Fix DealII type problems.
[official-gcc/Ramakrishna.git] / gcc / caller-save.c
blobe12deb73ead0d5939663618c891d21fa224fd90b
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "flags.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "basic-block.h"
33 #include "reload.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "tm_p.h"
38 #include "addresses.h"
39 #include "output.h"
40 #include "df.h"
41 #include "ggc.h"
43 /* Call used hard registers which can not be saved because there is no
44 insn for this. */
45 HARD_REG_SET no_caller_save_reg_set;
47 #ifndef MAX_MOVE_MAX
48 #define MAX_MOVE_MAX MOVE_MAX
49 #endif
51 #ifndef MIN_UNITS_PER_WORD
52 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
53 #endif
55 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
57 /* Modes for each hard register that we can save. The smallest mode is wide
58 enough to save the entire contents of the register. When saving the
59 register because it is live we first try to save in multi-register modes.
60 If that is not possible the save is done one register at a time. */
62 static enum machine_mode
63 regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
65 /* For each hard register, a place on the stack where it can be saved,
66 if needed. */
68 static rtx
69 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
71 /* The number of elements in the subsequent array. */
72 static int save_slots_num;
74 /* Allocated slots so far. */
75 static rtx save_slots[FIRST_PSEUDO_REGISTER];
77 /* We will only make a register eligible for caller-save if it can be
78 saved in its widest mode with a simple SET insn as long as the memory
79 address is valid. We record the INSN_CODE is those insns here since
80 when we emit them, the addresses might not be valid, so they might not
81 be recognized. */
83 static int
84 cached_reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
85 static int
86 cached_reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
88 /* Set of hard regs currently residing in save area (during insn scan). */
90 static HARD_REG_SET hard_regs_saved;
92 /* Number of registers currently in hard_regs_saved. */
94 static int n_regs_saved;
96 /* Computed by mark_referenced_regs, all regs referenced in a given
97 insn. */
98 static HARD_REG_SET referenced_regs;
101 typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
102 void *mark_arg);
104 static int reg_save_code (int, enum machine_mode);
105 static int reg_restore_code (int, enum machine_mode);
107 struct saved_hard_reg;
108 static void initiate_saved_hard_regs (void);
109 static struct saved_hard_reg *new_saved_hard_reg (int, int);
110 static void finish_saved_hard_regs (void);
111 static int saved_hard_reg_compare_func (const void *, const void *);
113 static void mark_set_regs (rtx, const_rtx, void *);
114 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
115 static refmarker_fn mark_reg_as_referenced;
116 static refmarker_fn replace_reg_with_saved_mem;
117 static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
118 enum machine_mode *);
119 static int insert_restore (struct insn_chain *, int, int, int,
120 enum machine_mode *);
121 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
122 rtx);
123 static void add_stored_regs (rtx, const_rtx, void *);
127 static GTY(()) rtx savepat;
128 static GTY(()) rtx restpat;
129 static GTY(()) rtx test_reg;
130 static GTY(()) rtx test_mem;
131 static GTY(()) rtx saveinsn;
132 static GTY(()) rtx restinsn;
134 /* Return the INSN_CODE used to save register REG in mode MODE. */
135 static int
136 reg_save_code (int reg, enum machine_mode mode)
138 bool ok;
139 if (cached_reg_save_code[reg][mode])
140 return cached_reg_save_code[reg][mode];
141 if (!HARD_REGNO_MODE_OK (reg, mode))
143 cached_reg_save_code[reg][mode] = -1;
144 cached_reg_restore_code[reg][mode] = -1;
145 return -1;
148 /* Update the register number and modes of the register
149 and memory operand. */
150 SET_REGNO (test_reg, reg);
151 PUT_MODE (test_reg, mode);
152 PUT_MODE (test_mem, mode);
154 /* Force re-recognition of the modified insns. */
155 INSN_CODE (saveinsn) = -1;
156 INSN_CODE (restinsn) = -1;
158 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
159 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
161 /* Now extract both insns and see if we can meet their
162 constraints. */
163 ok = (cached_reg_save_code[reg][mode] != -1
164 && cached_reg_restore_code[reg][mode] != -1);
165 if (ok)
167 extract_insn (saveinsn);
168 ok = constrain_operands (1);
169 extract_insn (restinsn);
170 ok &= constrain_operands (1);
173 if (! ok)
175 cached_reg_save_code[reg][mode] = -1;
176 cached_reg_restore_code[reg][mode] = -1;
178 gcc_assert (cached_reg_save_code[reg][mode]);
179 return cached_reg_save_code[reg][mode];
182 /* Return the INSN_CODE used to restore register REG in mode MODE. */
183 static int
184 reg_restore_code (int reg, enum machine_mode mode)
186 if (cached_reg_restore_code[reg][mode])
187 return cached_reg_restore_code[reg][mode];
188 /* Populate our cache. */
189 reg_save_code (reg, mode);
190 return cached_reg_restore_code[reg][mode];
193 /* Initialize for caller-save.
195 Look at all the hard registers that are used by a call and for which
196 reginfo.c has not already excluded from being used across a call.
198 Ensure that we can find a mode to save the register and that there is a
199 simple insn to save and restore the register. This latter check avoids
200 problems that would occur if we tried to save the MQ register of some
201 machines directly into memory. */
203 void
204 init_caller_save (void)
206 rtx addr_reg;
207 int offset;
208 rtx address;
209 int i, j;
211 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
212 /* First find all the registers that we need to deal with and all
213 the modes that they can have. If we can't find a mode to use,
214 we can't have the register live over calls. */
216 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
218 if (call_used_regs[i]
219 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
221 for (j = 1; j <= MOVE_MAX_WORDS; j++)
223 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
224 VOIDmode);
225 if (regno_save_mode[i][j] == VOIDmode && j == 1)
227 SET_HARD_REG_BIT (call_fixed_reg_set, i);
231 else
232 regno_save_mode[i][1] = VOIDmode;
235 /* The following code tries to approximate the conditions under which
236 we can easily save and restore a register without scratch registers or
237 other complexities. It will usually work, except under conditions where
238 the validity of an insn operand is dependent on the address offset.
239 No such cases are currently known.
241 We first find a typical offset from some BASE_REG_CLASS register.
242 This address is chosen by finding the first register in the class
243 and by finding the smallest power of two that is a valid offset from
244 that register in every mode we will use to save registers. */
246 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
247 if (TEST_HARD_REG_BIT
248 (reg_class_contents
249 [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i))
250 break;
252 gcc_assert (i < FIRST_PSEUDO_REGISTER);
254 addr_reg = gen_rtx_REG (Pmode, i);
256 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
258 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
261 if (regno_save_mode[i][1] != VOIDmode
262 && ! strict_memory_address_p (regno_save_mode[i][1], address))
263 break;
265 if (i == FIRST_PSEUDO_REGISTER)
266 break;
269 /* If we didn't find a valid address, we must use register indirect. */
270 if (offset == 0)
271 address = addr_reg;
273 /* Next we try to form an insn to save and restore the register. We
274 see if such an insn is recognized and meets its constraints.
276 To avoid lots of unnecessary RTL allocation, we construct all the RTL
277 once, then modify the memory and register operands in-place. */
279 test_reg = gen_rtx_REG (VOIDmode, 0);
280 test_mem = gen_rtx_MEM (VOIDmode, address);
281 savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
282 restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
284 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, savepat, -1, 0);
285 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, restpat, -1, 0);
287 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
288 for (j = 1; j <= MOVE_MAX_WORDS; j++)
289 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
291 regno_save_mode[i][j] = VOIDmode;
292 if (j == 1)
294 SET_HARD_REG_BIT (call_fixed_reg_set, i);
295 if (call_used_regs[i])
296 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
303 /* Initialize save areas by showing that we haven't allocated any yet. */
305 void
306 init_save_areas (void)
308 int i, j;
310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
311 for (j = 1; j <= MOVE_MAX_WORDS; j++)
312 regno_save_mem[i][j] = 0;
313 save_slots_num = 0;
317 /* The structure represents a hard register which should be saved
318 through the call. It is used when the integrated register
319 allocator (IRA) is used and sharing save slots is on. */
320 struct saved_hard_reg
322 /* Order number starting with 0. */
323 int num;
324 /* The hard regno. */
325 int hard_regno;
326 /* Execution frequency of all calls through which given hard
327 register should be saved. */
328 int call_freq;
329 /* Stack slot reserved to save the hard register through calls. */
330 rtx slot;
331 /* True if it is first hard register in the chain of hard registers
332 sharing the same stack slot. */
333 int first_p;
334 /* Order number of the next hard register structure with the same
335 slot in the chain. -1 represents end of the chain. */
336 int next;
339 /* Map: hard register number to the corresponding structure. */
340 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
342 /* The number of all structures representing hard registers should be
343 saved, in order words, the number of used elements in the following
344 array. */
345 static int saved_regs_num;
347 /* Pointers to all the structures. Index is the order number of the
348 corresponding structure. */
349 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
351 /* First called function for work with saved hard registers. */
352 static void
353 initiate_saved_hard_regs (void)
355 int i;
357 saved_regs_num = 0;
358 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
359 hard_reg_map[i] = NULL;
362 /* Allocate and return new saved hard register with given REGNO and
363 CALL_FREQ. */
364 static struct saved_hard_reg *
365 new_saved_hard_reg (int regno, int call_freq)
367 struct saved_hard_reg *saved_reg;
369 saved_reg
370 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
371 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
372 saved_reg->num = saved_regs_num++;
373 saved_reg->hard_regno = regno;
374 saved_reg->call_freq = call_freq;
375 saved_reg->first_p = FALSE;
376 saved_reg->next = -1;
377 return saved_reg;
380 /* Free memory allocated for the saved hard registers. */
381 static void
382 finish_saved_hard_regs (void)
384 int i;
386 for (i = 0; i < saved_regs_num; i++)
387 free (all_saved_regs[i]);
390 /* The function is used to sort the saved hard register structures
391 according their frequency. */
392 static int
393 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
395 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
396 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
398 if (flag_omit_frame_pointer)
400 if (p1->call_freq - p2->call_freq != 0)
401 return p1->call_freq - p2->call_freq;
403 else if (p2->call_freq - p1->call_freq != 0)
404 return p2->call_freq - p1->call_freq;
406 return p1->num - p2->num;
409 /* Allocate save areas for any hard registers that might need saving.
410 We take a conservative approach here and look for call-clobbered hard
411 registers that are assigned to pseudos that cross calls. This may
412 overestimate slightly (especially if some of these registers are later
413 used as spill registers), but it should not be significant.
415 For IRA we use priority coloring to decrease stack slots needed for
416 saving hard registers through calls. We build conflicts for them
417 to do coloring.
419 Future work:
421 In the fallback case we should iterate backwards across all possible
422 modes for the save, choosing the largest available one instead of
423 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
425 We do not try to use "move multiple" instructions that exist
426 on some machines (such as the 68k moveml). It could be a win to try
427 and use them when possible. The hard part is doing it in a way that is
428 machine independent since they might be saving non-consecutive
429 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
431 void
432 setup_save_areas (void)
434 int i, j, k;
435 unsigned int r;
436 HARD_REG_SET hard_regs_used;
438 /* Allocate space in the save area for the largest multi-register
439 pseudos first, then work backwards to single register
440 pseudos. */
442 /* Find and record all call-used hard-registers in this function. */
443 CLEAR_HARD_REG_SET (hard_regs_used);
444 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
445 if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
447 unsigned int regno = reg_renumber[i];
448 unsigned int endregno
449 = end_hard_regno (GET_MODE (regno_reg_rtx[i]), regno);
450 for (r = regno; r < endregno; r++)
451 if (call_used_regs[r])
452 SET_HARD_REG_BIT (hard_regs_used, r);
455 if (optimize && flag_ira_share_save_slots)
457 rtx insn, slot;
458 struct insn_chain *chain, *next;
459 char *saved_reg_conflicts;
460 unsigned int regno;
461 int next_k, freq;
462 struct saved_hard_reg *saved_reg, *saved_reg2, *saved_reg3;
463 int call_saved_regs_num;
464 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
465 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
466 reg_set_iterator rsi;
467 int best_slot_num;
468 int prev_save_slots_num;
469 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
471 initiate_saved_hard_regs ();
472 /* Create hard reg saved regs. */
473 for (chain = reload_insn_chain; chain != 0; chain = next)
475 insn = chain->insn;
476 next = chain->next;
477 if (!CALL_P (insn)
478 || find_reg_note (insn, REG_NORETURN, NULL))
479 continue;
480 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
481 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
482 &chain->live_throughout);
483 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
485 /* Record all registers set in this call insn. These don't
486 need to be saved. N.B. the call insn might set a subreg
487 of a multi-hard-reg pseudo; then the pseudo is considered
488 live during the call, but the subreg that is set
489 isn't. */
490 CLEAR_HARD_REG_SET (this_insn_sets);
491 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
492 /* Sibcalls are considered to set the return value. */
493 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
494 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
496 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
497 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
498 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
499 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
500 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
502 if (hard_reg_map[regno] != NULL)
503 hard_reg_map[regno]->call_freq += freq;
504 else
505 saved_reg = new_saved_hard_reg (regno, freq);
507 /* Look through all live pseudos, mark their hard registers. */
508 EXECUTE_IF_SET_IN_REG_SET
509 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
511 int r = reg_renumber[regno];
512 int bound;
514 if (r < 0)
515 continue;
517 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
518 for (; r < bound; r++)
519 if (TEST_HARD_REG_BIT (used_regs, r))
521 if (hard_reg_map[r] != NULL)
522 hard_reg_map[r]->call_freq += freq;
523 else
524 saved_reg = new_saved_hard_reg (r, freq);
525 SET_HARD_REG_BIT (hard_regs_to_save, r);
529 /* Find saved hard register conflicts. */
530 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
531 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
532 for (chain = reload_insn_chain; chain != 0; chain = next)
534 call_saved_regs_num = 0;
535 insn = chain->insn;
536 next = chain->next;
537 if (!CALL_P (insn)
538 || find_reg_note (insn, REG_NORETURN, NULL))
539 continue;
540 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
541 &chain->live_throughout);
542 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
544 /* Record all registers set in this call insn. These don't
545 need to be saved. N.B. the call insn might set a subreg
546 of a multi-hard-reg pseudo; then the pseudo is considered
547 live during the call, but the subreg that is set
548 isn't. */
549 CLEAR_HARD_REG_SET (this_insn_sets);
550 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
551 /* Sibcalls are considered to set the return value,
552 compare flow.c:propagate_one_insn. */
553 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
554 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
556 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
557 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
558 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
559 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
560 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
562 gcc_assert (hard_reg_map[regno] != NULL);
563 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
565 /* Look through all live pseudos, mark their hard registers. */
566 EXECUTE_IF_SET_IN_REG_SET
567 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
569 int r = reg_renumber[regno];
570 int bound;
572 if (r < 0)
573 continue;
575 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
576 for (; r < bound; r++)
577 if (TEST_HARD_REG_BIT (used_regs, r))
578 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
580 for (i = 0; i < call_saved_regs_num; i++)
582 saved_reg = call_saved_regs[i];
583 for (j = 0; j < call_saved_regs_num; j++)
584 if (i != j)
586 saved_reg2 = call_saved_regs[j];
587 saved_reg_conflicts[saved_reg->num * saved_regs_num
588 + saved_reg2->num]
589 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
590 + saved_reg->num]
591 = TRUE;
595 /* Sort saved hard regs. */
596 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
597 saved_hard_reg_compare_func);
598 /* Initiate slots available from the previous reload
599 iteration. */
600 prev_save_slots_num = save_slots_num;
601 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
602 save_slots_num = 0;
603 /* Allocate stack slots for the saved hard registers. */
604 for (i = 0; i < saved_regs_num; i++)
606 saved_reg = all_saved_regs[i];
607 regno = saved_reg->hard_regno;
608 for (j = 0; j < i; j++)
610 saved_reg2 = all_saved_regs[j];
611 if (! saved_reg2->first_p)
612 continue;
613 slot = saved_reg2->slot;
614 for (k = j; k >= 0; k = next_k)
616 saved_reg3 = all_saved_regs[k];
617 next_k = saved_reg3->next;
618 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
619 + saved_reg3->num])
620 break;
622 if (k < 0
623 && (GET_MODE_SIZE (regno_save_mode[regno][1])
624 <= GET_MODE_SIZE (regno_save_mode
625 [saved_reg2->hard_regno][1])))
627 saved_reg->slot
628 = adjust_address_nv
629 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
630 regno_save_mem[regno][1] = saved_reg->slot;
631 saved_reg->next = saved_reg2->next;
632 saved_reg2->next = i;
633 if (dump_file != NULL)
634 fprintf (dump_file, "%d uses slot of %d\n",
635 regno, saved_reg2->hard_regno);
636 break;
639 if (j == i)
641 saved_reg->first_p = TRUE;
642 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
644 slot = prev_save_slots[j];
645 if (slot == NULL_RTX)
646 continue;
647 if (GET_MODE_SIZE (regno_save_mode[regno][1])
648 <= GET_MODE_SIZE (GET_MODE (slot))
649 && best_slot_num < 0)
650 best_slot_num = j;
651 if (GET_MODE (slot) == regno_save_mode[regno][1])
652 break;
654 if (best_slot_num >= 0)
656 saved_reg->slot = prev_save_slots[best_slot_num];
657 saved_reg->slot
658 = adjust_address_nv
659 (saved_reg->slot,
660 regno_save_mode[saved_reg->hard_regno][1], 0);
661 if (dump_file != NULL)
662 fprintf (dump_file,
663 "%d uses a slot from prev iteration\n", regno);
664 prev_save_slots[best_slot_num] = NULL_RTX;
665 if (best_slot_num + 1 == prev_save_slots_num)
666 prev_save_slots_num--;
668 else
670 saved_reg->slot
671 = assign_stack_local_1
672 (regno_save_mode[regno][1],
673 GET_MODE_SIZE (regno_save_mode[regno][1]), 0, true);
674 if (dump_file != NULL)
675 fprintf (dump_file, "%d uses a new slot\n", regno);
677 regno_save_mem[regno][1] = saved_reg->slot;
678 save_slots[save_slots_num++] = saved_reg->slot;
681 free (saved_reg_conflicts);
682 finish_saved_hard_regs ();
684 else
686 /* Now run through all the call-used hard-registers and allocate
687 space for them in the caller-save area. Try to allocate space
688 in a manner which allows multi-register saves/restores to be done. */
690 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
691 for (j = MOVE_MAX_WORDS; j > 0; j--)
693 int do_save = 1;
695 /* If no mode exists for this size, try another. Also break out
696 if we have already saved this hard register. */
697 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
698 continue;
700 /* See if any register in this group has been saved. */
701 for (k = 0; k < j; k++)
702 if (regno_save_mem[i + k][1])
704 do_save = 0;
705 break;
707 if (! do_save)
708 continue;
710 for (k = 0; k < j; k++)
711 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
713 do_save = 0;
714 break;
716 if (! do_save)
717 continue;
719 /* We have found an acceptable mode to store in. Since
720 hard register is always saved in the widest mode
721 available, the mode may be wider than necessary, it is
722 OK to reduce the alignment of spill space. We will
723 verify that it is equal to or greater than required
724 when we restore and save the hard register in
725 insert_restore and insert_save. */
726 regno_save_mem[i][j]
727 = assign_stack_local_1 (regno_save_mode[i][j],
728 GET_MODE_SIZE (regno_save_mode[i][j]),
729 0, true);
731 /* Setup single word save area just in case... */
732 for (k = 0; k < j; k++)
733 /* This should not depend on WORDS_BIG_ENDIAN.
734 The order of words in regs is the same as in memory. */
735 regno_save_mem[i + k][1]
736 = adjust_address_nv (regno_save_mem[i][j],
737 regno_save_mode[i + k][1],
738 k * UNITS_PER_WORD);
742 /* Now loop again and set the alias set of any save areas we made to
743 the alias set used to represent frame objects. */
744 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
745 for (j = MOVE_MAX_WORDS; j > 0; j--)
746 if (regno_save_mem[i][j] != 0)
747 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
752 /* Find the places where hard regs are live across calls and save them. */
754 void
755 save_call_clobbered_regs (void)
757 struct insn_chain *chain, *next;
758 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
760 /* Computed in mark_set_regs, holds all registers set by the current
761 instruction. */
762 HARD_REG_SET this_insn_sets;
764 CLEAR_HARD_REG_SET (hard_regs_saved);
765 n_regs_saved = 0;
767 for (chain = reload_insn_chain; chain != 0; chain = next)
769 rtx insn = chain->insn;
770 enum rtx_code code = GET_CODE (insn);
772 next = chain->next;
774 gcc_assert (!chain->is_caller_save_insn);
776 if (NONDEBUG_INSN_P (insn))
778 /* If some registers have been saved, see if INSN references
779 any of them. We must restore them before the insn if so. */
781 if (n_regs_saved)
783 int regno;
785 if (code == JUMP_INSN)
786 /* Restore all registers if this is a JUMP_INSN. */
787 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
788 else
790 CLEAR_HARD_REG_SET (referenced_regs);
791 mark_referenced_regs (&PATTERN (insn),
792 mark_reg_as_referenced, NULL);
793 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
796 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
797 if (TEST_HARD_REG_BIT (referenced_regs, regno))
798 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode);
801 if (code == CALL_INSN
802 && ! SIBLING_CALL_P (insn)
803 && ! find_reg_note (insn, REG_NORETURN, NULL))
805 unsigned regno;
806 HARD_REG_SET hard_regs_to_save;
807 reg_set_iterator rsi;
809 /* Use the register life information in CHAIN to compute which
810 regs are live during the call. */
811 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
812 &chain->live_throughout);
813 /* Save hard registers always in the widest mode available. */
814 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
815 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
816 save_mode [regno] = regno_save_mode [regno][1];
817 else
818 save_mode [regno] = VOIDmode;
820 /* Look through all live pseudos, mark their hard registers
821 and choose proper mode for saving. */
822 EXECUTE_IF_SET_IN_REG_SET
823 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
825 int r = reg_renumber[regno];
826 int nregs;
827 enum machine_mode mode;
829 if (r < 0)
830 continue;
831 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
832 mode = HARD_REGNO_CALLER_SAVE_MODE
833 (r, nregs, PSEUDO_REGNO_MODE (regno));
834 if (GET_MODE_BITSIZE (mode)
835 > GET_MODE_BITSIZE (save_mode[r]))
836 save_mode[r] = mode;
837 while (nregs-- > 0)
838 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
841 /* Record all registers set in this call insn. These don't need
842 to be saved. N.B. the call insn might set a subreg of a
843 multi-hard-reg pseudo; then the pseudo is considered live
844 during the call, but the subreg that is set isn't. */
845 CLEAR_HARD_REG_SET (this_insn_sets);
846 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
848 /* Compute which hard regs must be saved before this call. */
849 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
850 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
851 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
852 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
854 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
855 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
856 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
858 /* Must recompute n_regs_saved. */
859 n_regs_saved = 0;
860 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
861 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
862 n_regs_saved++;
865 else if (DEBUG_INSN_P (insn) && n_regs_saved)
866 mark_referenced_regs (&PATTERN (insn),
867 replace_reg_with_saved_mem,
868 save_mode);
870 if (chain->next == 0 || chain->next->block != chain->block)
872 int regno;
873 /* At the end of the basic block, we must restore any registers that
874 remain saved. If the last insn in the block is a JUMP_INSN, put
875 the restore before the insn, otherwise, put it after the insn. */
877 if (n_regs_saved)
878 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
879 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
880 regno += insert_restore (chain, JUMP_P (insn),
881 regno, MOVE_MAX_WORDS, save_mode);
886 /* Here from note_stores, or directly from save_call_clobbered_regs, when
887 an insn stores a value in a register.
888 Set the proper bit or bits in this_insn_sets. All pseudos that have
889 been assigned hard regs have had their register number changed already,
890 so we can ignore pseudos. */
891 static void
892 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
894 int regno, endregno, i;
895 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
897 if (GET_CODE (reg) == SUBREG)
899 rtx inner = SUBREG_REG (reg);
900 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
901 return;
902 regno = subreg_regno (reg);
903 endregno = regno + subreg_nregs (reg);
905 else if (REG_P (reg)
906 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
908 regno = REGNO (reg);
909 endregno = END_HARD_REGNO (reg);
911 else
912 return;
914 for (i = regno; i < endregno; i++)
915 SET_HARD_REG_BIT (*this_insn_sets, i);
918 /* Here from note_stores when an insn stores a value in a register.
919 Set the proper bit or bits in the passed regset. All pseudos that have
920 been assigned hard regs have had their register number changed already,
921 so we can ignore pseudos. */
922 static void
923 add_stored_regs (rtx reg, const_rtx setter, void *data)
925 int regno, endregno, i;
926 enum machine_mode mode = GET_MODE (reg);
927 int offset = 0;
929 if (GET_CODE (setter) == CLOBBER)
930 return;
932 if (GET_CODE (reg) == SUBREG
933 && REG_P (SUBREG_REG (reg))
934 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
936 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
937 GET_MODE (SUBREG_REG (reg)),
938 SUBREG_BYTE (reg),
939 GET_MODE (reg));
940 regno = REGNO (SUBREG_REG (reg)) + offset;
941 endregno = regno + subreg_nregs (reg);
943 else
945 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
946 return;
948 regno = REGNO (reg) + offset;
949 endregno = end_hard_regno (mode, regno);
952 for (i = regno; i < endregno; i++)
953 SET_REGNO_REG_SET ((regset) data, i);
956 /* Walk X and record all referenced registers in REFERENCED_REGS. */
957 static void
958 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
960 enum rtx_code code = GET_CODE (*loc);
961 const char *fmt;
962 int i, j;
964 if (code == SET)
965 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
966 if (code == SET || code == CLOBBER)
968 loc = &SET_DEST (*loc);
969 code = GET_CODE (*loc);
970 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
971 || code == PC || code == CC0
972 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
973 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
974 /* If we're setting only part of a multi-word register,
975 we shall mark it as referenced, because the words
976 that are not being set should be restored. */
977 && ((GET_MODE_SIZE (GET_MODE (*loc))
978 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
979 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
980 <= UNITS_PER_WORD))))
981 return;
983 if (code == MEM || code == SUBREG)
985 loc = &XEXP (*loc, 0);
986 code = GET_CODE (*loc);
989 if (code == REG)
991 int regno = REGNO (*loc);
992 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
993 : reg_renumber[regno]);
995 if (hardregno >= 0)
996 mark (loc, GET_MODE (*loc), hardregno, arg);
997 else if (arg)
998 /* ??? Will we ever end up with an equiv expression in a debug
999 insn, that would have required restoring a reg, or will
1000 reload take care of it for us? */
1001 return;
1002 /* If this is a pseudo that did not get a hard register, scan its
1003 memory location, since it might involve the use of another
1004 register, which might be saved. */
1005 else if (reg_equiv_mem[regno] != 0)
1006 mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg);
1007 else if (reg_equiv_address[regno] != 0)
1008 mark_referenced_regs (&reg_equiv_address[regno], mark, arg);
1009 return;
1012 fmt = GET_RTX_FORMAT (code);
1013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1015 if (fmt[i] == 'e')
1016 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1017 else if (fmt[i] == 'E')
1018 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1019 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1023 /* Parameter function for mark_referenced_regs() that adds registers
1024 present in the insn and in equivalent mems and addresses to
1025 referenced_regs. */
1027 static void
1028 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1029 enum machine_mode mode,
1030 int hardregno,
1031 void *arg ATTRIBUTE_UNUSED)
1033 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1036 /* Parameter function for mark_referenced_regs() that replaces
1037 registers referenced in a debug_insn that would have been restored,
1038 should it be a non-debug_insn, with their save locations. */
1040 static void
1041 replace_reg_with_saved_mem (rtx *loc,
1042 enum machine_mode mode,
1043 int regno,
1044 void *arg)
1046 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1047 rtx mem;
1048 enum machine_mode *save_mode = (enum machine_mode *)arg;
1050 for (i = 0; i < nregs; i++)
1051 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1052 break;
1054 /* If none of the registers in the range would need restoring, we're
1055 all set. */
1056 if (i == nregs)
1057 return;
1059 while (++i < nregs)
1060 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1061 break;
1063 if (i == nregs
1064 && regno_save_mem[regno][nregs])
1066 mem = copy_rtx (regno_save_mem[regno][nregs]);
1068 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1069 mem = adjust_address_nv (mem, save_mode[regno], 0);
1071 if (GET_MODE (mem) != mode)
1073 /* This is gen_lowpart_if_possible(), but without validating
1074 the newly-formed address. */
1075 int offset = 0;
1077 if (WORDS_BIG_ENDIAN)
1078 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1079 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1080 if (BYTES_BIG_ENDIAN)
1081 /* Adjust the address so that the address-after-the-data is
1082 unchanged. */
1083 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1084 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1086 mem = adjust_address_nv (mem, mode, offset);
1089 else
1091 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1092 for (i = 0; i < nregs; i++)
1093 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1095 gcc_assert (regno_save_mem[regno + i][1]);
1096 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1098 else
1100 gcc_assert (save_mode[regno] != VOIDmode);
1101 XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
1102 regno + i);
1106 gcc_assert (GET_MODE (mem) == mode);
1107 *loc = mem;
1111 /* Insert a sequence of insns to restore. Place these insns in front of
1112 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1113 the maximum number of registers which should be restored during this call.
1114 It should never be less than 1 since we only work with entire registers.
1116 Note that we have verified in init_caller_save that we can do this
1117 with a simple SET, so use it. Set INSN_CODE to what we save there
1118 since the address might not be valid so the insn might not be recognized.
1119 These insns will be reloaded and have register elimination done by
1120 find_reload, so we need not worry about that here.
1122 Return the extra number of registers saved. */
1124 static int
1125 insert_restore (struct insn_chain *chain, int before_p, int regno,
1126 int maxrestore, enum machine_mode *save_mode)
1128 int i, k;
1129 rtx pat = NULL_RTX;
1130 int code;
1131 unsigned int numregs = 0;
1132 struct insn_chain *new_chain;
1133 rtx mem;
1135 /* A common failure mode if register status is not correct in the
1136 RTL is for this routine to be called with a REGNO we didn't
1137 expect to save. That will cause us to write an insn with a (nil)
1138 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1139 later, check for this common case here instead. This will remove
1140 one step in debugging such problems. */
1141 gcc_assert (regno_save_mem[regno][1]);
1143 /* Get the pattern to emit and update our status.
1145 See if we can restore `maxrestore' registers at once. Work
1146 backwards to the single register case. */
1147 for (i = maxrestore; i > 0; i--)
1149 int j;
1150 int ok = 1;
1152 if (regno_save_mem[regno][i] == 0)
1153 continue;
1155 for (j = 0; j < i; j++)
1156 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1158 ok = 0;
1159 break;
1161 /* Must do this one restore at a time. */
1162 if (! ok)
1163 continue;
1165 numregs = i;
1166 break;
1169 mem = regno_save_mem [regno][numregs];
1170 if (save_mode [regno] != VOIDmode
1171 && save_mode [regno] != GET_MODE (mem)
1172 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1173 /* Check that insn to restore REGNO in save_mode[regno] is
1174 correct. */
1175 && reg_save_code (regno, save_mode[regno]) >= 0)
1176 mem = adjust_address (mem, save_mode[regno], 0);
1177 else
1178 mem = copy_rtx (mem);
1180 /* Verify that the alignment of spill space is equal to or greater
1181 than required. */
1182 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1183 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1185 pat = gen_rtx_SET (VOIDmode,
1186 gen_rtx_REG (GET_MODE (mem),
1187 regno), mem);
1188 code = reg_restore_code (regno, GET_MODE (mem));
1189 new_chain = insert_one_insn (chain, before_p, code, pat);
1191 /* Clear status for all registers we restored. */
1192 for (k = 0; k < i; k++)
1194 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1195 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1196 n_regs_saved--;
1199 /* Tell our callers how many extra registers we saved/restored. */
1200 return numregs - 1;
1203 /* Like insert_restore above, but save registers instead. */
1205 static int
1206 insert_save (struct insn_chain *chain, int before_p, int regno,
1207 HARD_REG_SET (*to_save), enum machine_mode *save_mode)
1209 int i;
1210 unsigned int k;
1211 rtx pat = NULL_RTX;
1212 int code;
1213 unsigned int numregs = 0;
1214 struct insn_chain *new_chain;
1215 rtx mem;
1217 /* A common failure mode if register status is not correct in the
1218 RTL is for this routine to be called with a REGNO we didn't
1219 expect to save. That will cause us to write an insn with a (nil)
1220 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1221 later, check for this common case here. This will remove one
1222 step in debugging such problems. */
1223 gcc_assert (regno_save_mem[regno][1]);
1225 /* Get the pattern to emit and update our status.
1227 See if we can save several registers with a single instruction.
1228 Work backwards to the single register case. */
1229 for (i = MOVE_MAX_WORDS; i > 0; i--)
1231 int j;
1232 int ok = 1;
1233 if (regno_save_mem[regno][i] == 0)
1234 continue;
1236 for (j = 0; j < i; j++)
1237 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1239 ok = 0;
1240 break;
1242 /* Must do this one save at a time. */
1243 if (! ok)
1244 continue;
1246 numregs = i;
1247 break;
1250 mem = regno_save_mem [regno][numregs];
1251 if (save_mode [regno] != VOIDmode
1252 && save_mode [regno] != GET_MODE (mem)
1253 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1254 /* Check that insn to save REGNO in save_mode[regno] is
1255 correct. */
1256 && reg_save_code (regno, save_mode[regno]) >= 0)
1257 mem = adjust_address (mem, save_mode[regno], 0);
1258 else
1259 mem = copy_rtx (mem);
1261 /* Verify that the alignment of spill space is equal to or greater
1262 than required. */
1263 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1264 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1266 pat = gen_rtx_SET (VOIDmode, mem,
1267 gen_rtx_REG (GET_MODE (mem),
1268 regno));
1269 code = reg_save_code (regno, GET_MODE (mem));
1270 new_chain = insert_one_insn (chain, before_p, code, pat);
1272 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1273 for (k = 0; k < numregs; k++)
1275 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1276 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1277 n_regs_saved++;
1280 /* Tell our callers how many extra registers we saved/restored. */
1281 return numregs - 1;
1284 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1285 equivalent of each REG to regset DATA. */
1287 static int
1288 add_used_regs_1 (rtx *loc, void *data)
1290 int regno, i;
1291 regset live;
1292 rtx x;
1294 x = *loc;
1295 live = (regset) data;
1296 if (REG_P (x))
1298 regno = REGNO (x);
1299 if (!HARD_REGISTER_NUM_P (regno))
1300 regno = reg_renumber[regno];
1301 if (regno >= 0)
1302 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
1303 SET_REGNO_REG_SET (live, regno + i);
1305 return 0;
1308 /* A note_uses callback used by insert_one_insn. Add the hard-register
1309 equivalent of each REG to regset DATA. */
1311 static void
1312 add_used_regs (rtx *loc, void *data)
1314 for_each_rtx (loc, add_used_regs_1, data);
1317 /* Emit a new caller-save insn and set the code. */
1318 static struct insn_chain *
1319 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1321 rtx insn = chain->insn;
1322 struct insn_chain *new_chain;
1324 #ifdef HAVE_cc0
1325 /* If INSN references CC0, put our insns in front of the insn that sets
1326 CC0. This is always safe, since the only way we could be passed an
1327 insn that references CC0 is for a restore, and doing a restore earlier
1328 isn't a problem. We do, however, assume here that CALL_INSNs don't
1329 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1331 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
1332 && before_p
1333 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1334 chain = chain->prev, insn = chain->insn;
1335 #endif
1337 new_chain = new_insn_chain ();
1338 if (before_p)
1340 rtx link;
1342 new_chain->prev = chain->prev;
1343 if (new_chain->prev != 0)
1344 new_chain->prev->next = new_chain;
1345 else
1346 reload_insn_chain = new_chain;
1348 chain->prev = new_chain;
1349 new_chain->next = chain;
1350 new_chain->insn = emit_insn_before (pat, insn);
1351 /* ??? It would be nice if we could exclude the already / still saved
1352 registers from the live sets. */
1353 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1354 note_uses (&PATTERN (chain->insn), add_used_regs,
1355 &new_chain->live_throughout);
1356 /* If CHAIN->INSN is a call, then the registers which contain
1357 the arguments to the function are live in the new insn. */
1358 if (CALL_P (chain->insn))
1359 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1360 link != NULL_RTX;
1361 link = XEXP (link, 1))
1362 note_uses (&XEXP (link, 0), add_used_regs,
1363 &new_chain->live_throughout);
1365 CLEAR_REG_SET (&new_chain->dead_or_set);
1366 if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
1367 BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
1369 else
1371 new_chain->next = chain->next;
1372 if (new_chain->next != 0)
1373 new_chain->next->prev = new_chain;
1374 chain->next = new_chain;
1375 new_chain->prev = chain;
1376 new_chain->insn = emit_insn_after (pat, insn);
1377 /* ??? It would be nice if we could exclude the already / still saved
1378 registers from the live sets, and observe REG_UNUSED notes. */
1379 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1380 /* Registers that are set in CHAIN->INSN live in the new insn.
1381 (Unless there is a REG_UNUSED note for them, but we don't
1382 look for them here.) */
1383 note_stores (PATTERN (chain->insn), add_stored_regs,
1384 &new_chain->live_throughout);
1385 CLEAR_REG_SET (&new_chain->dead_or_set);
1386 if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
1387 BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
1389 new_chain->block = chain->block;
1390 new_chain->is_caller_save_insn = 1;
1392 INSN_CODE (new_chain->insn) = code;
1393 return new_chain;
1395 #include "gt-caller-save.h"