Add support for ymm0 in instructions
[nasm.git] / nasm.h
blobb1f05116ed0a46997f15ae06c640c9260c1a8e0a
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include "compiler.h"
16 #include <stdio.h>
17 #include <inttypes.h>
18 #include "version.h" /* generated NASM version macros */
19 #include "nasmlib.h"
20 #include "insnsi.h" /* For enum opcode */
22 #define NO_SEG -1L /* null segment value */
23 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
25 #ifndef FILENAME_MAX
26 #define FILENAME_MAX 256
27 #endif
29 #ifndef PREFIX_MAX
30 #define PREFIX_MAX 10
31 #endif
33 #ifndef POSTFIX_MAX
34 #define POSTFIX_MAX 10
35 #endif
37 #define IDLEN_MAX 4096
40 * Name pollution problems: <time.h> on Digital UNIX pulls in some
41 * strange hardware header file which sees fit to define R_SP. We
42 * undefine it here so as not to break the enum below.
44 #ifdef R_SP
45 #undef R_SP
46 #endif
49 * We must declare the existence of this structure type up here,
50 * since we have to reference it before we define it...
52 struct ofmt;
55 * values for the `type' parameter to an output function.
57 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
58 * which will be a relative jump. For this we need to know the
59 * distance in bytes from the start of the relocated record until
60 * the end of the containing instruction. _This_ is what is stored
61 * in the size part of the parameter, in this case.
63 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
64 * and the contents of the "data" parameter is irrelevant.
66 * The "data" parameter for the output function points to a "int32_t",
67 * containing the address in question, unless the type is
68 * OUT_RAWDATA, in which case it points to an "uint8_t"
69 * array.
71 enum out_type {
72 OUT_RAWDATA, /* Plain bytes */
73 OUT_ADDRESS, /* An address (symbol value) */
74 OUT_RESERVE, /* Reserved bytes (RESB et al) */
75 OUT_REL2ADR, /* 2-byte relative address */
76 OUT_REL4ADR, /* 4-byte relative address */
77 OUT_REL8ADR, /* 8-byte relative address */
81 * -----------------------
82 * Other function typedefs
83 * -----------------------
87 * A label-lookup function should look like this.
89 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
92 * And a label-definition function like this. The boolean parameter
93 * `is_norm' states whether the label is a `normal' label (which
94 * should affect the local-label system), or something odder like
95 * an EQU or a segment-base symbol, which shouldn't.
97 typedef void (*ldfunc) (char *label, int32_t segment, int64_t offset,
98 char *special, bool is_norm, bool isextrn,
99 struct ofmt * ofmt, efunc error);
102 * List-file generators should look like this:
104 typedef struct {
106 * Called to initialize the listing file generator. Before this
107 * is called, the other routines will silently do nothing when
108 * called. The `char *' parameter is the file name to write the
109 * listing to.
111 void (*init) (char *, efunc);
114 * Called to clear stuff up and close the listing file.
116 void (*cleanup) (void);
119 * Called to output binary data. Parameters are: the offset;
120 * the data; the data type. Data types are similar to the
121 * output-format interface, only OUT_ADDRESS will _always_ be
122 * displayed as if it's relocatable, so ensure that any non-
123 * relocatable address has been converted to OUT_RAWDATA by
124 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
125 * dummy call used to give the listing generator an offset to
126 * work with when doing things like uplevel(LIST_TIMES) or
127 * uplevel(LIST_INCBIN).
129 void (*output) (int32_t, const void *, enum out_type, uint64_t);
132 * Called to send a text line to the listing generator. The
133 * `int' parameter is LIST_READ or LIST_MACRO depending on
134 * whether the line came directly from an input file or is the
135 * result of a multi-line macro expansion.
137 void (*line) (int, char *);
140 * Called to change one of the various levelled mechanisms in
141 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
142 * used to increase the nesting level of include files and
143 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
144 * two binary-output-suppression mechanisms for large-scale
145 * pseudo-instructions.
147 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
148 * it indicates the beginning of the expansion of a `nolist'
149 * macro, so anything under that level won't be expanded unless
150 * it includes another file.
152 void (*uplevel) (int);
155 * Reverse the effects of uplevel.
157 void (*downlevel) (int);
158 } ListGen;
161 * Token types returned by the scanner, in addition to ordinary
162 * ASCII character values, and zero for end-of-string.
164 enum token_type { /* token types, other than chars */
165 TOKEN_INVALID = -1, /* a placeholder value */
166 TOKEN_EOS = 0, /* end of string */
167 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
168 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
169 TOKEN_ERRNUM, /* numeric constant with error in */
170 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
171 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
172 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
173 TOKEN_SHL, TOKEN_SHR, /* << and >> */
174 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
175 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
176 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
177 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
178 TOKEN_FLOAT, /* floating-point constant */
179 TOKEN_FLOATIZE, /* __floatX__ */
182 enum floatize {
183 FLOAT_8,
184 FLOAT_16,
185 FLOAT_32,
186 FLOAT_64,
187 FLOAT_80M,
188 FLOAT_80E,
189 FLOAT_128L,
190 FLOAT_128H,
194 * The expression evaluator must be passed a scanner function; a
195 * standard scanner is provided as part of nasmlib.c. The
196 * preprocessor will use a different one. Scanners, and the
197 * token-value structures they return, look like this.
199 * The return value from the scanner is always a copy of the
200 * `t_type' field in the structure.
202 struct tokenval {
203 enum token_type t_type;
204 char *t_charptr;
205 int64_t t_integer, t_inttwo;
207 typedef int (*scanner) (void *private_data, struct tokenval * tv);
209 struct location {
210 int64_t offset;
211 int32_t segment;
212 int known;
216 * Expression-evaluator datatype. Expressions, within the
217 * evaluator, are stored as an array of these beasts, terminated by
218 * a record with type==0. Mostly, it's a vector type: each type
219 * denotes some kind of a component, and the value denotes the
220 * multiple of that component present in the expression. The
221 * exception is the WRT type, whose `value' field denotes the
222 * segment to which the expression is relative. These segments will
223 * be segment-base types, i.e. either odd segment values or SEG_ABS
224 * types. So it is still valid to assume that anything with a
225 * `value' field of zero is insignificant.
227 typedef struct {
228 int32_t type; /* a register, or EXPR_xxx */
229 int64_t value; /* must be >= 32 bits */
230 } expr;
233 * Library routines to manipulate expression data types.
235 int is_reloc(expr *);
236 int is_simple(expr *);
237 int is_really_simple(expr *);
238 int is_unknown(expr *);
239 int is_just_unknown(expr *);
240 int64_t reloc_value(expr *);
241 int32_t reloc_seg(expr *);
242 int32_t reloc_wrt(expr *);
245 * The evaluator can also return hints about which of two registers
246 * used in an expression should be the base register. See also the
247 * `operand' structure.
249 struct eval_hints {
250 int64_t base;
251 int type;
255 * The actual expression evaluator function looks like this. When
256 * called, it expects the first token of its expression to already
257 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
258 * it will start by calling the scanner.
260 * If a forward reference happens during evaluation, the evaluator
261 * must set `*fwref' to true if `fwref' is non-NULL.
263 * `critical' is non-zero if the expression may not contain forward
264 * references. The evaluator will report its own error if this
265 * occurs; if `critical' is 1, the error will be "symbol not
266 * defined before use", whereas if `critical' is 2, the error will
267 * be "symbol undefined".
269 * If `critical' has bit 8 set (in addition to its main value: 0x101
270 * and 0x102 correspond to 1 and 2) then an extended expression
271 * syntax is recognised, in which relational operators such as =, <
272 * and >= are accepted, as well as low-precedence logical operators
273 * &&, ^^ and ||.
275 * If `hints' is non-NULL, it gets filled in with some hints as to
276 * the base register in complex effective addresses.
278 #define CRITICAL 0x100
279 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
280 struct tokenval * tv, int *fwref, int critical,
281 efunc error, struct eval_hints * hints);
284 * Special values for expr->type. These come after EXPR_REG_END
285 * as defined in regs.h.
288 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
289 #define EXPR_SIMPLE (EXPR_REG_END+2)
290 #define EXPR_WRT (EXPR_REG_END+3)
291 #define EXPR_SEGBASE (EXPR_REG_END+4)
294 * Preprocessors ought to look like this:
296 typedef struct preproc_ops {
298 * Called at the start of a pass; given a file name, the number
299 * of the pass, an error reporting function, an evaluator
300 * function, and a listing generator to talk to.
302 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
305 * Called to fetch a line of preprocessed source. The line
306 * returned has been malloc'ed, and so should be freed after
307 * use.
309 char *(*getline) (void);
312 * Called at the end of a pass.
314 void (*cleanup) (int);
315 } Preproc;
317 extern Preproc nasmpp;
320 * ----------------------------------------------------------------
321 * Some lexical properties of the NASM source language, included
322 * here because they are shared between the parser and preprocessor
323 * ----------------------------------------------------------------
327 * isidstart matches any character that may start an identifier, and isidchar
328 * matches any character that may appear at places other than the start of an
329 * identifier. E.g. a period may only appear at the start of an identifier
330 * (for local labels), whereas a number may appear anywhere *but* at the
331 * start.
334 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
335 || (c)=='@' )
336 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
337 || (c)=='~' )
339 /* Ditto for numeric constants. */
341 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
342 #define isnumchar(c) ( isalnum(c) || (c)=='_' )
344 /* This returns the numeric value of a given 'digit'. */
346 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
349 * Data-type flags that get passed to listing-file routines.
351 enum {
352 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
353 LIST_INCBIN, LIST_TIMES
357 * -----------------------------------------------------------
358 * Format of the `insn' structure returned from `parser.c' and
359 * passed into `assemble.c'
360 * -----------------------------------------------------------
364 * Here we define the operand types. These are implemented as bit
365 * masks, since some are subsets of others; e.g. AX in a MOV
366 * instruction is a special operand type, whereas AX in other
367 * contexts is just another 16-bit register. (Also, consider CL in
368 * shift instructions, DX in OUT, etc.)
370 * The basic concept here is that
371 * (class & ~operand) == 0
373 * if and only if "operand" belongs to class type "class".
375 * The bits are assigned as follows:
377 * Bits 0-7, 23, 29: sizes
378 * 0: 8 bits (BYTE)
379 * 1: 16 bits (WORD)
380 * 2: 32 bits (DWORD)
381 * 3: 64 bits (QWORD)
382 * 4: 80 bits (TWORD)
383 * 5: FAR
384 * 6: NEAR
385 * 7: SHORT
386 * 23: 256 bits (YWORD)
387 * 29: 128 bits (OWORD)
389 * Bits 8-11 modifiers
390 * 8: TO
391 * 9: COLON
392 * 10: STRICT
393 * 11: (reserved)
395 * Bits 12-15: type of operand
396 * 12: REGISTER
397 * 13: IMMEDIATE
398 * 14: MEMORY (always has REGMEM attribute as well)
399 * 15: REGMEM (valid EA operand)
401 * Bits 16-19, 28: subclasses
402 * With REG_CDT:
403 * 16: REG_CREG (CRx)
404 * 17: REG_DREG (DRx)
405 * 18: REG_TREG (TRx)
407 * With REG_GPR:
408 * 16: REG_ACCUM (AL, AX, EAX, RAX)
409 * 17: REG_COUNT (CL, CX, ECX, RCX)
410 * 18: REG_DATA (DL, DX, EDX, RDX)
411 * 19: REG_HIGH (AH, CH, DH, BH)
412 * 28: REG_NOTACC (not REG_ACCUM)
414 * With REG_SREG:
415 * 16: REG_CS
416 * 17: REG_DESS (DS, ES, SS)
417 * 18: REG_FSGS
418 * 19: REG_SEG67
420 * With FPUREG:
421 * 16: FPU0
423 * With XMMREG:
424 * 16: XMM0
426 * With YMMREG:
427 * 16: YMM0
429 * With MEMORY:
430 * 16: MEM_OFFS (this is a simple offset)
431 * 17: IP_REL (IP-relative offset)
433 * With IMMEDIATE:
434 * 16: UNITY (1)
435 * 17: BYTENESS16 (-128..127)
436 * 18: BYTENESS32 (-128..127)
437 * 19: BYTENESS64 (-128..127)
439 * Bits 20-22, 24-27: register classes
440 * 20: REG_CDT (CRx, DRx, TRx)
441 * 21: RM_GPR (REG_GPR) (integer register)
442 * 22: REG_SREG
443 * 24: FPUREG
444 * 25: RM_MMX (MMXREG)
445 * 26: RM_XMM (XMMREG)
446 * 27: RM_YMM (YMMREG)
448 * Bit 31 is currently unallocated.
450 * 30: SAME_AS
451 * Special flag only used in instruction patterns; means this operand
452 * has to be identical to another operand. Currently only supported
453 * for registers.
456 typedef uint32_t opflags_t;
458 /* Size, and other attributes, of the operand */
459 #define BITS8 0x00000001U
460 #define BITS16 0x00000002U
461 #define BITS32 0x00000004U
462 #define BITS64 0x00000008U /* x64 and FPU only */
463 #define BITS80 0x00000010U /* FPU only */
464 #define BITS128 0x20000000U
465 #define BITS256 0x00800000U
466 #define FAR 0x00000020U /* grotty: this means 16:16 or */
467 /* 16:32, like in CALL/JMP */
468 #define NEAR 0x00000040U
469 #define SHORT 0x00000080U /* and this means what it says :) */
471 #define SIZE_MASK 0x208000FFU /* all the size attributes */
473 /* Modifiers */
474 #define MODIFIER_MASK 0x00000f00U
475 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
476 #define COLON 0x00000200U /* operand is followed by a colon */
477 #define STRICT 0x00000400U /* do not optimize this operand */
479 /* Type of operand: memory reference, register, etc. */
480 #define OPTYPE_MASK 0x0000f000U
481 #define REGISTER 0x00001000U /* register number in 'basereg' */
482 #define IMMEDIATE 0x00002000U
483 #define MEMORY 0x0000c000U
484 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
486 /* Register classes */
487 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
488 #define RM_GPR 0x00208000U /* integer operand */
489 #define REG_GPR 0x00209000U /* integer register */
490 #define REG8 0x00209001U /* 8-bit GPR */
491 #define REG16 0x00209002U /* 16-bit GPR */
492 #define REG32 0x00209004U /* 32-bit GPR */
493 #define REG64 0x00209008U /* 64-bit GPR */
494 #define FPUREG 0x01001000U /* floating point stack registers */
495 #define FPU0 0x01011000U /* FPU stack register zero */
496 #define RM_MMX 0x02008000U /* MMX operand */
497 #define MMXREG 0x02009000U /* MMX register */
498 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
499 #define XMMREG 0x04009000U /* XMM (SSE) register */
500 #define XMM0 0x04019000U /* XMM register zero */
501 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
502 #define YMMREG 0x08009000U /* YMM (AVX) register */
503 #define YMM0 0x08019000U /* YMM register zero */
504 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
505 #define REG_CREG 0x00111004U /* CRn */
506 #define REG_DREG 0x00121004U /* DRn */
507 #define REG_TREG 0x00141004U /* TRn */
508 #define REG_SREG 0x00401002U /* any segment register */
509 #define REG_CS 0x00411002U /* CS */
510 #define REG_DESS 0x00421002U /* DS, ES, SS */
511 #define REG_FSGS 0x00441002U /* FS, GS */
512 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
514 #define REG_RIP 0x00801008U /* RIP relative addressing */
515 #define REG_EIP 0x00801004U /* EIP relative addressing */
517 /* Special GPRs */
518 #define REG_SMASK 0x100f0000U /* a mask for the following */
519 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
520 #define REG_AL 0x00219001U
521 #define REG_AX 0x00219002U
522 #define REG_EAX 0x00219004U
523 #define REG_RAX 0x00219008U
524 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
525 #define REG_CL 0x10229001U
526 #define REG_CX 0x10229002U
527 #define REG_ECX 0x10229004U
528 #define REG_RCX 0x10229008U
529 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
530 #define REG_DX 0x10249002U
531 #define REG_EDX 0x10249004U
532 #define REG_RDX 0x10249008U
533 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
534 #define REG_NOTACC 0x10000000U /* non-accumulator register */
535 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
536 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
537 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
538 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
540 /* special types of EAs */
541 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
542 #define IP_REL 0x0002c000U /* IP-relative offset */
544 /* memory which matches any type of r/m operand */
545 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
547 /* special type of immediate operand */
548 #define UNITY 0x00012000U /* for shift/rotate instructions */
549 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
550 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
551 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
553 /* special flags */
554 #define SAME_AS 0x40000000U
556 /* Register names automatically generated from regs.dat */
557 #include "regs.h"
559 enum ccode { /* condition code names */
560 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
561 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
562 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
563 C_none = -1
567 * REX flags
569 #define REX_REAL 0x4f /* Actual REX prefix bits */
570 #define REX_B 0x01 /* ModRM r/m extension */
571 #define REX_X 0x02 /* SIB index extension */
572 #define REX_R 0x04 /* ModRM reg extension */
573 #define REX_W 0x08 /* 64-bit operand size */
574 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
575 #define REX_P 0x40 /* REX prefix present/required */
576 #define REX_H 0x80 /* High register present, REX forbidden */
577 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
578 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
579 #define REX_V 0x0400 /* Instruction uses VEX instead of REX */
582 * Note that because segment registers may be used as instruction
583 * prefixes, we must ensure the enumerations for prefixes and
584 * register names do not overlap.
586 enum prefixes { /* instruction prefixes */
587 P_none = 0,
588 PREFIX_ENUM_START = REG_ENUM_LIMIT,
589 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
590 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
591 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
592 PREFIX_ENUM_LIMIT
595 enum { /* extended operand types */
596 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
599 enum { /* special EA flags */
600 EAF_BYTEOFFS = 1, /* force offset part to byte size */
601 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
602 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
603 EAF_REL = 8, /* IP-relative addressing */
604 EAF_ABS = 16, /* non-IP-relative addressing */
605 EAF_FSGS = 32 /* fs/gs segment override present */
608 enum eval_hint { /* values for `hinttype' */
609 EAH_NOHINT = 0, /* no hint at all - our discretion */
610 EAH_MAKEBASE = 1, /* try to make given reg the base */
611 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
614 typedef struct operand { /* operand to an instruction */
615 int32_t type; /* type of operand */
616 int disp_size; /* 0 means default; 16; 32; 64 */
617 enum reg_enum basereg, indexreg; /* address registers */
618 int scale; /* index scale */
619 int hintbase;
620 enum eval_hint hinttype; /* hint as to real base register */
621 int32_t segment; /* immediate segment, if needed */
622 int64_t offset; /* any immediate number */
623 int32_t wrt; /* segment base it's relative to */
624 int eaflags; /* special EA flags */
625 int opflags; /* see OPFLAG_* defines below */
626 } operand;
628 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
629 #define OPFLAG_EXTERN 2 /* operand is an external reference */
631 typedef struct extop { /* extended operand */
632 struct extop *next; /* linked list */
633 int32_t type; /* defined above */
634 char *stringval; /* if it's a string, then here it is */
635 int stringlen; /* ... and here's how long it is */
636 int32_t segment; /* if it's a number/address, then... */
637 int64_t offset; /* ... it's given here ... */
638 int32_t wrt; /* ... and here */
639 } extop;
641 /* Prefix positions: each type of prefix goes in a specific slot.
642 This affects the final ordering of the assembled output, which
643 shouldn't matter to the processor, but if you have stylistic
644 preferences, you can change this. REX prefixes are handled
645 differently for the time being.
647 Note that LOCK and REP are in the same slot. This is
648 an x86 architectural constraint. */
649 enum prefix_pos {
650 PPS_LREP, /* Lock or REP prefix */
651 PPS_SEG, /* Segment override prefix */
652 PPS_OSIZE, /* Operand size prefix */
653 PPS_ASIZE, /* Address size prefix */
654 MAXPREFIX /* Total number of prefix slots */
657 /* If you need to change this, also change it in insns.pl */
658 #define MAX_OPERANDS 5
660 typedef struct insn { /* an instruction itself */
661 char *label; /* the label defined, or NULL */
662 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
663 enum opcode opcode; /* the opcode - not just the string */
664 enum ccode condition; /* the condition code, if Jcc/SETcc */
665 int operands; /* how many operands? 0-3
666 * (more if db et al) */
667 int addr_size; /* address size */
668 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
669 extop *eops; /* extended operands */
670 int eops_float; /* true if DD and floating */
671 int32_t times; /* repeat count (TIMES prefix) */
672 int forw_ref; /* is there a forward reference? */
673 int rex; /* Special REX Prefix */
674 int drexdst; /* Destination register for DREX/VEX suffix */
675 int vex_m; /* M register for VEX prefix */
676 int vex_wlp; /* W, P and L information for VEX prefix */
677 } insn;
679 enum geninfo { GI_SWITCH };
681 * ------------------------------------------------------------
682 * The data structure defining an output format driver, and the
683 * interfaces to the functions therein.
684 * ------------------------------------------------------------
687 struct ofmt {
689 * This is a short (one-liner) description of the type of
690 * output generated by the driver.
692 const char *fullname;
695 * This is a single keyword used to select the driver.
697 const char *shortname;
701 * this is reserved for out module specific help.
702 * It is set to NULL in all the out modules and is not implemented
703 * in the main program
705 const char *helpstring;
708 * this is a pointer to the first element of the debug information
710 struct dfmt **debug_formats;
713 * and a pointer to the element that is being used
714 * note: this is set to the default at compile time and changed if the
715 * -F option is selected. If developing a set of new debug formats for
716 * an output format, be sure to set this to whatever default you want
719 struct dfmt *current_dfmt;
722 * This, if non-NULL, is a NULL-terminated list of `char *'s
723 * pointing to extra standard macros supplied by the object
724 * format (e.g. a sensible initial default value of __SECT__,
725 * and user-level equivalents for any format-specific
726 * directives).
728 const char **stdmac;
731 * This procedure is called at the start of an output session.
732 * It tells the output format what file it will be writing to,
733 * what routine to report errors through, and how to interface
734 * to the label manager and expression evaluator if necessary.
735 * It also gives it a chance to do other initialisation.
737 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
740 * This procedure is called to pass generic information to the
741 * object file. The first parameter gives the information type
742 * (currently only command line switches)
743 * and the second parameter gives the value. This function returns
744 * 1 if recognized, 0 if unrecognized
746 int (*setinfo) (enum geninfo type, char **string);
749 * This procedure is called by assemble() to write actual
750 * generated code or data to the object file. Typically it
751 * doesn't have to actually _write_ it, just store it for
752 * later.
754 * The `type' argument specifies the type of output data, and
755 * usually the size as well: its contents are described below.
757 void (*output) (int32_t segto, const void *data,
758 enum out_type type, uint64_t size,
759 int32_t segment, int32_t wrt);
762 * This procedure is called once for every symbol defined in
763 * the module being assembled. It gives the name and value of
764 * the symbol, in NASM's terms, and indicates whether it has
765 * been declared to be global. Note that the parameter "name",
766 * when passed, will point to a piece of static storage
767 * allocated inside the label manager - it's safe to keep using
768 * that pointer, because the label manager doesn't clean up
769 * until after the output driver has.
771 * Values of `is_global' are: 0 means the symbol is local; 1
772 * means the symbol is global; 2 means the symbol is common (in
773 * which case `offset' holds the _size_ of the variable).
774 * Anything else is available for the output driver to use
775 * internally.
777 * This routine explicitly _is_ allowed to call the label
778 * manager to define further symbols, if it wants to, even
779 * though it's been called _from_ the label manager. That much
780 * re-entrancy is guaranteed in the label manager. However, the
781 * label manager will in turn call this routine, so it should
782 * be prepared to be re-entrant itself.
784 * The `special' parameter contains special information passed
785 * through from the command that defined the label: it may have
786 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
787 * be obvious to the output format from the other parameters.
789 void (*symdef) (char *name, int32_t segment, int64_t offset,
790 int is_global, char *special);
793 * This procedure is called when the source code requests a
794 * segment change. It should return the corresponding segment
795 * _number_ for the name, or NO_SEG if the name is not a valid
796 * segment name.
798 * It may also be called with NULL, in which case it is to
799 * return the _default_ section number for starting assembly in.
801 * It is allowed to modify the string it is given a pointer to.
803 * It is also allowed to specify a default instruction size for
804 * the segment, by setting `*bits' to 16 or 32. Or, if it
805 * doesn't wish to define a default, it can leave `bits' alone.
807 int32_t (*section) (char *name, int pass, int *bits);
810 * This procedure is called to modify the segment base values
811 * returned from the SEG operator. It is given a segment base
812 * value (i.e. a segment value with the low bit set), and is
813 * required to produce in return a segment value which may be
814 * different. It can map segment bases to absolute numbers by
815 * means of returning SEG_ABS types.
817 * It should return NO_SEG if the segment base cannot be
818 * determined; the evaluator (which calls this routine) is
819 * responsible for throwing an error condition if that occurs
820 * in pass two or in a critical expression.
822 int32_t (*segbase) (int32_t segment);
825 * This procedure is called to allow the output driver to
826 * process its own specific directives. When called, it has the
827 * directive word in `directive' and the parameter string in
828 * `value'. It is called in both assembly passes, and `pass'
829 * will be either 1 or 2.
831 * This procedure should return zero if it does not _recognise_
832 * the directive, so that the main program can report an error.
833 * If it recognises the directive but then has its own errors,
834 * it should report them itself and then return non-zero. It
835 * should also return non-zero if it correctly processes the
836 * directive.
838 int (*directive) (char *directive, char *value, int pass);
841 * This procedure is called before anything else - even before
842 * the "init" routine - and is passed the name of the input
843 * file from which this output file is being generated. It
844 * should return its preferred name for the output file in
845 * `outname', if outname[0] is not '\0', and do nothing to
846 * `outname' otherwise. Since it is called before the driver is
847 * properly initialized, it has to be passed its error handler
848 * separately.
850 * This procedure may also take its own copy of the input file
851 * name for use in writing the output file: it is _guaranteed_
852 * that it will be called before the "init" routine.
854 * The parameter `outname' points to an area of storage
855 * guaranteed to be at least FILENAME_MAX in size.
857 void (*filename) (char *inname, char *outname, efunc error);
860 * This procedure is called after assembly finishes, to allow
861 * the output driver to clean itself up and free its memory.
862 * Typically, it will also be the point at which the object
863 * file actually gets _written_.
865 * One thing the cleanup routine should always do is to close
866 * the output file pointer.
868 void (*cleanup) (int debuginfo);
873 * ------------------------------------------------------------
874 * The data structure defining a debug format driver, and the
875 * interfaces to the functions therein.
876 * ------------------------------------------------------------
879 struct dfmt {
882 * This is a short (one-liner) description of the type of
883 * output generated by the driver.
885 const char *fullname;
888 * This is a single keyword used to select the driver.
890 const char *shortname;
893 * init - called initially to set up local pointer to object format,
894 * void pointer to implementation defined data, file pointer (which
895 * probably won't be used, but who knows?), and error function.
897 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
900 * linenum - called any time there is output with a change of
901 * line number or file.
903 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
906 * debug_deflabel - called whenever a label is defined. Parameters
907 * are the same as to 'symdef()' in the output format. This function
908 * would be called before the output format version.
911 void (*debug_deflabel) (char *name, int32_t segment, int64_t offset,
912 int is_global, char *special);
914 * debug_directive - called whenever a DEBUG directive other than 'LINE'
915 * is encountered. 'directive' contains the first parameter to the
916 * DEBUG directive, and params contains the rest. For example,
917 * 'DEBUG VAR _somevar:int' would translate to a call to this
918 * function with 'directive' equal to "VAR" and 'params' equal to
919 * "_somevar:int".
921 void (*debug_directive) (const char *directive, const char *params);
924 * typevalue - called whenever the assembler wishes to register a type
925 * for the last defined label. This routine MUST detect if a type was
926 * already registered and not re-register it.
928 void (*debug_typevalue) (int32_t type);
931 * debug_output - called whenever output is required
932 * 'type' is the type of info required, and this is format-specific
934 void (*debug_output) (int type, void *param);
937 * cleanup - called after processing of file is complete
939 void (*cleanup) (void);
943 * The type definition macros
944 * for debugging
946 * low 3 bits: reserved
947 * next 5 bits: type
948 * next 24 bits: number of elements for arrays (0 for labels)
951 #define TY_UNKNOWN 0x00
952 #define TY_LABEL 0x08
953 #define TY_BYTE 0x10
954 #define TY_WORD 0x18
955 #define TY_DWORD 0x20
956 #define TY_FLOAT 0x28
957 #define TY_QWORD 0x30
958 #define TY_TBYTE 0x38
959 #define TY_OWORD 0x40
960 #define TY_YWORD 0x48
961 #define TY_COMMON 0xE0
962 #define TY_SEG 0xE8
963 #define TY_EXTERN 0xF0
964 #define TY_EQU 0xF8
966 #define TYM_TYPE(x) ((x) & 0xF8)
967 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
969 #define TYS_ELEMENTS(x) ((x) << 8)
972 * -----
973 * Special tokens
974 * -----
977 enum special_tokens {
978 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
979 S_ABS = SPECIAL_ENUM_START,
980 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
981 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
982 SPECIAL_ENUM_LIMIT
986 * -----
987 * Global modes
988 * -----
992 * This declaration passes the "pass" number to all other modules
993 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
994 * where 0 = optimizing pass
995 * 1 = pass 1
996 * 2 = pass 2
999 extern int pass0;
1000 extern int passn; /* Actual pass number */
1002 extern bool tasm_compatible_mode;
1003 extern int optimizing;
1004 extern int globalbits; /* 16, 32 or 64-bit mode */
1005 extern int globalrel; /* default to relative addressing? */
1006 extern int maxbits; /* max bits supported by output */
1008 #endif