Add a generic pragma-handling infrastructure
[nasm.git] / include / nasm.h
blob2a231411de9c0df0e2e68055a16303e72920ac81
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2017 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include "nasmlib.h"
45 #include "strlist.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
50 #include "regs.h"
52 #define NO_SEG -1L /* null segment value */
53 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
55 #ifndef FILENAME_MAX
56 #define FILENAME_MAX 256
57 #endif
59 #ifndef PREFIX_MAX
60 #define PREFIX_MAX 10
61 #endif
63 #ifndef POSTFIX_MAX
64 #define POSTFIX_MAX 10
65 #endif
67 #define IDLEN_MAX 4096
68 #define DECOLEN_MAX 32
71 * Name pollution problems: <time.h> on Digital UNIX pulls in some
72 * strange hardware header file which sees fit to define R_SP. We
73 * undefine it here so as not to break the enum below.
75 #ifdef R_SP
76 #undef R_SP
77 #endif
80 * We must declare the existence of this structure type up here,
81 * since we have to reference it before we define it...
83 struct ofmt;
86 * Values for the `type' parameter to an output function.
88 enum out_type {
89 OUT_RAWDATA, /* Plain bytes */
90 OUT_RESERVE, /* Reserved bytes (RESB et al) */
91 OUT_ADDRESS, /* An address (symbol value) */
92 OUT_RELADDR, /* A relative address */
93 OUT_SEGMENT, /* A segment number */
96 * These values are used by the legacy backend interface only;
97 * see output/legacy.c for more information. These should never
98 * be used otherwise. Once all backends have been migrated to the
99 * new interface they should be removed.
101 OUT_REL1ADR,
102 OUT_REL2ADR,
103 OUT_REL4ADR,
104 OUT_REL8ADR
107 enum out_sign {
108 OUT_WRAP, /* Undefined signedness (wraps) */
109 OUT_SIGNED, /* Value is signed */
110 OUT_UNSIGNED /* Value is unsigned */
114 * The data we send down to the backend.
115 * XXX: We still want to push down the base address symbol if
116 * available, and replace the segment numbers with a structure.
118 struct out_data {
119 int64_t offset; /* Offset within segment */
120 int32_t segment; /* Segment written to */
121 enum out_type type; /* See above */
122 enum out_sign sign; /* See above */
123 int inslen; /* Length of instruction */
124 int insoffs; /* Offset inside instruction */
125 int bits; /* Bits mode of compilation */
126 uint64_t size; /* Size of output */
127 const struct itemplate *itemp; /* Instruction template */
128 const void *data; /* Data for OUT_RAWDATA */
129 uint64_t toffset; /* Target address offset for relocation */
130 int32_t tsegment; /* Target segment for relocation */
131 int32_t twrt; /* Relocation with respect to */
132 int64_t relbase; /* Relative base for OUT_RELADDR */
136 * A label-lookup function.
138 typedef bool (*lfunc)(char *label, int32_t *segment, int64_t *offset);
141 * And a label-definition function. The boolean parameter
142 * `is_norm' states whether the label is a `normal' label (which
143 * should affect the local-label system), or something odder like
144 * an EQU or a segment-base symbol, which shouldn't.
146 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
147 char *special, bool is_norm, bool isextrn);
149 void define_label(char *label, int32_t segment, int64_t offset,
150 char *special, bool is_norm, bool isextrn);
153 * Token types returned by the scanner, in addition to ordinary
154 * ASCII character values, and zero for end-of-string.
156 enum token_type { /* token types, other than chars */
157 TOKEN_INVALID = -1, /* a placeholder value */
158 TOKEN_EOS = 0, /* end of string */
159 TOKEN_EQ = '=',
160 TOKEN_GT = '>',
161 TOKEN_LT = '<', /* aliases */
162 TOKEN_ID = 256, /* identifier */
163 TOKEN_NUM, /* numeric constant */
164 TOKEN_ERRNUM, /* malformed numeric constant */
165 TOKEN_STR, /* string constant */
166 TOKEN_ERRSTR, /* unterminated string constant */
167 TOKEN_FLOAT, /* floating-point constant */
168 TOKEN_REG, /* register name */
169 TOKEN_INSN, /* instruction name */
170 TOKEN_HERE, /* $ */
171 TOKEN_BASE, /* $$ */
172 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
173 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
174 TOKEN_SHL, /* << */
175 TOKEN_SHR, /* >> */
176 TOKEN_SDIV, /* // */
177 TOKEN_SMOD, /* %% */
178 TOKEN_GE, /* >= */
179 TOKEN_LE, /* <= */
180 TOKEN_NE, /* <> (!= is same as <>) */
181 TOKEN_DBL_AND, /* && */
182 TOKEN_DBL_OR, /* || */
183 TOKEN_DBL_XOR, /* ^^ */
184 TOKEN_SEG, /* SEG */
185 TOKEN_WRT, /* WRT */
186 TOKEN_FLOATIZE, /* __floatX__ */
187 TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
188 TOKEN_IFUNC, /* __ilog2*__ */
189 TOKEN_DECORATOR, /* decorators such as {...} */
190 TOKEN_OPMASK /* translated token for opmask registers */
193 enum floatize {
194 FLOAT_8,
195 FLOAT_16,
196 FLOAT_32,
197 FLOAT_64,
198 FLOAT_80M,
199 FLOAT_80E,
200 FLOAT_128L,
201 FLOAT_128H
204 /* Must match the list in string_transform(), in strfunc.c */
205 enum strfunc {
206 STRFUNC_UTF16,
207 STRFUNC_UTF16LE,
208 STRFUNC_UTF16BE,
209 STRFUNC_UTF32,
210 STRFUNC_UTF32LE,
211 STRFUNC_UTF32BE
214 enum ifunc {
215 IFUNC_ILOG2E,
216 IFUNC_ILOG2W,
217 IFUNC_ILOG2F,
218 IFUNC_ILOG2C
221 size_t string_transform(char *, size_t, char **, enum strfunc);
224 * The expression evaluator must be passed a scanner function; a
225 * standard scanner is provided as part of nasmlib.c. The
226 * preprocessor will use a different one. Scanners, and the
227 * token-value structures they return, look like this.
229 * The return value from the scanner is always a copy of the
230 * `t_type' field in the structure.
232 struct tokenval {
233 char *t_charptr;
234 int64_t t_integer;
235 int64_t t_inttwo;
236 enum token_type t_type;
237 int8_t t_flag;
239 typedef int (*scanner)(void *private_data, struct tokenval *tv);
241 struct location {
242 int64_t offset;
243 int32_t segment;
244 int known;
246 extern struct location location;
249 * Expression-evaluator datatype. Expressions, within the
250 * evaluator, are stored as an array of these beasts, terminated by
251 * a record with type==0. Mostly, it's a vector type: each type
252 * denotes some kind of a component, and the value denotes the
253 * multiple of that component present in the expression. The
254 * exception is the WRT type, whose `value' field denotes the
255 * segment to which the expression is relative. These segments will
256 * be segment-base types, i.e. either odd segment values or SEG_ABS
257 * types. So it is still valid to assume that anything with a
258 * `value' field of zero is insignificant.
260 typedef struct {
261 int32_t type; /* a register, or EXPR_xxx */
262 int64_t value; /* must be >= 32 bits */
263 } expr;
266 * Library routines to manipulate expression data types.
268 bool is_reloc(const expr *vect);
269 bool is_simple(const expr *vect);
270 bool is_really_simple(const expr *vect);
271 bool is_unknown(const expr *vect);
272 bool is_just_unknown(const expr *vect);
273 int64_t reloc_value(const expr *vect);
274 int32_t reloc_seg(const expr *vect);
275 int32_t reloc_wrt(const expr *vect);
276 bool is_self_relative(const expr *vect);
277 void dump_expr(const expr *vect);
280 * The evaluator can also return hints about which of two registers
281 * used in an expression should be the base register. See also the
282 * `operand' structure.
284 struct eval_hints {
285 int64_t base;
286 int type;
290 * The actual expression evaluator function looks like this. When
291 * called, it expects the first token of its expression to already
292 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
293 * it will start by calling the scanner.
295 * If a forward reference happens during evaluation, the evaluator
296 * must set `*fwref' to true if `fwref' is non-NULL.
298 * `critical' is non-zero if the expression may not contain forward
299 * references. The evaluator will report its own error if this
300 * occurs; if `critical' is 1, the error will be "symbol not
301 * defined before use", whereas if `critical' is 2, the error will
302 * be "symbol undefined".
304 * If `critical' has bit 8 set (in addition to its main value: 0x101
305 * and 0x102 correspond to 1 and 2) then an extended expression
306 * syntax is recognised, in which relational operators such as =, <
307 * and >= are accepted, as well as low-precedence logical operators
308 * &&, ^^ and ||.
310 * If `hints' is non-NULL, it gets filled in with some hints as to
311 * the base register in complex effective addresses.
313 #define CRITICAL 0x100
314 typedef expr *(*evalfunc)(scanner sc, void *scprivate,
315 struct tokenval *tv, int *fwref, int critical,
316 struct eval_hints *hints);
319 * Special values for expr->type.
320 * These come after EXPR_REG_END as defined in regs.h.
321 * Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
322 * EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
324 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
325 #define EXPR_SIMPLE (EXPR_REG_END+2)
326 #define EXPR_WRT (EXPR_REG_END+3)
327 #define EXPR_RDSAE (EXPR_REG_END+4)
328 #define EXPR_SEGBASE (EXPR_REG_END+5)
331 * preprocessors ought to look like this:
333 struct preproc_ops {
335 * Called once at the very start of assembly.
337 void (*init)(void);
340 * Called at the start of a pass; given a file name, the number
341 * of the pass, an error reporting function, an evaluator
342 * function, and a listing generator to talk to.
344 void (*reset)(char *file, int pass, StrList **deplist);
347 * Called to fetch a line of preprocessed source. The line
348 * returned has been malloc'ed, and so should be freed after
349 * use.
351 char *(*getline)(void);
353 /* Called at the end of a pass */
354 void (*cleanup)(int pass);
356 /* Additional macros specific to output format */
357 void (*extra_stdmac)(macros_t *macros);
359 /* Early definitions and undefinitions for macros */
360 void (*pre_define)(char *definition);
361 void (*pre_undefine)(char *definition);
363 /* Include file from command line */
364 void (*pre_include)(char *fname);
366 /* Include path from command line */
367 void (*include_path)(char *path);
369 /* Unwind the macro stack when printing an error message */
370 void (*error_list_macros)(int severity);
373 extern const struct preproc_ops nasmpp;
374 extern const struct preproc_ops preproc_nop;
377 * Some lexical properties of the NASM source language, included
378 * here because they are shared between the parser and preprocessor.
382 * isidstart matches any character that may start an identifier, and isidchar
383 * matches any character that may appear at places other than the start of an
384 * identifier. E.g. a period may only appear at the start of an identifier
385 * (for local labels), whereas a number may appear anywhere *but* at the
386 * start.
387 * isbrcchar matches any character that may placed inside curly braces as a
388 * decorator. E.g. {rn-sae}, {1to8}, {k1}{z}
391 #define isidstart(c) (nasm_isalpha(c) || \
392 (c) == '_' || \
393 (c) == '.' || \
394 (c) == '?' || \
395 (c) == '@')
397 #define isidchar(c) (isidstart(c) || \
398 nasm_isdigit(c) || \
399 (c) == '$' || \
400 (c) == '#' || \
401 (c) == '~')
403 #define isbrcchar(c) (isidchar(c) || \
404 (c) == '-')
406 /* Ditto for numeric constants. */
408 #define isnumstart(c) (nasm_isdigit(c) || (c) == '$')
409 #define isnumchar(c) (nasm_isalnum(c) || (c) == '_')
412 * Data-type flags that get passed to listing-file routines.
414 enum {
415 LIST_READ,
416 LIST_MACRO,
417 LIST_MACRO_NOLIST,
418 LIST_INCLUDE,
419 LIST_INCBIN,
420 LIST_TIMES
424 * -----------------------------------------------------------
425 * Format of the `insn' structure returned from `parser.c' and
426 * passed into `assemble.c'
427 * -----------------------------------------------------------
430 /* Verify value to be a valid register */
431 static inline bool is_register(int reg)
433 return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
436 enum ccode { /* condition code names */
437 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
438 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
439 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
440 C_none = -1
444 * token flags
446 #define TFLAG_BRC (1 << 0) /* valid only with braces. {1to8}, {rd-sae}, ...*/
447 #define TFLAG_BRC_OPT (1 << 1) /* may or may not have braces. opmasks {k1} */
448 #define TFLAG_BRC_ANY (TFLAG_BRC | TFLAG_BRC_OPT)
449 #define TFLAG_BRDCAST (1 << 2) /* broadcasting decorator */
450 #define TFLAG_WARN (1 << 3) /* warning only, treat as ID */
452 static inline uint8_t get_cond_opcode(enum ccode c)
454 static const uint8_t ccode_opcodes[] = {
455 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xf, 0xd, 0xc, 0xe, 0x6, 0x2,
456 0x3, 0x7, 0x3, 0x5, 0xe, 0xc, 0xd, 0xf, 0x1, 0xb, 0x9, 0x5,
457 0x0, 0xa, 0xa, 0xb, 0x8, 0x4
460 return ccode_opcodes[(int)c];
464 * REX flags
466 #define REX_MASK 0x4f /* Actual REX prefix bits */
467 #define REX_B 0x01 /* ModRM r/m extension */
468 #define REX_X 0x02 /* SIB index extension */
469 #define REX_R 0x04 /* ModRM reg extension */
470 #define REX_W 0x08 /* 64-bit operand size */
471 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
472 #define REX_P 0x40 /* REX prefix present/required */
473 #define REX_H 0x80 /* High register present, REX forbidden */
474 #define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
475 #define REX_NH 0x0200 /* Instruction which doesn't use high regs */
476 #define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
479 * EVEX bit field
481 #define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
482 #define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
483 #define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
484 #define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
485 #define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
486 #define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
487 #define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
488 #define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
489 #define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
490 #define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
491 #define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
492 #define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
495 * REX_V "classes" (prefixes which behave like VEX)
497 enum vex_class {
498 RV_VEX = 0, /* C4/C5 */
499 RV_XOP = 1, /* 8F */
500 RV_EVEX = 2 /* 62 */
504 * Note that because segment registers may be used as instruction
505 * prefixes, we must ensure the enumerations for prefixes and
506 * register names do not overlap.
508 enum prefixes { /* instruction prefixes */
509 P_none = 0,
510 PREFIX_ENUM_START = REG_ENUM_LIMIT,
511 P_A16 = PREFIX_ENUM_START,
512 P_A32,
513 P_A64,
514 P_ASP,
515 P_LOCK,
516 P_O16,
517 P_O32,
518 P_O64,
519 P_OSP,
520 P_REP,
521 P_REPE,
522 P_REPNE,
523 P_REPNZ,
524 P_REPZ,
525 P_TIMES,
526 P_WAIT,
527 P_XACQUIRE,
528 P_XRELEASE,
529 P_BND,
530 P_NOBND,
531 P_EVEX,
532 P_VEX3,
533 P_VEX2,
534 PREFIX_ENUM_LIMIT
537 enum extop_type { /* extended operand types */
538 EOT_NOTHING,
539 EOT_DB_STRING, /* Byte string */
540 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
541 EOT_DB_NUMBER /* Integer */
544 enum ea_flags { /* special EA flags */
545 EAF_BYTEOFFS = 1, /* force offset part to byte size */
546 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
547 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
548 EAF_REL = 8, /* IP-relative addressing */
549 EAF_ABS = 16, /* non-IP-relative addressing */
550 EAF_FSGS = 32, /* fs/gs segment override present */
551 EAF_MIB = 64 /* mib operand */
554 enum eval_hint { /* values for `hinttype' */
555 EAH_NOHINT = 0, /* no hint at all - our discretion */
556 EAH_MAKEBASE = 1, /* try to make given reg the base */
557 EAH_NOTBASE = 2, /* try _not_ to make reg the base */
558 EAH_SUMMED = 3 /* base and index are summed into index */
561 typedef struct operand { /* operand to an instruction */
562 opflags_t type; /* type of operand */
563 int disp_size; /* 0 means default; 16; 32; 64 */
564 enum reg_enum basereg;
565 enum reg_enum indexreg; /* address registers */
566 int scale; /* index scale */
567 int hintbase;
568 enum eval_hint hinttype; /* hint as to real base register */
569 int32_t segment; /* immediate segment, if needed */
570 int64_t offset; /* any immediate number */
571 int32_t wrt; /* segment base it's relative to */
572 int eaflags; /* special EA flags */
573 int opflags; /* see OPFLAG_* defines below */
574 decoflags_t decoflags; /* decorator flags such as {...} */
575 } operand;
577 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
578 #define OPFLAG_EXTERN 2 /* operand is an external reference */
579 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
580 (always a forward reference also) */
581 #define OPFLAG_RELATIVE 8 /* operand is self-relative, e.g. [foo - $]
582 where foo is not in the current segment */
584 typedef struct extop { /* extended operand */
585 struct extop *next; /* linked list */
586 char *stringval; /* if it's a string, then here it is */
587 size_t stringlen; /* ... and here's how long it is */
588 int64_t offset; /* ... it's given here ... */
589 int32_t segment; /* if it's a number/address, then... */
590 int32_t wrt; /* ... and here */
591 bool relative; /* self-relative expression */
592 enum extop_type type; /* defined above */
593 } extop;
595 enum ea_type {
596 EA_INVALID, /* Not a valid EA at all */
597 EA_SCALAR, /* Scalar EA */
598 EA_XMMVSIB, /* XMM vector EA */
599 EA_YMMVSIB, /* YMM vector EA */
600 EA_ZMMVSIB /* ZMM vector EA */
604 * Prefix positions: each type of prefix goes in a specific slot.
605 * This affects the final ordering of the assembled output, which
606 * shouldn't matter to the processor, but if you have stylistic
607 * preferences, you can change this. REX prefixes are handled
608 * differently for the time being.
610 * LOCK and REP used to be one slot; this is no longer the case since
611 * the introduction of HLE.
613 enum prefix_pos {
614 PPS_WAIT, /* WAIT (technically not a prefix!) */
615 PPS_REP, /* REP/HLE prefix */
616 PPS_LOCK, /* LOCK prefix */
617 PPS_SEG, /* Segment override prefix */
618 PPS_OSIZE, /* Operand size prefix */
619 PPS_ASIZE, /* Address size prefix */
620 PPS_VEX, /* VEX type */
621 MAXPREFIX /* Total number of prefix slots */
625 * Tuple types that are used when determining Disp8*N eligibility
626 * The order must match with a hash %tuple_codes in insns.pl
628 enum ttypes {
629 FV = 001,
630 HV = 002,
631 FVM = 003,
632 T1S8 = 004,
633 T1S16 = 005,
634 T1S = 006,
635 T1F32 = 007,
636 T1F64 = 010,
637 T2 = 011,
638 T4 = 012,
639 T8 = 013,
640 HVM = 014,
641 QVM = 015,
642 OVM = 016,
643 M128 = 017,
644 DUP = 020
647 /* EVEX.L'L : Vector length on vector insns */
648 enum vectlens {
649 VL128 = 0,
650 VL256 = 1,
651 VL512 = 2,
652 VLMAX = 3
655 /* If you need to change this, also change it in insns.pl */
656 #define MAX_OPERANDS 5
658 typedef struct insn { /* an instruction itself */
659 char *label; /* the label defined, or NULL */
660 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
661 enum opcode opcode; /* the opcode - not just the string */
662 enum ccode condition; /* the condition code, if Jcc/SETcc */
663 int operands; /* how many operands? 0-3 (more if db et al) */
664 int addr_size; /* address size */
665 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
666 extop *eops; /* extended operands */
667 int eops_float; /* true if DD and floating */
668 int32_t times; /* repeat count (TIMES prefix) */
669 bool forw_ref; /* is there a forward reference? */
670 bool rex_done; /* REX prefix emitted? */
671 int rex; /* Special REX Prefix */
672 int vexreg; /* Register encoded in VEX prefix */
673 int vex_cm; /* Class and M field for VEX prefix */
674 int vex_wlp; /* W, P and L information for VEX prefix */
675 uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
676 /* EVEX.P2: [z,L'L,b,V',aaa] */
677 enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
678 int evex_rm; /* static rounding mode for AVX512 (EVEX) */
679 int8_t evex_brerop; /* BR/ER/SAE operand position */
680 } insn;
682 enum geninfo { GI_SWITCH };
684 /* Instruction flags type: IF_* flags are defined in insns.h */
685 typedef uint64_t iflags_t;
688 * A pragma facility: this structure is used to request passing a
689 * parsed pragma directive for a specific facility. If the handler is
690 * NULL then this pragma facility is recognized but ignored; pragma
691 * processing stops at that point, as if the handler had returned true.
693 * Note that the handler is passed a pointer to the facility structure
694 * as part of the struct pragma.
696 struct pragma;
698 struct pragma_facility {
699 const char *name;
700 void (*handler)(const struct pragma *);
704 * This structure defines how a pragma directive is passed to a
705 * facility. This structure may be augmented in the future.
707 struct pragma {
708 const struct pragma_facility *facility;
709 const char *facility_name; /* Facility name exactly as entered by user */
710 const char *operation; /* First word after the facility name */
711 const char *tail; /* Anything after the operation */
715 * The data structure defining an output format driver, and the
716 * interfaces to the functions therein.
718 struct ofmt {
720 * This is a short (one-liner) description of the type of
721 * output generated by the driver.
723 const char *fullname;
726 * This is a single keyword used to select the driver.
728 const char *shortname;
731 * Output format flags.
733 #define OFMT_TEXT 1 /* Text file format */
734 unsigned int flags;
736 int maxbits; /* Maximum segment bits supported */
739 * this is a pointer to the first element of the debug information
741 const struct dfmt * const *debug_formats;
744 * the default debugging format if -F is not specified
746 const struct dfmt *default_dfmt;
749 * This, if non-NULL, is a NULL-terminated list of `char *'s
750 * pointing to extra standard macros supplied by the object
751 * format (e.g. a sensible initial default value of __SECT__,
752 * and user-level equivalents for any format-specific
753 * directives).
755 macros_t *stdmac;
758 * This procedure is called at the start of an output session to set
759 * up internal parameters.
761 void (*init)(void);
764 * This procedure is called to pass generic information to the
765 * object file. The first parameter gives the information type
766 * (currently only command line switches)
767 * and the second parameter gives the value. This function returns
768 * 1 if recognized, 0 if unrecognized
770 int (*setinfo)(enum geninfo type, char **string);
773 * This is the modern output function, which gets passed
774 * a struct out_data with much more information. See the
775 * definition of struct out_data.
777 void (*output)(const struct out_data *data);
780 * This procedure is called by assemble() to write actual
781 * generated code or data to the object file. Typically it
782 * doesn't have to actually _write_ it, just store it for
783 * later.
785 * The `type' argument specifies the type of output data, and
786 * usually the size as well: its contents are described below.
788 * This is used for backends which have not yet been ported to
789 * the new interface, and should be NULL on ported backends.
790 * To use this entry point, set the output pointer to
791 * nasm_do_legacy_output.
793 void (*legacy_output)(int32_t segto, const void *data,
794 enum out_type type, uint64_t size,
795 int32_t segment, int32_t wrt);
798 * This procedure is called once for every symbol defined in
799 * the module being assembled. It gives the name and value of
800 * the symbol, in NASM's terms, and indicates whether it has
801 * been declared to be global. Note that the parameter "name",
802 * when passed, will point to a piece of static storage
803 * allocated inside the label manager - it's safe to keep using
804 * that pointer, because the label manager doesn't clean up
805 * until after the output driver has.
807 * Values of `is_global' are: 0 means the symbol is local; 1
808 * means the symbol is global; 2 means the symbol is common (in
809 * which case `offset' holds the _size_ of the variable).
810 * Anything else is available for the output driver to use
811 * internally.
813 * This routine explicitly _is_ allowed to call the label
814 * manager to define further symbols, if it wants to, even
815 * though it's been called _from_ the label manager. That much
816 * re-entrancy is guaranteed in the label manager. However, the
817 * label manager will in turn call this routine, so it should
818 * be prepared to be re-entrant itself.
820 * The `special' parameter contains special information passed
821 * through from the command that defined the label: it may have
822 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
823 * be obvious to the output format from the other parameters.
825 void (*symdef)(char *name, int32_t segment, int64_t offset,
826 int is_global, char *special);
829 * This procedure is called when the source code requests a
830 * segment change. It should return the corresponding segment
831 * _number_ for the name, or NO_SEG if the name is not a valid
832 * segment name.
834 * It may also be called with NULL, in which case it is to
835 * return the _default_ section number for starting assembly in.
837 * It is allowed to modify the string it is given a pointer to.
839 * It is also allowed to specify a default instruction size for
840 * the segment, by setting `*bits' to 16 or 32. Or, if it
841 * doesn't wish to define a default, it can leave `bits' alone.
843 int32_t (*section)(char *name, int pass, int *bits);
846 * This procedure is called to modify section alignment,
847 * note there is a trick, the alignment can only increase
849 void (*sectalign)(int32_t seg, unsigned int value);
852 * This procedure is called to modify the segment base values
853 * returned from the SEG operator. It is given a segment base
854 * value (i.e. a segment value with the low bit set), and is
855 * required to produce in return a segment value which may be
856 * different. It can map segment bases to absolute numbers by
857 * means of returning SEG_ABS types.
859 * It should return NO_SEG if the segment base cannot be
860 * determined; the evaluator (which calls this routine) is
861 * responsible for throwing an error condition if that occurs
862 * in pass two or in a critical expression.
864 int32_t (*segbase)(int32_t segment);
867 * This procedure is called to allow the output driver to
868 * process its own specific directives. When called, it has the
869 * directive word in `directive' and the parameter string in
870 * `value'. It is called in both assembly passes, and `pass'
871 * will be either 1 or 2.
873 * This procedure should return zero if it does not _recognise_
874 * the directive, so that the main program can report an error.
875 * If it recognises the directive but then has its own errors,
876 * it should report them itself and then return non-zero. It
877 * should also return non-zero if it correctly processes the
878 * directive.
880 int (*directive)(enum directives directive, char *value, int pass);
883 * This procedure is called before anything else - even before
884 * the "init" routine - and is passed the name of the input
885 * file from which this output file is being generated. It
886 * should return its preferred name for the output file in
887 * `outname', if outname[0] is not '\0', and do nothing to
888 * `outname' otherwise. Since it is called before the driver is
889 * properly initialized, it has to be passed its error handler
890 * separately.
892 * This procedure may also take its own copy of the input file
893 * name for use in writing the output file: it is _guaranteed_
894 * that it will be called before the "init" routine.
896 * The parameter `outname' points to an area of storage
897 * guaranteed to be at least FILENAME_MAX in size.
899 void (*filename)(char *inname, char *outname);
902 * This procedure is called after assembly finishes, to allow
903 * the output driver to clean itself up and free its memory.
904 * Typically, it will also be the point at which the object
905 * file actually gets _written_.
907 * One thing the cleanup routine should always do is to close
908 * the output file pointer.
910 void (*cleanup)(void);
913 * List of pragma facility names that apply to this backend.
915 const struct pragma_facility *pragmas;
919 * Output format driver alias
921 struct ofmt_alias {
922 const char *shortname;
923 const char *fullname;
924 const struct ofmt *ofmt;
927 extern const struct ofmt *ofmt;
928 extern FILE *ofile;
931 * ------------------------------------------------------------
932 * The data structure defining a debug format driver, and the
933 * interfaces to the functions therein.
934 * ------------------------------------------------------------
937 struct dfmt {
939 * This is a short (one-liner) description of the type of
940 * output generated by the driver.
942 const char *fullname;
945 * This is a single keyword used to select the driver.
947 const char *shortname;
950 * init - called initially to set up local pointer to object format.
952 void (*init)(void);
955 * linenum - called any time there is output with a change of
956 * line number or file.
958 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
961 * debug_deflabel - called whenever a label is defined. Parameters
962 * are the same as to 'symdef()' in the output format. This function
963 * is called after the output format version.
966 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
967 int is_global, char *special);
969 * debug_directive - called whenever a DEBUG directive other than 'LINE'
970 * is encountered. 'directive' contains the first parameter to the
971 * DEBUG directive, and params contains the rest. For example,
972 * 'DEBUG VAR _somevar:int' would translate to a call to this
973 * function with 'directive' equal to "VAR" and 'params' equal to
974 * "_somevar:int".
976 void (*debug_directive)(const char *directive, const char *params);
979 * typevalue - called whenever the assembler wishes to register a type
980 * for the last defined label. This routine MUST detect if a type was
981 * already registered and not re-register it.
983 void (*debug_typevalue)(int32_t type);
986 * debug_output - called whenever output is required
987 * 'type' is the type of info required, and this is format-specific
989 void (*debug_output)(int type, void *param);
992 * cleanup - called after processing of file is complete
994 void (*cleanup)(void);
997 * List of pragma facility names that apply to this backend.
999 const struct pragma_facility *pragmas;
1002 extern const struct dfmt *dfmt;
1005 * The type definition macros
1006 * for debugging
1008 * low 3 bits: reserved
1009 * next 5 bits: type
1010 * next 24 bits: number of elements for arrays (0 for labels)
1013 #define TY_UNKNOWN 0x00
1014 #define TY_LABEL 0x08
1015 #define TY_BYTE 0x10
1016 #define TY_WORD 0x18
1017 #define TY_DWORD 0x20
1018 #define TY_FLOAT 0x28
1019 #define TY_QWORD 0x30
1020 #define TY_TBYTE 0x38
1021 #define TY_OWORD 0x40
1022 #define TY_YWORD 0x48
1023 #define TY_COMMON 0xE0
1024 #define TY_SEG 0xE8
1025 #define TY_EXTERN 0xF0
1026 #define TY_EQU 0xF8
1028 #define TYM_TYPE(x) ((x) & 0xF8)
1029 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1031 #define TYS_ELEMENTS(x) ((x) << 8)
1033 enum special_tokens {
1034 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1035 S_ABS = SPECIAL_ENUM_START,
1036 S_BYTE,
1037 S_DWORD,
1038 S_FAR,
1039 S_LONG,
1040 S_NEAR,
1041 S_NOSPLIT,
1042 S_OWORD,
1043 S_QWORD,
1044 S_REL,
1045 S_SHORT,
1046 S_STRICT,
1047 S_TO,
1048 S_TWORD,
1049 S_WORD,
1050 S_YWORD,
1051 S_ZWORD,
1052 SPECIAL_ENUM_LIMIT
1055 enum decorator_tokens {
1056 DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
1057 BRC_1TO2 = DECORATOR_ENUM_START,
1058 BRC_1TO4,
1059 BRC_1TO8,
1060 BRC_1TO16,
1061 BRC_RN,
1062 BRC_RD,
1063 BRC_RU,
1064 BRC_RZ,
1065 BRC_SAE,
1066 BRC_Z,
1067 DECORATOR_ENUM_LIMIT
1071 * AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
1072 * 3 2 1
1073 * 10987654321098765432109876543210
1075 * | word boundary
1076 * ............................1111 opmask
1077 * ...........................1.... zeroing / merging
1078 * ..........................1..... broadcast
1079 * .........................1...... static rounding
1080 * ........................1....... SAE
1081 * ......................11........ broadcast element size
1082 * ....................11.......... number of broadcast elements
1084 #define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
1087 * Opmask register number
1088 * identical to EVEX.aaa
1090 * Bits: 0 - 3
1092 #define OPMASK_SHIFT (0)
1093 #define OPMASK_BITS (4)
1094 #define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
1095 #define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
1096 #define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
1099 * zeroing / merging control available
1100 * matching to EVEX.z
1102 * Bits: 4
1104 #define Z_SHIFT (4)
1105 #define Z_BITS (1)
1106 #define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
1107 #define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
1110 * broadcast - Whether this operand can be broadcasted
1112 * Bits: 5
1114 #define BRDCAST_SHIFT (5)
1115 #define BRDCAST_BITS (1)
1116 #define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
1117 #define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
1120 * Whether this instruction can have a static rounding mode.
1121 * It goes with the last simd operand because the static rounding mode
1122 * decorator is located between the last simd operand and imm8 (if any).
1124 * Bits: 6
1126 #define STATICRND_SHIFT (6)
1127 #define STATICRND_BITS (1)
1128 #define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
1129 #define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
1132 * SAE(Suppress all exception) available
1134 * Bits: 7
1136 #define SAE_SHIFT (7)
1137 #define SAE_BITS (1)
1138 #define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
1139 #define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
1142 * Broadcasting element size.
1144 * Bits: 8 - 9
1146 #define BRSIZE_SHIFT (8)
1147 #define BRSIZE_BITS (2)
1148 #define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
1149 #define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
1151 #define BR_BITS32 GEN_BRSIZE(0)
1152 #define BR_BITS64 GEN_BRSIZE(1)
1155 * Number of broadcasting elements
1157 * Bits: 10 - 11
1159 #define BRNUM_SHIFT (10)
1160 #define BRNUM_BITS (2)
1161 #define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
1162 #define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
1164 #define BR_1TO2 VAL_BRNUM(0)
1165 #define BR_1TO4 VAL_BRNUM(1)
1166 #define BR_1TO8 VAL_BRNUM(2)
1167 #define BR_1TO16 VAL_BRNUM(3)
1169 #define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
1170 #define Z Z_MASK
1171 #define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
1172 #define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
1173 #define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
1174 #define SAE SAE_MASK /* SAE(Suppress All Exception) */
1177 * Global modes
1181 * This declaration passes the "pass" number to all other modules
1182 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1183 * where 0 = optimizing pass
1184 * 1 = pass 1
1185 * 2 = pass 2
1188 extern int pass0;
1189 extern int passn; /* Actual pass number */
1191 extern bool tasm_compatible_mode;
1192 extern int optimizing;
1193 extern int globalbits; /* 16, 32 or 64-bit mode */
1194 extern int globalrel; /* default to relative addressing? */
1195 extern int globalbnd; /* default to using bnd prefix? */
1197 #endif