 if (rtx_equal_p (reg, XEXP (x, 0)))
3386 return 1;
3387 break;
3389 default:
3390 gcc_unreachable ();
3392 return -1;
3394 #endif
3396 /* Increment the label uses for all labels present in rtx. */
3398 static void
3399 mark_label_nuses (rtx x)
3401 enum rtx_code code;
3402 int i, j;
3403 const char *fmt;
3405 code = GET_CODE (x);
3406 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3407 LABEL_NUSES (XEXP (x, 0))++;
3409 fmt = GET_RTX_FORMAT (code);
3410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3412 if (fmt[i] == 'e')
3413 mark_label_nuses (XEXP (x, i));
3414 else if (fmt[i] == 'E')
3415 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3416 mark_label_nuses (XVECEXP (x, i, j));
3421 /* Try splitting insns that can be split for better scheduling.
3422 PAT is the pattern which might split.
3423 TRIAL is the insn providing PAT.
3424 LAST is nonzero if we should return the last insn of the sequence produced.
3426 If this routine succeeds in splitting, it returns the first or last
3427 replacement insn depending on the value of LAST. Otherwise, it
3428 returns TRIAL. If the insn to be returned can be split, it will be. */
3431 try_split (rtx pat, rtx trial, int last)
3433 rtx before = PREV_INSN (trial);
3434 rtx after = NEXT_INSN (trial);
3435 int has_barrier = 0;
3436 rtx note, seq, tem;
3437 int probability;
3438 rtx insn_last, insn;
3439 int njumps = 0;
3441 /* We're not good at redistributing frame information. */
3442 if (RTX_FRAME_RELATED_P (trial))
3443 return trial;
3445 if (any_condjump_p (trial)
3446 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3447 split_branch_probability = INTVAL (XEXP (note, 0));
3448 probability = split_branch_probability;
3450 seq = split_insns (pat, trial);
3452 split_branch_probability = -1;
3454 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3455 We may need to handle this specially. */
3456 if (after && BARRIER_P (after))
3458 has_barrier = 1;
3459 after = NEXT_INSN (after);
3462 if (!seq)
3463 return trial;
3465 /* Avoid infinite loop if any insn of the result matches
3466 the original pattern. */
3467 insn_last = seq;
3468 while (1)
3470 if (INSN_P (insn_last)
3471 && rtx_equal_p (PATTERN (insn_last), pat))
3472 return trial;
3473 if (!NEXT_INSN (insn_last))
3474 break;
3475 insn_last = NEXT_INSN (insn_last);
3478 /* We will be adding the new sequence to the function. The splitters
3479 may have introduced invalid RTL sharing, so unshare the sequence now. */
3480 unshare_all_rtl_in_chain (seq);
3482 /* Mark labels. */
3483 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3485 if (JUMP_P (insn))
3487 mark_jump_label (PATTERN (insn), insn, 0);
3488 njumps++;
3489 if (probability != -1
3490 && any_condjump_p (insn)
3491 && !find_reg_note (insn, REG_BR_PROB, 0))
3493 /* We can preserve the REG_BR_PROB notes only if exactly
3494 one jump is created, otherwise the machine description
3495 is responsible for this step using
3496 split_branch_probability variable. */
3497 gcc_assert (njumps == 1);
3498 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3503 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3504 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3505 if (CALL_P (trial))
3507 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3508 if (CALL_P (insn))
3510 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3511 while (*p)
3512 p = &XEXP (*p, 1);
3513 *p = CALL_INSN_FUNCTION_USAGE (trial);
3514 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3516 /* Update the debug information for the CALL_INSN. */
3517 if (flag_enable_icf_debug)
3518 (*debug_hooks->copy_call_info) (trial, insn);
3522 /* Copy notes, particularly those related to the CFG. */
3523 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3525 switch (REG_NOTE_KIND (note))
3527 case REG_EH_REGION:
3528 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3529 break;
3531 case REG_NORETURN:
3532 case REG_SETJMP:
3533 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3535 if (CALL_P (insn))
3536 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3538 break;
3540 case REG_NON_LOCAL_GOTO:
3541 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3543 if (JUMP_P (insn))
3544 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3546 break;
3548 #ifdef AUTO_INC_DEC
3549 case REG_INC:
3550 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3552 rtx reg = XEXP (note, 0);
3553 if (!FIND_REG_INC_NOTE (insn, reg)
3554 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3555 add_reg_note (insn, REG_INC, reg);
3557 break;
3558 #endif
3560 default:
3561 break;
3565 /* If there are LABELS inside the split insns increment the
3566 usage count so we don't delete the label. */
3567 if (INSN_P (trial))
3569 insn = insn_last;
3570 while (insn != NULL_RTX)
3572 /* JUMP_P insns have already been "marked" above. */
3573 if (NONJUMP_INSN_P (insn))
3574 mark_label_nuses (PATTERN (insn));
3576 insn = PREV_INSN (insn);
3580 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3582 delete_insn (trial);
3583 if (has_barrier)
3584 emit_barrier_after (tem);
3586 /* Recursively call try_split for each new insn created; by the
3587 time control returns here that insn will be fully split, so
3588 set LAST and continue from the insn after the one returned.
3589 We can't use next_active_insn here since AFTER may be a note.
3590 Ignore deleted insns, which can be occur if not optimizing. */
3591 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3592 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3593 tem = try_split (PATTERN (tem), tem, 1);
3595 /* Return either the first or the last insn, depending on which was
3596 requested. */
3597 return last
3598 ? (after ? PREV_INSN (after) : last_insn)
3599 : NEXT_INSN (before);
3602 /* Make and return an INSN rtx, initializing all its slots.
3603 Store PATTERN in the pattern slots. */
3606 make_insn_raw (rtx pattern)
3608 rtx insn;
3610 insn = rtx_alloc (INSN);
3612 INSN_UID (insn) = cur_insn_uid++;
3613 PATTERN (insn) = pattern;
3614 INSN_CODE (insn) = -1;
3615 REG_NOTES (insn) = NULL;
3616 INSN_LOCATOR (insn) = curr_insn_locator ();
3617 BLOCK_FOR_INSN (insn) = NULL;
3619 #ifdef ENABLE_RTL_CHECKING
3620 if (insn
3621 && INSN_P (insn)
3622 && (returnjump_p (insn)
3623 || (GET_CODE (insn) == SET
3624 && SET_DEST (insn) == pc_rtx)))
3626 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3627 debug_rtx (insn);
3629 #endif
3631 return insn;
3634 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3637 make_debug_insn_raw (rtx pattern)
3639 rtx insn;
3641 insn = rtx_alloc (DEBUG_INSN);
3642 INSN_UID (insn) = cur_debug_insn_uid++;
3643 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3644 INSN_UID (insn) = cur_insn_uid++;
3646 PATTERN (insn) = pattern;
3647 INSN_CODE (insn) = -1;
3648 REG_NOTES (insn) = NULL;
3649 INSN_LOCATOR (insn) = curr_insn_locator ();
3650 BLOCK_FOR_INSN (insn) = NULL;
3652 return insn;
3655 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3658 make_jump_insn_raw (rtx pattern)
3660 rtx insn;
3662 insn = rtx_alloc (JUMP_INSN);
3663 INSN_UID (insn) = cur_insn_uid++;
3665 PATTERN (insn) = pattern;
3666 INSN_CODE (insn) = -1;
3667 REG_NOTES (insn) = NULL;
3668 JUMP_LABEL (insn) = NULL;
3669 INSN_LOCATOR (insn) = curr_insn_locator ();
3670 BLOCK_FOR_INSN (insn) = NULL;
3672 return insn;
3675 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3677 static rtx
3678 make_call_insn_raw (rtx pattern)
3680 rtx insn;
3682 insn = rtx_alloc (CALL_INSN);
3683 INSN_UID (insn) = cur_insn_uid++;
3685 PATTERN (insn) = pattern;
3686 INSN_CODE (insn) = -1;
3687 REG_NOTES (insn) = NULL;
3688 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3689 INSN_LOCATOR (insn) = curr_insn_locator ();
3690 BLOCK_FOR_INSN (insn) = NULL;
3692 return insn;
3695 /* Add INSN to the end of the doubly-linked list.
3696 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3698 void
3699 add_insn (rtx insn)
3701 PREV_INSN (insn) = last_insn;
3702 NEXT_INSN (insn) = 0;
3704 if (NULL != last_insn)
3705 NEXT_INSN (last_insn) = insn;
3707 if (NULL == first_insn)
3708 first_insn = insn;
3710 last_insn = insn;
3713 /* Add INSN into the doubly-linked list after insn AFTER. This and
3714 the next should be the only functions called to insert an insn once
3715 delay slots have been filled since only they know how to update a
3716 SEQUENCE. */
3718 void
3719 add_insn_after (rtx insn, rtx after, basic_block bb)
3721 rtx next = NEXT_INSN (after);
3723 gcc_assert (!optimize || !INSN_DELETED_P (after));
3725 NEXT_INSN (insn) = next;
3726 PREV_INSN (insn) = after;
3728 if (next)
3730 PREV_INSN (next) = insn;
3731 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3732 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3734 else if (last_insn == after)
3735 last_insn = insn;
3736 else
3738 struct sequence_stack *stack = seq_stack;
3739 /* Scan all pending sequences too. */
3740 for (; stack; stack = stack->next)
3741 if (after == stack->last)
3743 stack->last = insn;
3744 break;
3747 gcc_assert (stack);
3750 if (!BARRIER_P (after)
3751 && !BARRIER_P (insn)
3752 && (bb = BLOCK_FOR_INSN (after)))
3754 set_block_for_insn (insn, bb);
3755 if (INSN_P (insn))
3756 df_insn_rescan (insn);
3757 /* Should not happen as first in the BB is always
3758 either NOTE or LABEL. */
3759 if (BB_END (bb) == after
3760 /* Avoid clobbering of structure when creating new BB. */
3761 && !BARRIER_P (insn)
3762 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3763 BB_END (bb) = insn;
3766 NEXT_INSN (after) = insn;
3767 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3769 rtx sequence = PATTERN (after);
3770 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3774 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3775 the previous should be the only functions called to insert an insn
3776 once delay slots have been filled since only they know how to
3777 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3778 bb from before. */
3780 void
3781 add_insn_before (rtx insn, rtx before, basic_block bb)
3783 rtx prev = PREV_INSN (before);
3785 gcc_assert (!optimize || !INSN_DELETED_P (before));
3787 PREV_INSN (insn) = prev;
3788 NEXT_INSN (insn) = before;
3790 if (prev)
3792 NEXT_INSN (prev) = insn;
3793 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3795 rtx sequence = PATTERN (prev);
3796 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3799 else if (first_insn == before)
3800 first_insn = insn;
3801 else
3803 struct sequence_stack *stack = seq_stack;
3804 /* Scan all pending sequences too. */
3805 for (; stack; stack = stack->next)
3806 if (before == stack->first)
3808 stack->first = insn;
3809 break;
3812 gcc_assert (stack);
3815 if (!bb
3816 && !BARRIER_P (before)
3817 && !BARRIER_P (insn))
3818 bb = BLOCK_FOR_INSN (before);
3820 if (bb)
3822 set_block_for_insn (insn, bb);
3823 if (INSN_P (insn))
3824 df_insn_rescan (insn);
3825 /* Should not happen as first in the BB is always either NOTE or
3826 LABEL. */
3827 gcc_assert (BB_HEAD (bb) != insn
3828 /* Avoid clobbering of structure when creating new BB. */
3829 || BARRIER_P (insn)
3830 || NOTE_INSN_BASIC_BLOCK_P (insn));
3833 PREV_INSN (before) = insn;
3834 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3835 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3839 /* Replace insn with an deleted instruction note. */
3841 void
3842 set_insn_deleted (rtx insn)
3844 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3845 PUT_CODE (insn, NOTE);
3846 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3850 /* Remove an insn from its doubly-linked list. This function knows how
3851 to handle sequences. */
3852 void
3853 remove_insn (rtx insn)
3855 rtx next = NEXT_INSN (insn);
3856 rtx prev = PREV_INSN (insn);
3857 basic_block bb;
3859 /* Later in the code, the block will be marked dirty. */
3860 df_insn_delete (NULL, INSN_UID (insn));
3862 if (prev)
3864 NEXT_INSN (prev) = next;
3865 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3867 rtx sequence = PATTERN (prev);
3868 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3871 else if (first_insn == insn)
3872 first_insn = next;
3873 else
3875 struct sequence_stack *stack = seq_stack;
3876 /* Scan all pending sequences too. */
3877 for (; stack; stack = stack->next)
3878 if (insn == stack->first)
3880 stack->first = next;
3881 break;
3884 gcc_assert (stack);
3887 if (next)
3889 PREV_INSN (next) = prev;
3890 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3891 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3893 else if (last_insn == insn)
3894 last_insn = prev;
3895 else
3897 struct sequence_stack *stack = seq_stack;
3898 /* Scan all pending sequences too. */
3899 for (; stack; stack = stack->next)
3900 if (insn == stack->last)
3902 stack->last = prev;
3903 break;
3906 gcc_assert (stack);
3908 if (!BARRIER_P (insn)
3909 && (bb = BLOCK_FOR_INSN (insn)))
3911 if (INSN_P (insn))
3912 df_set_bb_dirty (bb);
3913 if (BB_HEAD (bb) == insn)
3915 /* Never ever delete the basic block note without deleting whole
3916 basic block. */
3917 gcc_assert (!NOTE_P (insn));
3918 BB_HEAD (bb) = next;
3920 if (BB_END (bb) == insn)
3921 BB_END (bb) = prev;
3925 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3927 void
3928 add_function_usage_to (rtx call_insn, rtx call_fusage)
3930 gcc_assert (call_insn && CALL_P (call_insn));
3932 /* Put the register usage information on the CALL. If there is already
3933 some usage information, put ours at the end. */
3934 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3936 rtx link;
3938 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3939 link = XEXP (link, 1))
3942 XEXP (link, 1) = call_fusage;
3944 else
3945 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3948 /* Delete all insns made since FROM.
3949 FROM becomes the new last instruction. */
3951 void
3952 delete_insns_since (rtx from)
3954 if (from == 0)
3955 first_insn = 0;
3956 else
3957 NEXT_INSN (from) = 0;
3958 last_insn = from;
3961 /* This function is deprecated, please use sequences instead.
3963 Move a consecutive bunch of insns to a different place in the chain.
3964 The insns to be moved are those between FROM and TO.
3965 They are moved to a new position after the insn AFTER.
3966 AFTER must not be FROM or TO or any insn in between.
3968 This function does not know about SEQUENCEs and hence should not be
3969 called after delay-slot filling has been done. */
3971 void
3972 reorder_insns_nobb (rtx from, rtx to, rtx after)
3974 /* Splice this bunch out of where it is now. */
3975 if (PREV_INSN (from))
3976 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3977 if (NEXT_INSN (to))
3978 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3979 if (last_insn == to)
3980 last_insn = PREV_INSN (from);
3981 if (first_insn == from)
3982 first_insn = NEXT_INSN (to);
3984 /* Make the new neighbors point to it and it to them. */
3985 if (NEXT_INSN (after))
3986 PREV_INSN (NEXT_INSN (after)) = to;
3988 NEXT_INSN (to) = NEXT_INSN (after);
3989 PREV_INSN (from) = after;
3990 NEXT_INSN (after) = from;
3991 if (after == last_insn)
3992 last_insn = to;
3995 /* Same as function above, but take care to update BB boundaries. */
3996 void
3997 reorder_insns (rtx from, rtx to, rtx after)
3999 rtx prev = PREV_INSN (from);
4000 basic_block bb, bb2;
4002 reorder_insns_nobb (from, to, after);
4004 if (!BARRIER_P (after)
4005 && (bb = BLOCK_FOR_INSN (after)))
4007 rtx x;
4008 df_set_bb_dirty (bb);
4010 if (!BARRIER_P (from)
4011 && (bb2 = BLOCK_FOR_INSN (from)))
4013 if (BB_END (bb2) == to)
4014 BB_END (bb2) = prev;
4015 df_set_bb_dirty (bb2);
4018 if (BB_END (bb) == after)
4019 BB_END (bb) = to;
4021 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4022 if (!BARRIER_P (x))
4023 df_insn_change_bb (x, bb);
4028 /* Emit insn(s) of given code and pattern
4029 at a specified place within the doubly-linked list.
4031 All of the emit_foo global entry points accept an object
4032 X which is either an insn list or a PATTERN of a single
4033 instruction.
4035 There are thus a few canonical ways to generate code and
4036 emit it at a specific place in the instruction stream. For
4037 example, consider the instruction named SPOT and the fact that
4038 we would like to emit some instructions before SPOT. We might
4039 do it like this:
4041 start_sequence ();
4042 ... emit the new instructions ...
4043 insns_head = get_insns ();
4044 end_sequence ();
4046 emit_insn_before (insns_head, SPOT);
4048 It used to be common to generate SEQUENCE rtl instead, but that
4049 is a relic of the past which no longer occurs. The reason is that
4050 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4051 generated would almost certainly die right after it was created. */
4053 /* Make X be output before the instruction BEFORE. */
4056 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4058 rtx last = before;
4059 rtx insn;
4061 gcc_assert (before);
4063 if (x == NULL_RTX)
4064 return last;
4066 switch (GET_CODE (x))
4068 case DEBUG_INSN:
4069 case INSN:
4070 case JUMP_INSN:
4071 case CALL_INSN:
4072 case CODE_LABEL:
4073 case BARRIER:
4074 case NOTE:
4075 insn = x;
4076 while (insn)
4078 rtx next = NEXT_INSN (insn);
4079 add_insn_before (insn, before, bb);
4080 last = insn;
4081 insn = next;
4083 break;
4085 #ifdef ENABLE_RTL_CHECKING
4086 case SEQUENCE:
4087 gcc_unreachable ();
4088 break;
4089 #endif
4091 default:
4092 last = make_insn_raw (x);
4093 add_insn_before (last, before, bb);
4094 break;
4097 return last;
4100 /* Make an instruction with body X and code JUMP_INSN
4101 and output it before the instruction BEFORE. */
4104 emit_jump_insn_before_noloc (rtx x, rtx before)
4106 rtx insn, last = NULL_RTX;
4108 gcc_assert (before);
4110 switch (GET_CODE (x))
4112 case DEBUG_INSN:
4113 case INSN:
4114 case JUMP_INSN:
4115 case CALL_INSN:
4116 case CODE_LABEL:
4117 case BARRIER:
4118 case NOTE:
4119 insn = x;
4120 while (insn)
4122 rtx next = NEXT_INSN (insn);
4123 add_insn_before (insn, before, NULL);
4124 last = insn;
4125 insn = next;
4127 break;
4129 #ifdef ENABLE_RTL_CHECKING
4130 case SEQUENCE:
4131 gcc_unreachable ();
4132 break;
4133 #endif
4135 default:
4136 last = make_jump_insn_raw (x);
4137 add_insn_before (last, before, NULL);
4138 break;
4141 return last;
4144 /* Make an instruction with body X and code CALL_INSN
4145 and output it before the instruction BEFORE. */
4148 emit_call_insn_before_noloc (rtx x, rtx before)
4150 rtx last = NULL_RTX, insn;
4152 gcc_assert (before);
4154 switch (GET_CODE (x))
4156 case DEBUG_INSN:
4157 case INSN:
4158 case JUMP_INSN:
4159 case CALL_INSN:
4160 case CODE_LABEL:
4161 case BARRIER:
4162 case NOTE:
4163 insn = x;
4164 while (insn)
4166 rtx next = NEXT_INSN (insn);
4167 add_insn_before (insn, before, NULL);
4168 last = insn;
4169 insn = next;
4171 break;
4173 #ifdef ENABLE_RTL_CHECKING
4174 case SEQUENCE:
4175 gcc_unreachable ();
4176 break;
4177 #endif
4179 default:
4180 last = make_call_insn_raw (x);
4181 add_insn_before (last, before, NULL);
4182 break;
4185 return last;
4188 /* Make an instruction with body X and code DEBUG_INSN
4189 and output it before the instruction BEFORE. */
4192 emit_debug_insn_before_noloc (rtx x, rtx before)
4194 rtx last = NULL_RTX, insn;
4196 gcc_assert (before);
4198 switch (GET_CODE (x))
4200 case DEBUG_INSN:
4201 case INSN:
4202 case JUMP_INSN:
4203 case CALL_INSN:
4204 case CODE_LABEL:
4205 case BARRIER:
4206 case NOTE:
4207 insn = x;
4208 while (insn)
4210 rtx next = NEXT_INSN (insn);
4211 add_insn_before (insn, before, NULL);
4212 last = insn;
4213 insn = next;
4215 break;
4217 #ifdef ENABLE_RTL_CHECKING
4218 case SEQUENCE:
4219 gcc_unreachable ();
4220 break;
4221 #endif
4223 default:
4224 last = make_debug_insn_raw (x);
4225 add_insn_before (last, before, NULL);
4226 break;
4229 return last;
4232 /* Make an insn of code BARRIER
4233 and output it before the insn BEFORE. */
4236 emit_barrier_before (rtx before)
4238 rtx insn = rtx_alloc (BARRIER);
4240 INSN_UID (insn) = cur_insn_uid++;
4242 add_insn_before (insn, before, NULL);
4243 return insn;
4246 /* Emit the label LABEL before the insn BEFORE. */
4249 emit_label_before (rtx label, rtx before)
4251 /* This can be called twice for the same label as a result of the
4252 confusion that follows a syntax error! So make it harmless. */
4253 if (INSN_UID (label) == 0)
4255 INSN_UID (label) = cur_insn_uid++;
4256 add_insn_before (label, before, NULL);
4259 return label;
4262 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4265 emit_note_before (enum insn_note subtype, rtx before)
4267 rtx note = rtx_alloc (NOTE);
4268 INSN_UID (note) = cur_insn_uid++;
4269 NOTE_KIND (note) = subtype;
4270 BLOCK_FOR_INSN (note) = NULL;
4271 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4273 add_insn_before (note, before, NULL);
4274 return note;
4277 /* Helper for emit_insn_after, handles lists of instructions
4278 efficiently. */
4280 static rtx
4281 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4283 rtx last;
4284 rtx after_after;
4285 if (!bb && !BARRIER_P (after))
4286 bb = BLOCK_FOR_INSN (after);
4288 if (bb)
4290 df_set_bb_dirty (bb);
4291 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4292 if (!BARRIER_P (last))
4294 set_block_for_insn (last, bb);
4295 df_insn_rescan (last);
4297 if (!BARRIER_P (last))
4299 set_block_for_insn (last, bb);
4300 df_insn_rescan (last);
4302 if (BB_END (bb) == after)
4303 BB_END (bb) = last;
4305 else
4306 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4307 continue;
4309 after_after = NEXT_INSN (after);
4311 NEXT_INSN (after) = first;
4312 PREV_INSN (first) = after;
4313 NEXT_INSN (last) = after_after;
4314 if (after_after)
4315 PREV_INSN (after_after) = last;
4317 if (after == last_insn)
4318 last_insn = last;
4320 return last;
4323 /* Make X be output after the insn AFTER and set the BB of insn. If
4324 BB is NULL, an attempt is made to infer the BB from AFTER. */
4327 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4329 rtx last = after;
4331 gcc_assert (after);
4333 if (x == NULL_RTX)
4334 return last;
4336 switch (GET_CODE (x))
4338 case DEBUG_INSN:
4339 case INSN:
4340 case JUMP_INSN:
4341 case CALL_INSN:
4342 case CODE_LABEL:
4343 case BARRIER:
4344 case NOTE:
4345 last = emit_insn_after_1 (x, after, bb);
4346 break;
4348 #ifdef ENABLE_RTL_CHECKING
4349 case SEQUENCE:
4350 gcc_unreachable ();
4351 break;
4352 #endif
4354 default:
4355 last = make_insn_raw (x);
4356 add_insn_after (last, after, bb);
4357 break;
4360 return last;
4364 /* Make an insn of code JUMP_INSN with body X
4365 and output it after the insn AFTER. */
4368 emit_jump_insn_after_noloc (rtx x, rtx after)
4370 rtx last;
4372 gcc_assert (after);
4374 switch (GET_CODE (x))
4376 case DEBUG_INSN:
4377 case INSN:
4378 case JUMP_INSN:
4379 case CALL_INSN:
4380 case CODE_LABEL:
4381 case BARRIER:
4382 case NOTE:
4383 last = emit_insn_after_1 (x, after, NULL);
4384 break;
4386 #ifdef ENABLE_RTL_CHECKING
4387 case SEQUENCE:
4388 gcc_unreachable ();
4389 break;
4390 #endif
4392 default:
4393 last = make_jump_insn_raw (x);
4394 add_insn_after (last, after, NULL);
4395 break;
4398 return last;
4401 /* Make an instruction with body X and code CALL_INSN
4402 and output it after the instruction AFTER. */
4405 emit_call_insn_after_noloc (rtx x, rtx after)
4407 rtx last;
4409 gcc_assert (after);
4411 switch (GET_CODE (x))
4413 case DEBUG_INSN:
4414 case INSN:
4415 case JUMP_INSN:
4416 case CALL_INSN:
4417 case CODE_LABEL:
4418 case BARRIER:
4419 case NOTE:
4420 last = emit_insn_after_1 (x, after, NULL);
4421 break;
4423 #ifdef ENABLE_RTL_CHECKING
4424 case SEQUENCE:
4425 gcc_unreachable ();
4426 break;
4427 #endif
4429 default:
4430 last = make_call_insn_raw (x);
4431 add_insn_after (last, after, NULL);
4432 break;
4435 return last;
4438 /* Make an instruction with body X and code CALL_INSN
4439 and output it after the instruction AFTER. */
4442 emit_debug_insn_after_noloc (rtx x, rtx after)
4444 rtx last;
4446 gcc_assert (after);
4448 switch (GET_CODE (x))
4450 case DEBUG_INSN:
4451 case INSN:
4452 case JUMP_INSN:
4453 case CALL_INSN:
4454 case CODE_LABEL:
4455 case BARRIER:
4456 case NOTE:
4457 last = emit_insn_after_1 (x, after, NULL);
4458 break;
4460 #ifdef ENABLE_RTL_CHECKING
4461 case SEQUENCE:
4462 gcc_unreachable ();
4463 break;
4464 #endif
4466 default:
4467 last = make_debug_insn_raw (x);
4468 add_insn_after (last, after, NULL);
4469 break;
4472 return last;
4475 /* Make an insn of code BARRIER
4476 and output it after the insn AFTER. */
4479 emit_barrier_after (rtx after)
4481 rtx insn = rtx_alloc (BARRIER);
4483 INSN_UID (insn) = cur_insn_uid++;
4485 add_insn_after (insn, after, NULL);
4486 return insn;
4489 /* Emit the label LABEL after the insn AFTER. */
4492 emit_label_after (rtx label, rtx after)
4494 /* This can be called twice for the same label
4495 as a result of the confusion that follows a syntax error!
4496 So make it harmless. */
4497 if (INSN_UID (label) == 0)
4499 INSN_UID (label) = cur_insn_uid++;
4500 add_insn_after (label, after, NULL);
4503 return label;
4506 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4509 emit_note_after (enum insn_note subtype, rtx after)
4511 rtx note = rtx_alloc (NOTE);
4512 INSN_UID (note) = cur_insn_uid++;
4513 NOTE_KIND (note) = subtype;
4514 BLOCK_FOR_INSN (note) = NULL;
4515 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4516 add_insn_after (note, after, NULL);
4517 return note;
4520 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4522 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4524 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4526 if (pattern == NULL_RTX || !loc)
4527 return last;
4529 after = NEXT_INSN (after);
4530 while (1)
4532 if (active_insn_p (after) && !INSN_LOCATOR (after))
4533 INSN_LOCATOR (after) = loc;
4534 if (after == last)
4535 break;
4536 after = NEXT_INSN (after);
4538 return last;
4541 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4543 emit_insn_after (rtx pattern, rtx after)
4545 rtx prev = after;
4547 while (DEBUG_INSN_P (prev))
4548 prev = PREV_INSN (prev);
4550 if (INSN_P (prev))
4551 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4552 else
4553 return emit_insn_after_noloc (pattern, after, NULL);
4556 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4558 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4560 rtx last = emit_jump_insn_after_noloc (pattern, after);
4562 if (pattern == NULL_RTX || !loc)
4563 return last;
4565 after = NEXT_INSN (after);
4566 while (1)
4568 if (active_insn_p (after) && !INSN_LOCATOR (after))
4569 INSN_LOCATOR (after) = loc;
4570 if (after == last)
4571 break;
4572 after = NEXT_INSN (after);
4574 return last;
4577 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4579 emit_jump_insn_after (rtx pattern, rtx after)
4581 rtx prev = after;
4583 while (DEBUG_INSN_P (prev))
4584 prev = PREV_INSN (prev);
4586 if (INSN_P (prev))
4587 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4588 else
4589 return emit_jump_insn_after_noloc (pattern, after);
4592 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4594 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4596 rtx last = emit_call_insn_after_noloc (pattern, after);
4598 if (pattern == NULL_RTX || !loc)
4599 return last;
4601 after = NEXT_INSN (after);
4602 while (1)
4604 if (active_insn_p (after) && !INSN_LOCATOR (after))
4605 INSN_LOCATOR (after) = loc;
4606 if (after == last)
4607 break;
4608 after = NEXT_INSN (after);
4610 return last;
4613 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4615 emit_call_insn_after (rtx pattern, rtx after)
4617 rtx prev = after;
4619 while (DEBUG_INSN_P (prev))
4620 prev = PREV_INSN (prev);
4622 if (INSN_P (prev))
4623 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4624 else
4625 return emit_call_insn_after_noloc (pattern, after);
4628 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4630 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4632 rtx last = emit_debug_insn_after_noloc (pattern, after);
4634 if (pattern == NULL_RTX || !loc)
4635 return last;
4637 after = NEXT_INSN (after);
4638 while (1)
4640 if (active_insn_p (after) && !INSN_LOCATOR (after))
4641 INSN_LOCATOR (after) = loc;
4642 if (after == last)
4643 break;
4644 after = NEXT_INSN (after);
4646 return last;
4649 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4651 emit_debug_insn_after (rtx pattern, rtx after)
4653 if (INSN_P (after))
4654 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4655 else
4656 return emit_debug_insn_after_noloc (pattern, after);
4659 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4661 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4663 rtx first = PREV_INSN (before);
4664 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4666 if (pattern == NULL_RTX || !loc)
4667 return last;
4669 if (!first)
4670 first = get_insns ();
4671 else
4672 first = NEXT_INSN (first);
4673 while (1)
4675 if (active_insn_p (first) && !INSN_LOCATOR (first))
4676 INSN_LOCATOR (first) = loc;
4677 if (first == last)
4678 break;
4679 first = NEXT_INSN (first);
4681 return last;
4684 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4686 emit_insn_before (rtx pattern, rtx before)
4688 rtx next = before;
4690 while (DEBUG_INSN_P (next))
4691 next = PREV_INSN (next);
4693 if (INSN_P (next))
4694 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4695 else
4696 return emit_insn_before_noloc (pattern, before, NULL);
4699 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4701 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4703 rtx first = PREV_INSN (before);
4704 rtx last = emit_jump_insn_before_noloc (pattern, before);
4706 if (pattern == NULL_RTX)
4707 return last;
4709 first = NEXT_INSN (first);
4710 while (1)
4712 if (active_insn_p (first) && !INSN_LOCATOR (first))
4713 INSN_LOCATOR (first) = loc;
4714 if (first == last)
4715 break;
4716 first = NEXT_INSN (first);
4718 return last;
4721 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4723 emit_jump_insn_before (rtx pattern, rtx before)
4725 rtx next = before;
4727 while (DEBUG_INSN_P (next))
4728 next = PREV_INSN (next);
4730 if (INSN_P (next))
4731 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4732 else
4733 return emit_jump_insn_before_noloc (pattern, before);
4736 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4738 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4740 rtx first = PREV_INSN (before);
4741 rtx last = emit_call_insn_before_noloc (pattern, before);
4743 if (pattern == NULL_RTX)
4744 return last;
4746 first = NEXT_INSN (first);
4747 while (1)
4749 if (active_insn_p (first) && !INSN_LOCATOR (first))
4750 INSN_LOCATOR (first) = loc;
4751 if (first == last)
4752 break;
4753 first = NEXT_INSN (first);
4755 return last;
4758 /* like emit_call_insn_before_noloc,
4759 but set insn_locator according to before. */
4761 emit_call_insn_before (rtx pattern, rtx before)
4763 rtx next = before;
4765 while (DEBUG_INSN_P (next))
4766 next = PREV_INSN (next);
4768 if (INSN_P (next))
4769 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4770 else
4771 return emit_call_insn_before_noloc (pattern, before);
4774 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4776 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4778 rtx first = PREV_INSN (before);
4779 rtx last = emit_debug_insn_before_noloc (pattern, before);
4781 if (pattern == NULL_RTX)
4782 return last;
4784 first = NEXT_INSN (first);
4785 while (1)
4787 if (active_insn_p (first) && !INSN_LOCATOR (first))
4788 INSN_LOCATOR (first) = loc;
4789 if (first == last)
4790 break;
4791 first = NEXT_INSN (first);
4793 return last;
4796 /* like emit_debug_insn_before_noloc,
4797 but set insn_locator according to before. */
4799 emit_debug_insn_before (rtx pattern, rtx before)
4801 if (INSN_P (before))
4802 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4803 else
4804 return emit_debug_insn_before_noloc (pattern, before);
4807 /* Take X and emit it at the end of the doubly-linked
4808 INSN list.
4810 Returns the last insn emitted. */
4813 emit_insn (rtx x)
4815 rtx last = last_insn;
4816 rtx insn;
4818 if (x == NULL_RTX)
4819 return last;
4821 switch (GET_CODE (x))
4823 case DEBUG_INSN:
4824 case INSN:
4825 case JUMP_INSN:
4826 case CALL_INSN:
4827 case CODE_LABEL:
4828 case BARRIER:
4829 case NOTE:
4830 insn = x;
4831 while (insn)
4833 rtx next = NEXT_INSN (insn);
4834 add_insn (insn);
4835 last = insn;
4836 insn = next;
4838 break;
4840 #ifdef ENABLE_RTL_CHECKING
4841 case SEQUENCE:
4842 gcc_unreachable ();
4843 break;
4844 #endif
4846 default:
4847 last = make_insn_raw (x);
4848 add_insn (last);
4849 break;
4852 return last;
4855 /* Make an insn of code DEBUG_INSN with pattern X
4856 and add it to the end of the doubly-linked list. */
4859 emit_debug_insn (rtx x)
4861 rtx last = last_insn;
4862 rtx insn;
4864 if (x == NULL_RTX)
4865 return last;
4867 switch (GET_CODE (x))
4869 case DEBUG_INSN:
4870 case INSN:
4871 case JUMP_INSN:
4872 case CALL_INSN:
4873 case CODE_LABEL:
4874 case BARRIER:
4875 case NOTE:
4876 insn = x;
4877 while (insn)
4879 rtx next = NEXT_INSN (insn);
4880 add_insn (insn);
4881 last = insn;
4882 insn = next;
4884 break;
4886 #ifdef ENABLE_RTL_CHECKING
4887 case SEQUENCE:
4888 gcc_unreachable ();
4889 break;
4890 #endif
4892 default:
4893 last = make_debug_insn_raw (x);
4894 add_insn (last);
4895 break;
4898 return last;
4901 /* Make an insn of code JUMP_INSN with pattern X
4902 and add it to the end of the doubly-linked list. */
4905 emit_jump_insn (rtx x)
4907 rtx last = NULL_RTX, insn;
4909 switch (GET_CODE (x))
4911 case DEBUG_INSN:
4912 case INSN:
4913 case JUMP_INSN:
4914 case CALL_INSN:
4915 case CODE_LABEL:
4916 case BARRIER:
4917 case NOTE:
4918 insn = x;
4919 while (insn)
4921 rtx next = NEXT_INSN (insn);
4922 add_insn (insn);
4923 last = insn;
4924 insn = next;
4926 break;
4928 #ifdef ENABLE_RTL_CHECKING
4929 case SEQUENCE:
4930 gcc_unreachable ();
4931 break;
4932 #endif
4934 default:
4935 last = make_jump_insn_raw (x);
4936 add_insn (last);
4937 break;
4940 return last;
4943 /* Make an insn of code CALL_INSN with pattern X
4944 and add it to the end of the doubly-linked list. */
4947 emit_call_insn (rtx x)
4949 rtx insn;
4951 switch (GET_CODE (x))
4953 case DEBUG_INSN:
4954 case INSN:
4955 case JUMP_INSN:
4956 case CALL_INSN:
4957 case CODE_LABEL:
4958 case BARRIER:
4959 case NOTE:
4960 insn = emit_insn (x);
4961 break;
4963 #ifdef ENABLE_RTL_CHECKING
4964 case SEQUENCE:
4965 gcc_unreachable ();
4966 break;
4967 #endif
4969 default:
4970 insn = make_call_insn_raw (x);
4971 add_insn (insn);
4972 break;
4975 return insn;
4978 /* Add the label LABEL to the end of the doubly-linked list. */
4981 emit_label (rtx label)
4983 /* This can be called twice for the same label
4984 as a result of the confusion that follows a syntax error!
4985 So make it harmless. */
4986 if (INSN_UID (label) == 0)
4988 INSN_UID (label) = cur_insn_uid++;
4989 add_insn (label);
4991 return label;
4994 /* Make an insn of code BARRIER
4995 and add it to the end of the doubly-linked list. */
4998 emit_barrier (void)
5000 rtx barrier = rtx_alloc (BARRIER);
5001 INSN_UID (barrier) = cur_insn_uid++;
5002 add_insn (barrier);
5003 return barrier;
5006 /* Emit a copy of note ORIG. */
5009 emit_note_copy (rtx orig)
5011 rtx note;
5013 note = rtx_alloc (NOTE);
5015 INSN_UID (note) = cur_insn_uid++;
5016 NOTE_DATA (note) = NOTE_DATA (orig);
5017 NOTE_KIND (note) = NOTE_KIND (orig);
5018 BLOCK_FOR_INSN (note) = NULL;
5019 add_insn (note);
5021 return note;
5024 /* Make an insn of code NOTE or type NOTE_NO
5025 and add it to the end of the doubly-linked list. */
5028 emit_note (enum insn_note kind)
5030 rtx note;
5032 note = rtx_alloc (NOTE);
5033 INSN_UID (note) = cur_insn_uid++;
5034 NOTE_KIND (note) = kind;
5035 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5036 BLOCK_FOR_INSN (note) = NULL;
5037 add_insn (note);
5038 return note;
5041 /* Emit a clobber of lvalue X. */
5044 emit_clobber (rtx x)
5046 /* CONCATs should not appear in the insn stream. */
5047 if (GET_CODE (x) == CONCAT)
5049 emit_clobber (XEXP (x, 0));
5050 return emit_clobber (XEXP (x, 1));
5052 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5055 /* Return a sequence of insns to clobber lvalue X. */
5058 gen_clobber (rtx x)
5060 rtx seq;
5062 start_sequence ();
5063 emit_clobber (x);
5064 seq = get_insns ();
5065 end_sequence ();
5066 return seq;
5069 /* Emit a use of rvalue X. */
5072 emit_use (rtx x)
5074 /* CONCATs should not appear in the insn stream. */
5075 if (GET_CODE (x) == CONCAT)
5077 emit_use (XEXP (x, 0));
5078 return emit_use (XEXP (x, 1));
5080 return emit_insn (gen_rtx_USE (VOIDmode, x));
5083 /* Return a sequence of insns to use rvalue X. */
5086 gen_use (rtx x)
5088 rtx seq;
5090 start_sequence ();
5091 emit_use (x);
5092 seq = get_insns ();
5093 end_sequence ();
5094 return seq;
5097 /* Cause next statement to emit a line note even if the line number
5098 has not changed. */
5100 void
5101 force_next_line_note (void)
5103 last_location = -1;
5106 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5107 note of this type already exists, remove it first. */
5110 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5112 rtx note = find_reg_note (insn, kind, NULL_RTX);
5114 switch (kind)
5116 case REG_EQUAL:
5117 case REG_EQUIV:
5118 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5119 has multiple sets (some callers assume single_set
5120 means the insn only has one set, when in fact it
5121 means the insn only has one * useful * set). */
5122 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5124 gcc_assert (!note);
5125 return NULL_RTX;
5128 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5129 It serves no useful purpose and breaks eliminate_regs. */
5130 if (GET_CODE (datum) == ASM_OPERANDS)
5131 return NULL_RTX;
5133 if (note)
5135 XEXP (note, 0) = datum;
5136 df_notes_rescan (insn);
5137 return note;
5139 break;
5141 default:
5142 if (note)
5144 XEXP (note, 0) = datum;
5145 return note;
5147 break;
5150 add_reg_note (insn, kind, datum);
5152 switch (kind)
5154 case REG_EQUAL:
5155 case REG_EQUIV:
5156 df_notes_rescan (insn);
5157 break;
5158 default:
5159 break;
5162 return REG_NOTES (insn);
5165 /* Return an indication of which type of insn should have X as a body.
5166 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5168 static enum rtx_code
5169 classify_insn (rtx x)
5171 if (LABEL_P (x))
5172 return CODE_LABEL;
5173 if (GET_CODE (x) == CALL)
5174 return CALL_INSN;
5175 if (GET_CODE (x) == RETURN)
5176 return JUMP_INSN;
5177 if (GET_CODE (x) == SET)
5179 if (SET_DEST (x) == pc_rtx)
5180 return JUMP_INSN;
5181 else if (GET_CODE (SET_SRC (x)) == CALL)
5182 return CALL_INSN;
5183 else
5184 return INSN;
5186 if (GET_CODE (x) == PARALLEL)
5188 int j;
5189 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5190 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5191 return CALL_INSN;
5192 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5193 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5194 return JUMP_INSN;
5195 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5196 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5197 return CALL_INSN;
5199 return INSN;
5202 /* Emit the rtl pattern X as an appropriate kind of insn.
5203 If X is a label, it is simply added into the insn chain. */
5206 emit (rtx x)
5208 enum rtx_code code = classify_insn (x);
5210 switch (code)
5212 case CODE_LABEL:
5213 return emit_label (x);
5214 case INSN:
5215 return emit_insn (x);
5216 case JUMP_INSN:
5218 rtx insn = emit_jump_insn (x);
5219 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5220 return emit_barrier ();
5221 return insn;
5223 case CALL_INSN:
5224 return emit_call_insn (x);
5225 case DEBUG_INSN:
5226 return emit_debug_insn (x);
5227 default:
5228 gcc_unreachable ();
5232 /* Space for free sequence stack entries. */
5233 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5235 /* Begin emitting insns to a sequence. If this sequence will contain
5236 something that might cause the compiler to pop arguments to function
5237 calls (because those pops have previously been deferred; see
5238 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5239 before calling this function. That will ensure that the deferred
5240 pops are not accidentally emitted in the middle of this sequence. */
5242 void
5243 start_sequence (void)
5245 struct sequence_stack *tem;
5247 if (free_sequence_stack != NULL)
5249 tem = free_sequence_stack;
5250 free_sequence_stack = tem->next;
5252 else
5253 tem = GGC_NEW (struct sequence_stack);
5255 tem->next = seq_stack;
5256 tem->first = first_insn;
5257 tem->last = last_insn;
5259 seq_stack = tem;
5261 first_insn = 0;
5262 last_insn = 0;
5265 /* Set up the insn chain starting with FIRST as the current sequence,
5266 saving the previously current one. See the documentation for
5267 start_sequence for more information about how to use this function. */
5269 void
5270 push_to_sequence (rtx first)
5272 rtx last;
5274 start_sequence ();
5276 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5278 first_insn = first;
5279 last_insn = last;
5282 /* Like push_to_sequence, but take the last insn as an argument to avoid
5283 looping through the list. */
5285 void
5286 push_to_sequence2 (rtx first, rtx last)
5288 start_sequence ();
5290 first_insn = first;
5291 last_insn = last;
5294 /* Set up the outer-level insn chain
5295 as the current sequence, saving the previously current one. */
5297 void
5298 push_topmost_sequence (void)
5300 struct sequence_stack *stack, *top = NULL;
5302 start_sequence ();
5304 for (stack = seq_stack; stack; stack = stack->next)
5305 top = stack;
5307 first_insn = top->first;
5308 last_insn = top->last;
5311 /* After emitting to the outer-level insn chain, update the outer-level
5312 insn chain, and restore the previous saved state. */
5314 void
5315 pop_topmost_sequence (void)
5317 struct sequence_stack *stack, *top = NULL;
5319 for (stack = seq_stack; stack; stack = stack->next)
5320 top = stack;
5322 top->first = first_insn;
5323 top->last = last_insn;
5325 end_sequence ();
5328 /* After emitting to a sequence, restore previous saved state.
5330 To get the contents of the sequence just made, you must call
5331 `get_insns' *before* calling here.
5333 If the compiler might have deferred popping arguments while
5334 generating this sequence, and this sequence will not be immediately
5335 inserted into the instruction stream, use do_pending_stack_adjust
5336 before calling get_insns. That will ensure that the deferred
5337 pops are inserted into this sequence, and not into some random
5338 location in the instruction stream. See INHIBIT_DEFER_POP for more
5339 information about deferred popping of arguments. */
5341 void
5342 end_sequence (void)
5344 struct sequence_stack *tem = seq_stack;
5346 first_insn = tem->first;
5347 last_insn = tem->last;
5348 seq_stack = tem->next;
5350 memset (tem, 0, sizeof (*tem));
5351 tem->next = free_sequence_stack;
5352 free_sequence_stack = tem;
5355 /* Return 1 if currently emitting into a sequence. */
5358 in_sequence_p (void)
5360 return seq_stack != 0;
5363 /* Put the various virtual registers into REGNO_REG_RTX. */
5365 static void
5366 init_virtual_regs (void)
5368 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5369 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5370 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5371 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5372 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5376 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5377 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5378 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5379 static int copy_insn_n_scratches;
5381 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5382 copied an ASM_OPERANDS.
5383 In that case, it is the original input-operand vector. */
5384 static rtvec orig_asm_operands_vector;
5386 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5387 copied an ASM_OPERANDS.
5388 In that case, it is the copied input-operand vector. */
5389 static rtvec copy_asm_operands_vector;
5391 /* Likewise for the constraints vector. */
5392 static rtvec orig_asm_constraints_vector;
5393 static rtvec copy_asm_constraints_vector;
5395 /* Recursively create a new copy of an rtx for copy_insn.
5396 This function differs from copy_rtx in that it handles SCRATCHes and
5397 ASM_OPERANDs properly.
5398 Normally, this function is not used directly; use copy_insn as front end.
5399 However, you could first copy an insn pattern with copy_insn and then use
5400 this function afterwards to properly copy any REG_NOTEs containing
5401 SCRATCHes. */
5404 copy_insn_1 (rtx orig)
5406 rtx copy;
5407 int i, j;
5408 RTX_CODE code;
5409 const char *format_ptr;
5411 if (orig == NULL)
5412 return NULL;
5414 code = GET_CODE (orig);
5416 switch (code)
5418 case REG:
5419 case CONST_INT:
5420 case CONST_DOUBLE:
5421 case CONST_FIXED:
5422 case CONST_VECTOR:
5423 case SYMBOL_REF:
5424 case CODE_LABEL:
5425 case PC:
5426 case CC0:
5427 return orig;
5428 case CLOBBER:
5429 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5430 return orig;
5431 break;
5433 case SCRATCH:
5434 for (i = 0; i < copy_insn_n_scratches; i++)
5435 if (copy_insn_scratch_in[i] == orig)
5436 return copy_insn_scratch_out[i];
5437 break;
5439 case CONST:
5440 if (shared_const_p (orig))
5441 return orig;
5442 break;
5444 /* A MEM with a constant address is not sharable. The problem is that
5445 the constant address may need to be reloaded. If the mem is shared,
5446 then reloading one copy of this mem will cause all copies to appear
5447 to have been reloaded. */
5449 default:
5450 break;
5453 /* Copy the various flags, fields, and other information. We assume
5454 that all fields need copying, and then clear the fields that should
5455 not be copied. That is the sensible default behavior, and forces
5456 us to explicitly document why we are *not* copying a flag. */
5457 copy = shallow_copy_rtx (orig);
5459 /* We do not copy the USED flag, which is used as a mark bit during
5460 walks over the RTL. */
5461 RTX_FLAG (copy, used) = 0;
5463 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5464 if (INSN_P (orig))
5466 RTX_FLAG (copy, jump) = 0;
5467 RTX_FLAG (copy, call) = 0;
5468 RTX_FLAG (copy, frame_related) = 0;
5471 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5473 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5474 switch (*format_ptr++)
5476 case 'e':
5477 if (XEXP (orig, i) != NULL)
5478 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5479 break;
5481 case 'E':
5482 case 'V':
5483 if (XVEC (orig, i) == orig_asm_constraints_vector)
5484 XVEC (copy, i) = copy_asm_constraints_vector;
5485 else if (XVEC (orig, i) == orig_asm_operands_vector)
5486 XVEC (copy, i) = copy_asm_operands_vector;
5487 else if (XVEC (orig, i) != NULL)
5489 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5490 for (j = 0; j < XVECLEN (copy, i); j++)
5491 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5493 break;
5495 case 't':
5496 case 'w':
5497 case 'i':
5498 case 's':
5499 case 'S':
5500 case 'u':
5501 case '0':
5502 /* These are left unchanged. */
5503 break;
5505 default:
5506 gcc_unreachable ();
5509 if (code == SCRATCH)
5511 i = copy_insn_n_scratches++;
5512 gcc_assert (i < MAX_RECOG_OPERANDS);
5513 copy_insn_scratch_in[i] = orig;
5514 copy_insn_scratch_out[i] = copy;
5516 else if (code == ASM_OPERANDS)
5518 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5519 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5520 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5521 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5524 return copy;
5527 /* Create a new copy of an rtx.
5528 This function differs from copy_rtx in that it handles SCRATCHes and
5529 ASM_OPERANDs properly.
5530 INSN doesn't really have to be a full INSN; it could be just the
5531 pattern. */
5533 copy_insn (rtx insn)
5535 copy_insn_n_scratches = 0;
5536 orig_asm_operands_vector = 0;
5537 orig_asm_constraints_vector = 0;
5538 copy_asm_operands_vector = 0;
5539 copy_asm_constraints_vector = 0;
5540 return copy_insn_1 (insn);
5543 /* Initialize data structures and variables in this file
5544 before generating rtl for each function. */
5546 void
5547 init_emit (void)
5549 first_insn = NULL;
5550 last_insn = NULL;
5551 if (MIN_NONDEBUG_INSN_UID)
5552 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5553 else
5554 cur_insn_uid = 1;
5555 cur_debug_insn_uid = 1;
5556 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5557 last_location = UNKNOWN_LOCATION;
5558 first_label_num = label_num;
5559 seq_stack = NULL;
5561 /* Init the tables that describe all the pseudo regs. */
5563 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5565 crtl->emit.regno_pointer_align
5566 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5568 regno_reg_rtx
5569 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5571 /* Put copies of all the hard registers into regno_reg_rtx. */
5572 memcpy (regno_reg_rtx,
5573 static_regno_reg_rtx,
5574 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5576 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5577 init_virtual_regs ();
5579 /* Indicate that the virtual registers and stack locations are
5580 all pointers. */
5581 REG_POINTER (stack_pointer_rtx) = 1;
5582 REG_POINTER (frame_pointer_rtx) = 1;
5583 REG_POINTER (hard_frame_pointer_rtx) = 1;
5584 REG_POINTER (arg_pointer_rtx) = 1;
5586 REG_POINTER (virtual_incoming_args_rtx) = 1;
5587 REG_POINTER (virtual_stack_vars_rtx) = 1;
5588 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5589 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5590 REG_POINTER (virtual_cfa_rtx) = 1;
5592 #ifdef STACK_BOUNDARY
5593 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5594 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5595 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5596 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5598 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5599 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5600 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5601 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5602 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5603 #endif
5605 #ifdef INIT_EXPANDERS
5606 INIT_EXPANDERS;
5607 #endif
5610 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5612 static rtx
5613 gen_const_vector (enum machine_mode mode, int constant)
5615 rtx tem;
5616 rtvec v;
5617 int units, i;
5618 enum machine_mode inner;
5620 units = GET_MODE_NUNITS (mode);
5621 inner = GET_MODE_INNER (mode);
5623 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5625 v = rtvec_alloc (units);
5627 /* We need to call this function after we set the scalar const_tiny_rtx
5628 entries. */
5629 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5631 for (i = 0; i < units; ++i)
5632 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5634 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5635 return tem;
5638 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5639 all elements are zero, and the one vector when all elements are one. */
5641 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5643 enum machine_mode inner = GET_MODE_INNER (mode);
5644 int nunits = GET_MODE_NUNITS (mode);
5645 rtx x;
5646 int i;
5648 /* Check to see if all of the elements have the same value. */
5649 x = RTVEC_ELT (v, nunits - 1);
5650 for (i = nunits - 2; i >= 0; i--)
5651 if (RTVEC_ELT (v, i) != x)
5652 break;
5654 /* If the values are all the same, check to see if we can use one of the
5655 standard constant vectors. */
5656 if (i == -1)
5658 if (x == CONST0_RTX (inner))
5659 return CONST0_RTX (mode);
5660 else if (x == CONST1_RTX (inner))
5661 return CONST1_RTX (mode);
5664 return gen_rtx_raw_CONST_VECTOR (mode, v);
5667 /* Initialise global register information required by all functions. */
5669 void
5670 init_emit_regs (void)
5672 int i;
5674 /* Reset register attributes */
5675 htab_empty (reg_attrs_htab);
5677 /* We need reg_raw_mode, so initialize the modes now. */
5678 init_reg_modes_target ();
5680 /* Assign register numbers to the globally defined register rtx. */
5681 pc_rtx = gen_rtx_PC (VOIDmode);
5682 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5683 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5684 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5685 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5686 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5687 virtual_incoming_args_rtx =
5688 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5689 virtual_stack_vars_rtx =
5690 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5691 virtual_stack_dynamic_rtx =
5692 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5693 virtual_outgoing_args_rtx =
5694 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5695 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5697 /* Initialize RTL for commonly used hard registers. These are
5698 copied into regno_reg_rtx as we begin to compile each function. */
5699 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5700 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5702 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5703 return_address_pointer_rtx
5704 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5705 #endif
5707 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5708 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5709 else
5710 pic_offset_table_rtx = NULL_RTX;
5713 /* Create some permanent unique rtl objects shared between all functions. */
5715 void
5716 init_emit_once (void)
5718 int i;
5719 enum machine_mode mode;
5720 enum machine_mode double_mode;
5722 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5723 hash tables. */
5724 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5725 const_int_htab_eq, NULL);
5727 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5728 const_double_htab_eq, NULL);
5730 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5731 const_fixed_htab_eq, NULL);
5733 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5734 mem_attrs_htab_eq, NULL);
5735 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5736 reg_attrs_htab_eq, NULL);
5738 /* Compute the word and byte modes. */
5740 byte_mode = VOIDmode;
5741 word_mode = VOIDmode;
5742 double_mode = VOIDmode;
5744 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5745 mode != VOIDmode;
5746 mode = GET_MODE_WIDER_MODE (mode))
5748 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5749 && byte_mode == VOIDmode)
5750 byte_mode = mode;
5752 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5753 && word_mode == VOIDmode)
5754 word_mode = mode;
5757 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5758 mode != VOIDmode;
5759 mode = GET_MODE_WIDER_MODE (mode))
5761 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5762 && double_mode == VOIDmode)
5763 double_mode = mode;
5766 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5768 #ifdef INIT_EXPANDERS
5769 /* This is to initialize {init|mark|free}_machine_status before the first
5770 call to push_function_context_to. This is needed by the Chill front
5771 end which calls push_function_context_to before the first call to
5772 init_function_start. */
5773 INIT_EXPANDERS;
5774 #endif
5776 /* Create the unique rtx's for certain rtx codes and operand values. */
5778 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5779 tries to use these variables. */
5780 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5781 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5782 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5784 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5785 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5786 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5787 else
5788 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5790 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5791 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5792 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5794 dconstm1 = dconst1;
5795 dconstm1.sign = 1;
5797 dconsthalf = dconst1;
5798 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5800 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5802 const REAL_VALUE_TYPE *const r =
5803 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5805 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5806 mode != VOIDmode;
5807 mode = GET_MODE_WIDER_MODE (mode))
5808 const_tiny_rtx[i][(int) mode] =
5809 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5811 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5812 mode != VOIDmode;
5813 mode = GET_MODE_WIDER_MODE (mode))
5814 const_tiny_rtx[i][(int) mode] =
5815 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5817 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5819 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5820 mode != VOIDmode;
5821 mode = GET_MODE_WIDER_MODE (mode))
5822 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5824 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5825 mode != VOIDmode;
5826 mode = GET_MODE_WIDER_MODE (mode))
5827 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5831 mode != VOIDmode;
5832 mode = GET_MODE_WIDER_MODE (mode))
5834 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5835 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5842 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5843 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5846 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5847 mode != VOIDmode;
5848 mode = GET_MODE_WIDER_MODE (mode))
5850 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5851 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5854 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5855 mode != VOIDmode;
5856 mode = GET_MODE_WIDER_MODE (mode))
5858 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5859 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5862 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5863 mode != VOIDmode;
5864 mode = GET_MODE_WIDER_MODE (mode))
5866 FCONST0(mode).data.high = 0;
5867 FCONST0(mode).data.low = 0;
5868 FCONST0(mode).mode = mode;
5869 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5870 FCONST0 (mode), mode);
5873 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5874 mode != VOIDmode;
5875 mode = GET_MODE_WIDER_MODE (mode))
5877 FCONST0(mode).data.high = 0;
5878 FCONST0(mode).data.low = 0;
5879 FCONST0(mode).mode = mode;
5880 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5881 FCONST0 (mode), mode);
5884 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5885 mode != VOIDmode;
5886 mode = GET_MODE_WIDER_MODE (mode))
5888 FCONST0(mode).data.high = 0;
5889 FCONST0(mode).data.low = 0;
5890 FCONST0(mode).mode = mode;
5891 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5892 FCONST0 (mode), mode);
5894 /* We store the value 1. */
5895 FCONST1(mode).data.high = 0;
5896 FCONST1(mode).data.low = 0;
5897 FCONST1(mode).mode = mode;
5898 lshift_double (1, 0, GET_MODE_FBIT (mode),
5899 2 * HOST_BITS_PER_WIDE_INT,
5900 &FCONST1(mode).data.low,
5901 &FCONST1(mode).data.high,
5902 SIGNED_FIXED_POINT_MODE_P (mode));
5903 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5904 FCONST1 (mode), mode);
5907 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5908 mode != VOIDmode;
5909 mode = GET_MODE_WIDER_MODE (mode))
5911 FCONST0(mode).data.high = 0;
5912 FCONST0(mode).data.low = 0;
5913 FCONST0(mode).mode = mode;
5914 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5915 FCONST0 (mode), mode);
5917 /* We store the value 1. */
5918 FCONST1(mode).data.high = 0;
5919 FCONST1(mode).data.low = 0;
5920 FCONST1(mode).mode = mode;
5921 lshift_double (1, 0, GET_MODE_FBIT (mode),
5922 2 * HOST_BITS_PER_WIDE_INT,
5923 &FCONST1(mode).data.low,
5924 &FCONST1(mode).data.high,
5925 SIGNED_FIXED_POINT_MODE_P (mode));
5926 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5927 FCONST1 (mode), mode);
5930 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5931 mode != VOIDmode;
5932 mode = GET_MODE_WIDER_MODE (mode))
5934 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5937 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5938 mode != VOIDmode;
5939 mode = GET_MODE_WIDER_MODE (mode))
5941 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5944 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5945 mode != VOIDmode;
5946 mode = GET_MODE_WIDER_MODE (mode))
5948 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5949 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5952 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5953 mode != VOIDmode;
5954 mode = GET_MODE_WIDER_MODE (mode))
5956 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5957 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5960 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5961 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5962 const_tiny_rtx[0][i] = const0_rtx;
5964 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5965 if (STORE_FLAG_VALUE == 1)
5966 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5969 /* Produce exact duplicate of insn INSN after AFTER.
5970 Care updating of libcall regions if present. */
5973 emit_copy_of_insn_after (rtx insn, rtx after)
5975 rtx new_rtx, link;
5977 switch (GET_CODE (insn))
5979 case INSN:
5980 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5981 break;
5983 case JUMP_INSN:
5984 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5985 break;
5987 case DEBUG_INSN:
5988 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5989 break;
5991 case CALL_INSN:
5992 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5993 if (CALL_INSN_FUNCTION_USAGE (insn))
5994 CALL_INSN_FUNCTION_USAGE (new_rtx)
5995 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5996 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5997 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5998 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5999 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6000 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6001 break;
6003 default:
6004 gcc_unreachable ();
6007 /* Update LABEL_NUSES. */
6008 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6010 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6012 /* If the old insn is frame related, then so is the new one. This is
6013 primarily needed for IA-64 unwind info which marks epilogue insns,
6014 which may be duplicated by the basic block reordering code. */
6015 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6017 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6018 will make them. REG_LABEL_TARGETs are created there too, but are
6019 supposed to be sticky, so we copy them. */
6020 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6021 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6023 if (GET_CODE (link) == EXPR_LIST)
6024 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6025 copy_insn_1 (XEXP (link, 0)));
6026 else
6027 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6030 INSN_CODE (new_rtx) = INSN_CODE (insn);
6031 return new_rtx;
6034 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6036 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6038 if (hard_reg_clobbers[mode][regno])
6039 return hard_reg_clobbers[mode][regno];
6040 else
6041 return (hard_reg_clobbers[mode][regno] =
6042 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6045 #include "gt-emit-rtl.h"