outmacho: Fix relative relocations for 32-bit Mach-O (fix typo)
[nasm.git] / nasm.h
blob663cc21e7593de6aea2e1c0f9c086b4476aabfb2
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2016 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
68 #define DECOLEN_MAX 32
71 * Name pollution problems: <time.h> on Digital UNIX pulls in some
72 * strange hardware header file which sees fit to define R_SP. We
73 * undefine it here so as not to break the enum below.
75 #ifdef R_SP
76 #undef R_SP
77 #endif
80 * We must declare the existence of this structure type up here,
81 * since we have to reference it before we define it...
83 struct ofmt;
86 * Values for the `type' parameter to an output function.
88 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
89 * which will be a relative jump. For this we need to know the
90 * distance in bytes from the start of the relocated record until
91 * the end of the containing instruction. _This_ is what is stored
92 * in the size part of the parameter, in this case.
94 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
95 * and the contents of the "data" parameter is irrelevant.
97 * The "data" parameter for the output function points to a "int32_t",
98 * containing the address in question, unless the type is
99 * OUT_RAWDATA, in which case it points to an "uint8_t"
100 * array.
102 enum out_type {
103 OUT_RAWDATA, /* Plain bytes */
104 OUT_ADDRESS, /* An address (symbol value) */
105 OUT_RESERVE, /* Reserved bytes (RESB et al) */
106 OUT_REL1ADR, /* 1-byte relative address */
107 OUT_REL2ADR, /* 2-byte relative address */
108 OUT_REL4ADR, /* 4-byte relative address */
109 OUT_REL8ADR /* 8-byte relative address */
113 * A label-lookup function.
115 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
118 * And a label-definition function. The boolean parameter
119 * `is_norm' states whether the label is a `normal' label (which
120 * should affect the local-label system), or something odder like
121 * an EQU or a segment-base symbol, which shouldn't.
123 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
124 char *special, bool is_norm, bool isextrn);
126 void define_label(char *label, int32_t segment, int64_t offset,
127 char *special, bool is_norm, bool isextrn);
130 * Token types returned by the scanner, in addition to ordinary
131 * ASCII character values, and zero for end-of-string.
133 enum token_type { /* token types, other than chars */
134 TOKEN_INVALID = -1, /* a placeholder value */
135 TOKEN_EOS = 0, /* end of string */
136 TOKEN_EQ = '=',
137 TOKEN_GT = '>',
138 TOKEN_LT = '<', /* aliases */
139 TOKEN_ID = 256, /* identifier */
140 TOKEN_NUM, /* numeric constant */
141 TOKEN_ERRNUM, /* malformed numeric constant */
142 TOKEN_STR, /* string constant */
143 TOKEN_ERRSTR, /* unterminated string constant */
144 TOKEN_FLOAT, /* floating-point constant */
145 TOKEN_REG, /* register name */
146 TOKEN_INSN, /* instruction name */
147 TOKEN_HERE, /* $ */
148 TOKEN_BASE, /* $$ */
149 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
150 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
151 TOKEN_SHL, /* << */
152 TOKEN_SHR, /* >> */
153 TOKEN_SDIV, /* // */
154 TOKEN_SMOD, /* %% */
155 TOKEN_GE, /* >= */
156 TOKEN_LE, /* <= */
157 TOKEN_NE, /* <> (!= is same as <>) */
158 TOKEN_DBL_AND, /* && */
159 TOKEN_DBL_OR, /* || */
160 TOKEN_DBL_XOR, /* ^^ */
161 TOKEN_SEG, /* SEG */
162 TOKEN_WRT, /* WRT */
163 TOKEN_FLOATIZE, /* __floatX__ */
164 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
165 TOKEN_IFUNC, /* __ilog2*__ */
166 TOKEN_DECORATOR, /* decorators such as {...} */
167 TOKEN_OPMASK /* translated token for opmask registers */
170 enum floatize {
171 FLOAT_8,
172 FLOAT_16,
173 FLOAT_32,
174 FLOAT_64,
175 FLOAT_80M,
176 FLOAT_80E,
177 FLOAT_128L,
178 FLOAT_128H
181 /* Must match the list in string_transform(), in strfunc.c */
182 enum strfunc {
183 STRFUNC_UTF16,
184 STRFUNC_UTF16LE,
185 STRFUNC_UTF16BE,
186 STRFUNC_UTF32,
187 STRFUNC_UTF32LE,
188 STRFUNC_UTF32BE
191 enum ifunc {
192 IFUNC_ILOG2E,
193 IFUNC_ILOG2W,
194 IFUNC_ILOG2F,
195 IFUNC_ILOG2C
198 size_t string_transform(char *, size_t, char **, enum strfunc);
201 * The expression evaluator must be passed a scanner function; a
202 * standard scanner is provided as part of nasmlib.c. The
203 * preprocessor will use a different one. Scanners, and the
204 * token-value structures they return, look like this.
206 * The return value from the scanner is always a copy of the
207 * `t_type' field in the structure.
209 struct tokenval {
210 char *t_charptr;
211 int64_t t_integer;
212 int64_t t_inttwo;
213 enum token_type t_type;
214 int8_t t_flag;
216 typedef int (*scanner)(void *private_data, struct tokenval *tv);
218 struct location {
219 int64_t offset;
220 int32_t segment;
221 int known;
225 * Expression-evaluator datatype. Expressions, within the
226 * evaluator, are stored as an array of these beasts, terminated by
227 * a record with type==0. Mostly, it's a vector type: each type
228 * denotes some kind of a component, and the value denotes the
229 * multiple of that component present in the expression. The
230 * exception is the WRT type, whose `value' field denotes the
231 * segment to which the expression is relative. These segments will
232 * be segment-base types, i.e. either odd segment values or SEG_ABS
233 * types. So it is still valid to assume that anything with a
234 * `value' field of zero is insignificant.
236 typedef struct {
237 int32_t type; /* a register, or EXPR_xxx */
238 int64_t value; /* must be >= 32 bits */
239 } expr;
242 * Library routines to manipulate expression data types.
244 int is_reloc(expr *vect);
245 int is_simple(expr *vect);
246 int is_really_simple(expr *vect);
247 int is_unknown(expr *vect);
248 int is_just_unknown(expr *vect);
249 int64_t reloc_value(expr *vect);
250 int32_t reloc_seg(expr *vect);
251 int32_t reloc_wrt(expr *vect);
254 * The evaluator can also return hints about which of two registers
255 * used in an expression should be the base register. See also the
256 * `operand' structure.
258 struct eval_hints {
259 int64_t base;
260 int type;
264 * The actual expression evaluator function looks like this. When
265 * called, it expects the first token of its expression to already
266 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
267 * it will start by calling the scanner.
269 * If a forward reference happens during evaluation, the evaluator
270 * must set `*fwref' to true if `fwref' is non-NULL.
272 * `critical' is non-zero if the expression may not contain forward
273 * references. The evaluator will report its own error if this
274 * occurs; if `critical' is 1, the error will be "symbol not
275 * defined before use", whereas if `critical' is 2, the error will
276 * be "symbol undefined".
278 * If `critical' has bit 8 set (in addition to its main value: 0x101
279 * and 0x102 correspond to 1 and 2) then an extended expression
280 * syntax is recognised, in which relational operators such as =, <
281 * and >= are accepted, as well as low-precedence logical operators
282 * &&, ^^ and ||.
284 * If `hints' is non-NULL, it gets filled in with some hints as to
285 * the base register in complex effective addresses.
287 #define CRITICAL 0x100
288 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
289 struct tokenval *tv, int *fwref, int critical,
290 struct eval_hints *hints);
293 * Special values for expr->type.
294 * These come after EXPR_REG_END as defined in regs.h.
295 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
296 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
298 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
299 #define EXPR_SIMPLE (EXPR_REG_END+2)
300 #define EXPR_WRT (EXPR_REG_END+3)
301 #define EXPR_RDSAE (EXPR_REG_END+4)
302 #define EXPR_SEGBASE (EXPR_REG_END+5)
305 * Linked list of strings
307 typedef struct string_list {
308 struct string_list *next;
309 char str[1];
310 } StrList;
313 * preprocessors ought to look like this:
315 struct preproc_ops {
317 * Called at the start of a pass; given a file name, the number
318 * of the pass, an error reporting function, an evaluator
319 * function, and a listing generator to talk to.
321 void (*reset)(char *file, int pass, StrList **deplist);
324 * Called to fetch a line of preprocessed source. The line
325 * returned has been malloc'ed, and so should be freed after
326 * use.
328 char *(*getline)(void);
330 /* Called at the end of a pass */
331 void (*cleanup)(int pass);
333 /* Additional macros specific to output format */
334 void (*extra_stdmac)(macros_t *macros);
336 /* Early definitions and undefinitions for macros */
337 void (*pre_define)(char *definition);
338 void (*pre_undefine)(char *definition);
340 /* Include file from command line */
341 void (*pre_include)(char *fname);
343 /* Include path from command line */
344 void (*include_path)(char *path);
346 /* Unwind the macro stack when printing an error message */
347 void (*error_list_macros)(int severity);
350 extern const struct preproc_ops nasmpp;
351 extern const struct preproc_ops preproc_nop;
354 * Some lexical properties of the NASM source language, included
355 * here because they are shared between the parser and preprocessor.
359 * isidstart matches any character that may start an identifier, and isidchar
360 * matches any character that may appear at places other than the start of an
361 * identifier. E.g. a period may only appear at the start of an identifier
362 * (for local labels), whereas a number may appear anywhere *but* at the
363 * start.
364 * isbrcchar matches any character that may placed inside curly braces as a
365 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
368 #define isidstart(c) (nasm_isalpha(c) || \
369 (c) == '_' || \
370 (c) == '.' || \
371 (c) == '?' || \
372 (c) == '@')
374 #define isidchar(c) (isidstart(c) || \
375 nasm_isdigit(c) || \
376 (c) == '$' || \
377 (c) == '#' || \
378 (c) == '~')
380 #define isbrcchar(c) (isidchar(c) || \
381 (c) == '-')
383 /* Ditto for numeric constants. */
385 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
386 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
389 * Data-type flags that get passed to listing-file routines.
391 enum {
392 LIST_READ,
393 LIST_MACRO,
394 LIST_MACRO_NOLIST,
395 LIST_INCLUDE,
396 LIST_INCBIN,
397 LIST_TIMES
401 * -----------------------------------------------------------
402 * Format of the `insn' structure returned from `parser.c' and
403 * passed into `assemble.c'
404 * -----------------------------------------------------------
407 /* Verify value to be a valid register */
408 static inline bool is_register(int reg)
410 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
413 enum ccode { /* condition code names */
414 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
415 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
416 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
417 C_none = -1
421 * token flags
423 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
424 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
425 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
426 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
427 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
429 static inline uint8_t get_cond_opcode(enum ccode c)
431 static const uint8_t ccode_opcodes[] = {
432 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
433 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
434 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
437 return ccode_opcodes[(int)c];
441 * REX flags
443 #define REX_MASK 0x4f /* Actual REX prefix bits */
444 #define REX_B 0x01 /* ModRM r/m extension */
445 #define REX_X 0x02 /* SIB index extension */
446 #define REX_R 0x04 /* ModRM reg extension */
447 #define REX_W 0x08 /* 64-bit operand size */
448 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
449 #define REX_P 0x40 /* REX prefix present/required */
450 #define REX_H 0x80 /* High register present, REX forbidden */
451 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
452 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
453 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
456 * EVEX bit field
458 #define EVEX_P0MM 0x03 /* EVEX P[1:0] : Legacy escape */
459 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
460 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
461 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
462 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
463 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
464 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
465 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
466 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
467 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
468 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
469 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
472 * REX_V "classes" (prefixes which behave like VEX)
474 enum vex_class {
475 RV_VEX = 0, /* C4/C5 */
476 RV_XOP = 1, /* 8F */
477 RV_EVEX = 2 /* 62 */
481 * Note that because segment registers may be used as instruction
482 * prefixes, we must ensure the enumerations for prefixes and
483 * register names do not overlap.
485 enum prefixes { /* instruction prefixes */
486 P_none = 0,
487 PREFIX_ENUM_START = REG_ENUM_LIMIT,
488 P_A16 = PREFIX_ENUM_START,
489 P_A32,
490 P_A64,
491 P_ASP,
492 P_LOCK,
493 P_O16,
494 P_O32,
495 P_O64,
496 P_OSP,
497 P_REP,
498 P_REPE,
499 P_REPNE,
500 P_REPNZ,
501 P_REPZ,
502 P_TIMES,
503 P_WAIT,
504 P_XACQUIRE,
505 P_XRELEASE,
506 P_BND,
507 P_NOBND,
508 P_EVEX,
509 P_VEX3,
510 P_VEX2,
511 PREFIX_ENUM_LIMIT
514 enum extop_type { /* extended operand types */
515 EOT_NOTHING,
516 EOT_DB_STRING, /* Byte string */
517 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
518 EOT_DB_NUMBER /* Integer */
521 enum ea_flags { /* special EA flags */
522 EAF_BYTEOFFS = 1, /* force offset part to byte size */
523 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
524 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
525 EAF_REL = 8, /* IP-relative addressing */
526 EAF_ABS = 16, /* non-IP-relative addressing */
527 EAF_FSGS = 32, /* fs/gs segment override present */
528 EAF_MIB = 64 /* mib operand */
531 enum eval_hint { /* values for `hinttype' */
532 EAH_NOHINT = 0, /* no hint at all - our discretion */
533 EAH_MAKEBASE = 1, /* try to make given reg the base */
534 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
535 EAH_SUMMED = 3 /* base and index are summed into index */
538 typedef struct operand { /* operand to an instruction */
539 opflags_t type; /* type of operand */
540 int disp_size; /* 0 means default; 16; 32; 64 */
541 enum reg_enum basereg;
542 enum reg_enum indexreg; /* address registers */
543 int scale; /* index scale */
544 int hintbase;
545 enum eval_hint hinttype; /* hint as to real base register */
546 int32_t segment; /* immediate segment, if needed */
547 int64_t offset; /* any immediate number */
548 int32_t wrt; /* segment base it's relative to */
549 int eaflags; /* special EA flags */
550 int opflags; /* see OPFLAG_* defines below */
551 decoflags_t decoflags; /* decorator flags such as {...} */
552 } operand;
554 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
555 #define OPFLAG_EXTERN 2 /* operand is an external reference */
556 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
557 * (always a forward reference also)
560 typedef struct extop { /* extended operand */
561 struct extop *next; /* linked list */
562 char *stringval; /* if it's a string, then here it is */
563 size_t stringlen; /* ... and here's how long it is */
564 int64_t offset; /* ... it's given here ... */
565 int32_t segment; /* if it's a number/address, then... */
566 int32_t wrt; /* ... and here */
567 enum extop_type type; /* defined above */
568 } extop;
570 enum ea_type {
571 EA_INVALID, /* Not a valid EA at all */
572 EA_SCALAR, /* Scalar EA */
573 EA_XMMVSIB, /* XMM vector EA */
574 EA_YMMVSIB, /* YMM vector EA */
575 EA_ZMMVSIB /* ZMM vector EA */
579 * Prefix positions: each type of prefix goes in a specific slot.
580 * This affects the final ordering of the assembled output, which
581 * shouldn't matter to the processor, but if you have stylistic
582 * preferences, you can change this. REX prefixes are handled
583 * differently for the time being.
585 * LOCK and REP used to be one slot; this is no longer the case since
586 * the introduction of HLE.
588 enum prefix_pos {
589 PPS_WAIT, /* WAIT (technically not a prefix!) */
590 PPS_REP, /* REP/HLE prefix */
591 PPS_LOCK, /* LOCK prefix */
592 PPS_SEG, /* Segment override prefix */
593 PPS_OSIZE, /* Operand size prefix */
594 PPS_ASIZE, /* Address size prefix */
595 PPS_VEX, /* VEX type */
596 MAXPREFIX /* Total number of prefix slots */
600 * Tuple types that are used when determining Disp8*N eligibility
601 * The order must match with a hash %tuple_codes in insns.pl
603 enum ttypes {
604 FV = 001,
605 HV = 002,
606 FVM = 003,
607 T1S8 = 004,
608 T1S16 = 005,
609 T1S = 006,
610 T1F32 = 007,
611 T1F64 = 010,
612 T2 = 011,
613 T4 = 012,
614 T8 = 013,
615 HVM = 014,
616 QVM = 015,
617 OVM = 016,
618 M128 = 017,
619 DUP = 020
622 /* EVEX.L'L : Vector length on vector insns */
623 enum vectlens {
624 VL128 = 0,
625 VL256 = 1,
626 VL512 = 2,
627 VLMAX = 3
630 /* If you need to change this, also change it in insns.pl */
631 #define MAX_OPERANDS 5
633 typedef struct insn { /* an instruction itself */
634 char *label; /* the label defined, or NULL */
635 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
636 enum opcode opcode; /* the opcode - not just the string */
637 enum ccode condition; /* the condition code, if Jcc/SETcc */
638 int operands; /* how many operands? 0-3 (more if db et al) */
639 int addr_size; /* address size */
640 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
641 extop *eops; /* extended operands */
642 int eops_float; /* true if DD and floating */
643 int32_t times; /* repeat count (TIMES prefix) */
644 bool forw_ref; /* is there a forward reference? */
645 bool rex_done; /* REX prefix emitted? */
646 int rex; /* Special REX Prefix */
647 int vexreg; /* Register encoded in VEX prefix */
648 int vex_cm; /* Class and M field for VEX prefix */
649 int vex_wlp; /* W, P and L information for VEX prefix */
650 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
651 /* EVEX.P2: [z,L'L,b,V',aaa] */
652 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
653 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
654 int8_t evex_brerop; /* BR/ER/SAE operand position */
655 } insn;
657 enum geninfo { GI_SWITCH };
659 /* Instruction flags type: IF_* flags are defined in insns.h */
660 typedef uint64_t iflags_t;
663 * The data structure defining an output format driver, and the
664 * interfaces to the functions therein.
666 struct ofmt {
668 * This is a short (one-liner) description of the type of
669 * output generated by the driver.
671 const char *fullname;
674 * This is a single keyword used to select the driver.
676 const char *shortname;
679 * Output format flags.
681 #define OFMT_TEXT 1 /* Text file format */
682 unsigned int flags;
684 int maxbits; /* Maximum segment bits supported */
687 * this is a pointer to the first element of the debug information
689 struct dfmt **debug_formats;
692 * the default debugging format if -F is not specified
694 const struct dfmt *default_dfmt;
697 * This, if non-NULL, is a NULL-terminated list of `char *'s
698 * pointing to extra standard macros supplied by the object
699 * format (e.g. a sensible initial default value of __SECT__,
700 * and user-level equivalents for any format-specific
701 * directives).
703 macros_t *stdmac;
706 * This procedure is called at the start of an output session to set
707 * up internal parameters.
709 void (*init)(void);
712 * This procedure is called to pass generic information to the
713 * object file. The first parameter gives the information type
714 * (currently only command line switches)
715 * and the second parameter gives the value. This function returns
716 * 1 if recognized, 0 if unrecognized
718 int (*setinfo)(enum geninfo type, char **string);
721 * This procedure is called by assemble() to write actual
722 * generated code or data to the object file. Typically it
723 * doesn't have to actually _write_ it, just store it for
724 * later.
726 * The `type' argument specifies the type of output data, and
727 * usually the size as well: its contents are described below.
729 void (*output)(int32_t segto, const void *data,
730 enum out_type type, uint64_t size,
731 int32_t segment, int32_t wrt);
734 * This procedure is called once for every symbol defined in
735 * the module being assembled. It gives the name and value of
736 * the symbol, in NASM's terms, and indicates whether it has
737 * been declared to be global. Note that the parameter "name",
738 * when passed, will point to a piece of static storage
739 * allocated inside the label manager - it's safe to keep using
740 * that pointer, because the label manager doesn't clean up
741 * until after the output driver has.
743 * Values of `is_global' are: 0 means the symbol is local; 1
744 * means the symbol is global; 2 means the symbol is common (in
745 * which case `offset' holds the _size_ of the variable).
746 * Anything else is available for the output driver to use
747 * internally.
749 * This routine explicitly _is_ allowed to call the label
750 * manager to define further symbols, if it wants to, even
751 * though it's been called _from_ the label manager. That much
752 * re-entrancy is guaranteed in the label manager. However, the
753 * label manager will in turn call this routine, so it should
754 * be prepared to be re-entrant itself.
756 * The `special' parameter contains special information passed
757 * through from the command that defined the label: it may have
758 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
759 * be obvious to the output format from the other parameters.
761 void (*symdef)(char *name, int32_t segment, int64_t offset,
762 int is_global, char *special);
765 * This procedure is called when the source code requests a
766 * segment change. It should return the corresponding segment
767 * _number_ for the name, or NO_SEG if the name is not a valid
768 * segment name.
770 * It may also be called with NULL, in which case it is to
771 * return the _default_ section number for starting assembly in.
773 * It is allowed to modify the string it is given a pointer to.
775 * It is also allowed to specify a default instruction size for
776 * the segment, by setting `*bits' to 16 or 32. Or, if it
777 * doesn't wish to define a default, it can leave `bits' alone.
779 int32_t (*section)(char *name, int pass, int *bits);
782 * This procedure is called to modify section alignment,
783 * note there is a trick, the alignment can only increase
785 void (*sectalign)(int32_t seg, unsigned int value);
788 * This procedure is called to modify the segment base values
789 * returned from the SEG operator. It is given a segment base
790 * value (i.e. a segment value with the low bit set), and is
791 * required to produce in return a segment value which may be
792 * different. It can map segment bases to absolute numbers by
793 * means of returning SEG_ABS types.
795 * It should return NO_SEG if the segment base cannot be
796 * determined; the evaluator (which calls this routine) is
797 * responsible for throwing an error condition if that occurs
798 * in pass two or in a critical expression.
800 int32_t (*segbase)(int32_t segment);
803 * This procedure is called to allow the output driver to
804 * process its own specific directives. When called, it has the
805 * directive word in `directive' and the parameter string in
806 * `value'. It is called in both assembly passes, and `pass'
807 * will be either 1 or 2.
809 * This procedure should return zero if it does not _recognise_
810 * the directive, so that the main program can report an error.
811 * If it recognises the directive but then has its own errors,
812 * it should report them itself and then return non-zero. It
813 * should also return non-zero if it correctly processes the
814 * directive.
816 int (*directive)(enum directives directive, char *value, int pass);
819 * This procedure is called before anything else - even before
820 * the "init" routine - and is passed the name of the input
821 * file from which this output file is being generated. It
822 * should return its preferred name for the output file in
823 * `outname', if outname[0] is not '\0', and do nothing to
824 * `outname' otherwise. Since it is called before the driver is
825 * properly initialized, it has to be passed its error handler
826 * separately.
828 * This procedure may also take its own copy of the input file
829 * name for use in writing the output file: it is _guaranteed_
830 * that it will be called before the "init" routine.
832 * The parameter `outname' points to an area of storage
833 * guaranteed to be at least FILENAME_MAX in size.
835 void (*filename)(char *inname, char *outname);
838 * This procedure is called after assembly finishes, to allow
839 * the output driver to clean itself up and free its memory.
840 * Typically, it will also be the point at which the object
841 * file actually gets _written_.
843 * One thing the cleanup routine should always do is to close
844 * the output file pointer.
846 void (*cleanup)(void);
850 * Output format driver alias
852 struct ofmt_alias {
853 const char *shortname;
854 const char *fullname;
855 struct ofmt *ofmt;
858 extern struct ofmt *ofmt;
859 extern FILE *ofile;
862 * ------------------------------------------------------------
863 * The data structure defining a debug format driver, and the
864 * interfaces to the functions therein.
865 * ------------------------------------------------------------
868 struct dfmt {
870 * This is a short (one-liner) description of the type of
871 * output generated by the driver.
873 const char *fullname;
876 * This is a single keyword used to select the driver.
878 const char *shortname;
881 * init - called initially to set up local pointer to object format.
883 void (*init)(void);
886 * linenum - called any time there is output with a change of
887 * line number or file.
889 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
892 * debug_deflabel - called whenever a label is defined. Parameters
893 * are the same as to 'symdef()' in the output format. This function
894 * is called after the output format version.
897 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
898 int is_global, char *special);
900 * debug_directive - called whenever a DEBUG directive other than 'LINE'
901 * is encountered. 'directive' contains the first parameter to the
902 * DEBUG directive, and params contains the rest. For example,
903 * 'DEBUG VAR _somevar:int' would translate to a call to this
904 * function with 'directive' equal to "VAR" and 'params' equal to
905 * "_somevar:int".
907 void (*debug_directive)(const char *directive, const char *params);
910 * typevalue - called whenever the assembler wishes to register a type
911 * for the last defined label. This routine MUST detect if a type was
912 * already registered and not re-register it.
914 void (*debug_typevalue)(int32_t type);
917 * debug_output - called whenever output is required
918 * 'type' is the type of info required, and this is format-specific
920 void (*debug_output)(int type, void *param);
923 * cleanup - called after processing of file is complete
925 void (*cleanup)(void);
928 extern const struct dfmt *dfmt;
931 * The type definition macros
932 * for debugging
934 * low 3 bits: reserved
935 * next 5 bits: type
936 * next 24 bits: number of elements for arrays (0 for labels)
939 #define TY_UNKNOWN 0x00
940 #define TY_LABEL 0x08
941 #define TY_BYTE 0x10
942 #define TY_WORD 0x18
943 #define TY_DWORD 0x20
944 #define TY_FLOAT 0x28
945 #define TY_QWORD 0x30
946 #define TY_TBYTE 0x38
947 #define TY_OWORD 0x40
948 #define TY_YWORD 0x48
949 #define TY_COMMON 0xE0
950 #define TY_SEG 0xE8
951 #define TY_EXTERN 0xF0
952 #define TY_EQU 0xF8
954 #define TYM_TYPE(x) ((x) & 0xF8)
955 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
957 #define TYS_ELEMENTS(x) ((x) << 8)
959 enum special_tokens {
960 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
961 S_ABS = SPECIAL_ENUM_START,
962 S_BYTE,
963 S_DWORD,
964 S_FAR,
965 S_LONG,
966 S_NEAR,
967 S_NOSPLIT,
968 S_OWORD,
969 S_QWORD,
970 S_REL,
971 S_SHORT,
972 S_STRICT,
973 S_TO,
974 S_TWORD,
975 S_WORD,
976 S_YWORD,
977 S_ZWORD,
978 SPECIAL_ENUM_LIMIT
981 enum decorator_tokens {
982 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
983 BRC_1TO2 = DECORATOR_ENUM_START,
984 BRC_1TO4,
985 BRC_1TO8,
986 BRC_1TO16,
987 BRC_RN,
988 BRC_RD,
989 BRC_RU,
990 BRC_RZ,
991 BRC_SAE,
992 BRC_Z,
993 DECORATOR_ENUM_LIMIT
997 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
998 * 3 2 1
999 * 10987654321098765432109876543210
1001 * | word boundary
1002 * ............................1111 opmask
1003 * ...........................1.... zeroing / merging
1004 * ..........................1..... broadcast
1005 * .........................1...... static rounding
1006 * ........................1....... SAE
1007 * ......................11........ broadcast element size
1008 * ....................11.......... number of broadcast elements
1010 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1013 * Opmask register number
1014 * identical to EVEX.aaa
1016 * Bits: 0 - 3
1018 #define OPMASK_SHIFT (0)
1019 #define OPMASK_BITS (4)
1020 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1021 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1022 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1025 * zeroing / merging control available
1026 * matching to EVEX.z
1028 * Bits: 4
1030 #define Z_SHIFT (4)
1031 #define Z_BITS (1)
1032 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1033 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1036 * broadcast - Whether this operand can be broadcasted
1038 * Bits: 5
1040 #define BRDCAST_SHIFT (5)
1041 #define BRDCAST_BITS (1)
1042 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1043 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1046 * Whether this instruction can have a static rounding mode.
1047 * It goes with the last simd operand because the static rounding mode
1048 * decorator is located between the last simd operand and imm8 (if any).
1050 * Bits: 6
1052 #define STATICRND_SHIFT (6)
1053 #define STATICRND_BITS (1)
1054 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1055 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1058 * SAE(Suppress all exception) available
1060 * Bits: 7
1062 #define SAE_SHIFT (7)
1063 #define SAE_BITS (1)
1064 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1065 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1068 * Broadcasting element size.
1070 * Bits: 8 - 9
1072 #define BRSIZE_SHIFT (8)
1073 #define BRSIZE_BITS (2)
1074 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1075 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1077 #define BR_BITS32 GEN_BRSIZE(0)
1078 #define BR_BITS64 GEN_BRSIZE(1)
1081 * Number of broadcasting elements
1083 * Bits: 10 - 11
1085 #define BRNUM_SHIFT (10)
1086 #define BRNUM_BITS (2)
1087 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1088 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1090 #define BR_1TO2 VAL_BRNUM(0)
1091 #define BR_1TO4 VAL_BRNUM(1)
1092 #define BR_1TO8 VAL_BRNUM(2)
1093 #define BR_1TO16 VAL_BRNUM(3)
1095 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1096 #define Z Z_MASK
1097 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1098 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1099 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1100 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1103 * Global modes
1107 * This declaration passes the "pass" number to all other modules
1108 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1109 * where 0 = optimizing pass
1110 * 1 = pass 1
1111 * 2 = pass 2
1114 extern int pass0;
1115 extern int passn; /* Actual pass number */
1117 extern bool tasm_compatible_mode;
1118 extern int optimizing;
1119 extern int globalbits; /* 16, 32 or 64-bit mode */
1120 extern int globalrel; /* default to relative addressing? */
1121 extern int globalbnd; /* default to using bnd prefix? */
1124 * NASM version strings, defined in ver.c
1126 extern const char nasm_version[];
1127 extern const char nasm_date[];
1128 extern const char nasm_compile_options[];
1129 extern const char nasm_comment[];
1130 extern const char nasm_signature[];
1132 #endif