Various tab/space/comment cleanup
[nasm.git] / assemble.c
blob5fceea337fc3d9b2c0e09503bef2ae7ed9d542d8
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - a signed byte immediate operand, from operand 0..3
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \140..\143 - an immediate word or signed byte for operand 0..3
64 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
65 * is a signed byte rather than a word. Opcode byte follows.
66 * \150..\153 - an immediate dword or signed byte for operand 0..3
67 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
68 * is a signed byte rather than a dword. Opcode byte follows.
69 * \160..\163 - this instruction uses DREX rather than REX, with the
70 * OC0 field set to 0, and the dest field taken from
71 * operand 0..3.
72 * \164..\167 - this instruction uses DREX rather than REX, with the
73 * OC0 field set to 1, and the dest field taken from
74 * operand 0..3.
75 * \171 - placement of DREX suffix in the absence of an EA
76 * \172\ab - the register number from operand a in bits 7..4, with
77 * the 4-bit immediate from operand b in bits 3..0.
78 * \173\xab - the register number from operand a in bits 7..4, with
79 * the value b in bits 3..0.
80 * \174\a - the register number from operand a in bits 7..4, and
81 * an arbitrary value in bits 3..0 (assembled as zero.)
82 * \2ab - a ModRM, calculated on EA in operand a, with the spare
83 * field equal to digit b.
84 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
85 * is not equal to the truncated and sign-extended 32-bit
86 * operand; used for 32-bit immediates in 64-bit mode.
87 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
88 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
89 * V field taken from operand 0..3.
90 * \270 - this instruction uses VEX/XOP rather than REX, with the
91 * V field set to 1111b.
93 * VEX/XOP prefixes are followed by the sequence:
94 * \tmm\wlp where mm is the M field; and wlp is:
95 * 00 0ww lpp
96 * [w0] ww = 0 for W = 0
97 * [w1] ww = 1 for W = 1
98 * [wx] ww = 2 for W don't care (always assembled as 0)
99 * [ww] ww = 3 for W used as REX.W
101 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
103 * \274..\277 - a signed byte immediate operand, from operand 0..3,
104 * which is to be extended to the operand size.
105 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
106 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
107 * \312 - (disassembler only) invalid with non-default address size.
108 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
109 * \314 - (disassembler only) invalid with REX.B
110 * \315 - (disassembler only) invalid with REX.X
111 * \316 - (disassembler only) invalid with REX.R
112 * \317 - (disassembler only) invalid with REX.W
113 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
114 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
115 * \322 - indicates that this instruction is only valid when the
116 * operand size is the default (instruction to disassembler,
117 * generates no code in the assembler)
118 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
119 * \324 - indicates 64-bit operand size requiring REX prefix.
120 * \325 - instruction which always uses spl/bpl/sil/dil
121 * \330 - a literal byte follows in the code stream, to be added
122 * to the condition code value of the instruction.
123 * \331 - instruction not valid with REP prefix. Hint for
124 * disassembler only; for SSE instructions.
125 * \332 - REP prefix (0xF2 byte) used as opcode extension.
126 * \333 - REP prefix (0xF3 byte) used as opcode extension.
127 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
128 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
129 * \336 - force a REP(E) prefix (0xF2) even if not specified.
130 * \337 - force a REPNE prefix (0xF3) even if not specified.
131 * \336-\337 are still listed as prefixes in the disassembler.
132 * \340 - reserve <operand 0> bytes of uninitialized storage.
133 * Operand 0 had better be a segmentless constant.
134 * \341 - this instruction needs a WAIT "prefix"
135 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
136 * (POP is never used for CS) depending on operand 0
137 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
138 * on operand 0
139 * \360 - no SSE prefix (== \364\331)
140 * \361 - 66 SSE prefix (== \366\331)
141 * \362 - F2 SSE prefix (== \364\332)
142 * \363 - F3 SSE prefix (== \364\333)
143 * \364 - operand-size prefix (0x66) not permitted
144 * \365 - address-size prefix (0x67) not permitted
145 * \366 - operand-size prefix (0x66) used as opcode extension
146 * \367 - address-size prefix (0x67) used as opcode extension
147 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
148 * 370 is used for Jcc, 371 is used for JMP.
149 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
150 * used for conditional jump over longer jump
153 #include "compiler.h"
155 #include <stdio.h>
156 #include <string.h>
157 #include <inttypes.h>
159 #include "nasm.h"
160 #include "nasmlib.h"
161 #include "assemble.h"
162 #include "insns.h"
163 #include "tables.h"
165 enum match_result {
167 * Matching errors. These should be sorted so that more specific
168 * errors come later in the sequence.
170 MERR_INVALOP,
171 MERR_OPSIZEMISSING,
172 MERR_OPSIZEMISMATCH,
173 MERR_BADCPU,
174 MERR_BADMODE,
176 * Matching success; the conditional ones first
178 MOK_JUMP, /* Matching OK but needs jmp_match() */
179 MOK_GOOD /* Matching unconditionally OK */
182 typedef struct {
183 int sib_present; /* is a SIB byte necessary? */
184 int bytes; /* # of bytes of offset needed */
185 int size; /* lazy - this is sib+bytes+1 */
186 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
187 } ea;
189 static uint32_t cpu; /* cpu level received from nasm.c */
190 static efunc errfunc;
191 static struct ofmt *outfmt;
192 static ListGen *list;
194 static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
195 static void gencode(int32_t segment, int64_t offset, int bits,
196 insn * ins, const struct itemplate *temp,
197 int64_t insn_end);
198 static enum match_result find_match(const struct itemplate **tempp,
199 insn *instruction,
200 int32_t segment, int64_t offset, int bits);
201 static enum match_result matches(const struct itemplate *, insn *, int bits);
202 static opflags_t regflag(const operand *);
203 static int32_t regval(const operand *);
204 static int rexflags(int, opflags_t, int);
205 static int op_rexflags(const operand *, int);
206 static ea *process_ea(operand *, ea *, int, int, int, opflags_t);
207 static void add_asp(insn *, int);
209 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
211 return ins->prefixes[pos] == prefix;
214 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
216 if (ins->prefixes[pos])
217 errfunc(ERR_NONFATAL, "invalid %s prefix",
218 prefix_name(ins->prefixes[pos]));
221 static const char *size_name(int size)
223 switch (size) {
224 case 1:
225 return "byte";
226 case 2:
227 return "word";
228 case 4:
229 return "dword";
230 case 8:
231 return "qword";
232 case 10:
233 return "tword";
234 case 16:
235 return "oword";
236 case 32:
237 return "yword";
238 default:
239 return "???";
243 static void warn_overflow(int pass, int size)
245 errfunc(ERR_WARNING | pass | ERR_WARN_NOV,
246 "%s data exceeds bounds", size_name(size));
249 static void warn_overflow_const(int64_t data, int size)
251 if (overflow_general(data, size))
252 warn_overflow(ERR_PASS1, size);
255 static void warn_overflow_opd(const struct operand *o, int size)
257 if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
258 if (overflow_general(o->offset, size))
259 warn_overflow(ERR_PASS2, size);
264 * This routine wrappers the real output format's output routine,
265 * in order to pass a copy of the data off to the listing file
266 * generator at the same time.
268 static void out(int64_t offset, int32_t segto, const void *data,
269 enum out_type type, uint64_t size,
270 int32_t segment, int32_t wrt)
272 static int32_t lineno = 0; /* static!!! */
273 static char *lnfname = NULL;
274 uint8_t p[8];
276 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
278 * This is a non-relocated address, and we're going to
279 * convert it into RAWDATA format.
281 uint8_t *q = p;
283 if (size > 8) {
284 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
285 return;
288 WRITEADDR(q, *(int64_t *)data, size);
289 data = p;
290 type = OUT_RAWDATA;
293 list->output(offset, data, type, size);
296 * this call to src_get determines when we call the
297 * debug-format-specific "linenum" function
298 * it updates lineno and lnfname to the current values
299 * returning 0 if "same as last time", -2 if lnfname
300 * changed, and the amount by which lineno changed,
301 * if it did. thus, these variables must be static
304 if (src_get(&lineno, &lnfname)) {
305 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
308 outfmt->output(segto, data, type, size, segment, wrt);
311 static bool jmp_match(int32_t segment, int64_t offset, int bits,
312 insn * ins, const uint8_t *code)
314 int64_t isize;
315 uint8_t c = code[0];
317 if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
318 return false;
319 if (!optimizing)
320 return false;
321 if (optimizing < 0 && c == 0371)
322 return false;
324 isize = calcsize(segment, offset, bits, ins, code);
326 if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
327 /* Be optimistic in pass 1 */
328 return true;
330 if (ins->oprs[0].segment != segment)
331 return false;
333 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
334 return (isize >= -128 && isize <= 127); /* is it byte size? */
337 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
338 insn * instruction, struct ofmt *output, efunc error,
339 ListGen * listgen)
341 const struct itemplate *temp;
342 int j;
343 enum match_result m;
344 int64_t insn_end;
345 int32_t itimes;
346 int64_t start = offset;
347 int64_t wsize; /* size for DB etc. */
349 errfunc = error; /* to pass to other functions */
350 cpu = cp;
351 outfmt = output; /* likewise */
352 list = listgen; /* and again */
354 wsize = idata_bytes(instruction->opcode);
355 if (wsize == -1)
356 return 0;
358 if (wsize) {
359 extop *e;
360 int32_t t = instruction->times;
361 if (t < 0)
362 errfunc(ERR_PANIC,
363 "instruction->times < 0 (%ld) in assemble()", t);
365 while (t--) { /* repeat TIMES times */
366 list_for_each(e, instruction->eops) {
367 if (e->type == EOT_DB_NUMBER) {
368 if (wsize == 1) {
369 if (e->segment != NO_SEG)
370 errfunc(ERR_NONFATAL,
371 "one-byte relocation attempted");
372 else {
373 uint8_t out_byte = e->offset;
374 out(offset, segment, &out_byte,
375 OUT_RAWDATA, 1, NO_SEG, NO_SEG);
377 } else if (wsize > 8) {
378 errfunc(ERR_NONFATAL,
379 "integer supplied to a DT, DO or DY"
380 " instruction");
381 } else
382 out(offset, segment, &e->offset,
383 OUT_ADDRESS, wsize, e->segment, e->wrt);
384 offset += wsize;
385 } else if (e->type == EOT_DB_STRING ||
386 e->type == EOT_DB_STRING_FREE) {
387 int align;
389 out(offset, segment, e->stringval,
390 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
391 align = e->stringlen % wsize;
393 if (align) {
394 align = wsize - align;
395 out(offset, segment, zero_buffer,
396 OUT_RAWDATA, align, NO_SEG, NO_SEG);
398 offset += e->stringlen + align;
401 if (t > 0 && t == instruction->times - 1) {
403 * Dummy call to list->output to give the offset to the
404 * listing module.
406 list->output(offset, NULL, OUT_RAWDATA, 0);
407 list->uplevel(LIST_TIMES);
410 if (instruction->times > 1)
411 list->downlevel(LIST_TIMES);
412 return offset - start;
415 if (instruction->opcode == I_INCBIN) {
416 const char *fname = instruction->eops->stringval;
417 FILE *fp;
419 fp = fopen(fname, "rb");
420 if (!fp) {
421 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
422 fname);
423 } else if (fseek(fp, 0L, SEEK_END) < 0) {
424 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
425 fname);
426 } else {
427 static char buf[4096];
428 size_t t = instruction->times;
429 size_t base = 0;
430 size_t len;
432 len = ftell(fp);
433 if (instruction->eops->next) {
434 base = instruction->eops->next->offset;
435 len -= base;
436 if (instruction->eops->next->next &&
437 len > (size_t)instruction->eops->next->next->offset)
438 len = (size_t)instruction->eops->next->next->offset;
441 * Dummy call to list->output to give the offset to the
442 * listing module.
444 list->output(offset, NULL, OUT_RAWDATA, 0);
445 list->uplevel(LIST_INCBIN);
446 while (t--) {
447 size_t l;
449 fseek(fp, base, SEEK_SET);
450 l = len;
451 while (l > 0) {
452 int32_t m;
453 m = fread(buf, 1, l > sizeof(buf) ? sizeof(buf) : l, fp);
454 if (!m) {
456 * This shouldn't happen unless the file
457 * actually changes while we are reading
458 * it.
460 error(ERR_NONFATAL,
461 "`incbin': unexpected EOF while"
462 " reading file `%s'", fname);
463 t = 0; /* Try to exit cleanly */
464 break;
466 out(offset, segment, buf, OUT_RAWDATA, m,
467 NO_SEG, NO_SEG);
468 l -= m;
471 list->downlevel(LIST_INCBIN);
472 if (instruction->times > 1) {
474 * Dummy call to list->output to give the offset to the
475 * listing module.
477 list->output(offset, NULL, OUT_RAWDATA, 0);
478 list->uplevel(LIST_TIMES);
479 list->downlevel(LIST_TIMES);
481 fclose(fp);
482 return instruction->times * len;
484 return 0; /* if we're here, there's an error */
487 /* Check to see if we need an address-size prefix */
488 add_asp(instruction, bits);
490 m = find_match(&temp, instruction, segment, offset, bits);
492 if (m == MOK_GOOD) {
493 /* Matches! */
494 int64_t insn_size = calcsize(segment, offset, bits,
495 instruction, temp->code);
496 itimes = instruction->times;
497 if (insn_size < 0) /* shouldn't be, on pass two */
498 error(ERR_PANIC, "errors made it through from pass one");
499 else
500 while (itimes--) {
501 for (j = 0; j < MAXPREFIX; j++) {
502 uint8_t c = 0;
503 switch (instruction->prefixes[j]) {
504 case P_WAIT:
505 c = 0x9B;
506 break;
507 case P_LOCK:
508 c = 0xF0;
509 break;
510 case P_REPNE:
511 case P_REPNZ:
512 c = 0xF2;
513 break;
514 case P_REPE:
515 case P_REPZ:
516 case P_REP:
517 c = 0xF3;
518 break;
519 case R_CS:
520 if (bits == 64) {
521 error(ERR_WARNING | ERR_PASS2,
522 "cs segment base generated, but will be ignored in 64-bit mode");
524 c = 0x2E;
525 break;
526 case R_DS:
527 if (bits == 64) {
528 error(ERR_WARNING | ERR_PASS2,
529 "ds segment base generated, but will be ignored in 64-bit mode");
531 c = 0x3E;
532 break;
533 case R_ES:
534 if (bits == 64) {
535 error(ERR_WARNING | ERR_PASS2,
536 "es segment base generated, but will be ignored in 64-bit mode");
538 c = 0x26;
539 break;
540 case R_FS:
541 c = 0x64;
542 break;
543 case R_GS:
544 c = 0x65;
545 break;
546 case R_SS:
547 if (bits == 64) {
548 error(ERR_WARNING | ERR_PASS2,
549 "ss segment base generated, but will be ignored in 64-bit mode");
551 c = 0x36;
552 break;
553 case R_SEGR6:
554 case R_SEGR7:
555 error(ERR_NONFATAL,
556 "segr6 and segr7 cannot be used as prefixes");
557 break;
558 case P_A16:
559 if (bits == 64) {
560 error(ERR_NONFATAL,
561 "16-bit addressing is not supported "
562 "in 64-bit mode");
563 } else if (bits != 16)
564 c = 0x67;
565 break;
566 case P_A32:
567 if (bits != 32)
568 c = 0x67;
569 break;
570 case P_A64:
571 if (bits != 64) {
572 error(ERR_NONFATAL,
573 "64-bit addressing is only supported "
574 "in 64-bit mode");
576 break;
577 case P_ASP:
578 c = 0x67;
579 break;
580 case P_O16:
581 if (bits != 16)
582 c = 0x66;
583 break;
584 case P_O32:
585 if (bits == 16)
586 c = 0x66;
587 break;
588 case P_O64:
589 /* REX.W */
590 break;
591 case P_OSP:
592 c = 0x66;
593 break;
594 case P_none:
595 break;
596 default:
597 error(ERR_PANIC, "invalid instruction prefix");
599 if (c != 0) {
600 out(offset, segment, &c, OUT_RAWDATA, 1,
601 NO_SEG, NO_SEG);
602 offset++;
605 insn_end = offset + insn_size;
606 gencode(segment, offset, bits, instruction,
607 temp, insn_end);
608 offset += insn_size;
609 if (itimes > 0 && itimes == instruction->times - 1) {
611 * Dummy call to list->output to give the offset to the
612 * listing module.
614 list->output(offset, NULL, OUT_RAWDATA, 0);
615 list->uplevel(LIST_TIMES);
618 if (instruction->times > 1)
619 list->downlevel(LIST_TIMES);
620 return offset - start;
621 } else {
622 /* No match */
623 switch (m) {
624 case MERR_OPSIZEMISSING:
625 error(ERR_NONFATAL, "operation size not specified");
626 break;
627 case MERR_OPSIZEMISMATCH:
628 error(ERR_NONFATAL, "mismatch in operand sizes");
629 break;
630 case MERR_BADCPU:
631 error(ERR_NONFATAL, "no instruction for this cpu level");
632 break;
633 case MERR_BADMODE:
634 error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
635 bits);
636 break;
637 default:
638 error(ERR_NONFATAL,
639 "invalid combination of opcode and operands");
640 break;
643 return 0;
646 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
647 insn * instruction, efunc error)
649 const struct itemplate *temp;
650 enum match_result m;
652 errfunc = error; /* to pass to other functions */
653 cpu = cp;
655 if (instruction->opcode == I_none)
656 return 0;
658 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
659 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
660 instruction->opcode == I_DT || instruction->opcode == I_DO ||
661 instruction->opcode == I_DY) {
662 extop *e;
663 int32_t isize, osize, wsize;
665 isize = 0;
666 wsize = idata_bytes(instruction->opcode);
668 list_for_each(e, instruction->eops) {
669 int32_t align;
671 osize = 0;
672 if (e->type == EOT_DB_NUMBER) {
673 osize = 1;
674 warn_overflow_const(e->offset, wsize);
675 } else if (e->type == EOT_DB_STRING ||
676 e->type == EOT_DB_STRING_FREE)
677 osize = e->stringlen;
679 align = (-osize) % wsize;
680 if (align < 0)
681 align += wsize;
682 isize += osize + align;
684 return isize * instruction->times;
687 if (instruction->opcode == I_INCBIN) {
688 const char *fname = instruction->eops->stringval;
689 FILE *fp;
690 size_t len;
692 fp = fopen(fname, "rb");
693 if (!fp)
694 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
695 fname);
696 else if (fseek(fp, 0L, SEEK_END) < 0)
697 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
698 fname);
699 else {
700 len = ftell(fp);
701 fclose(fp);
702 if (instruction->eops->next) {
703 len -= instruction->eops->next->offset;
704 if (instruction->eops->next->next &&
705 len > (size_t)instruction->eops->next->next->offset) {
706 len = (size_t)instruction->eops->next->next->offset;
709 return instruction->times * len;
711 return 0; /* if we're here, there's an error */
714 /* Check to see if we need an address-size prefix */
715 add_asp(instruction, bits);
717 m = find_match(&temp, instruction, segment, offset, bits);
718 if (m == MOK_GOOD) {
719 /* we've matched an instruction. */
720 int64_t isize;
721 const uint8_t *codes = temp->code;
722 int j;
724 isize = calcsize(segment, offset, bits, instruction, codes);
725 if (isize < 0)
726 return -1;
727 for (j = 0; j < MAXPREFIX; j++) {
728 switch (instruction->prefixes[j]) {
729 case P_A16:
730 if (bits != 16)
731 isize++;
732 break;
733 case P_A32:
734 if (bits != 32)
735 isize++;
736 break;
737 case P_O16:
738 if (bits != 16)
739 isize++;
740 break;
741 case P_O32:
742 if (bits == 16)
743 isize++;
744 break;
745 case P_A64:
746 case P_O64:
747 case P_none:
748 break;
749 default:
750 isize++;
751 break;
754 return isize * instruction->times;
755 } else {
756 return -1; /* didn't match any instruction */
760 static bool possible_sbyte(operand *o)
762 return o->wrt == NO_SEG && o->segment == NO_SEG &&
763 !(o->opflags & OPFLAG_UNKNOWN) &&
764 optimizing >= 0 && !(o->type & STRICT);
767 /* check that opn[op] is a signed byte of size 16 or 32 */
768 static bool is_sbyte16(operand *o)
770 int16_t v;
772 if (!possible_sbyte(o))
773 return false;
775 v = o->offset;
776 return v >= -128 && v <= 127;
779 static bool is_sbyte32(operand *o)
781 int32_t v;
783 if (!possible_sbyte(o))
784 return false;
786 v = o->offset;
787 return v >= -128 && v <= 127;
790 /* Common construct */
791 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
793 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
794 insn * ins, const uint8_t *codes)
796 int64_t length = 0;
797 uint8_t c;
798 int rex_mask = ~0;
799 int op1, op2;
800 struct operand *opx;
801 uint8_t opex = 0;
803 ins->rex = 0; /* Ensure REX is reset */
805 if (ins->prefixes[PPS_OSIZE] == P_O64)
806 ins->rex |= REX_W;
808 (void)segment; /* Don't warn that this parameter is unused */
809 (void)offset; /* Don't warn that this parameter is unused */
811 while (*codes) {
812 c = *codes++;
813 op1 = (c & 3) + ((opex & 1) << 2);
814 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
815 opx = &ins->oprs[op1];
816 opex = 0; /* For the next iteration */
818 switch (c) {
819 case 01:
820 case 02:
821 case 03:
822 case 04:
823 codes += c, length += c;
824 break;
826 case 05:
827 case 06:
828 case 07:
829 opex = c;
830 break;
832 case4(010):
833 ins->rex |=
834 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
835 codes++, length++;
836 break;
838 case4(014):
839 case4(020):
840 case4(024):
841 length++;
842 break;
844 case4(030):
845 length += 2;
846 break;
848 case4(034):
849 if (opx->type & (BITS16 | BITS32 | BITS64))
850 length += (opx->type & BITS16) ? 2 : 4;
851 else
852 length += (bits == 16) ? 2 : 4;
853 break;
855 case4(040):
856 length += 4;
857 break;
859 case4(044):
860 length += ins->addr_size >> 3;
861 break;
863 case4(050):
864 length++;
865 break;
867 case4(054):
868 length += 8; /* MOV reg64/imm */
869 break;
871 case4(060):
872 length += 2;
873 break;
875 case4(064):
876 if (opx->type & (BITS16 | BITS32 | BITS64))
877 length += (opx->type & BITS16) ? 2 : 4;
878 else
879 length += (bits == 16) ? 2 : 4;
880 break;
882 case4(070):
883 length += 4;
884 break;
886 case4(074):
887 length += 2;
888 break;
890 case4(0140):
891 length += is_sbyte16(opx) ? 1 : 2;
892 break;
894 case4(0144):
895 codes++;
896 length++;
897 break;
899 case4(0150):
900 length += is_sbyte32(opx) ? 1 : 4;
901 break;
903 case4(0154):
904 codes++;
905 length++;
906 break;
908 case4(0160):
909 length++;
910 ins->rex |= REX_D;
911 ins->drexdst = regval(opx);
912 break;
914 case4(0164):
915 length++;
916 ins->rex |= REX_D|REX_OC;
917 ins->drexdst = regval(opx);
918 break;
920 case 0171:
921 break;
923 case 0172:
924 case 0173:
925 case 0174:
926 codes++;
927 length++;
928 break;
930 case4(0250):
931 length += is_sbyte32(opx) ? 1 : 4;
932 break;
934 case4(0254):
935 length += 4;
936 break;
938 case4(0260):
939 ins->rex |= REX_V;
940 ins->drexdst = regval(opx);
941 ins->vex_cm = *codes++;
942 ins->vex_wlp = *codes++;
943 break;
945 case 0270:
946 ins->rex |= REX_V;
947 ins->drexdst = 0;
948 ins->vex_cm = *codes++;
949 ins->vex_wlp = *codes++;
950 break;
952 case4(0274):
953 length++;
954 break;
956 case4(0300):
957 break;
959 case 0310:
960 if (bits == 64)
961 return -1;
962 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
963 break;
965 case 0311:
966 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
967 break;
969 case 0312:
970 break;
972 case 0313:
973 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
974 has_prefix(ins, PPS_ASIZE, P_A32))
975 return -1;
976 break;
978 case4(0314):
979 break;
981 case 0320:
982 length += (bits != 16);
983 break;
985 case 0321:
986 length += (bits == 16);
987 break;
989 case 0322:
990 break;
992 case 0323:
993 rex_mask &= ~REX_W;
994 break;
996 case 0324:
997 ins->rex |= REX_W;
998 break;
1000 case 0325:
1001 ins->rex |= REX_NH;
1002 break;
1004 case 0330:
1005 codes++, length++;
1006 break;
1008 case 0331:
1009 break;
1011 case 0332:
1012 case 0333:
1013 length++;
1014 break;
1016 case 0334:
1017 ins->rex |= REX_L;
1018 break;
1020 case 0335:
1021 break;
1023 case 0336:
1024 if (!ins->prefixes[PPS_LREP])
1025 ins->prefixes[PPS_LREP] = P_REP;
1026 break;
1028 case 0337:
1029 if (!ins->prefixes[PPS_LREP])
1030 ins->prefixes[PPS_LREP] = P_REPNE;
1031 break;
1033 case 0340:
1034 if (ins->oprs[0].segment != NO_SEG)
1035 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1036 " quantity of BSS space");
1037 else
1038 length += ins->oprs[0].offset;
1039 break;
1041 case 0341:
1042 if (!ins->prefixes[PPS_WAIT])
1043 ins->prefixes[PPS_WAIT] = P_WAIT;
1044 break;
1046 case4(0344):
1047 length++;
1048 break;
1050 case 0360:
1051 break;
1053 case 0361:
1054 case 0362:
1055 case 0363:
1056 length++;
1057 break;
1059 case 0364:
1060 case 0365:
1061 break;
1063 case 0366:
1064 case 0367:
1065 length++;
1066 break;
1068 case 0370:
1069 case 0371:
1070 case 0372:
1071 break;
1073 case 0373:
1074 length++;
1075 break;
1077 case4(0100):
1078 case4(0110):
1079 case4(0120):
1080 case4(0130):
1081 case4(0200):
1082 case4(0204):
1083 case4(0210):
1084 case4(0214):
1085 case4(0220):
1086 case4(0224):
1087 case4(0230):
1088 case4(0234):
1090 ea ea_data;
1091 int rfield;
1092 opflags_t rflags;
1093 struct operand *opy = &ins->oprs[op2];
1095 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1097 if (c <= 0177) {
1098 /* pick rfield from operand b (opx) */
1099 rflags = regflag(opx);
1100 rfield = nasm_regvals[opx->basereg];
1101 } else {
1102 rflags = 0;
1103 rfield = c & 7;
1105 if (!process_ea(opy, &ea_data, bits,
1106 ins->addr_size, rfield, rflags)) {
1107 errfunc(ERR_NONFATAL, "invalid effective address");
1108 return -1;
1109 } else {
1110 ins->rex |= ea_data.rex;
1111 length += ea_data.size;
1114 break;
1116 default:
1117 errfunc(ERR_PANIC, "internal instruction table corrupt"
1118 ": instruction code \\%o (0x%02X) given", c, c);
1119 break;
1123 ins->rex &= rex_mask;
1125 if (ins->rex & REX_NH) {
1126 if (ins->rex & REX_H) {
1127 errfunc(ERR_NONFATAL, "instruction cannot use high registers");
1128 return -1;
1130 ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
1133 if (ins->rex & REX_V) {
1134 int bad32 = REX_R|REX_W|REX_X|REX_B;
1136 if (ins->rex & REX_H) {
1137 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1138 return -1;
1140 switch (ins->vex_wlp & 030) {
1141 case 000:
1142 case 020:
1143 ins->rex &= ~REX_W;
1144 break;
1145 case 010:
1146 ins->rex |= REX_W;
1147 bad32 &= ~REX_W;
1148 break;
1149 case 030:
1150 /* Follow REX_W */
1151 break;
1154 if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
1155 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1156 return -1;
1158 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
1159 length += 3;
1160 else
1161 length += 2;
1162 } else if (ins->rex & REX_D) {
1163 if (ins->rex & REX_H) {
1164 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1165 return -1;
1167 if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
1168 ins->drexdst > 7)) {
1169 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1170 return -1;
1172 length++;
1173 } else if (ins->rex & REX_REAL) {
1174 if (ins->rex & REX_H) {
1175 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1176 return -1;
1177 } else if (bits == 64) {
1178 length++;
1179 } else if ((ins->rex & REX_L) &&
1180 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1181 cpu >= IF_X86_64) {
1182 /* LOCK-as-REX.R */
1183 assert_no_prefix(ins, PPS_LREP);
1184 length++;
1185 } else {
1186 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1187 return -1;
1191 return length;
1194 #define EMIT_REX() \
1195 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1196 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1197 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1198 ins->rex = 0; \
1199 offset += 1; \
1202 static void gencode(int32_t segment, int64_t offset, int bits,
1203 insn * ins, const struct itemplate *temp,
1204 int64_t insn_end)
1206 static char condval[] = { /* conditional opcodes */
1207 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1208 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1209 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1211 uint8_t c;
1212 uint8_t bytes[4];
1213 int64_t size;
1214 int64_t data;
1215 int op1, op2;
1216 struct operand *opx;
1217 const uint8_t *codes = temp->code;
1218 uint8_t opex = 0;
1220 while (*codes) {
1221 c = *codes++;
1222 op1 = (c & 3) + ((opex & 1) << 2);
1223 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1224 opx = &ins->oprs[op1];
1225 opex = 0; /* For the next iteration */
1227 switch (c) {
1228 case 01:
1229 case 02:
1230 case 03:
1231 case 04:
1232 EMIT_REX();
1233 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1234 codes += c;
1235 offset += c;
1236 break;
1238 case 05:
1239 case 06:
1240 case 07:
1241 opex = c;
1242 break;
1244 case4(010):
1245 EMIT_REX();
1246 bytes[0] = *codes++ + (regval(opx) & 7);
1247 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1248 offset += 1;
1249 break;
1251 case4(014):
1252 /* The test for BITS8 and SBYTE here is intended to avoid
1253 warning on optimizer actions due to SBYTE, while still
1254 warn on explicit BYTE directives. Also warn, obviously,
1255 if the optimizer isn't enabled. */
1256 if (((opx->type & BITS8) ||
1257 !(opx->type & temp->opd[op1] & BYTENESS)) &&
1258 (opx->offset < -128 || opx->offset > 127)) {
1259 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1260 "signed byte value exceeds bounds");
1262 if (opx->segment != NO_SEG) {
1263 data = opx->offset;
1264 out(offset, segment, &data, OUT_ADDRESS, 1,
1265 opx->segment, opx->wrt);
1266 } else {
1267 bytes[0] = opx->offset;
1268 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1269 NO_SEG);
1271 offset += 1;
1272 break;
1274 case4(020):
1275 if (opx->offset < -256 || opx->offset > 255) {
1276 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1277 "byte value exceeds bounds");
1279 if (opx->segment != NO_SEG) {
1280 data = opx->offset;
1281 out(offset, segment, &data, OUT_ADDRESS, 1,
1282 opx->segment, opx->wrt);
1283 } else {
1284 bytes[0] = opx->offset;
1285 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1286 NO_SEG);
1288 offset += 1;
1289 break;
1291 case4(024):
1292 if (opx->offset < 0 || opx->offset > 255)
1293 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1294 "unsigned byte value exceeds bounds");
1295 if (opx->segment != NO_SEG) {
1296 data = opx->offset;
1297 out(offset, segment, &data, OUT_ADDRESS, 1,
1298 opx->segment, opx->wrt);
1299 } else {
1300 bytes[0] = opx->offset;
1301 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1302 NO_SEG);
1304 offset += 1;
1305 break;
1307 case4(030):
1308 warn_overflow_opd(opx, 2);
1309 data = opx->offset;
1310 out(offset, segment, &data, OUT_ADDRESS, 2,
1311 opx->segment, opx->wrt);
1312 offset += 2;
1313 break;
1315 case4(034):
1316 if (opx->type & (BITS16 | BITS32))
1317 size = (opx->type & BITS16) ? 2 : 4;
1318 else
1319 size = (bits == 16) ? 2 : 4;
1320 warn_overflow_opd(opx, size);
1321 data = opx->offset;
1322 out(offset, segment, &data, OUT_ADDRESS, size,
1323 opx->segment, opx->wrt);
1324 offset += size;
1325 break;
1327 case4(040):
1328 warn_overflow_opd(opx, 4);
1329 data = opx->offset;
1330 out(offset, segment, &data, OUT_ADDRESS, 4,
1331 opx->segment, opx->wrt);
1332 offset += 4;
1333 break;
1335 case4(044):
1336 data = opx->offset;
1337 size = ins->addr_size >> 3;
1338 warn_overflow_opd(opx, size);
1339 out(offset, segment, &data, OUT_ADDRESS, size,
1340 opx->segment, opx->wrt);
1341 offset += size;
1342 break;
1344 case4(050):
1345 if (opx->segment != segment)
1346 errfunc(ERR_NONFATAL,
1347 "short relative jump outside segment");
1348 data = opx->offset - insn_end;
1349 if (data > 127 || data < -128)
1350 errfunc(ERR_NONFATAL, "short jump is out of range");
1351 bytes[0] = data;
1352 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1353 offset += 1;
1354 break;
1356 case4(054):
1357 data = (int64_t)opx->offset;
1358 out(offset, segment, &data, OUT_ADDRESS, 8,
1359 opx->segment, opx->wrt);
1360 offset += 8;
1361 break;
1363 case4(060):
1364 if (opx->segment != segment) {
1365 data = opx->offset;
1366 out(offset, segment, &data,
1367 OUT_REL2ADR, insn_end - offset,
1368 opx->segment, opx->wrt);
1369 } else {
1370 data = opx->offset - insn_end;
1371 out(offset, segment, &data,
1372 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1374 offset += 2;
1375 break;
1377 case4(064):
1378 if (opx->type & (BITS16 | BITS32 | BITS64))
1379 size = (opx->type & BITS16) ? 2 : 4;
1380 else
1381 size = (bits == 16) ? 2 : 4;
1382 if (opx->segment != segment) {
1383 data = opx->offset;
1384 out(offset, segment, &data,
1385 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1386 insn_end - offset, opx->segment, opx->wrt);
1387 } else {
1388 data = opx->offset - insn_end;
1389 out(offset, segment, &data,
1390 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1392 offset += size;
1393 break;
1395 case4(070):
1396 if (opx->segment != segment) {
1397 data = opx->offset;
1398 out(offset, segment, &data,
1399 OUT_REL4ADR, insn_end - offset,
1400 opx->segment, opx->wrt);
1401 } else {
1402 data = opx->offset - insn_end;
1403 out(offset, segment, &data,
1404 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1406 offset += 4;
1407 break;
1409 case4(074):
1410 if (opx->segment == NO_SEG)
1411 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1412 " relocatable");
1413 data = 0;
1414 out(offset, segment, &data, OUT_ADDRESS, 2,
1415 outfmt->segbase(1 + opx->segment),
1416 opx->wrt);
1417 offset += 2;
1418 break;
1420 case4(0140):
1421 data = opx->offset;
1422 warn_overflow_opd(opx, 2);
1423 if (is_sbyte16(opx)) {
1424 bytes[0] = data;
1425 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1426 NO_SEG);
1427 offset++;
1428 } else {
1429 out(offset, segment, &data, OUT_ADDRESS, 2,
1430 opx->segment, opx->wrt);
1431 offset += 2;
1433 break;
1435 case4(0144):
1436 EMIT_REX();
1437 bytes[0] = *codes++;
1438 if (is_sbyte16(opx))
1439 bytes[0] |= 2; /* s-bit */
1440 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1441 offset++;
1442 break;
1444 case4(0150):
1445 data = opx->offset;
1446 warn_overflow_opd(opx, 4);
1447 if (is_sbyte32(opx)) {
1448 bytes[0] = data;
1449 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1450 NO_SEG);
1451 offset++;
1452 } else {
1453 out(offset, segment, &data, OUT_ADDRESS, 4,
1454 opx->segment, opx->wrt);
1455 offset += 4;
1457 break;
1459 case4(0154):
1460 EMIT_REX();
1461 bytes[0] = *codes++;
1462 if (is_sbyte32(opx))
1463 bytes[0] |= 2; /* s-bit */
1464 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1465 offset++;
1466 break;
1468 case4(0160):
1469 case4(0164):
1470 break;
1472 case 0171:
1473 bytes[0] =
1474 (ins->drexdst << 4) |
1475 (ins->rex & REX_OC ? 0x08 : 0) |
1476 (ins->rex & (REX_R|REX_X|REX_B));
1477 ins->rex = 0;
1478 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1479 offset++;
1480 break;
1482 case 0172:
1483 c = *codes++;
1484 opx = &ins->oprs[c >> 3];
1485 bytes[0] = nasm_regvals[opx->basereg] << 4;
1486 opx = &ins->oprs[c & 7];
1487 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1488 errfunc(ERR_NONFATAL,
1489 "non-absolute expression not permitted as argument %d",
1490 c & 7);
1491 } else {
1492 if (opx->offset & ~15) {
1493 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1494 "four-bit argument exceeds bounds");
1496 bytes[0] |= opx->offset & 15;
1498 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1499 offset++;
1500 break;
1502 case 0173:
1503 c = *codes++;
1504 opx = &ins->oprs[c >> 4];
1505 bytes[0] = nasm_regvals[opx->basereg] << 4;
1506 bytes[0] |= c & 15;
1507 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1508 offset++;
1509 break;
1511 case 0174:
1512 c = *codes++;
1513 opx = &ins->oprs[c];
1514 bytes[0] = nasm_regvals[opx->basereg] << 4;
1515 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1516 offset++;
1517 break;
1519 case4(0250):
1520 data = opx->offset;
1521 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1522 (int32_t)data != (int64_t)data) {
1523 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1524 "signed dword immediate exceeds bounds");
1526 if (is_sbyte32(opx)) {
1527 bytes[0] = data;
1528 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1529 NO_SEG);
1530 offset++;
1531 } else {
1532 out(offset, segment, &data, OUT_ADDRESS, 4,
1533 opx->segment, opx->wrt);
1534 offset += 4;
1536 break;
1538 case4(0254):
1539 data = opx->offset;
1540 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1541 (int32_t)data != (int64_t)data) {
1542 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1543 "signed dword immediate exceeds bounds");
1545 out(offset, segment, &data, OUT_ADDRESS, 4,
1546 opx->segment, opx->wrt);
1547 offset += 4;
1548 break;
1550 case4(0260):
1551 case 0270:
1552 codes += 2;
1553 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1554 bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
1555 bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
1556 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1557 ((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
1558 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1559 offset += 3;
1560 } else {
1561 bytes[0] = 0xc5;
1562 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1563 ((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
1564 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1565 offset += 2;
1567 break;
1569 case4(0274):
1571 uint64_t uv, um;
1572 int s;
1574 if (ins->rex & REX_W)
1575 s = 64;
1576 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1577 s = 16;
1578 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1579 s = 32;
1580 else
1581 s = bits;
1583 um = (uint64_t)2 << (s-1);
1584 uv = opx->offset;
1586 if (uv > 127 && uv < (uint64_t)-128 &&
1587 (uv < um-128 || uv > um-1)) {
1588 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1589 "signed byte value exceeds bounds");
1591 if (opx->segment != NO_SEG) {
1592 data = uv;
1593 out(offset, segment, &data, OUT_ADDRESS, 1,
1594 opx->segment, opx->wrt);
1595 } else {
1596 bytes[0] = uv;
1597 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1598 NO_SEG);
1600 offset += 1;
1601 break;
1604 case4(0300):
1605 break;
1607 case 0310:
1608 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1609 *bytes = 0x67;
1610 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1611 offset += 1;
1612 } else
1613 offset += 0;
1614 break;
1616 case 0311:
1617 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1618 *bytes = 0x67;
1619 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1620 offset += 1;
1621 } else
1622 offset += 0;
1623 break;
1625 case 0312:
1626 break;
1628 case 0313:
1629 ins->rex = 0;
1630 break;
1632 case4(0314):
1633 break;
1635 case 0320:
1636 if (bits != 16) {
1637 *bytes = 0x66;
1638 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1639 offset += 1;
1640 } else
1641 offset += 0;
1642 break;
1644 case 0321:
1645 if (bits == 16) {
1646 *bytes = 0x66;
1647 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1648 offset += 1;
1649 } else
1650 offset += 0;
1651 break;
1653 case 0322:
1654 case 0323:
1655 break;
1657 case 0324:
1658 ins->rex |= REX_W;
1659 break;
1661 case 0325:
1662 break;
1664 case 0330:
1665 *bytes = *codes++ ^ condval[ins->condition];
1666 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1667 offset += 1;
1668 break;
1670 case 0331:
1671 break;
1673 case 0332:
1674 case 0333:
1675 *bytes = c - 0332 + 0xF2;
1676 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1677 offset += 1;
1678 break;
1680 case 0334:
1681 if (ins->rex & REX_R) {
1682 *bytes = 0xF0;
1683 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1684 offset += 1;
1686 ins->rex &= ~(REX_L|REX_R);
1687 break;
1689 case 0335:
1690 break;
1692 case 0336:
1693 case 0337:
1694 break;
1696 case 0340:
1697 if (ins->oprs[0].segment != NO_SEG)
1698 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1699 else {
1700 int64_t size = ins->oprs[0].offset;
1701 if (size > 0)
1702 out(offset, segment, NULL,
1703 OUT_RESERVE, size, NO_SEG, NO_SEG);
1704 offset += size;
1706 break;
1708 case 0341:
1709 break;
1711 case 0344:
1712 case 0345:
1713 bytes[0] = c & 1;
1714 switch (ins->oprs[0].basereg) {
1715 case R_CS:
1716 bytes[0] += 0x0E;
1717 break;
1718 case R_DS:
1719 bytes[0] += 0x1E;
1720 break;
1721 case R_ES:
1722 bytes[0] += 0x06;
1723 break;
1724 case R_SS:
1725 bytes[0] += 0x16;
1726 break;
1727 default:
1728 errfunc(ERR_PANIC,
1729 "bizarre 8086 segment register received");
1731 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1732 offset++;
1733 break;
1735 case 0346:
1736 case 0347:
1737 bytes[0] = c & 1;
1738 switch (ins->oprs[0].basereg) {
1739 case R_FS:
1740 bytes[0] += 0xA0;
1741 break;
1742 case R_GS:
1743 bytes[0] += 0xA8;
1744 break;
1745 default:
1746 errfunc(ERR_PANIC,
1747 "bizarre 386 segment register received");
1749 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1750 offset++;
1751 break;
1753 case 0360:
1754 break;
1756 case 0361:
1757 bytes[0] = 0x66;
1758 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1759 offset += 1;
1760 break;
1762 case 0362:
1763 case 0363:
1764 bytes[0] = c - 0362 + 0xf2;
1765 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1766 offset += 1;
1767 break;
1769 case 0364:
1770 case 0365:
1771 break;
1773 case 0366:
1774 case 0367:
1775 *bytes = c - 0366 + 0x66;
1776 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1777 offset += 1;
1778 break;
1780 case 0370:
1781 case 0371:
1782 case 0372:
1783 break;
1785 case 0373:
1786 *bytes = bits == 16 ? 3 : 5;
1787 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1788 offset += 1;
1789 break;
1791 case4(0100):
1792 case4(0110):
1793 case4(0120):
1794 case4(0130):
1795 case4(0200):
1796 case4(0204):
1797 case4(0210):
1798 case4(0214):
1799 case4(0220):
1800 case4(0224):
1801 case4(0230):
1802 case4(0234):
1804 ea ea_data;
1805 int rfield;
1806 opflags_t rflags;
1807 uint8_t *p;
1808 int32_t s;
1809 enum out_type type;
1810 struct operand *opy = &ins->oprs[op2];
1812 if (c <= 0177) {
1813 /* pick rfield from operand b (opx) */
1814 rflags = regflag(opx);
1815 rfield = nasm_regvals[opx->basereg];
1816 } else {
1817 /* rfield is constant */
1818 rflags = 0;
1819 rfield = c & 7;
1822 if (!process_ea(opy, &ea_data, bits, ins->addr_size,
1823 rfield, rflags)) {
1824 errfunc(ERR_NONFATAL, "invalid effective address");
1828 p = bytes;
1829 *p++ = ea_data.modrm;
1830 if (ea_data.sib_present)
1831 *p++ = ea_data.sib;
1833 /* DREX suffixes come between the SIB and the displacement */
1834 if (ins->rex & REX_D) {
1835 *p++ = (ins->drexdst << 4) |
1836 (ins->rex & REX_OC ? 0x08 : 0) |
1837 (ins->rex & (REX_R|REX_X|REX_B));
1838 ins->rex = 0;
1841 s = p - bytes;
1842 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1845 * Make sure the address gets the right offset in case
1846 * the line breaks in the .lst file (BR 1197827)
1848 offset += s;
1849 s = 0;
1851 switch (ea_data.bytes) {
1852 case 0:
1853 break;
1854 case 1:
1855 case 2:
1856 case 4:
1857 case 8:
1858 data = opy->offset;
1859 warn_overflow_opd(opy, ea_data.bytes);
1860 s += ea_data.bytes;
1861 if (ea_data.rip) {
1862 if (opy->segment == segment) {
1863 data -= insn_end;
1864 out(offset, segment, &data, OUT_ADDRESS,
1865 ea_data.bytes, NO_SEG, NO_SEG);
1866 } else {
1867 out(offset, segment, &data, OUT_REL4ADR,
1868 insn_end - offset, opy->segment, opy->wrt);
1870 } else {
1871 type = OUT_ADDRESS;
1872 out(offset, segment, &data, OUT_ADDRESS,
1873 ea_data.bytes, opy->segment, opy->wrt);
1875 break;
1876 default:
1877 /* Impossible! */
1878 errfunc(ERR_PANIC,
1879 "Invalid amount of bytes (%d) for offset?!",
1880 ea_data.bytes);
1881 break;
1883 offset += s;
1885 break;
1887 default:
1888 errfunc(ERR_PANIC, "internal instruction table corrupt"
1889 ": instruction code \\%o (0x%02X) given", c, c);
1890 break;
1895 static opflags_t regflag(const operand * o)
1897 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1898 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1900 return nasm_reg_flags[o->basereg];
1903 static int32_t regval(const operand * o)
1905 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1906 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1908 return nasm_regvals[o->basereg];
1911 static int op_rexflags(const operand * o, int mask)
1913 opflags_t flags;
1914 int val;
1916 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1917 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1920 flags = nasm_reg_flags[o->basereg];
1921 val = nasm_regvals[o->basereg];
1923 return rexflags(val, flags, mask);
1926 static int rexflags(int val, opflags_t flags, int mask)
1928 int rex = 0;
1930 if (val >= 8)
1931 rex |= REX_B|REX_X|REX_R;
1932 if (flags & BITS64)
1933 rex |= REX_W;
1934 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1935 rex |= REX_H;
1936 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1937 rex |= REX_P;
1939 return rex & mask;
1942 static enum match_result find_match(const struct itemplate **tempp,
1943 insn *instruction,
1944 int32_t segment, int64_t offset, int bits)
1946 const struct itemplate *temp;
1947 enum match_result m, merr;
1948 opflags_t xsizeflags[MAX_OPERANDS];
1949 bool opsizemissing = false;
1950 int i;
1952 for (i = 0; i < instruction->operands; i++)
1953 xsizeflags[i] = instruction->oprs[i].type & SIZE_MASK;
1955 merr = MERR_INVALOP;
1957 for (temp = nasm_instructions[instruction->opcode];
1958 temp->opcode != I_none; temp++) {
1959 m = matches(temp, instruction, bits);
1960 if (m == MOK_JUMP) {
1961 if (jmp_match(segment, offset, bits, instruction, temp->code))
1962 m = MOK_GOOD;
1963 else
1964 m = MERR_INVALOP;
1965 } else if (m == MERR_OPSIZEMISSING &&
1966 (temp->flags & IF_SMASK) != IF_SX) {
1968 * Missing operand size and a candidate for fuzzy matching...
1970 for (i = 0; i < temp->operands; i++) {
1971 if ((temp->opd[i] & SAME_AS) == 0)
1972 xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
1974 opsizemissing = true;
1976 if (m > merr)
1977 merr = m;
1978 if (merr == MOK_GOOD)
1979 goto done;
1982 /* No match, but see if we can get a fuzzy operand size match... */
1983 if (!opsizemissing)
1984 goto done;
1986 for (i = 0; i < instruction->operands; i++) {
1988 * We ignore extrinsic operand sizes on registers, so we should
1989 * never try to fuzzy-match on them. This also resolves the case
1990 * when we have e.g. "xmmrm128" in two different positions.
1992 if (is_class(REGISTER, instruction->oprs[i].type))
1993 continue;
1995 /* This tests if xsizeflags[i] has more than one bit set */
1996 if ((xsizeflags[i] & (xsizeflags[i]-1)))
1997 goto done; /* No luck */
1999 instruction->oprs[i].type |= xsizeflags[i]; /* Set the size */
2002 /* Try matching again... */
2003 for (temp = nasm_instructions[instruction->opcode];
2004 temp->opcode != I_none; temp++) {
2005 m = matches(temp, instruction, bits);
2006 if (m == MOK_JUMP) {
2007 if (jmp_match(segment, offset, bits, instruction, temp->code))
2008 m = MOK_GOOD;
2009 else
2010 m = MERR_INVALOP;
2012 if (m > merr)
2013 merr = m;
2014 if (merr == MOK_GOOD)
2015 goto done;
2018 done:
2019 *tempp = temp;
2020 return merr;
2023 static enum match_result matches(const struct itemplate *itemp,
2024 insn *instruction, int bits)
2026 int i, size[MAX_OPERANDS], asize, oprs;
2027 bool opsizemissing = false;
2030 * Check the opcode
2032 if (itemp->opcode != instruction->opcode)
2033 return MERR_INVALOP;
2036 * Count the operands
2038 if (itemp->operands != instruction->operands)
2039 return MERR_INVALOP;
2042 * Check that no spurious colons or TOs are present
2044 for (i = 0; i < itemp->operands; i++)
2045 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
2046 return MERR_INVALOP;
2049 * Process size flags
2051 switch (itemp->flags & IF_SMASK) {
2052 case IF_SB:
2053 asize = BITS8;
2054 break;
2055 case IF_SW:
2056 asize = BITS16;
2057 break;
2058 case IF_SD:
2059 asize = BITS32;
2060 break;
2061 case IF_SQ:
2062 asize = BITS64;
2063 break;
2064 case IF_SO:
2065 asize = BITS128;
2066 break;
2067 case IF_SY:
2068 asize = BITS256;
2069 break;
2070 case IF_SZ:
2071 switch (bits) {
2072 case 16:
2073 asize = BITS16;
2074 break;
2075 case 32:
2076 asize = BITS32;
2077 break;
2078 case 64:
2079 asize = BITS64;
2080 break;
2081 default:
2082 asize = 0;
2083 break;
2085 break;
2086 default:
2087 asize = 0;
2088 break;
2091 if (itemp->flags & IF_ARMASK) {
2092 /* S- flags only apply to a specific operand */
2093 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
2094 memset(size, 0, sizeof size);
2095 size[i] = asize;
2096 } else {
2097 /* S- flags apply to all operands */
2098 for (i = 0; i < MAX_OPERANDS; i++)
2099 size[i] = asize;
2103 * Check that the operand flags all match up
2105 for (i = 0; i < itemp->operands; i++) {
2106 opflags_t type = instruction->oprs[i].type;
2107 if (!(type & SIZE_MASK))
2108 type |= size[i];
2110 if (itemp->opd[i] & SAME_AS) {
2111 int j = itemp->opd[i] & ~SAME_AS;
2112 if (type != instruction->oprs[j].type ||
2113 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
2114 return MERR_INVALOP;
2115 } else if (itemp->opd[i] & ~type ||
2116 ((itemp->opd[i] & SIZE_MASK) &&
2117 ((itemp->opd[i] ^ type) & SIZE_MASK))) {
2118 if ((itemp->opd[i] & ~type & ~SIZE_MASK) || (type & SIZE_MASK)) {
2119 return MERR_INVALOP;
2120 } else if (!is_class(REGISTER, type)) {
2122 * Note: we don't honor extrinsic operand sizes for registers,
2123 * so "missing operand size" for a register should be
2124 * considered a wildcard match rather than an error.
2126 opsizemissing = true;
2131 if (opsizemissing)
2132 return MERR_OPSIZEMISSING;
2135 * Check operand sizes
2137 if (itemp->flags & (IF_SM | IF_SM2)) {
2138 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
2139 asize = 0;
2140 for (i = 0; i < oprs; i++) {
2141 if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
2142 int j;
2143 for (j = 0; j < oprs; j++)
2144 size[j] = asize;
2145 break;
2148 } else {
2149 oprs = itemp->operands;
2152 for (i = 0; i < itemp->operands; i++) {
2153 if (!(itemp->opd[i] & SIZE_MASK) &&
2154 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2155 return MERR_OPSIZEMISMATCH;
2159 * Check template is okay at the set cpu level
2161 if (((itemp->flags & IF_PLEVEL) > cpu))
2162 return MERR_BADCPU;
2165 * Verify the appropriate long mode flag.
2167 if ((itemp->flags & (bits == 64 ? IF_NOLONG : IF_LONG)))
2168 return MERR_BADMODE;
2171 * Check if special handling needed for Jumps
2173 if ((itemp->code[0] & 0374) == 0370)
2174 return MOK_JUMP;
2176 return MOK_GOOD;
2179 static ea *process_ea(operand * input, ea * output, int bits,
2180 int addrbits, int rfield, opflags_t rflags)
2182 bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
2184 output->rip = false;
2186 /* REX flags for the rfield operand */
2187 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
2189 if (is_class(REGISTER, input->type)) { /* register direct */
2190 int i;
2191 opflags_t f;
2193 if (input->basereg < EXPR_REG_START /* Verify as Register */
2194 || input->basereg >= REG_ENUM_LIMIT)
2195 return NULL;
2196 f = regflag(input);
2197 i = nasm_regvals[input->basereg];
2199 if (REG_EA & ~f)
2200 return NULL; /* Invalid EA register */
2202 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
2204 output->sib_present = false; /* no SIB necessary */
2205 output->bytes = 0; /* no offset necessary either */
2206 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
2207 } else { /* it's a memory reference */
2208 if (input->basereg == -1
2209 && (input->indexreg == -1 || input->scale == 0)) {
2210 /* it's a pure offset */
2211 if (bits == 64 && (~input->type & IP_REL)) {
2212 int scale, index, base;
2213 output->sib_present = true;
2214 scale = 0;
2215 index = 4;
2216 base = 5;
2217 output->sib = (scale << 6) | (index << 3) | base;
2218 output->bytes = 4;
2219 output->modrm = 4 | ((rfield & 7) << 3);
2220 output->rip = false;
2221 } else {
2222 output->sib_present = false;
2223 output->bytes = (addrbits != 16 ? 4 : 2);
2224 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
2225 output->rip = bits == 64;
2227 } else { /* it's an indirection */
2228 int i = input->indexreg, b = input->basereg, s = input->scale;
2229 int32_t o = input->offset, seg = input->segment;
2230 int hb = input->hintbase, ht = input->hinttype;
2231 int t, it, bt; /* register numbers */
2232 opflags_t x, ix, bx; /* register flags */
2234 if (s == 0)
2235 i = -1; /* make this easy, at least */
2237 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
2238 it = nasm_regvals[i];
2239 ix = nasm_reg_flags[i];
2240 } else {
2241 it = -1;
2242 ix = 0;
2245 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
2246 bt = nasm_regvals[b];
2247 bx = nasm_reg_flags[b];
2248 } else {
2249 bt = -1;
2250 bx = 0;
2253 /* check for a 32/64-bit memory reference... */
2254 if ((ix|bx) & (BITS32|BITS64)) {
2255 /* it must be a 32/64-bit memory reference. Firstly we have
2256 * to check that all registers involved are type E/Rxx. */
2257 int32_t sok = BITS32|BITS64;
2259 if (it != -1) {
2260 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2261 sok &= ix;
2262 else
2263 return NULL;
2266 if (bt != -1) {
2267 if (REG_GPR & ~bx)
2268 return NULL; /* Invalid register */
2269 if (~sok & bx & SIZE_MASK)
2270 return NULL; /* Invalid size */
2271 sok &= bx;
2274 /* While we're here, ensure the user didn't specify
2275 WORD or QWORD. */
2276 if (input->disp_size == 16 || input->disp_size == 64)
2277 return NULL;
2279 if (addrbits == 16 ||
2280 (addrbits == 32 && !(sok & BITS32)) ||
2281 (addrbits == 64 && !(sok & BITS64)))
2282 return NULL;
2284 /* now reorganize base/index */
2285 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2286 ((hb == b && ht == EAH_NOTBASE)
2287 || (hb == i && ht == EAH_MAKEBASE))) {
2288 /* swap if hints say so */
2289 t = bt, bt = it, it = t;
2290 x = bx, bx = ix, ix = x;
2292 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2293 bt = -1, bx = 0, s++;
2294 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2295 /* make single reg base, unless hint */
2296 bt = it, bx = ix, it = -1, ix = 0;
2298 if (((s == 2 && it != REG_NUM_ESP
2299 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
2300 || s == 5 || s == 9) && bt == -1)
2301 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2302 if (it == -1 && (bt & 7) != REG_NUM_ESP
2303 && (input->eaflags & EAF_TIMESTWO))
2304 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2305 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2306 if (s == 1 && it == REG_NUM_ESP) {
2307 /* swap ESP into base if scale is 1 */
2308 t = it, it = bt, bt = t;
2309 x = ix, ix = bx, bx = x;
2311 if (it == REG_NUM_ESP
2312 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2313 return NULL; /* wrong, for various reasons */
2315 output->rex |= rexflags(it, ix, REX_X);
2316 output->rex |= rexflags(bt, bx, REX_B);
2318 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2319 /* no SIB needed */
2320 int mod, rm;
2322 if (bt == -1) {
2323 rm = 5;
2324 mod = 0;
2325 } else {
2326 rm = (bt & 7);
2327 if (rm != REG_NUM_EBP && o == 0 &&
2328 seg == NO_SEG && !forw_ref &&
2329 !(input->eaflags &
2330 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2331 mod = 0;
2332 else if (input->eaflags & EAF_BYTEOFFS ||
2333 (o >= -128 && o <= 127 && seg == NO_SEG
2334 && !forw_ref
2335 && !(input->eaflags & EAF_WORDOFFS)))
2336 mod = 1;
2337 else
2338 mod = 2;
2341 output->sib_present = false;
2342 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2343 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2344 } else {
2345 /* we need a SIB */
2346 int mod, scale, index, base;
2348 if (it == -1)
2349 index = 4, s = 1;
2350 else
2351 index = (it & 7);
2353 switch (s) {
2354 case 1:
2355 scale = 0;
2356 break;
2357 case 2:
2358 scale = 1;
2359 break;
2360 case 4:
2361 scale = 2;
2362 break;
2363 case 8:
2364 scale = 3;
2365 break;
2366 default: /* then what the smeg is it? */
2367 return NULL; /* panic */
2370 if (bt == -1) {
2371 base = 5;
2372 mod = 0;
2373 } else {
2374 base = (bt & 7);
2375 if (base != REG_NUM_EBP && o == 0 &&
2376 seg == NO_SEG && !forw_ref &&
2377 !(input->eaflags &
2378 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2379 mod = 0;
2380 else if (input->eaflags & EAF_BYTEOFFS ||
2381 (o >= -128 && o <= 127 && seg == NO_SEG
2382 && !forw_ref
2383 && !(input->eaflags & EAF_WORDOFFS)))
2384 mod = 1;
2385 else
2386 mod = 2;
2389 output->sib_present = true;
2390 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2391 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2392 output->sib = (scale << 6) | (index << 3) | base;
2394 } else { /* it's 16-bit */
2395 int mod, rm;
2397 /* check for 64-bit long mode */
2398 if (addrbits == 64)
2399 return NULL;
2401 /* check all registers are BX, BP, SI or DI */
2402 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2403 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2404 && i != R_SI && i != R_DI))
2405 return NULL;
2407 /* ensure the user didn't specify DWORD/QWORD */
2408 if (input->disp_size == 32 || input->disp_size == 64)
2409 return NULL;
2411 if (s != 1 && i != -1)
2412 return NULL; /* no can do, in 16-bit EA */
2413 if (b == -1 && i != -1) {
2414 int tmp = b;
2415 b = i;
2416 i = tmp;
2417 } /* swap */
2418 if ((b == R_SI || b == R_DI) && i != -1) {
2419 int tmp = b;
2420 b = i;
2421 i = tmp;
2423 /* have BX/BP as base, SI/DI index */
2424 if (b == i)
2425 return NULL; /* shouldn't ever happen, in theory */
2426 if (i != -1 && b != -1 &&
2427 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2428 return NULL; /* invalid combinations */
2429 if (b == -1) /* pure offset: handled above */
2430 return NULL; /* so if it gets to here, panic! */
2432 rm = -1;
2433 if (i != -1)
2434 switch (i * 256 + b) {
2435 case R_SI * 256 + R_BX:
2436 rm = 0;
2437 break;
2438 case R_DI * 256 + R_BX:
2439 rm = 1;
2440 break;
2441 case R_SI * 256 + R_BP:
2442 rm = 2;
2443 break;
2444 case R_DI * 256 + R_BP:
2445 rm = 3;
2446 break;
2447 } else
2448 switch (b) {
2449 case R_SI:
2450 rm = 4;
2451 break;
2452 case R_DI:
2453 rm = 5;
2454 break;
2455 case R_BP:
2456 rm = 6;
2457 break;
2458 case R_BX:
2459 rm = 7;
2460 break;
2462 if (rm == -1) /* can't happen, in theory */
2463 return NULL; /* so panic if it does */
2465 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2466 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2467 mod = 0;
2468 else if (input->eaflags & EAF_BYTEOFFS ||
2469 (o >= -128 && o <= 127 && seg == NO_SEG
2470 && !forw_ref
2471 && !(input->eaflags & EAF_WORDOFFS)))
2472 mod = 1;
2473 else
2474 mod = 2;
2476 output->sib_present = false; /* no SIB - it's 16-bit */
2477 output->bytes = mod; /* bytes of offset needed */
2478 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2483 output->size = 1 + output->sib_present + output->bytes;
2484 return output;
2487 static void add_asp(insn *ins, int addrbits)
2489 int j, valid;
2490 int defdisp;
2492 valid = (addrbits == 64) ? 64|32 : 32|16;
2494 switch (ins->prefixes[PPS_ASIZE]) {
2495 case P_A16:
2496 valid &= 16;
2497 break;
2498 case P_A32:
2499 valid &= 32;
2500 break;
2501 case P_A64:
2502 valid &= 64;
2503 break;
2504 case P_ASP:
2505 valid &= (addrbits == 32) ? 16 : 32;
2506 break;
2507 default:
2508 break;
2511 for (j = 0; j < ins->operands; j++) {
2512 if (is_class(MEMORY, ins->oprs[j].type)) {
2513 opflags_t i, b;
2515 /* Verify as Register */
2516 if (ins->oprs[j].indexreg < EXPR_REG_START
2517 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2518 i = 0;
2519 else
2520 i = nasm_reg_flags[ins->oprs[j].indexreg];
2522 /* Verify as Register */
2523 if (ins->oprs[j].basereg < EXPR_REG_START
2524 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2525 b = 0;
2526 else
2527 b = nasm_reg_flags[ins->oprs[j].basereg];
2529 if (ins->oprs[j].scale == 0)
2530 i = 0;
2532 if (!i && !b) {
2533 int ds = ins->oprs[j].disp_size;
2534 if ((addrbits != 64 && ds > 8) ||
2535 (addrbits == 64 && ds == 16))
2536 valid &= ds;
2537 } else {
2538 if (!(REG16 & ~b))
2539 valid &= 16;
2540 if (!(REG32 & ~b))
2541 valid &= 32;
2542 if (!(REG64 & ~b))
2543 valid &= 64;
2545 if (!(REG16 & ~i))
2546 valid &= 16;
2547 if (!(REG32 & ~i))
2548 valid &= 32;
2549 if (!(REG64 & ~i))
2550 valid &= 64;
2555 if (valid & addrbits) {
2556 ins->addr_size = addrbits;
2557 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2558 /* Add an address size prefix */
2559 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2560 ins->prefixes[PPS_ASIZE] = pref;
2561 ins->addr_size = (addrbits == 32) ? 16 : 32;
2562 } else {
2563 /* Impossible... */
2564 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2565 ins->addr_size = addrbits; /* Error recovery */
2568 defdisp = ins->addr_size == 16 ? 16 : 32;
2570 for (j = 0; j < ins->operands; j++) {
2571 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2572 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2573 != ins->addr_size) {
2574 /* mem_offs sizes must match the address size; if not,
2575 strip the MEM_OFFS bit and match only EA instructions */
2576 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);