test/pushseg.asm: test for push/pop of segment registers
[nasm.git] / disasm.c
blobe3b0224581886bc47e60b74b3a98b10771e1daca
1 /* disasm.c where all the _work_ gets done in the Netwide Disassembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * initial version 27/iii/95 by Simon Tatham
9 */
11 #include "compiler.h"
13 #include <stdio.h>
14 #include <string.h>
15 #include <limits.h>
16 #include <inttypes.h>
18 #include "nasm.h"
19 #include "disasm.h"
20 #include "sync.h"
21 #include "insns.h"
22 #include "tables.h"
23 #include "regdis.h"
26 * Flags that go into the `segment' field of `insn' structures
27 * during disassembly.
29 #define SEG_RELATIVE 1
30 #define SEG_32BIT 2
31 #define SEG_RMREG 4
32 #define SEG_DISP8 8
33 #define SEG_DISP16 16
34 #define SEG_DISP32 32
35 #define SEG_NODISP 64
36 #define SEG_SIGNED 128
37 #define SEG_64BIT 256
40 * Prefix information
42 struct prefix_info {
43 uint8_t osize; /* Operand size */
44 uint8_t asize; /* Address size */
45 uint8_t osp; /* Operand size prefix present */
46 uint8_t asp; /* Address size prefix present */
47 uint8_t rep; /* Rep prefix present */
48 uint8_t seg; /* Segment override prefix present */
49 uint8_t lock; /* Lock prefix present */
50 uint8_t vex[3]; /* VEX prefix present */
51 uint8_t vex_m; /* VEX.M field */
52 uint8_t vex_v;
53 uint8_t vex_lp; /* VEX.LP fields */
54 uint32_t rex; /* REX prefix present */
57 #define getu8(x) (*(uint8_t *)(x))
58 #if X86_MEMORY
59 /* Littleendian CPU which can handle unaligned references */
60 #define getu16(x) (*(uint16_t *)(x))
61 #define getu32(x) (*(uint32_t *)(x))
62 #define getu64(x) (*(uint64_t *)(x))
63 #else
64 static uint16_t getu16(uint8_t *data)
66 return (uint16_t)data[0] + ((uint16_t)data[1] << 8);
68 static uint32_t getu32(uint8_t *data)
70 return (uint32_t)getu16(data) + ((uint32_t)getu16(data+2) << 16);
72 static uint64_t getu64(uint8_t *data)
74 return (uint64_t)getu32(data) + ((uint64_t)getu32(data+4) << 32);
76 #endif
78 #define gets8(x) ((int8_t)getu8(x))
79 #define gets16(x) ((int16_t)getu16(x))
80 #define gets32(x) ((int32_t)getu32(x))
81 #define gets64(x) ((int64_t)getu64(x))
83 /* Important: regval must already have been adjusted for rex extensions */
84 static enum reg_enum whichreg(int32_t regflags, int regval, int rex)
86 if (!(regflags & (REGISTER|REGMEM)))
87 return 0; /* Registers not permissible?! */
89 regflags |= REGISTER;
91 if (!(REG_AL & ~regflags))
92 return R_AL;
93 if (!(REG_AX & ~regflags))
94 return R_AX;
95 if (!(REG_EAX & ~regflags))
96 return R_EAX;
97 if (!(REG_RAX & ~regflags))
98 return R_RAX;
99 if (!(REG_DL & ~regflags))
100 return R_DL;
101 if (!(REG_DX & ~regflags))
102 return R_DX;
103 if (!(REG_EDX & ~regflags))
104 return R_EDX;
105 if (!(REG_RDX & ~regflags))
106 return R_RDX;
107 if (!(REG_CL & ~regflags))
108 return R_CL;
109 if (!(REG_CX & ~regflags))
110 return R_CX;
111 if (!(REG_ECX & ~regflags))
112 return R_ECX;
113 if (!(REG_RCX & ~regflags))
114 return R_RCX;
115 if (!(FPU0 & ~regflags))
116 return R_ST0;
117 if (!(XMM0 & ~regflags))
118 return R_XMM0;
119 if (!(YMM0 & ~regflags))
120 return R_YMM0;
121 if (!(REG_CS & ~regflags))
122 return (regval == 1) ? R_CS : 0;
123 if (!(REG_DESS & ~regflags))
124 return (regval == 0 || regval == 2
125 || regval == 3 ? nasm_rd_sreg[regval] : 0);
126 if (!(REG_FSGS & ~regflags))
127 return (regval == 4 || regval == 5 ? nasm_rd_sreg[regval] : 0);
128 if (!(REG_SEG67 & ~regflags))
129 return (regval == 6 || regval == 7 ? nasm_rd_sreg[regval] : 0);
131 /* All the entries below look up regval in an 16-entry array */
132 if (regval < 0 || regval > 15)
133 return 0;
135 if (!(REG8 & ~regflags)) {
136 if (rex & REX_P)
137 return nasm_rd_reg8_rex[regval];
138 else
139 return nasm_rd_reg8[regval];
141 if (!(REG16 & ~regflags))
142 return nasm_rd_reg16[regval];
143 if (!(REG32 & ~regflags))
144 return nasm_rd_reg32[regval];
145 if (!(REG64 & ~regflags))
146 return nasm_rd_reg64[regval];
147 if (!(REG_SREG & ~regflags))
148 return nasm_rd_sreg[regval & 7]; /* Ignore REX */
149 if (!(REG_CREG & ~regflags))
150 return nasm_rd_creg[regval];
151 if (!(REG_DREG & ~regflags))
152 return nasm_rd_dreg[regval];
153 if (!(REG_TREG & ~regflags)) {
154 if (rex & REX_P)
155 return 0; /* TR registers are ill-defined with rex */
156 return nasm_rd_treg[regval];
158 if (!(FPUREG & ~regflags))
159 return nasm_rd_fpureg[regval & 7]; /* Ignore REX */
160 if (!(MMXREG & ~regflags))
161 return nasm_rd_mmxreg[regval & 7]; /* Ignore REX */
162 if (!(XMMREG & ~regflags))
163 return nasm_rd_xmmreg[regval];
164 if (!(YMMREG & ~regflags))
165 return nasm_rd_ymmreg[regval];
167 return 0;
171 * Process a DREX suffix
173 static uint8_t *do_drex(uint8_t *data, insn *ins)
175 uint8_t drex = *data++;
176 operand *dst = &ins->oprs[ins->drexdst];
178 if ((drex & 8) != ((ins->rex & REX_OC) ? 8 : 0))
179 return NULL; /* OC0 mismatch */
180 ins->rex = (ins->rex & ~7) | (drex & 7);
182 dst->segment = SEG_RMREG;
183 dst->basereg = drex >> 4;
184 return data;
189 * Process an effective address (ModRM) specification.
191 static uint8_t *do_ea(uint8_t *data, int modrm, int asize,
192 int segsize, operand * op, insn *ins)
194 int mod, rm, scale, index, base;
195 int rex;
196 uint8_t sib = 0;
198 mod = (modrm >> 6) & 03;
199 rm = modrm & 07;
201 if (mod != 3 && rm == 4 && asize != 16)
202 sib = *data++;
204 if (ins->rex & REX_D) {
205 data = do_drex(data, ins);
206 if (!data)
207 return NULL;
209 rex = ins->rex;
211 if (mod == 3) { /* pure register version */
212 op->basereg = rm+(rex & REX_B ? 8 : 0);
213 op->segment |= SEG_RMREG;
214 return data;
217 op->disp_size = 0;
218 op->eaflags = 0;
220 if (asize == 16) {
222 * <mod> specifies the displacement size (none, byte or
223 * word), and <rm> specifies the register combination.
224 * Exception: mod=0,rm=6 does not specify [BP] as one might
225 * expect, but instead specifies [disp16].
227 op->indexreg = op->basereg = -1;
228 op->scale = 1; /* always, in 16 bits */
229 switch (rm) {
230 case 0:
231 op->basereg = R_BX;
232 op->indexreg = R_SI;
233 break;
234 case 1:
235 op->basereg = R_BX;
236 op->indexreg = R_DI;
237 break;
238 case 2:
239 op->basereg = R_BP;
240 op->indexreg = R_SI;
241 break;
242 case 3:
243 op->basereg = R_BP;
244 op->indexreg = R_DI;
245 break;
246 case 4:
247 op->basereg = R_SI;
248 break;
249 case 5:
250 op->basereg = R_DI;
251 break;
252 case 6:
253 op->basereg = R_BP;
254 break;
255 case 7:
256 op->basereg = R_BX;
257 break;
259 if (rm == 6 && mod == 0) { /* special case */
260 op->basereg = -1;
261 if (segsize != 16)
262 op->disp_size = 16;
263 mod = 2; /* fake disp16 */
265 switch (mod) {
266 case 0:
267 op->segment |= SEG_NODISP;
268 break;
269 case 1:
270 op->segment |= SEG_DISP8;
271 op->offset = (int8_t)*data++;
272 break;
273 case 2:
274 op->segment |= SEG_DISP16;
275 op->offset = *data++;
276 op->offset |= ((unsigned)*data++) << 8;
277 break;
279 return data;
280 } else {
282 * Once again, <mod> specifies displacement size (this time
283 * none, byte or *dword*), while <rm> specifies the base
284 * register. Again, [EBP] is missing, replaced by a pure
285 * disp32 (this time that's mod=0,rm=*5*) in 32-bit mode,
286 * and RIP-relative addressing in 64-bit mode.
288 * However, rm=4
289 * indicates not a single base register, but instead the
290 * presence of a SIB byte...
292 int a64 = asize == 64;
294 op->indexreg = -1;
296 if (a64)
297 op->basereg = nasm_rd_reg64[rm | ((rex & REX_B) ? 8 : 0)];
298 else
299 op->basereg = nasm_rd_reg32[rm | ((rex & REX_B) ? 8 : 0)];
301 if (rm == 5 && mod == 0) {
302 if (segsize == 64) {
303 op->eaflags |= EAF_REL;
304 op->segment |= SEG_RELATIVE;
305 mod = 2; /* fake disp32 */
308 if (asize != 64)
309 op->disp_size = asize;
311 op->basereg = -1;
312 mod = 2; /* fake disp32 */
315 if (rm == 4) { /* process SIB */
316 scale = (sib >> 6) & 03;
317 index = (sib >> 3) & 07;
318 base = sib & 07;
320 op->scale = 1 << scale;
322 if (index == 4 && !(rex & REX_X))
323 op->indexreg = -1; /* ESP/RSP cannot be an index */
324 else if (a64)
325 op->indexreg = nasm_rd_reg64[index | ((rex & REX_X) ? 8 : 0)];
326 else
327 op->indexreg = nasm_rd_reg32[index | ((rex & REX_X) ? 8 : 0)];
329 if (base == 5 && mod == 0) {
330 op->basereg = -1;
331 mod = 2; /* Fake disp32 */
332 } else if (a64)
333 op->basereg = nasm_rd_reg64[base | ((rex & REX_B) ? 8 : 0)];
334 else
335 op->basereg = nasm_rd_reg32[base | ((rex & REX_B) ? 8 : 0)];
337 if (segsize == 16)
338 op->disp_size = 32;
341 switch (mod) {
342 case 0:
343 op->segment |= SEG_NODISP;
344 break;
345 case 1:
346 op->segment |= SEG_DISP8;
347 op->offset = gets8(data);
348 data++;
349 break;
350 case 2:
351 op->segment |= SEG_DISP32;
352 op->offset = gets32(data);
353 data += 4;
354 break;
356 return data;
361 * Determine whether the instruction template in t corresponds to the data
362 * stream in data. Return the number of bytes matched if so.
364 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
366 static int matches(const struct itemplate *t, uint8_t *data,
367 const struct prefix_info *prefix, int segsize, insn *ins)
369 uint8_t *r = (uint8_t *)(t->code);
370 uint8_t *origdata = data;
371 bool a_used = false, o_used = false;
372 enum prefixes drep = 0;
373 uint8_t lock = prefix->lock;
374 int osize = prefix->osize;
375 int asize = prefix->asize;
376 int i, c;
377 struct operand *opx;
378 int s_field_for = -1; /* No 144/154 series code encountered */
379 bool vex_ok = false;
380 int regmask = (segsize == 64) ? 15 : 7;
382 for (i = 0; i < MAX_OPERANDS; i++) {
383 ins->oprs[i].segment = ins->oprs[i].disp_size =
384 (segsize == 64 ? SEG_64BIT : segsize == 32 ? SEG_32BIT : 0);
386 ins->condition = -1;
387 ins->rex = prefix->rex;
388 memset(ins->prefixes, 0, sizeof ins->prefixes);
390 if (t->flags & (segsize == 64 ? IF_NOLONG : IF_LONG))
391 return false;
393 if (prefix->rep == 0xF2)
394 drep = P_REPNE;
395 else if (prefix->rep == 0xF3)
396 drep = P_REP;
398 while ((c = *r++) != 0) {
399 opx = &ins->oprs[c & 3];
401 switch (c) {
402 case 01:
403 case 02:
404 case 03:
405 while (c--)
406 if (*r++ != *data++)
407 return false;
408 break;
410 case4(010):
412 int t = *r++, d = *data++;
413 if (d < t || d > t + 7)
414 return false;
415 else {
416 opx->basereg = (d-t)+
417 (ins->rex & REX_B ? 8 : 0);
418 opx->segment |= SEG_RMREG;
420 break;
423 case4(014):
424 case4(0274):
425 opx->offset = (int8_t)*data++;
426 opx->segment |= SEG_SIGNED;
427 break;
429 case4(020):
430 opx->offset = *data++;
431 break;
433 case4(024):
434 opx->offset = *data++;
435 break;
437 case4(030):
438 opx->offset = getu16(data);
439 data += 2;
440 break;
442 case4(034):
443 if (osize == 32) {
444 opx->offset = getu32(data);
445 data += 4;
446 } else {
447 opx->offset = getu16(data);
448 data += 2;
450 if (segsize != asize)
451 opx->disp_size = asize;
452 break;
454 case4(040):
455 case4(0254):
456 opx->offset = getu32(data);
457 data += 4;
458 break;
460 case4(044):
461 switch (asize) {
462 case 16:
463 opx->offset = getu16(data);
464 data += 2;
465 if (segsize != 16)
466 opx->disp_size = 16;
467 break;
468 case 32:
469 opx->offset = getu32(data);
470 data += 4;
471 if (segsize == 16)
472 opx->disp_size = 32;
473 break;
474 case 64:
475 opx->offset = getu64(data);
476 opx->disp_size = 64;
477 data += 8;
478 break;
480 break;
482 case4(050):
483 opx->offset = gets8(data++);
484 opx->segment |= SEG_RELATIVE;
485 break;
487 case4(054):
488 opx->offset = getu64(data);
489 data += 8;
490 break;
492 case4(060):
493 opx->offset = gets16(data);
494 data += 2;
495 opx->segment |= SEG_RELATIVE;
496 opx->segment &= ~SEG_32BIT;
497 break;
499 case4(064):
500 opx->segment |= SEG_RELATIVE;
501 if (osize == 16) {
502 opx->offset = gets16(data);
503 data += 2;
504 opx->segment &= ~(SEG_32BIT|SEG_64BIT);
505 } else if (osize == 32) {
506 opx->offset = gets32(data);
507 data += 4;
508 opx->segment &= ~SEG_64BIT;
509 opx->segment |= SEG_32BIT;
511 if (segsize != osize) {
512 opx->type =
513 (opx->type & ~SIZE_MASK)
514 | ((osize == 16) ? BITS16 : BITS32);
516 break;
518 case4(070):
519 opx->offset = gets32(data);
520 data += 4;
521 opx->segment |= SEG_32BIT | SEG_RELATIVE;
522 break;
524 case4(0100):
525 case4(0110):
526 case4(0120):
527 case4(0130):
529 int modrm = *data++;
530 opx->segment |= SEG_RMREG;
531 data = do_ea(data, modrm, asize, segsize,
532 &ins->oprs[(c >> 3) & 3], ins);
533 if (!data)
534 return false;
535 opx->basereg = ((modrm >> 3)&7)+
536 (ins->rex & REX_R ? 8 : 0);
537 break;
540 case4(0140):
541 if (s_field_for == (c & 3)) {
542 opx->offset = gets8(data);
543 data++;
544 } else {
545 opx->offset = getu16(data);
546 data += 2;
548 break;
550 case4(0144):
551 case4(0154):
552 s_field_for = (*data & 0x02) ? c & 3 : -1;
553 if ((*data++ & ~0x02) != *r++)
554 return false;
555 break;
557 case4(0150):
558 if (s_field_for == (c & 3)) {
559 opx->offset = gets8(data);
560 data++;
561 } else {
562 opx->offset = getu32(data);
563 data += 4;
565 break;
567 case4(0160):
568 ins->rex |= REX_D;
569 ins->drexdst = c & 3;
570 break;
572 case4(0164):
573 ins->rex |= REX_D|REX_OC;
574 ins->drexdst = c & 3;
575 break;
577 case 0171:
578 data = do_drex(data, ins);
579 if (!data)
580 return false;
581 break;
583 case 0172:
585 uint8_t ximm = *data++;
586 c = *r++;
587 ins->oprs[c >> 3].basereg = (ximm >> 4) & regmask;
588 ins->oprs[c >> 3].segment |= SEG_RMREG;
589 ins->oprs[c & 7].offset = ximm & 15;
591 break;
593 case 0173:
595 uint8_t ximm = *data++;
596 c = *r++;
598 if ((c ^ ximm) & 15)
599 return false;
601 ins->oprs[c >> 4].basereg = (ximm >> 4) & regmask;
602 ins->oprs[c >> 4].segment |= SEG_RMREG;
604 break;
606 case 0174:
608 uint8_t ximm = *data++;
609 c = *r++;
611 ins->oprs[c].basereg = (ximm >> 4) & regmask;
612 ins->oprs[c].segment |= SEG_RMREG;
614 break;
616 case4(0200):
617 case4(0204):
618 case4(0210):
619 case4(0214):
620 case4(0220):
621 case4(0224):
622 case4(0230):
623 case4(0234):
625 int modrm = *data++;
626 if (((modrm >> 3) & 07) != (c & 07))
627 return false; /* spare field doesn't match up */
628 data = do_ea(data, modrm, asize, segsize,
629 &ins->oprs[(c >> 3) & 07], ins);
630 if (!data)
631 return false;
632 break;
635 case4(0260):
637 int vexm = *r++;
638 int vexwlp = *r++;
639 ins->rex |= REX_V;
640 if ((prefix->rex & (REX_V|REX_D|REX_P)) != REX_V)
641 return false;
643 if ((vexm & 0x1f) != prefix->vex_m)
644 return false;
646 switch (vexwlp & 030) {
647 case 000:
648 if (prefix->rex & REX_W)
649 return false;
650 break;
651 case 010:
652 if (!(prefix->rex & REX_W))
653 return false;
654 ins->rex &= ~REX_W;
655 break;
656 case 020: /* VEX.W is a don't care */
657 ins->rex &= ~REX_W;
658 break;
659 case 030:
660 break;
663 if ((vexwlp & 007) != prefix->vex_lp)
664 return false;
666 opx->segment |= SEG_RMREG;
667 opx->basereg = prefix->vex_v;
668 vex_ok = true;
669 break;
672 case 0270:
674 int vexm = *r++;
675 int vexwlp = *r++;
676 ins->rex |= REX_V;
677 if ((prefix->rex & (REX_V|REX_D|REX_P)) != REX_V)
678 return false;
680 if ((vexm & 0x1f) != prefix->vex_m)
681 return false;
683 switch (vexwlp & 030) {
684 case 000:
685 if (ins->rex & REX_W)
686 return false;
687 break;
688 case 010:
689 if (!(ins->rex & REX_W))
690 return false;
691 break;
692 default:
693 break; /* Need to do anything special here? */
696 if ((vexwlp & 007) != prefix->vex_lp)
697 return false;
699 if (prefix->vex_v != 0)
700 return false;
702 vex_ok = true;
703 break;
706 case 0310:
707 if (asize != 16)
708 return false;
709 else
710 a_used = true;
711 break;
713 case 0311:
714 if (asize == 16)
715 return false;
716 else
717 a_used = true;
718 break;
720 case 0312:
721 if (asize != segsize)
722 return false;
723 else
724 a_used = true;
725 break;
727 case 0313:
728 if (asize != 64)
729 return false;
730 else
731 a_used = true;
732 break;
734 case 0314:
735 if (prefix->rex & REX_B)
736 return false;
737 break;
739 case 0315:
740 if (prefix->rex & REX_X)
741 return false;
742 break;
744 case 0316:
745 if (prefix->rex & REX_R)
746 return false;
747 break;
749 case 0317:
750 if (prefix->rex & REX_W)
751 return false;
752 break;
754 case 0320:
755 if (osize != 16)
756 return false;
757 else
758 o_used = true;
759 break;
761 case 0321:
762 if (osize != 32)
763 return false;
764 else
765 o_used = true;
766 break;
768 case 0322:
769 if (osize != (segsize == 16) ? 16 : 32)
770 return false;
771 else
772 o_used = true;
773 break;
775 case 0323:
776 ins->rex |= REX_W; /* 64-bit only instruction */
777 osize = 64;
778 o_used = true;
779 break;
781 case 0324:
782 if (!(ins->rex & (REX_P|REX_W)) || osize != 64)
783 return false;
784 o_used = true;
785 break;
787 case 0330:
789 int t = *r++, d = *data++;
790 if (d < t || d > t + 15)
791 return false;
792 else
793 ins->condition = d - t;
794 break;
797 case 0331:
798 if (prefix->rep)
799 return false;
800 break;
802 case 0332:
803 if (prefix->rep != 0xF2)
804 return false;
805 drep = 0;
806 break;
808 case 0333:
809 if (prefix->rep != 0xF3)
810 return false;
811 drep = 0;
812 break;
814 case 0334:
815 if (lock) {
816 ins->rex |= REX_R;
817 lock = 0;
819 break;
821 case 0335:
822 if (drep == P_REP)
823 drep = P_REPE;
824 break;
826 case 0336:
827 case 0337:
828 break;
830 case 0340:
831 return false;
833 case 0344:
834 switch (*data++) {
835 case 0x06:
836 ins->oprs[0].basereg = 0;
837 break;
838 case 0x0E:
839 ins->oprs[0].basereg = 1;
840 break;
841 case 0x16:
842 ins->oprs[0].basereg = 2;
843 break;
844 case 0x1E:
845 ins->oprs[0].basereg = 3;
846 break;
847 default:
848 return false;
850 break;
852 case 0345:
853 switch (*data++) {
854 case 0x07:
855 ins->oprs[0].basereg = 0;
856 break;
857 case 0x17:
858 ins->oprs[0].basereg = 2;
859 break;
860 case 0x1F:
861 ins->oprs[0].basereg = 3;
862 break;
863 default:
864 return false;
866 break;
868 case 0346:
869 switch (*data++) {
870 case 0xA0:
871 ins->oprs[0].basereg = 4;
872 break;
873 case 0xA8:
874 ins->oprs[0].basereg = 5;
875 break;
876 default:
877 return false;
879 break;
881 case 0347:
882 switch (*data++) {
883 case 0xA1:
884 ins->oprs[0].basereg = 4;
885 break;
886 case 0xA9:
887 ins->oprs[0].basereg = 5;
888 break;
889 default:
890 return false;
892 break;
894 case 0360:
895 if (prefix->osp || prefix->rep)
896 return false;
897 break;
899 case 0361:
900 if (!prefix->osp || prefix->rep)
901 return false;
902 o_used = true;
903 break;
905 case 0362:
906 if (prefix->osp || prefix->rep != 0xf2)
907 return false;
908 drep = 0;
909 break;
911 case 0363:
912 if (prefix->osp || prefix->rep != 0xf3)
913 return false;
914 drep = 0;
915 break;
917 case 0364:
918 if (prefix->osp)
919 return false;
920 break;
922 case 0365:
923 if (prefix->asp)
924 return false;
925 break;
927 case 0366:
928 if (!prefix->osp)
929 return false;
930 o_used = true;
931 break;
933 case 0367:
934 if (!prefix->asp)
935 return false;
936 a_used = true;
937 break;
939 default:
940 return false; /* Unknown code */
944 if (!vex_ok && (ins->rex & REX_V))
945 return false;
947 /* REX cannot be combined with DREX or VEX */
948 if ((ins->rex & (REX_D|REX_V)) && (prefix->rex & REX_P))
949 return false;
952 * Check for unused rep or a/o prefixes.
954 for (i = 0; i < t->operands; i++) {
955 if (ins->oprs[i].segment != SEG_RMREG)
956 a_used = true;
959 if (lock) {
960 if (ins->prefixes[PPS_LREP])
961 return false;
962 ins->prefixes[PPS_LREP] = P_LOCK;
964 if (drep) {
965 if (ins->prefixes[PPS_LREP])
966 return false;
967 ins->prefixes[PPS_LREP] = drep;
969 if (!o_used) {
970 if (osize != ((segsize == 16) ? 16 : 32)) {
971 enum prefixes pfx = 0;
973 switch (osize) {
974 case 16:
975 pfx = P_O16;
976 break;
977 case 32:
978 pfx = P_O32;
979 break;
980 case 64:
981 pfx = P_O64;
982 break;
985 if (ins->prefixes[PPS_OSIZE])
986 return false;
987 ins->prefixes[PPS_OSIZE] = pfx;
990 if (!a_used && asize != segsize) {
991 if (ins->prefixes[PPS_ASIZE])
992 return false;
993 ins->prefixes[PPS_ASIZE] = asize == 16 ? P_A16 : P_A32;
996 /* Fix: check for redundant REX prefixes */
998 return data - origdata;
1001 /* Condition names for disassembly, sorted by x86 code */
1002 static const char * const condition_name[16] = {
1003 "o", "no", "c", "nc", "z", "nz", "na", "a",
1004 "s", "ns", "pe", "po", "l", "nl", "ng", "g"
1007 int32_t disasm(uint8_t *data, char *output, int outbufsize, int segsize,
1008 int32_t offset, int autosync, uint32_t prefer)
1010 const struct itemplate * const *p, * const *best_p;
1011 const struct disasm_index *ix;
1012 uint8_t *dp;
1013 int length, best_length = 0;
1014 char *segover;
1015 int i, slen, colon, n;
1016 uint8_t *origdata;
1017 int works;
1018 insn tmp_ins, ins;
1019 uint32_t goodness, best;
1020 int best_pref;
1021 struct prefix_info prefix;
1022 bool end_prefix;
1024 memset(&ins, 0, sizeof ins);
1027 * Scan for prefixes.
1029 memset(&prefix, 0, sizeof prefix);
1030 prefix.asize = segsize;
1031 prefix.osize = (segsize == 64) ? 32 : segsize;
1032 segover = NULL;
1033 origdata = data;
1035 ix = itable;
1037 end_prefix = false;
1038 while (!end_prefix) {
1039 switch (*data) {
1040 case 0xF2:
1041 case 0xF3:
1042 prefix.rep = *data++;
1043 break;
1045 case 0xF0:
1046 prefix.lock = *data++;
1047 break;
1049 case 0x2E:
1050 segover = "cs", prefix.seg = *data++;
1051 break;
1052 case 0x36:
1053 segover = "ss", prefix.seg = *data++;
1054 break;
1055 case 0x3E:
1056 segover = "ds", prefix.seg = *data++;
1057 break;
1058 case 0x26:
1059 segover = "es", prefix.seg = *data++;
1060 break;
1061 case 0x64:
1062 segover = "fs", prefix.seg = *data++;
1063 break;
1064 case 0x65:
1065 segover = "gs", prefix.seg = *data++;
1066 break;
1068 case 0x66:
1069 prefix.osize = (segsize == 16) ? 32 : 16;
1070 prefix.osp = *data++;
1071 break;
1072 case 0x67:
1073 prefix.asize = (segsize == 32) ? 16 : 32;
1074 prefix.asp = *data++;
1075 break;
1077 case 0xC4:
1078 case 0xC5:
1079 if (segsize == 64 || (data[1] & 0xc0) == 0xc0) {
1080 prefix.vex[0] = *data++;
1081 prefix.vex[1] = *data++;
1083 prefix.rex = REX_V;
1085 if (prefix.vex[0] == 0xc4) {
1086 prefix.vex[2] = *data++;
1087 prefix.rex |= (~prefix.vex[1] >> 5) & 7; /* REX_RXB */
1088 prefix.rex |= (prefix.vex[2] >> (7-3)) & REX_W;
1089 prefix.vex_m = prefix.vex[1] & 0x1f;
1090 prefix.vex_v = (~prefix.vex[2] >> 3) & 15;
1091 prefix.vex_lp = prefix.vex[2] & 7;
1092 } else {
1093 prefix.rex |= (~prefix.vex[1] >> (7-2)) & REX_R;
1094 prefix.vex_m = 1;
1095 prefix.vex_v = (~prefix.vex[1] >> 3) & 15;
1096 prefix.vex_lp = prefix.vex[1] & 7;
1099 ix = itable_VEX[prefix.vex_m][prefix.vex_lp];
1101 end_prefix = true;
1102 break;
1104 case REX_P + 0x0:
1105 case REX_P + 0x1:
1106 case REX_P + 0x2:
1107 case REX_P + 0x3:
1108 case REX_P + 0x4:
1109 case REX_P + 0x5:
1110 case REX_P + 0x6:
1111 case REX_P + 0x7:
1112 case REX_P + 0x8:
1113 case REX_P + 0x9:
1114 case REX_P + 0xA:
1115 case REX_P + 0xB:
1116 case REX_P + 0xC:
1117 case REX_P + 0xD:
1118 case REX_P + 0xE:
1119 case REX_P + 0xF:
1120 if (segsize == 64) {
1121 prefix.rex = *data++;
1122 if (prefix.rex & REX_W)
1123 prefix.osize = 64;
1125 end_prefix = true;
1126 break;
1128 default:
1129 end_prefix = true;
1130 break;
1134 best = -1; /* Worst possible */
1135 best_p = NULL;
1136 best_pref = INT_MAX;
1138 if (!ix)
1139 return 0; /* No instruction table at all... */
1141 dp = data;
1142 ix += *dp++;
1143 while (ix->n == -1) {
1144 ix = (const struct disasm_index *)ix->p + *dp++;
1147 p = (const struct itemplate * const *)ix->p;
1148 for (n = ix->n; n; n--, p++) {
1149 if ((length = matches(*p, data, &prefix, segsize, &tmp_ins))) {
1150 works = true;
1152 * Final check to make sure the types of r/m match up.
1153 * XXX: Need to make sure this is actually correct.
1155 for (i = 0; i < (*p)->operands; i++) {
1156 if (!((*p)->opd[i] & SAME_AS) &&
1158 /* If it's a mem-only EA but we have a
1159 register, die. */
1160 ((tmp_ins.oprs[i].segment & SEG_RMREG) &&
1161 !(MEMORY & ~(*p)->opd[i])) ||
1162 /* If it's a reg-only EA but we have a memory
1163 ref, die. */
1164 (!(tmp_ins.oprs[i].segment & SEG_RMREG) &&
1165 !(REG_EA & ~(*p)->opd[i]) &&
1166 !((*p)->opd[i] & REG_SMASK)) ||
1167 /* Register type mismatch (eg FS vs REG_DESS):
1168 die. */
1169 ((((*p)->opd[i] & (REGISTER | FPUREG)) ||
1170 (tmp_ins.oprs[i].segment & SEG_RMREG)) &&
1171 !whichreg((*p)->opd[i],
1172 tmp_ins.oprs[i].basereg, tmp_ins.rex))
1173 )) {
1174 works = false;
1175 break;
1180 * Note: we always prefer instructions which incorporate
1181 * prefixes in the instructions themselves. This is to allow
1182 * e.g. PAUSE to be preferred to REP NOP, and deal with
1183 * MMX/SSE instructions where prefixes are used to select
1184 * between MMX and SSE register sets or outright opcode
1185 * selection.
1187 if (works) {
1188 int i, nprefix;
1189 goodness = ((*p)->flags & IF_PFMASK) ^ prefer;
1190 nprefix = 0;
1191 for (i = 0; i < MAXPREFIX; i++)
1192 if (tmp_ins.prefixes[i])
1193 nprefix++;
1194 if (nprefix < best_pref ||
1195 (nprefix == best_pref && goodness < best)) {
1196 /* This is the best one found so far */
1197 best = goodness;
1198 best_p = p;
1199 best_pref = nprefix;
1200 best_length = length;
1201 ins = tmp_ins;
1207 if (!best_p)
1208 return 0; /* no instruction was matched */
1210 /* Pick the best match */
1211 p = best_p;
1212 length = best_length;
1214 slen = 0;
1216 /* TODO: snprintf returns the value that the string would have if
1217 * the buffer were long enough, and not the actual length of
1218 * the returned string, so each instance of using the return
1219 * value of snprintf should actually be checked to assure that
1220 * the return value is "sane." Maybe a macro wrapper could
1221 * be used for that purpose.
1223 for (i = 0; i < MAXPREFIX; i++)
1224 switch (ins.prefixes[i]) {
1225 case P_LOCK:
1226 slen += snprintf(output + slen, outbufsize - slen, "lock ");
1227 break;
1228 case P_REP:
1229 slen += snprintf(output + slen, outbufsize - slen, "rep ");
1230 break;
1231 case P_REPE:
1232 slen += snprintf(output + slen, outbufsize - slen, "repe ");
1233 break;
1234 case P_REPNE:
1235 slen += snprintf(output + slen, outbufsize - slen, "repne ");
1236 break;
1237 case P_A16:
1238 slen += snprintf(output + slen, outbufsize - slen, "a16 ");
1239 break;
1240 case P_A32:
1241 slen += snprintf(output + slen, outbufsize - slen, "a32 ");
1242 break;
1243 case P_A64:
1244 slen += snprintf(output + slen, outbufsize - slen, "a64 ");
1245 break;
1246 case P_O16:
1247 slen += snprintf(output + slen, outbufsize - slen, "o16 ");
1248 break;
1249 case P_O32:
1250 slen += snprintf(output + slen, outbufsize - slen, "o32 ");
1251 break;
1252 case P_O64:
1253 slen += snprintf(output + slen, outbufsize - slen, "o64 ");
1254 break;
1255 default:
1256 break;
1259 i = (*p)->opcode;
1260 if (i >= FIRST_COND_OPCODE)
1261 slen += snprintf(output + slen, outbufsize - slen, "%s%s",
1262 nasm_insn_names[i], condition_name[ins.condition]);
1263 else
1264 slen += snprintf(output + slen, outbufsize - slen, "%s",
1265 nasm_insn_names[i]);
1267 colon = false;
1268 length += data - origdata; /* fix up for prefixes */
1269 for (i = 0; i < (*p)->operands; i++) {
1270 opflags_t t = (*p)->opd[i];
1271 const operand *o = &ins.oprs[i];
1272 int64_t offs;
1274 if (t & SAME_AS) {
1275 o = &ins.oprs[t & ~SAME_AS];
1276 t = (*p)->opd[t & ~SAME_AS];
1279 output[slen++] = (colon ? ':' : i == 0 ? ' ' : ',');
1281 offs = o->offset;
1282 if (o->segment & SEG_RELATIVE) {
1283 offs += offset + length;
1285 * sort out wraparound
1287 if (!(o->segment & (SEG_32BIT|SEG_64BIT)))
1288 offs &= 0xffff;
1289 else if (segsize != 64)
1290 offs &= 0xffffffff;
1293 * add sync marker, if autosync is on
1295 if (autosync)
1296 add_sync(offs, 0L);
1299 if (t & COLON)
1300 colon = true;
1301 else
1302 colon = false;
1304 if ((t & (REGISTER | FPUREG)) ||
1305 (o->segment & SEG_RMREG)) {
1306 enum reg_enum reg;
1307 reg = whichreg(t, o->basereg, ins.rex);
1308 if (t & TO)
1309 slen += snprintf(output + slen, outbufsize - slen, "to ");
1310 slen += snprintf(output + slen, outbufsize - slen, "%s",
1311 nasm_reg_names[reg-EXPR_REG_START]);
1312 } else if (!(UNITY & ~t)) {
1313 output[slen++] = '1';
1314 } else if (t & IMMEDIATE) {
1315 if (t & BITS8) {
1316 slen +=
1317 snprintf(output + slen, outbufsize - slen, "byte ");
1318 if (o->segment & SEG_SIGNED) {
1319 if (offs < 0) {
1320 offs *= -1;
1321 output[slen++] = '-';
1322 } else
1323 output[slen++] = '+';
1325 } else if (t & BITS16) {
1326 slen +=
1327 snprintf(output + slen, outbufsize - slen, "word ");
1328 } else if (t & BITS32) {
1329 slen +=
1330 snprintf(output + slen, outbufsize - slen, "dword ");
1331 } else if (t & BITS64) {
1332 slen +=
1333 snprintf(output + slen, outbufsize - slen, "qword ");
1334 } else if (t & NEAR) {
1335 slen +=
1336 snprintf(output + slen, outbufsize - slen, "near ");
1337 } else if (t & SHORT) {
1338 slen +=
1339 snprintf(output + slen, outbufsize - slen, "short ");
1341 slen +=
1342 snprintf(output + slen, outbufsize - slen, "0x%"PRIx64"",
1343 offs);
1344 } else if (!(MEM_OFFS & ~t)) {
1345 slen +=
1346 snprintf(output + slen, outbufsize - slen,
1347 "[%s%s%s0x%"PRIx64"]",
1348 (segover ? segover : ""),
1349 (segover ? ":" : ""),
1350 (o->disp_size == 64 ? "qword " :
1351 o->disp_size == 32 ? "dword " :
1352 o->disp_size == 16 ? "word " : ""), offs);
1353 segover = NULL;
1354 } else if (!(REGMEM & ~t)) {
1355 int started = false;
1356 if (t & BITS8)
1357 slen +=
1358 snprintf(output + slen, outbufsize - slen, "byte ");
1359 if (t & BITS16)
1360 slen +=
1361 snprintf(output + slen, outbufsize - slen, "word ");
1362 if (t & BITS32)
1363 slen +=
1364 snprintf(output + slen, outbufsize - slen, "dword ");
1365 if (t & BITS64)
1366 slen +=
1367 snprintf(output + slen, outbufsize - slen, "qword ");
1368 if (t & BITS80)
1369 slen +=
1370 snprintf(output + slen, outbufsize - slen, "tword ");
1371 if (t & BITS128)
1372 slen +=
1373 snprintf(output + slen, outbufsize - slen, "oword ");
1374 if (t & BITS256)
1375 slen +=
1376 snprintf(output + slen, outbufsize - slen, "yword ");
1377 if (t & FAR)
1378 slen += snprintf(output + slen, outbufsize - slen, "far ");
1379 if (t & NEAR)
1380 slen +=
1381 snprintf(output + slen, outbufsize - slen, "near ");
1382 output[slen++] = '[';
1383 if (o->disp_size)
1384 slen += snprintf(output + slen, outbufsize - slen, "%s",
1385 (o->disp_size == 64 ? "qword " :
1386 o->disp_size == 32 ? "dword " :
1387 o->disp_size == 16 ? "word " :
1388 ""));
1389 if (o->eaflags & EAF_REL)
1390 slen += snprintf(output + slen, outbufsize - slen, "rel ");
1391 if (segover) {
1392 slen +=
1393 snprintf(output + slen, outbufsize - slen, "%s:",
1394 segover);
1395 segover = NULL;
1397 if (o->basereg != -1) {
1398 slen += snprintf(output + slen, outbufsize - slen, "%s",
1399 nasm_reg_names[(o->basereg-EXPR_REG_START)]);
1400 started = true;
1402 if (o->indexreg != -1) {
1403 if (started)
1404 output[slen++] = '+';
1405 slen += snprintf(output + slen, outbufsize - slen, "%s",
1406 nasm_reg_names[(o->indexreg-EXPR_REG_START)]);
1407 if (o->scale > 1)
1408 slen +=
1409 snprintf(output + slen, outbufsize - slen, "*%d",
1410 o->scale);
1411 started = true;
1415 if (o->segment & SEG_DISP8) {
1416 const char *prefix;
1417 uint8_t offset = offs;
1418 if ((int8_t)offset < 0) {
1419 prefix = "-";
1420 offset = -offset;
1421 } else {
1422 prefix = "+";
1424 slen +=
1425 snprintf(output + slen, outbufsize - slen, "%s0x%"PRIx8"",
1426 prefix, offset);
1427 } else if (o->segment & SEG_DISP16) {
1428 const char *prefix;
1429 uint16_t offset = offs;
1430 if ((int16_t)offset < 0 && started) {
1431 offset = -offset;
1432 prefix = "-";
1433 } else {
1434 prefix = started ? "+" : "";
1436 slen +=
1437 snprintf(output + slen, outbufsize - slen,
1438 "%s0x%"PRIx16"", prefix, offset);
1439 } else if (o->segment & SEG_DISP32) {
1440 if (prefix.asize == 64) {
1441 const char *prefix;
1442 uint64_t offset = (int64_t)(int32_t)offs;
1443 if ((int32_t)offs < 0 && started) {
1444 offset = -offset;
1445 prefix = "-";
1446 } else {
1447 prefix = started ? "+" : "";
1449 slen +=
1450 snprintf(output + slen, outbufsize - slen,
1451 "%s0x%"PRIx64"", prefix, offset);
1452 } else {
1453 const char *prefix;
1454 uint32_t offset = offs;
1455 if ((int32_t) offset < 0 && started) {
1456 offset = -offset;
1457 prefix = "-";
1458 } else {
1459 prefix = started ? "+" : "";
1461 slen +=
1462 snprintf(output + slen, outbufsize - slen,
1463 "%s0x%"PRIx32"", prefix, offset);
1466 output[slen++] = ']';
1467 } else {
1468 slen +=
1469 snprintf(output + slen, outbufsize - slen, "<operand%d>",
1473 output[slen] = '\0';
1474 if (segover) { /* unused segment override */
1475 char *p = output;
1476 int count = slen + 1;
1477 while (count--)
1478 p[count + 3] = p[count];
1479 strncpy(output, segover, 2);
1480 output[2] = ' ';
1482 return length;
1485 int32_t eatbyte(uint8_t *data, char *output, int outbufsize)
1487 snprintf(output, outbufsize, "db 0x%02X", *data);
1488 return 1;