man: mausezahn: document rest of available config file options
[netsniff-ng.git] / mausezahn.8
blobe094e9b2448d12b4796f58aebd071d38e5c15cd7
1 .\" netsniff-ng - the packet sniffing beast
2 .\" Copyright 2013 Herbert Haas, modified by Daniel Borkmann.
3 .\" Subject to the GPL, version 2.
4 .TH MAUSEZAHN 8 "03 March 2013" "Linux" "netsniff-ng toolkit"
5 .SH NAME
6 mausezahn \- a fast versatile packet generator with Cisco-cli
7 .PP
8 .SH SYNOPSIS
9 .PP
10 \fBmausezahn\fR { [\fIoptions\fR] "<arg-string> | <hex-string>" }
11 .PP
12 .SH DESCRIPTION
13 .PP
14 mausezahn is a fast traffic generator which allows you to send nearly every
15 possible and impossible packet. In contrast to trafgen(8), mausezahn's packet
16 configuration is on a protocol-level instead of byte-level and mausezahn also
17 comes with a built-in Cisco-like command-line interface, making it suitable
18 as a network traffic generator box in your network lab.
19 .PP
20 Next to network labs, it can also be used as a didactical tool and for security
21 audits including penetration and DoS testing. As a traffic generator, mausezahn
22 is also able to test IP multicast or VoIP networks. Packet rates close to the
23 physical limit are reachable, depending on the hardware platform.
24 .PP
25 mausezahn supports two modes, ''direct mode'' and a multi-threaded ''interactive
26 mode''.
27 .PP
28 The ''direct mode'' allows you to create a packet directly on the command line
29 and every packet parameter is specified in the argument list when calling
30 mausezahn.
31 .PP
32 The ''interactive mode'' is an advanced multi-threaded configuration mode with
33 its own command line interface (CLI). This mode allows you to create an arbitrary
34 number of packet types and streams in parallel, each with different parameters.
35 .PP
36 The interactive mode utilizes a completely redesigned and more flexible protocol
37 framework called ''mops'' (mausezahn's own packet system). The look and feel of
38 the CLI is very close to the Cisco IOS^tm command line interface.
39 .PP
40 You can start the interactive mode by executing mausezahn with the ''\-x''
41 argument (an optional port number may follow, otherwise it is 25542). Then use
42 telnet(1) to connect to this mausezahn instance. If not otherwise specified,
43 the default login and password combination is mz:mz and the enable password is: mops.
44 This can be changed in /etc/netsniff-ng/mausezahn.conf.
45 .PP
46 The direct mode supports two specification schemes: The ''raw-layer-2'' scheme,
47 where every single byte to be sent can be specified, and ''higher-layer'' scheme,
48 where packet builder interfaces are used (using the ''\-t'' option).
49 .PP
50 To use the ''raw-layer-2'' scheme, simply specify the desired frame as a
51 hexadecimal sequence (the ''hex-string''), such as:
52 .PP
53   mausezahn eth0 "00:ab:cd:ef:00 00:00:00:00:00:01 08:00 ca:fe:ba:be"
54 .PP
55 In this example, whitespaces within the byte string are optional and separate
56 the Ethernet fields (destination and source address, type field, and a short
57 payload). The only additional options supported are ''\-a'', ''\-b'', ''\-c'',
58 and ''\-p''. The frame length must be greater than or equal to 15 bytes.
59 .PP
60 The ''higher-layer'' scheme is enabled using the ''\-t <packet-type>'' option.
61 This option activates a packet builder, and besides the ''packet-type'', an
62 optional ''arg-string'' can be specified. The ''arg-string'' contains packet-
63 specific parameters, such as TCP flags, port numbers, etc. (see example section).
64 .PP
65 .SH OPTIONS
66 .PP
67 mausezahn provides a built-in context-specific help. Append the keyword
68  ''help'' after the configuration options. The most important options
69 are:
70 .PP
71 .SS -x [<port>]
72 Start mausezahn in interactive mode with a Cisco-like CLI. Use telnet to log
73 into the local mausezahn instance. If no port has been specified, port 25542
74 is used by default.
75 .PP
76 .SS -l <IP>
77 Specify the IP address mausezahn should bind to when in interactive mode, default: 0.0.0.0.
78 .PP
79 .SS -v
80 Verbose mode. Capital \-V is even more verbose.
81 .PP
82 .SS -S
83 Simulation mode, i.e. don't put anything on the wire. This is typically combined
84 with the verbose mode.
85 .PP
86 .SS -q
87 Quiet mode where only warnings and errors are displayed.
88 .PP
89 .SS -c <count>
90 Send the packet count times (default: 1, infinite: 0).
91 .PP
92 .SS -d <delay>
93 Apply delay between transmissions. The delay value can be specified in usec
94 (default, no additional unit needed), or in msec (e.g. 100m or 100msec), or
95 in seconds (e.g. 100s or 100sec). Note: mops also supports nanosecond delay
96 resolution if you need it (see interactive mode).
97 .PP
98 .SS -p <length>
99 Pad the raw frame to specified length using zero bytes. Note that for raw
100 layer 2 frames the specified length defines the whole frame length, while for
101 higher layer packets the number of additional padding bytes are specified.
103 .SS -a <src-mac|keyword>
104 Use specified source MAC address with hexadecimal notation such as 00:00:aa:bb:cc:dd.
105 By default the interface MAC address will be used. The keywords ''rand'' and
106 ''own'' refer to a random MAC address (only unicast addresses are created)
107 and the own address, respectively. You can also use the keywords mentioned
108 below although broadcast-type source addresses are officially invalid.
110 .SS -b <dst-mac|keyword>
111 Use specified destination MAC address. By default, a broadcast is sent in raw
112 layer 2 mode or to the destination hosts or gateway interface MAC address in normal
113 (IP) mode. You can use the same keywords as mentioned above, as well as
114 ''bc'' or ''bcast'', ''cisco'', and ''stp''. Please note that for the destination
115 MAC address the ''rand'' keyword is supported but creates a random address only
116 once, even when you send multiple packets.
118 .SS -A <src-ip|range|rand>
119 Use specified source IP address, default is own interface address. Optionally, the
120 keyword ''rand'' can again be used for a random source IP address or a range
121 can be specified, such as ''192.168.1.1-192.168.1.100'' or ''10.1.0.0/16''.
122 Also, a DNS name can be specified for which mausezahn tries to determine the
123 corresponding IP address automatically.
125 .SS -B <dst-ip|range>
126 Use specified destination IP address (default is broadcast i.e. 255.255.255.255).
127 As with the source address (see above) you can also specify a range or a DNS name.
129 .SS -t <packet-type>
130 Create the specified packet type using the built-in packet builder. Currently,
131 supported packet types are: ''arp'', ''bpdu'', ''ip'', ''udp'', ''tcp'', ''rtp'',
132 and ''dns''. Currently, there is also limited support for ''icmp''. Type
133 ''\-t help'' to verify which packet builders your actual mausezahn version
134 supports. Also, for any particular packet type, for example ''tcp'' type
135  ''mausezahn \-t tcp help'' to receive a more in-depth context specific help.
137 .SS -T <packet-type>
138 Make this mausezahn instance the receiving station. Currently, only ''rtp'' is
139 an option here and provides precise jitter measurements. For this purpose, start
140 another mausezahn instance on the sending station and the local receiving station
141 will output jitter statistics. See ''mausezahn \-T rtp help'' for a detailed help.
143 .SS -Q <[CoS:]vlan> [, <[CoS:]vlan>, ...]
144 Specify 802.1Q VLAN tag and optional Class of Service. An arbitrary number of
145 VLAN tags can be specified (that is, you can simulate QinQ or even QinQinQinQ..).
146 Multiple tags must be separated via a comma or a period (e.g. "5:10,20,2:30").
147 VLAN tags are not supported for ARP and BPDU packets (in which case you could
148 specify the whole frame in hexadecimal using the raw layer 2 interface of mausezahn).
150 .SS -M <label[:cos[:ttl]][bos]> [, <label...>]
151 Specify a MPLS label or even a MPLS label stack. Optionally, for each label the
152 experimental bits (usually the Class of Service, CoS) and the Time To Live
153 (TTL) can be specified. If you are really crazy you can set and unset the
154 Bottom of Stack (BoS) bit for each label using the ''S'' (set) and ''s''
155 (unset) option. By default, the BoS is set automatically and correctly. Any other
156 setting will lead to invalid frames. Enter ''\-M help'' for detailed instructions
157 and examples.
159 .SS -P <ascii-payload>
160 Specify a cleartext payload. Alternatively, each packet type supports a
161 hexadecimal specification of the payload (see for example ''\-t udp help'').
163 .SS -f <filename>
164 Read the ASCII payload from the specified file.
166 .SS -F <filename>
167 Read the hexadecimal payload from the specified file. Actually, this file must be also
168 an ASCII text file, but must contain hexadecimal digits, e.g. "aa:bb:cc:0f:e6...".
169 You can use also spaces as separation characters.
171 .SH USAGE EXAMPLE
173 For more comprehensive examples, have a look at the two following HOWTO sections.
175 .SS mausezahn eth0 \-c 0 \-d 2s \-t bpdu vlan=5
176 Send BPDU frames for VLAN 5 as used with Cisco's PVST+ type of STP. By default
177 mausezahn assumes that you want to become the root bridge.
179 .SS mausezahn eth0 \-c 128000 \-a rand \-p 64
180 Perform a CAM table overflow attack.
182 .SS mausezahn eth0 \-c 0 \-Q 5,100 \-t tcp "flags=syn,dp=1-1023" \-p 20 \-A rand \-B 10.100.100.0/24
183 Perform a SYN flood attack to another VLAN using VLAN hopping. This only works
184 if you are connected to the same VLAN which is configured as native VLAN on the
185 trunk. We assume that the victim VLAN is VLAN 100 and the native VLAN is VLAN 5.
186 Lets attack every host in VLAN 100 which use an IP prefix of 10.100.100.0/24, also
187 try out all ports between 1 and 1023 and use a random source IP address.
189 .SS mausezahn eth0 \-c 0 \-d 10msec \-B 230.1.1.1 \-t udp "dp=32000,dscp=46" \-P "Multicast test packet"
190 Send IP multicast packets to the multicast group 230.1.1.1 using a UDP header
191 with destination port 32000 and set the IP DSCP field to EF (46). Send one
192 frame every 10 msec.
194 .SS mausezahn eth0 \-Q 6:420 \-M 100,200,300:5 \-A 172.30.0.0/16 \-B target.anynetwork.foo \-t udp "sp=666,dp=1-65535" \-p 1000 \-c 10
195 Send UDP packets to the destination host target.anynetwork.foo using all
196 possible destination ports and send every packet with all possible source
197 addresses of the range 172.30.0.0/16; additionally use a source port of 666
198 and three MPLS labels, 100, 200, and 300, the outer (300) with QoS field 5.
199 Send the frame with a VLAN tag 420 and CoS 6; eventually pad with 1000 bytes
200 and repeat the whole thing 10 times.
202 .SS mausezahn \-t syslog sev=3 \-P "Main reactor reached critical temperature." \-A 192.168.33.42 \-B 10.1.1.9 \-c 6 \-d 10s
203 Send six forged syslog messages with severity 3 to a Syslog server 10.1.1.9; use
204 a forged source IP address 192.168.33.42 and let mausezahn decide which local
205 interface to use. Use an inter-packet delay of 10 seconds.
207 .SS mausezahn \-t tcp "flags=syn|urg|rst, sp=145, dp=145, win=0, s=0-4294967295, ds=1500, urg=666" \-a bcast \-b bcast \-A bcast \-B 10.1.1.6 \-p 5
208 Send an invalid TCP packet with only a 5 byte payload as layer-2 broadcast and
209 also use the broadcast MAC address as source address. The target should be
210 10.1.1.6 but use a broadcast source address. The source and destination port
211 shall be 145 and the window size 0. Set the TCP flags SYN, URG, and RST
212 simultaneously and sweep through the whole TCP sequence number space with an
213 increment of 1500. Finally set the urgent pointer to 666, i.e. pointing to
214 nowhere.
216 .SH CONFIGURATION FILE
218 When mausezahn is run in interactive mode it automatically looks for and reads
219 a configuration file located at /etc/netsniff-ng/mausezahn.conf for custom options
220 if the file is available, otherwise it uses defaults set at compile time.
221 .SS Config file: /etc/netsniff-ng/mausezahn.conf
223 The configuration file contains lines of the form:
225         option = value
227 Options supported in the configuration file are:
228    Option:              Description:
230    user                 Username for authentication (default: mz)
231    password             Password for authentication (default: mz)
232    enable                    Password to enter privilege mode (default: mops)
233    port                 The listening port for the CLI (default: 25542)
234    management-only      Set management interface (no data traffic is allowed to pass through)
235    cli-device           Interface to bind CLI to (default: all) *not fully implemented*
236    automops         Path to automops file (contains XML data describing protocols) *in development*
238 .SS Example:
240  $ cat /etc/netsniff-ng/mausezahn.conf
241  user = mzadmin
242  password = mzpasswd
243  enable = privilege-mode-passwd
244  port = 65000
246 .SH INTERACTIVE MODE HOWTO
248 .SS Telnet:
250 Using the interactive mode requires starting mausezahn as a server:
252   # mausezahn \-x
254 Now you can telnet(1) to that server using the default port number 25542, but also
255 an arbitrary port number can be specified:
257   # mausezahn \-x 99
258   mausezahn accepts incoming telnet connections on port 99.
259   mz: Problems opening config file. Will use defaults
262 Either from another terminal or from another host try to telnet to the
263 mausezahn server:
265   caprica$ telnet galactica 99
266   Trying 192.168.0.4...
267   Connected to galactica.
268   Escape character is '^]'.
269   mausezahn <version>
271   Username: mz
272   Password: mz
274   mz> enable
275   Password: mops
276   mz#
278 It is recommended to configure your own login credentials in
279 /etc/netsniff-ng/mausezahn.conf, (see configuration file section)
280 .SS Basics:
282 Since you reached the mausezahn prompt, lets try some common commands. You can
283 use the '?' character at any time for context-specific help. Note that Cisco-like
284 short form of commands are accepted in interactive mode. For example, one
285 can use "sh pac" instead of "show packet"; another common example is to use
286 "config t" in place of "configure terminal". For readability, this manual will
287 continue with the full commands.
289 First try out the show command:
291   mz# show ?
293 mausezahn maintains its own ARP table and observes anomalies. There is an entry
294 for every physical interface (however this host has only one):
296   mz# show arp
297   Intf    Index     IP address     MAC address       last       Ch  UCast BCast Info
298   ----------------------------------------------------------------------------------
299   eth0    [1] D     192.168.0.1  00:09:5b:9a:15:84  23:44:41     1     1     0  0000
301 The column Ch tells us that the announced MAC address has only changed one time
302 (= when it was learned). The columns Ucast and BCast tell us how often this
303 entry was announced via unicast or broadcast respectively.
305 Let's check our interfaces:
307   mz# show interface
308   Available network interfaces:
309                  real             real                  used (fake)      used (fake)
310    device        IPv4 address     MAC address           IPv4 address     MAC address
311   ---------------------------------------------------------------------------------------
312   > eth0         192.168.0.4      00:30:05:76:2e:8d     192.168.0.4      00:30:05:76:2e:8d
313     lo           127.0.0.1        00:00:00:00:00:00     127.0.0.1        00:00:00:00:00:00
314   2 interfaces found.
315   Default interface is eth0.
317 .SS Defining packets:
319 Let's check the current packet list:
321   mz# show packet
322   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
323   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
324       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
325   1 packets defined, 0 active.
327 We notice that there is already one system-defined packet process; it has been
328 created and used only once (during startup) by mausezahn's ARP service.
329 Currently, its state is config which means that the process is sleeping.
331 .SS General packet options:
333 Now let's create our own packet process and switch into the global
334 configuration mode:
336   mz# configure terminal
337   mz(config)# packet
338   Allocated new packet PKT0002 at slot 2
339   mz(config-pkt-2)# ?
340   ...
341   name                 Assign a unique name
342   description          Assign a packet description text
343   bind                 Select the network interface
344   count                Configure the packet count value
345   delay                Configure the inter-packet delay
346   interval             Configure a greater interval
347   type                 Specify packet type
348   mac                  Configure packet's MAC addresses
349   tag                  Configure tags
350   payload              Configure a payload
351   port                 Configure packet's port numbers
352   end                  End packet configuration mode
353   ethernet             Configure frame's Ethernet, 802.2, 802.3, or SNAP settings
354   ip                   Configure packet's IP settings
355   udp                  Configure packet's UDP header parameters
356   tcp                  Configure packet's TCP header parameters
358 Here are a lot of options but normally you only need a few of them. When you
359 configure lots of different packets you might assign a reasonable name and
360 description for them:
362   mz(config-pkt-2)# name Test
363   mz(config-pkt-2)# description This is just a test
365 You can, for example, change the default settings for the source and destination MAC or IP
366 addresses using the mac and ip commands:
368   mz(config-pkt-2)# ip address destination 10.1.1.0 /24
369   mz(config-pkt-2)# ip address source random
371 In the example above, we configured a range of addresses (all hosts in the
372 network 10.1.1.0 should be addressed). Additionally we spoof our source IP
373 address. Of course, we can also add one or more VLAN and, or, MPLS tag(s):
375   mz(config-pkt-2)# tag ?
376   dot1q                Configure 802.1Q (and 802.1P) parameters
377   mpls                 Configure MPLS label stack
378   mz(config-pkt-2)# tag dot ?
379   Configure 802.1Q tags:
380   VLAN[:CoS] [VLAN[:CoS]] ...   The leftmost tag is the outer tag in the frame
381   remove <tag-nr> | all         Remove one or more tags (<tag-nr> starts with 1),
382                                 by default the first (=leftmost,outer) tag is removed,
383                                 keyword 'all' can be used instead of tag numbers.
384   cfi | nocfi [<tag-nr>]        Set or unset the CFI-bit in any tag (by default
385                                 assuming the first tag).
386   mz(config-pkt-2)# tag dot 1:7 200:5
388 .SS Configure count and delay:
390   mz(config-pkt-2)# count 1000
391   mz(config-pkt-2)# delay ?
392   delay <value> [hour | min | sec | msec | usec | nsec]
394 Specify the inter-packet delay in hours, minutes, seconds, milliseconds,
395 microseconds or nanoseconds. The default unit is milliseconds (i.e. when no
396 unit is given).
398   mz(config-pkt-2)# delay 1 msec
399   Inter-packet delay set to 0 sec and 1000000 nsec
400   mz(config-pkt-2)#
402 .SS Configuring protocol types:
404 mausezahn's interactive mode supports a growing list of protocols and only
405 relies on the MOPS architecture (and not on libnet as is the case with
406 the legacy direct mode):
408   mz(config-pkt-2)# type
409   Specify a packet type from the following list:
410   arp
411   bpdu
412   igmp
413   ip
414   lldp
415   tcp
416   udp
417   mz(config-pkt-2)# type tcp
418   mz(config-pkt-2-tcp)#
419   ....
420   seqnr                Configure the TCP sequence number
421   acknr                Configure the TCP acknowledgement number
422   hlen                 Configure the TCP header length
423   reserved             Configure the TCP reserved field
424   flags                Configure a combination of TCP flags at once
425   cwr                  Set or unset the TCP CWR flag
426   ece                  Set or unset the TCP ECE flag
427   urg                  Set or unset the TCP URG flag
428   ack                  set or unset the TCP ACK flag
429   psh                  set or unset the TCP PSH flag
430   rst                  set or unset the TCP RST flag
431   syn                  set or unset the TCP SYN flag
432   fin                  set or unset the TCP FIN flag
433   window               Configure the TCP window size
434   checksum             Configure the TCP checksum
435   urgent-pointer       Configure the TCP urgent pointer
436   options              Configure TCP options
437   end                  End TCP configuration mode
438   mz(config-pkt-2-tcp)# flags syn fin rst
439   Current setting is: --------------------RST-SYN-FIN
440   mz(config-pkt-2-tcp)# end
441   mz(config-pkt-2)# payload ascii This is a dummy payload for my first packet
442   mz(config-pkt-2)# end
444 Now configure another packet, for example let's assume we want an LLDP process:
446   mz(config)# packet
447   Allocated new packet PKT0003 at slot 3
448   mz(config-pkt-3)# type lldp
449   mz(config-pkt-3-lldp)# exit
450   mz(config)# exit
452 In the above example we only use the default LLDP settings and don't configure
453 further LLDP options or TLVs. Back in the top level of the CLI let's verify
454 what we had done:
456   mz# show packet
457   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
458   PktID  PktName            Layers  Proto    Size  State      Device   Delay      Count/CntX
459      1   sysARP_servic...   E-----  ARP        60  config     lo       100 msec       1/0 (100%)
460      2   Test               E-Q-IT            125  config     eth0    1000 usec    1000/1000 (0%)
461      3   PKT0003            E-----  LLDP       36  config     eth0      30 sec        0/0 (0%)
462   3 packets defined, 0 active.
464 The column Layers indicates which major protocols have been combined. For
465 example the packet with packet-id 2 ("Test") utilizes Ethernet (E),
466 IP (I), and TCP (T). Additionally an 802.1Q tag (Q) has been inserted. Now
467 start one of these packet processes:
469   mz# start slot 3
470   Activate [3]
471   mz# show packet
472   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
473   PktID  PktName            Layers  Proto    Size  State      Device   Delay      Count/CntX
474      1   sysARP_servic...   E-----  ARP        60  config     lo       100 msec       1/0 (100%)
475      2   Test               E-Q-IT            125  config     eth0    1000 usec    1000/1000 (0%)
476      3   PKT0003            E-----  LLDP       36  config     eth0      30 sec        0/1 (0%)
477   3 packets defined, 1 active.
479 Let's have a more detailed look at a specific packet process:
481   mz# show packet 2
482   Packet [2] Test
483   Description: This is just a test
484   State: config, Count=1000, delay=1000 usec (0 s 1000000 nsec), interval= (undefined)
485   Headers:
486    Ethernet: 00-30-05-76-2e-8d => ff-ff-ff-ff-ff-ff  [0800 after 802.1Q tag]
487    Auto-delivery is ON (that is, the actual MAC is adapted upon transmission)
488    802.1Q: 0 tag(s);  (VLAN:CoS)
489    IP:  SA=192.168.0.4 (not random) (no range)
490         DA=255.255.255.255 (no range)
491         ToS=0x00  proto=17  TTL=255  ID=0  offset=0  flags: -|-|-
492         len=49664(correct)  checksum=0x2e8d(correct)
493    TCP: 83 bytes segment size (including TCP header)
494         SP=0 (norange) (not random), DP=0 (norange) (not random)
495         SQNR=3405691582 (start 0, stop 4294967295, delta 0) -- ACKNR=0 (invalid)
496         Flags: ------------------------SYN----, reserved field is 00, urgent pointer= 0
497         Announced window size= 100
498         Offset= 0 (times 32 bit; value is valid), checksum= ffff (valid)
499         (No TCP options attached) - 0 bytes defined
500    Payload size: 43 bytes
501    Frame size: 125 bytes
502     1  ff:ff:ff:ff:ff:ff:00:30  05:76:2e:8d:81:00:e0:01  81:00:a0:c8:08:00:45:00  00:67:00:00:00:00:ff:06
503    33  fa:e4:c0:a8:00:04:ff:ff  ff:ff:00:00:00:00:ca:fe  ba:be:00:00:00:00:a0:07  00:64:f7:ab:00:00:02:04
504    65  05:ac:04:02:08:0a:19:35  90:c3:00:00:00:00:01:03  03:05:54:68:69:73:20:69  73:20:61:20:64:75:6d:6d
505    97  79:20:70:61:79:6c:6f:61  64:20:66:6f:72:20:6d:79  20:66:69:72:73:74:20:70  61:63:6b:65:74
506   mz#
508 If you want to stop one or more packet processes, use the stop command. The
509 "emergency stop" is when you use stop all:
511   mz# stop all
512   Stopping
513   [3] PKT0003
514   Stopped 1 transmission processe(s)
516 The launch command provides a shortcut for commonly used packet processes. For
517 example to behave like a STP-capable bridge we want to start an BPDU process
518 with typical parameters:
520   mz# launch bpdu
521   Allocated new packet sysBPDU at slot 5
522   mz# show packet
523   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
524   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
525       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
526       2  Test              E-Q-IT            125  config     eth0       1000 usec     1000/1000 (0%)
527       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
528       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
529       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/1 (0%)
530   5 packets defined, 1 active.
532 Now a Configuration BPDU is sent every 2 seconds, claiming to be the root
533 bridge (and usually confusing the LAN. Note that only packet 5 (i.e. the
534 last row) is active and therefore sending packets while all other packets
535 are in state config (i.e. they have been configured but they are not doing
536 anything at the moment).
538 .SS Configuring a greater interval:
540 Sometimes you may want to send a burst of packets at a greater interval:
542   mz(config)# packet 2
543   Modify packet parameters for packet Test [2]
544   mz(config-pkt-2)# interval
545   Configure a greater packet interval in days, hours, minutes, or seconds
546   Arguments: <value>  <days | hours | minutes | seconds>
547   Use a zero value to disable an interval.
548   mz(config-pkt-2)# interval 1 hour
549   mz(config-pkt-2)# count 10
550   mz(config-pkt-2)# delay 15 usec
551   Inter-packet delay set to 0 sec and 15000 nsec
553 Now this packet is sent ten times with an inter-packet delay of 15 microseconds
554 and this is repeated every hour. When you look at the packet list, an interval
555 is indicated with the additional flag 'i' when inactive or 'I' when active:
557   mz# show packet
558   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
559   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
560       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
561       2  Test              E-Q-IT            125  config-i   eth0         15 usec       10/10 (0%)
562       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
563       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
564       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/251 (0%)
565   5 packets defined, 1 active.
566   mz# start slot 2
567   Activate [2]
568   mz# show packet
569   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
570   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
571       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
572       2  Test              E-Q-IT            125  config+I   eth0         15 usec       10/0 (100%)
573       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
574       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
575       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/256 (0%)
576   5 packets defined, 1 active.
578 Note that the flag 'I' indicates that an interval has been specified for
579 packet 2. The process is not active at the moment (only packet 5 is active
580 here) but it will become active at a regular interval. You can verify the
581 actual interval when viewing the packet details via the 'show packet 2' command.
583 .SS Load prepared configurations:
585 You can prepare packet configurations using the same commands as you would
586 type them in on the CLI and then load them to the CLI. For example, assume we
587 have prepared a file 'test.mops' containing:
589   configure terminal
590   packet
591   name IGMP_TEST
592   desc This is only a demonstration how to load a file to mops
593   type igmp
595 Then we can add this packet configuration to our packet list using the load
596 command:
598   mz# load test.mops
599   Read commands from test.mops...
600   Allocated new packet PKT0002 at slot 2
601   mz# show packet
602   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
603   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
604       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
605       2  IGMP_TEST         E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
606   2 packets defined, 0 active.
608 The file src/examples/mausezahn/example_lldp.conf contains another example
609 list of commands to create a bogus LLDP packet. You can load this
610 configuration from the mausezahn command line as follows:
612   mz# load /home/hh/tmp/example_lldp.conf
614 In case you copied the file in that path. Now when you enter 'show packet' you
615 will see a new packet entry in the packet list. Use the 'start slot <nr>'
616 command to activate this packet.
618 You can store your own packet creations in such a file and easily load them when
619 you need them. Every command within such configuration files is executed on the
620 command line interface as if you had typed it in -- so be careful about the
621 order and don't forget to use 'configure terminal' as first command.
623 You can even load other files from within a central config file.
625 .SH DIRECT MODE HOWTO
627 .SS How to specify hexadecimal digits:
629 Many arguments allow direct byte input. Bytes are represented as two
630 hexadecimal digits. Multiple bytes must be separated either by spaces, colons,
631 or dashes - whichever you prefer. The following byte strings are equivalent:
633   "aa:bb cc-dd-ee ff 01 02 03-04 05"
634   "aa bb cc dd ee ff:01:02:03:04 05"
636 To begin with, you may want to send an arbitrary fancy (possibly invalid)
637 frame right through your network card:
639   mausezahn ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:08:00:ca:fe:ba:be
641  or equivalent but more readable:
643   mausezahn ff:ff:ff:ff:ff:ff-ff:ff:ff:ff:ff:ff-08:00-ca:fe:ba:be
645 .SS Basic operations:
647 All major command line options are listed when you execute mausezahn without
648 arguments. For practical usage, keep the following special (not so widely
649 known) options in mind:
651   \-r                    Multiplies the specified delay with a random value.
652   \-p <length>           Pad the raw frame to specified length (using random bytes).
653   \-P <ASCII Payload>    Use the specified ASCII payload.
654   \-f <filename>         Read the ASCII payload from a file.
655   \-F <filename>         Read the hexadecimal payload from a file.
656   \-S                    Simulation mode: DOES NOT put anything on the wire.
657                         This is typically combined with one of the verbose
658                         modes (\-v or V).
660 Many options require a keyword or a number but the \-t option is an exception
661 since it requires both a packet type (such as ip, udp, dns, etc) and an
662 argument string which is specific for that packet type. Here are some simple
663 examples:
665   mausezahn \-t help
666   mausezahn \-t tcp help
667   mausezahn eth3 \-t udp sp=69,dp=69,p=ca:fe:ba:be
669 Note: Don't forget that on the CLI the Linux shell (usually the Bash)
670 interprets spaces as a delimiting character. That is, if you are specifying
671 an argument that consists of multiple words with spaces in between, you MUST
672 group these within quotes. For example, instead of
674   mausezahn eth0 \-t udp sp=1,dp=80,p=00:11:22:33
676  you could either omit the spaces
678   mausezahn eth0 \-t udp sp=1,dp=80,p=00:11:22:33
680  or, for greater safety, use quotes:
682   mausezahn eth0 \-t udp "sp=1,dp=80,p=00:11:22:33"
684 In order to monitor what's going on, you can enable the verbose mode using
685 the \-v option. The opposite is the quiet mode (\-q) which will keep mausezahn
686 absolutely quiet (except for error messages and warnings.)
688 Don't confuse the payload argument p=... with the padding option \-p. The latter
689 is used outside the quotes!
691 .SS The automatic packet builder:
693 An important argument is \-t which invokes a packet builder. Currently there
694 are packet builders for ARP, BPDU, CDP, IP, partly ICMP, UDP, TCP, RTP, DNS,
695 and SYSLOG. (Additionally you can insert a VLAN tag or a MPLS label stack but
696 this works independently of the packet builder.)
698 You get context specific help for every packet builder using the help keyword,
699 such as:
701   mausezahn \-t bpdu help
702   mausezahn \-t tcp help
704 For every packet you may specify an optional payload. This can be done either
705 via hexadecimal notation using the payload (or short p) argument or directly as ASCII
706 text using the \-P option:
708   mausezahn eth0 \-t ip \-P "Hello World"                        # ASCII payload
709   mausezahn eth0 \-t ip p=68:65:6c:6c:6f:20:77:6f:72:6c:64       # hex payload
710   mausezahn eth0 \-t ip "proto=89,                           \\
711                         p=68:65:6c:6c:6f:20:77:6f:72:6c:64, \\   # same with other
712                         ttl=1"                                   # IP arguments
714 Note: The raw link access mode only accepts hexadecimal payloads (because you specify
715 everything in hexadecimal here.)
717 .SS Packet count and delay:
719 By default only one packet is sent. If you want to send more packets then
720 use the count option \-c <count>. When count is zero then mausezahn will send
721 forever. By default, mausezahn sends at maximum speed (and this is really
722 fast ;-)). If you don't want to overwhelm your network devices or have other
723 reasons to send at a slower rate then you might want to specify a delay using
724 the \-d <delay> option.
726 If you only specify a numeric value it is interpreted in microsecond units.
727 Alternatively, for easier use, you might specify units such as seconds, sec,
728 milliseconds, or msec. (You can also abbreviate this with s or m.)
729 Note: Don't use spaces between the value and the unit! Here are typical examples:
731 Send an infinite number of frames as fast as possible:
733   mausezahn \-c 0  "aa bb cc dd ...."
735 Send 100,000 frames with a 50 msec interval:
737   mausezahn \-c 100000 \-d 50msec "aa bb cc dd ...."
739 Send an unlimited number of BPDU frames in a 2 second interval:
741   mausezahn \-c 0 \-d 2s \-t bpdu conf
743 Note: mausezahn does not support fractional numbers. If you want to specify for
744 example 2.5 seconds then express this in milliseconds (2500 msec).
746 .SS Source and destination addresses:
748 As a mnemonic trick keep in mind that all packets run from "A" to "B". You can
749 always specify source and destination MAC addresses using the \-a and \-b
750 options, respectively. These options also allow keywords such as rand, own,
751 bpdu, cisco, and others.
753 Similarly, you can specify source and destination IP addresses using the \-A
754 and \-B options, respectively. These options also support FQDNs (i.e. domain
755 names) and ranges such as 192.168.0.0/24 or 10.0.0.11-10.0.3.22. Additionally,
756 the source address option supports the rand keyword (ideal for "attacks").
758 Note: When you use the packet builder for IP-based packets (e.g. UDP or TCP)
759 then mausezahn automatically cares about correct MAC and IP addresses (i.e.
760 it performs ARP, DHCP, and DNS for you). But when you specify at least a single
761 link-layer address (or any other L2 option such as a VLAN tag or MPLS header)
762 then ARP is disabled and you must care for the Ethernet destination address for
763 yourself.
765 .SS Layer-2:
767 .SS `-- Direct link access:
769 mausezahn allows you to send ANY chain of bytes directly through your Ethernet
770 interface:
772   mausezahn eth0 "ff:ff:ff:ff:ff:ff ff:ff:ff:ff:ff:ff 00:00 ca:fe:ba:be"
774 This way you can craft every packet you want but you must do it by hand. Note:
775 On Wi-Fi interfaces the header is much more complicated and automatically
776 created by the Wi-Fi driver. As an example to introduce some interesting options,
777 lets continuously send frames at max speed with random source MAC address and
778 broadcast destination address, additionally pad the frame to 1000 bytes:
780   mausezahn eth0 \-c 0 \-a rand \-b bcast \-p 1000 "08 00 aa bb cc dd"
782 The direct link access supports automatic padding using the \-p <total frame
783 length> option. This allows you to pad a raw L2 frame to the desired length.
784 You must specify the total length, and the total frame length must have at
785 least 15 bytes for technical reasons. Zero bytes are used for padding.
787 .SS `-- ARP:
789 mausezahn provides a simple interface to the ARP packet. You can specify the
790 ARP method (request|reply) and up to four arguments: sendermac, targetmac,
791 senderip, targetip, or short smac, tmac, sip, tip. By default, an ARP reply is
792 sent with your own interface addresses as source MAC and IP address, and a
793 broadcast destination MAC and IP address. Send a gratuitous ARP request (as used for
794 duplicate IP address detection):
796   mausezahn eth0 \-t arp
798 ARP cache poisoning:
800   mausezahn eth0 \-t arp "reply, senderip=192.168.0.1, targetmac=00:00:0c:01:02:03, \\
801                           targetip=172.16.1.50"
803  where by default your interface MAC address will be used as sendermac,
804 senderip denotes the spoofed IP address, targetmac and targetip identifies the
805 receiver. By default, the Ethernet source address is your interface MAC and the
806 destination address is the broadcast address. You can change this
807 using the flags \-a and \-b.
809 .SS `-- BPDU:
811 mausezahn provides a simple interface to the 802.1D BPDU frame format (used to
812 create the Spanning Tree in bridged networks). By default, standard IEEE 802.1D
813 BPDUs are sent and it is assumed that your computer wants to become the
814 root bridge (rid=bid). Optionally the 802.3 destination address can be a
815 specified MAC address, broadcast, own MAC, or Cisco's PVST+ MAC address. The
816 destination MAC can be specified using the \-b command which, besides MAC
817 addresses, accepts keywords such as bcast, own, pvst, or stp (default). PVST+
818 is supported as well. Simply specify the VLAN for which you want to send a BPDU:
820   mausezahn eth0 \-t bpdu "vlan=123, rid=2000"
822 See mausezahn \-t bpdu help for more details.
824 .SS `-- CDP:
826 mausezahn can send Cisco Discovery Protocol (CDP) messages since this protocol
827 has security relevance. Of course lots of dirty tricks are possible; for
828 example arbitrary TLVs can be created (using the hex-payload argument for
829 example p=00:0e:00:07:01:01:90) and if you want to stress the CDP database of
830 some device, mausezahn can send each CDP message with another system-id using
831 the change keyword:
833   mausezahn \-t cdp change \-c 0
835 Some routers and switches may run into deep problems ;-) See
836 mausezahn \-t cdp help for more details.
838 .SS `-- 802.1Q VLAN Tags:
840 mausezahn allows simple VLAN tagging for IP (and other higher layer) packets.
841 Simply use the option \-Q <[CoS:]VLAN>, such as \-Q 10 or \-Q 3:921. By
842 default CoS=0. For example send a TCP packet in VLAN 500 using CoS=7:
844   mausezahn eth0 \-t tcp \-Q 7:500 "dp=80, flags=rst, p=aa:aa:aa"
846 You can create as many VLAN tags as you want! This is interesting to create
847 QinQ encapsulations or VLAN hopping: Send a UDP packet with VLAN tags 100
848 (outer) and 651 (inner):
850   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great" \-Q 100,651
852 Don't know if this is useful anywhere but at least it is possible:
854   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great"  \\
855                  \-Q 6:5,7:732,5:331,5,6
857 Mix it with MPLS:
859   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great" \-Q 100,651 \-M 314
861 When in raw Layer 2 mode you must create the VLAN tag completely by yourself.
862 For example if you want to send a frame in VLAN 5 using CoS 0 simply specify
863 81:00 as type field and for the next two bytes the CoS (PCP), DEI (CFI), and
864 VLAN ID values (all together known as TCI):
866   mausezahn eth0 \-b bc \-a rand "81:00 00:05 08:00 aa-aa-aa-aa-aa-aa-aa-aa-aa"
868 .SS `-- MPLS labels:
870 mausezahn allows you to insert one or more MPLS headers. Simply use the option
871 \-M <label:CoS:TTL:BoS> where only the label is mandatory. If you specify a
872 second number it is interpreted as the experimental bits (the CoS usually). If
873 you specify a third number it is interpreted as TTL. By default the TTL is
874 set to 255. The Bottom of Stack flag is set automatically, otherwise the frame
875 would be invalid, but if you want you can also set or unset it using the
876 S (set) and s (unset) argument. Note that the BoS must be the last argument in
877 each MPLS header definition. Here are some examples:
879 Use MPLS label 214:
881   mausezahn eth0 \-M 214 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
883 Use three labels (the 214 is now the outer):
885   mausezahn eth0 \-M 9999,51,214 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
887 Use two labels, one with CoS=5 and TTL=1, the other with CoS=7:
889   mausezahn eth0 \-M 100:5:1,500:7 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
891 Unset the BoS flag (which will result in an invalid frame):
893   mausezahn eth0 \-M 214:s \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
895 .SS Layer 3-7:
897 IP, UDP, and TCP packets can be padded using the \-p option. Currently 0x42 is
898 used as padding byte ('the answer'). You cannot pad DNS packets (would be
899 useless anyway).
901 .SS `-- IP:
903 mausezahn allows you to send any malformed or correct IP packet. Every field
904 in the IP header can be manipulated. The IP addresses can be specified via
905 the \-A and \-B options, denoting the source and destination address,
906 respectively. You can also specify an address range or a host name (FQDN).
907 Additionally, the source address can also be random. By default the source
908 address is your interface IP address and the destination address is a
909 broadcast address. Here are some examples:
911 ASCII payload:
913   mausezahn eth0 \-t ip \-A rand \-B 192.168.1.0/24  \-P "hello world"
915 Hexadecimal payload:
917   mausezahn eth0 \-t ip \-A 10.1.0.1-10.1.255.254 \-B 255.255.255.255 p=ca:fe:ba:be
919 Will use correct source IP address:
921   mausezahn eth0 \-t ip \-B www.xyz.com
923 The Type of Service (ToS) byte can either be specified directly by two
924 hexadecimal digits, which means you can also easily set the Explicit
925 Congestion Notification (ECN) bits (LSB 1 and 2), or you may only want to
926 specify a common DSCP value (bits 3-8) using a decimal number (0..63):
928 Packet sent with DSCP = Expedited Forwarding (EF):
930   mausezahn eth0 \-t ip dscp=46,ttl=1,proto=1,p=08:00:5a:a2:de:ad:be:af
932 If you leave the checksum as zero (or unspecified) the correct checksum will
933 be automatically computed. Note that you can only use a wrong checksum when
934 you also specify at least one L2 field manually.
936 .SS `-- UDP:
938 mausezahn supports easy UDP datagram generation. Simply specify the
939 destination address (\-B option) and optionally an arbitrary source address
940 (\-A option) and as arguments you may specify the port numbers using the
941 dp (destination port) and sp (source port) arguments and a payload. You can
942 also easily specify a whole port range which will result in sending multiple
943 packets. Here are some examples:
945 Send test packets to the RTP port range:
947   mausezahn eth0 \-B 192.168.1.1 \-t udp "dp=16384-32767, \\
948                    p=A1:00:CC:00:00:AB:CD:EE:EE:DD:DD:00"
950 Send a DNS request as local broadcast (often a local router replies):
952   mausezahn eth0 \-t udp dp=53,p=c5-2f-01-00-00-01-00-00-00-00-00-00-03-77-77-\\
953                                  77-03-78-79-7a-03-63-6f-6d-00-00-01-00-01"
955 Additionally you may specify the length and checksum using the len and sum
956 arguments (will be set correctly by default). Note: several protocols have same
957 arguments such as len (length) and sum (checksum). If you specified a UDP type
958 packet (via \-t udp) and want to modify the IP length, then use the alternate
959 keyword iplen and ipsum. Also note that you must specify at least one L2 field
960 which tells mausezahn to build everything without the help of your kernel (the
961 kernel would not allow modifying the IP checksum and the IP length).
963 .SS `-- ICMP:
965 mausezahn currently only supports the following ICMP methods: PING (echo
966 request), Redirect (various types), Unreachable (various types). Additional
967 ICMP types will be supported in future. Currently you would need to tailor them
968 by yourself, e.g. using the IP packet builder (setting proto=1). Use the
969 mausezahn \-t icmp help for help on currently implemented options.
971 .SS `-- TCP:
973 mausezahn allows you to easily tailor any TCP packet. Similarly as with UDP you
974 can specify source and destination port (ranges) using the sp and dp arguments.
975 Then you can directly specify the desired flags using an "|" as delimiter if
976 you want to specify multiple flags. For example, a SYN-Flood attack against
977 host 1.1.1.1 using a random source IP address and periodically using all 1023
978 well-known ports could be created via:
980   mausezahn eth0 \-A rand \-B 1.1.1.1 \-c 0 \-t tcp "dp=1-1023, flags=syn"  \\
981                  \-P "Good morning! This is a SYN Flood Attack.             \\
982                      We apologize for any inconvenience."
984 Be careful with such SYN floods and only use them for firewall testing. Check
985 your legal position! Remember that a host with an open TCP session only accepts
986 packets with correct socket information (addresses and ports) and a valid TCP
987 sequence number (SQNR). If you want to try a DoS attack by sending a RST-flood
988 and you do NOT know the target's initial SQNR (which is normally the case) then
989 you may want to sweep through a range of sequence numbers:
991   mausezahn eth0 \-A legal.host.com \-B target.host.com \\
992                  \-t tcp "sp=80,dp=80,s=1-4294967295"
994 Fortunately, the SQNR must match the target host's acknowledgement number plus
995 the announced window size. Since the typical window size is something between
996 40000 and 65535 you are MUCH quicker when using an increment via the ds argument:
998   mausezahn eth0 \-A legal.host.com \-B target.host.com \\
999                  \-t tcp "sp=80, dp=80, s=1-4294967295, ds=40000"
1001 In the latter case mausezahn will only send 107375 packets instead of
1002 4294967295 (which results in a duration of approximately 1 second compared to
1003 11 hours!). Of course you can tailor any TCP packet you like. As with other L4
1004 protocols mausezahn builds a correct IP header but you can additionally access
1005 every field in the IP packet (also in the Ethernet frame).
1007 .SS `-- DNS:
1009 mausezahn supports UDP-based DNS requests or responses. Typically you may want
1010 to send a query or an answer. As usual, you can modify every flag in the header.
1011 Here is an example of a simple query:
1013   mausezahn eth0 \-B mydns-server.com \-t dns "q=www.ibm.com"
1015 You can also create server-type messages:
1017   mausezahn eth0 \-A spoofed.dns-server.com \-B target.host.com \\
1018                  "q=www.topsecret.com, a=172.16.1.1"
1020 The syntax according to the online help (\-t dns help) is:
1022   query|q = <name>[:<type>]  ............. where type is per default "A"
1023                                            (and class is always "IN")
1024   answer|a = [<type>:<ttl>:]<rdata> ...... ttl is per default 0.
1025            = [<type>:<ttl>:]<rdata>/[<type>:<ttl>:]<rdata>/...
1027 Note: If you only use the 'query' option then a query is sent. If you
1028 additionally add an 'answer' then an answer is sent. Examples:
1030   q = www.xyz.com
1031   q = www.xyz.com, a=192.168.1.10
1032   q = www.xyz.com, a=A:3600:192.168.1.10
1033   q = www.xyz.com, a=CNAME:3600:abc.com/A:3600:192.168.1.10
1035 Please try out mausezahn \-t dns help to see the many other optional command
1036 line options.
1038 .SS `-- RTP and VoIP path measurements:
1040 mausezahn can send arbitrary Real Time Protocol (RTP) packets. By default a
1041 classical G.711 codec packet of 20 ms segment size and 160 bytes is assumed. You
1042 can measure jitter, packet loss, and reordering along a path between two hosts
1043 running mausezahn. The jitter measurement is either done following the variance
1044 low-pass filtered estimation specified in RFC 3550 or using an alternative
1045 "real-time" method which is even more precise (the RFC-method is used by
1046 default). For example on Host1 you start a transmission process:
1048   mausezahn \-t rtp \-B 192.168.1.19
1050 And on Host2 (192.168.1.19) a receiving process which performs the measurement:
1052   mausezahn \-T rtp
1054 Note that the option flag with the capital "T" means that it is a server RTP
1055 process, waiting for incoming RTP packets from any mausezahn source. In case
1056 you want to restrict the measurement to a specific source or you want to
1057 perform a bidirectional measurement, you must specify a stream identifier.
1058 Here is an example for bidirectional measurements which logs the running
1059 jitter average in a file:
1061   Host1# mausezahn \-t rtp id=11:11:11:11 \-B 192.168.2.2 &
1062   Host1# mausezahn \-T rtp id=22:22:22:22 "log, path=/tmp/mz/"
1064   Host2# mausezahn \-t rtp id=22:22:22:22 \-B 192.168.1.1 &
1065   Host2# mausezahn \-T rtp id=11:11:11:11 "log, path=/tmp/mz/"
1067 In any case the measurements are printed continuously onto the screen; by
1068 default it looks like this:
1070   0.00                     0.19                      0.38                      0.57
1071   |-------------------------|-------------------------|-------------------------|
1072   #########                                                                      0.07 msec
1073   ####################                                                           0.14 msec
1074   ##                                                                             0.02 msec
1075   ###                                                                            0.02 msec
1076   #########                                                                      0.07 msec
1077   ####                                                                           0.03 msec
1078   #########                                                                      0.07 msec
1079   #############                                                                  0.10 msec
1080   ##                                                                             0.02 msec
1081   ###########################################                                    0.31 msec
1082   #########                                                                      0.07 msec
1083   ##############################################                                 0.33 msec
1084   ###############                                                                0.11 msec
1085   ##########                                                                     0.07 msec
1086   ###############                                                                0.11 msec
1087   ##########################################################                     0.42 msec
1088   #####                                                                          0.04 msec
1090 More information is shown using the txt keyword:
1092   mausezahn \-T rtp txt
1093   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1094     Jitter_RFC (low pass filtered) = 30 usec
1095     Samples jitter (min/avg/max)   = 1/186/2527 usec
1096     Delta-RX (min/avg/max)         = 2010/20167/24805 usec
1097   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1098     Jitter_RFC (low pass filtered) = 17 usec
1099     Samples jitter (min/avg/max)   = 1/53/192 usec
1100     Delta-RX (min/avg/max)         = 20001/20376/20574 usec
1101   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1102     Jitter_RFC (low pass filtered) = 120 usec
1103     Samples jitter (min/avg/max)   = 0/91/1683 usec
1104     Delta-RX (min/avg/max)         = 18673/20378/24822 usec
1106 See mausezahn \-t rtp help and mz \-T rtp help for more details.
1108 .SS `-- Syslog:
1110 The traditional Syslog protocol is widely used even in professional networks
1111 and is sometimes vulnerable. For example you might insert forged Syslog
1112 messages by spoofing your source address (e.g. impersonate the address of a
1113 legit network device):
1115   mausezahn \-t syslog sev=3 \-P "You have been mausezahned." \-A 10.1.1.109 \-B 192.168.7.7
1117 See mausezahn \-t syslog help for more details.
1119 .SH NOTE
1121 When multiple ranges are specified, e.g. destination port ranges and
1122 destination address ranges, then all possible combinations of ports and
1123 addresses are used for packet generation. Furthermore, this can be mixed with
1124 other ranges e.g. a TCP sequence number range. Note that combining ranges
1125 can lead to a very huge number of frames to be sent. As a rule of thumb you
1126 can assume that about 100,000 frames and more are sent in a fraction of one
1127 second, depending on your network interface.
1129 mausezahn has been designed as a fast traffic generator so you might easily
1130 overwhelm a LAN segment with myriads of packets. And because mausezahn could
1131 also support security audits it is possible to create malicious or invalid
1132 packets, SYN floods, port and address sweeps, DNS and ARP poisoning, etc.
1134 Therefore, don't use this tool when you are not aware of the possible
1135 consequences or have only a little knowledge about networks and data
1136 communication. If you abuse mausezahn for 'unallowed' attacks and get caught,
1137 or damage something of your own, then this is completely your fault. So the
1138 safest solution is to try it out in a lab environment.
1140 Also have a look at the netsniff-ng(8) note section on how you can properly
1141 setup and tune your system.
1143 .SH LEGAL
1144 mausezahn is licensed under the GNU GPL version 2.0.
1146 .SH HISTORY
1147 .B mausezahn
1148 was originally written by Herbert Haas. According to his website [1], he
1149 unfortunately passed away in 2011 thus leaving this tool unmaintained.
1150 It has been adopted and integrated into the netsniff-ng toolkit and is further
1151 being maintained and developed from there. Maintainers are Tobias Klauser
1152 <tklauser@distanz.ch> and Daniel Borkmann <dborkma@tik.ee.ethz.ch>.
1154   [1] http://www.perihel.at/
1156 .SH SEE ALSO
1157 .BR netsniff-ng (8),
1158 .BR trafgen (8),
1159 .BR ifpps (8),
1160 .BR bpfc (8),
1161 .BR flowtop (8),
1162 .BR astraceroute (8),
1163 .BR curvetun (8)
1165 .SH AUTHOR
1166 Manpage was written by Herbert Haas and modified by Daniel Borkmann.
1168 .SH COLOPHON
1169 This page is part of the Linux netsniff-ng toolkit project. A description of the project,
1170 and information about reporting bugs, can be found at http://netsniff-ng.org/.