NASM 2.12.02rc6
[nasm.git] / float.c
blobe30e1eff7c6c76ef27b146ce85add1a38fbe3737
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * float.c floating-point constant support for the Netwide Assembler
38 #include "compiler.h"
40 #include <ctype.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <inttypes.h>
46 #include "nasm.h"
47 #include "float.h"
50 * -----------------
51 * local variables
52 * -----------------
54 static bool daz = false; /* denormals as zero */
55 static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
58 * -----------
59 * constants
60 * -----------
63 /* "A limb is like a digit but bigger */
64 typedef uint32_t fp_limb;
65 typedef uint64_t fp_2limb;
67 #define LIMB_BITS 32
68 #define LIMB_BYTES (LIMB_BITS/8)
69 #define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1))
70 #define LIMB_MASK ((fp_limb)(~0))
71 #define LIMB_ALL_BYTES ((fp_limb)0x01010101)
72 #define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES)
74 /* 112 bits + 64 bits for accuracy + 16 bits for rounding */
75 #define MANT_LIMBS 6
77 /* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
78 #define MANT_DIGITS 52
80 /* the format and the argument list depend on MANT_LIMBS */
81 #define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x"
82 #define MANT_ARG SOME_ARG(mant, 0)
84 #define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], \
85 (a)[(i)+3], (a)[(i)+4], (a)[(i)+5]
88 * ---------------------------------------------------------------------------
89 * emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
90 * ---------------------------------------------------------------------------
93 #ifdef DEBUG_FLOAT
94 #define dprintf(x) printf x
95 #else
96 #define dprintf(x) do { } while (0)
97 #endif
100 * ---------------------------------------------------------------------------
101 * multiply
102 * ---------------------------------------------------------------------------
104 static int float_multiply(fp_limb *to, fp_limb *from)
106 fp_2limb temp[MANT_LIMBS * 2];
107 int i, j;
110 * guaranteed that top bit of 'from' is set -- so we only have
111 * to worry about _one_ bit shift to the left
113 dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
114 dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
116 memset(temp, 0, sizeof temp);
118 for (i = 0; i < MANT_LIMBS; i++) {
119 for (j = 0; j < MANT_LIMBS; j++) {
120 fp_2limb n;
121 n = (fp_2limb) to[i] * (fp_2limb) from[j];
122 temp[i + j] += n >> LIMB_BITS;
123 temp[i + j + 1] += (fp_limb)n;
127 for (i = MANT_LIMBS * 2; --i;) {
128 temp[i - 1] += temp[i] >> LIMB_BITS;
129 temp[i] &= LIMB_MASK;
132 dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
133 SOME_ARG(temp, MANT_LIMBS)));
135 if (temp[0] & LIMB_TOP_BIT) {
136 for (i = 0; i < MANT_LIMBS; i++) {
137 to[i] = temp[i] & LIMB_MASK;
139 dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
140 return 0;
141 } else {
142 for (i = 0; i < MANT_LIMBS; i++) {
143 to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT);
145 dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
146 return -1;
151 * ---------------------------------------------------------------------------
152 * read an exponent; returns INT32_MAX on error
153 * ---------------------------------------------------------------------------
155 static int32_t read_exponent(const char *string, int32_t max)
157 int32_t i = 0;
158 bool neg = false;
160 if (*string == '+') {
161 string++;
162 } else if (*string == '-') {
163 neg = true;
164 string++;
166 while (*string) {
167 if (*string >= '0' && *string <= '9') {
168 i = (i * 10) + (*string - '0');
171 * To ensure that underflows and overflows are
172 * handled properly we must avoid wraparounds of
173 * the signed integer value that is used to hold
174 * the exponent. Therefore we cap the exponent at
175 * +/-5000, which is slightly more/less than
176 * what's required for normal and denormal numbers
177 * in single, double, and extended precision, but
178 * sufficient to avoid signed integer wraparound.
180 if (i > max)
181 i = max;
182 } else if (*string == '_') {
183 /* do nothing */
184 } else {
185 nasm_error(ERR_NONFATAL|ERR_PASS1,
186 "invalid character in floating-point constant %s: '%c'",
187 "exponent", *string);
188 return INT32_MAX;
190 string++;
193 return neg ? -i : i;
197 * ---------------------------------------------------------------------------
198 * convert
199 * ---------------------------------------------------------------------------
201 static bool ieee_flconvert(const char *string, fp_limb *mant,
202 int32_t * exponent)
204 char digits[MANT_DIGITS];
205 char *p, *q, *r;
206 fp_limb mult[MANT_LIMBS], bit;
207 fp_limb *m;
208 int32_t tenpwr, twopwr;
209 int32_t extratwos;
210 bool started, seendot, warned;
212 warned = false;
213 p = digits;
214 tenpwr = 0;
215 started = seendot = false;
217 while (*string && *string != 'E' && *string != 'e') {
218 if (*string == '.') {
219 if (!seendot) {
220 seendot = true;
221 } else {
222 nasm_error(ERR_NONFATAL|ERR_PASS1,
223 "too many periods in floating-point constant");
224 return false;
226 } else if (*string >= '0' && *string <= '9') {
227 if (*string == '0' && !started) {
228 if (seendot) {
229 tenpwr--;
231 } else {
232 started = true;
233 if (p < digits + sizeof(digits)) {
234 *p++ = *string - '0';
235 } else {
236 if (!warned) {
237 nasm_error(ERR_WARNING|ERR_WARN_FL_TOOLONG|ERR_PASS1,
238 "floating-point constant significand contains "
239 "more than %i digits", MANT_DIGITS);
240 warned = true;
243 if (!seendot) {
244 tenpwr++;
247 } else if (*string == '_') {
248 /* do nothing */
249 } else {
250 nasm_error(ERR_NONFATAL|ERR_PASS1,
251 "invalid character in floating-point constant %s: '%c'",
252 "significand", *string);
253 return false;
255 string++;
258 if (*string) {
259 int32_t e;
261 string++; /* eat the E */
262 e = read_exponent(string, 5000);
263 if (e == INT32_MAX)
264 return false;
265 tenpwr += e;
269 * At this point, the memory interval [digits,p) contains a
270 * series of decimal digits zzzzzzz, such that our number X
271 * satisfies X = 0.zzzzzzz * 10^tenpwr.
273 q = digits;
274 dprintf(("X = 0."));
275 while (q < p) {
276 dprintf(("%c", *q + '0'));
277 q++;
279 dprintf((" * 10^%i\n", tenpwr));
282 * Now convert [digits,p) to our internal representation.
284 bit = LIMB_TOP_BIT;
285 for (m = mant; m < mant + MANT_LIMBS; m++) {
286 *m = 0;
288 m = mant;
289 q = digits;
290 started = false;
291 twopwr = 0;
292 while (m < mant + MANT_LIMBS) {
293 fp_limb carry = 0;
294 while (p > q && !p[-1]) {
295 p--;
297 if (p <= q) {
298 break;
300 for (r = p; r-- > q;) {
301 int32_t i;
302 i = 2 * *r + carry;
303 if (i >= 10) {
304 carry = 1;
305 i -= 10;
306 } else {
307 carry = 0;
309 *r = i;
311 if (carry) {
312 *m |= bit;
313 started = true;
315 if (started) {
316 if (bit == 1) {
317 bit = LIMB_TOP_BIT;
318 m++;
319 } else {
320 bit >>= 1;
322 } else {
323 twopwr--;
326 twopwr += tenpwr;
329 * At this point, the 'mant' array contains the first frac-
330 * tional places of a base-2^16 real number which when mul-
331 * tiplied by 2^twopwr and 5^tenpwr gives X.
333 dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
334 tenpwr));
337 * Now multiply 'mant' by 5^tenpwr.
339 if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
340 for (m = mult; m < mult + MANT_LIMBS - 1; m++) {
341 *m = LIMB_BYTE(0xcc);
343 mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1;
344 extratwos = -2;
345 tenpwr = -tenpwr;
348 * If tenpwr was 1000...000b, then it becomes 1000...000b. See
349 * the "ANSI C" comment below for more details on that case.
351 * Because we already truncated tenpwr to +5000...-5000 inside
352 * the exponent parsing code, this shouldn't happen though.
354 } else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
355 mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */
356 for (m = mult + 1; m < mult + MANT_LIMBS; m++) {
357 *m = 0;
359 extratwos = 3;
360 } else {
361 extratwos = 0;
363 while (tenpwr) {
364 dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
365 twopwr, tenpwr, extratwos));
366 if (tenpwr & 1) {
367 dprintf(("mant*mult\n"));
368 twopwr += extratwos + float_multiply(mant, mult);
370 dprintf(("mult*mult\n"));
371 extratwos = extratwos * 2 + float_multiply(mult, mult);
372 tenpwr >>= 1;
375 * In ANSI C, the result of right-shifting a signed integer is
376 * considered implementation-specific. To ensure that the loop
377 * terminates even if tenpwr was 1000...000b to begin with, we
378 * manually clear the MSB, in case a 1 was shifted in.
380 * Because we already truncated tenpwr to +5000...-5000 inside
381 * the exponent parsing code, this shouldn't matter; neverthe-
382 * less it is the right thing to do here.
384 tenpwr &= (uint32_t) - 1 >> 1;
388 * At this point, the 'mant' array contains the first frac-
389 * tional places of a base-2^16 real number in [0.5,1) that
390 * when multiplied by 2^twopwr gives X. Or it contains zero
391 * of course. We are done.
393 *exponent = twopwr;
394 return true;
398 * ---------------------------------------------------------------------------
399 * operations of specific bits
400 * ---------------------------------------------------------------------------
403 /* Set a bit, using *bigendian* bit numbering (0 = MSB) */
404 static void set_bit(fp_limb *mant, int bit)
406 mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1));
409 /* Test a single bit */
410 static int test_bit(const fp_limb *mant, int bit)
412 return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1;
415 /* Report if the mantissa value is all zero */
416 static bool is_zero(const fp_limb *mant)
418 int i;
420 for (i = 0; i < MANT_LIMBS; i++)
421 if (mant[i])
422 return false;
424 return true;
428 * ---------------------------------------------------------------------------
429 * round a mantissa off after i words
430 * ---------------------------------------------------------------------------
433 #define ROUND_COLLECT_BITS \
434 do { \
435 m = mant[i] & (2*bit-1); \
436 for (j = i+1; j < MANT_LIMBS; j++) \
437 m = m | mant[j]; \
438 } while (0)
440 #define ROUND_ABS_DOWN \
441 do { \
442 mant[i] &= ~(bit-1); \
443 for (j = i+1; j < MANT_LIMBS; j++) \
444 mant[j] = 0; \
445 return false; \
446 } while (0)
448 #define ROUND_ABS_UP \
449 do { \
450 mant[i] = (mant[i] & ~(bit-1)) + bit; \
451 for (j = i+1; j < MANT_LIMBS; j++) \
452 mant[j] = 0; \
453 while (i > 0 && !mant[i]) \
454 ++mant[--i]; \
455 return !mant[0]; \
456 } while (0)
458 static bool ieee_round(bool minus, fp_limb *mant, int bits)
460 fp_limb m = 0;
461 int32_t j;
462 int i = bits / LIMB_BITS;
463 int p = bits % LIMB_BITS;
464 fp_limb bit = LIMB_TOP_BIT >> p;
466 if (rc == FLOAT_RC_NEAR) {
467 if (mant[i] & bit) {
468 mant[i] &= ~bit;
469 ROUND_COLLECT_BITS;
470 mant[i] |= bit;
471 if (m) {
472 ROUND_ABS_UP;
473 } else {
474 if (test_bit(mant, bits-1)) {
475 ROUND_ABS_UP;
476 } else {
477 ROUND_ABS_DOWN;
480 } else {
481 ROUND_ABS_DOWN;
483 } else if (rc == FLOAT_RC_ZERO ||
484 rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) {
485 ROUND_ABS_DOWN;
486 } else {
487 /* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */
488 /* Round toward +/- infinity */
489 ROUND_COLLECT_BITS;
490 if (m) {
491 ROUND_ABS_UP;
492 } else {
493 ROUND_ABS_DOWN;
496 return false;
499 /* Returns a value >= 16 if not a valid hex digit */
500 static unsigned int hexval(char c)
502 unsigned int v = (unsigned char) c;
504 if (v >= '0' && v <= '9')
505 return v - '0';
506 else
507 return (v|0x20) - 'a' + 10;
510 /* Handle floating-point numbers with radix 2^bits and binary exponent */
511 static bool ieee_flconvert_bin(const char *string, int bits,
512 fp_limb *mant, int32_t *exponent)
514 static const int log2tbl[16] =
515 { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
516 fp_limb mult[MANT_LIMBS + 1], *mp;
517 int ms;
518 int32_t twopwr;
519 bool seendot, seendigit;
520 unsigned char c;
521 const int radix = 1 << bits;
522 fp_limb v;
524 twopwr = 0;
525 seendot = seendigit = false;
526 ms = 0;
527 mp = NULL;
529 memset(mult, 0, sizeof mult);
531 while ((c = *string++) != '\0') {
532 if (c == '.') {
533 if (!seendot)
534 seendot = true;
535 else {
536 nasm_error(ERR_NONFATAL|ERR_PASS1,
537 "too many periods in floating-point constant");
538 return false;
540 } else if ((v = hexval(c)) < (unsigned int)radix) {
541 if (!seendigit && v) {
542 int l = log2tbl[v];
544 seendigit = true;
545 mp = mult;
546 ms = (LIMB_BITS-1)-l;
548 twopwr = seendot ? twopwr-bits+l : l+1-bits;
551 if (seendigit) {
552 if (ms <= 0) {
553 *mp |= v >> -ms;
554 mp++;
555 if (mp > &mult[MANT_LIMBS])
556 mp = &mult[MANT_LIMBS]; /* Guard slot */
557 ms += LIMB_BITS;
559 *mp |= v << ms;
560 ms -= bits;
562 if (!seendot)
563 twopwr += bits;
564 } else {
565 if (seendot)
566 twopwr -= bits;
568 } else if (c == 'p' || c == 'P') {
569 int32_t e;
570 e = read_exponent(string, 20000);
571 if (e == INT32_MAX)
572 return false;
573 twopwr += e;
574 break;
575 } else if (c == '_') {
576 /* ignore */
577 } else {
578 nasm_error(ERR_NONFATAL|ERR_PASS1,
579 "floating-point constant: `%c' is invalid character", c);
580 return false;
584 if (!seendigit) {
585 memset(mant, 0, MANT_LIMBS*sizeof(fp_limb)); /* Zero */
586 *exponent = 0;
587 } else {
588 memcpy(mant, mult, MANT_LIMBS*sizeof(fp_limb));
589 *exponent = twopwr;
592 return true;
596 * Shift a mantissa to the right by i bits.
598 static void ieee_shr(fp_limb *mant, int i)
600 fp_limb n, m;
601 int j = 0;
602 int sr, sl, offs;
604 sr = i % LIMB_BITS; sl = LIMB_BITS-sr;
605 offs = i/LIMB_BITS;
607 if (sr == 0) {
608 if (offs)
609 for (j = MANT_LIMBS-1; j >= offs; j--)
610 mant[j] = mant[j-offs];
611 } else {
612 n = mant[MANT_LIMBS-1-offs] >> sr;
613 for (j = MANT_LIMBS-1; j > offs; j--) {
614 m = mant[j-offs-1];
615 mant[j] = (m << sl) | n;
616 n = m >> sr;
618 mant[j--] = n;
620 while (j >= 0)
621 mant[j--] = 0;
624 /* Produce standard IEEE formats, with implicit or explicit integer
625 bit; this makes the following assumptions:
627 - the sign bit is the MSB, followed by the exponent,
628 followed by the integer bit if present.
629 - the sign bit plus exponent fit in 16 bits.
630 - the exponent bias is 2^(n-1)-1 for an n-bit exponent */
632 struct ieee_format {
633 int bytes;
634 int mantissa; /* Fractional bits in the mantissa */
635 int explicit; /* Explicit integer */
636 int exponent; /* Bits in the exponent */
640 * The 16- and 128-bit formats are expected to be in IEEE 754r.
641 * AMD SSE5 uses the 16-bit format.
643 * The 32- and 64-bit formats are the original IEEE 754 formats.
645 * The 80-bit format is x87-specific, but widely used.
647 * The 8-bit format appears to be the consensus 8-bit floating-point
648 * format. It is apparently used in graphics applications.
650 static const struct ieee_format ieee_8 = { 1, 3, 0, 4 };
651 static const struct ieee_format ieee_16 = { 2, 10, 0, 5 };
652 static const struct ieee_format ieee_32 = { 4, 23, 0, 8 };
653 static const struct ieee_format ieee_64 = { 8, 52, 0, 11 };
654 static const struct ieee_format ieee_80 = { 10, 63, 1, 15 };
655 static const struct ieee_format ieee_128 = { 16, 112, 0, 15 };
657 /* Types of values we can generate */
658 enum floats {
659 FL_ZERO,
660 FL_DENORMAL,
661 FL_NORMAL,
662 FL_INFINITY,
663 FL_QNAN,
664 FL_SNAN
667 static int to_packed_bcd(const char *str, const char *p,
668 int s, uint8_t *result,
669 const struct ieee_format *fmt)
671 int n = 0;
672 char c;
673 int tv = -1;
675 if (fmt != &ieee_80) {
676 nasm_error(ERR_NONFATAL|ERR_PASS1,
677 "packed BCD requires an 80-bit format");
678 return 0;
681 while (p >= str) {
682 c = *p--;
683 if (c >= '0' && c <= '9') {
684 if (tv < 0) {
685 if (n == 9) {
686 nasm_error(ERR_WARNING|ERR_PASS1,
687 "packed BCD truncated to 18 digits");
689 tv = c-'0';
690 } else {
691 if (n < 9)
692 *result++ = tv + ((c-'0') << 4);
693 n++;
694 tv = -1;
696 } else if (c == '_') {
697 /* do nothing */
698 } else {
699 nasm_error(ERR_NONFATAL|ERR_PASS1,
700 "invalid character `%c' in packed BCD constant", c);
701 return 0;
704 if (tv >= 0) {
705 if (n < 9)
706 *result++ = tv;
707 n++;
709 while (n < 9) {
710 *result++ = 0;
711 n++;
713 *result = (s < 0) ? 0x80 : 0;
715 return 1; /* success */
718 static int to_float(const char *str, int s, uint8_t *result,
719 const struct ieee_format *fmt)
721 fp_limb mant[MANT_LIMBS];
722 int32_t exponent = 0;
723 const int32_t expmax = 1 << (fmt->exponent - 1);
724 fp_limb one_mask = LIMB_TOP_BIT >>
725 ((fmt->exponent+fmt->explicit) % LIMB_BITS);
726 const int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS;
727 int i;
728 int shift;
729 enum floats type;
730 bool ok;
731 const bool minus = s < 0;
732 const int bits = fmt->bytes * 8;
733 const char *strend;
735 if (!str[0]) {
736 nasm_panic(0,
737 "internal errror: empty string passed to float_const");
738 return 0;
741 strend = strchr(str, '\0');
742 if (strend[-1] == 'P' || strend[-1] == 'p')
743 return to_packed_bcd(str, strend-2, s, result, fmt);
745 if (str[0] == '_') {
746 /* Special tokens */
748 switch (str[2]) {
749 case 'n': /* __nan__ */
750 case 'N':
751 case 'q': /* __qnan__ */
752 case 'Q':
753 type = FL_QNAN;
754 break;
755 case 's': /* __snan__ */
756 case 'S':
757 type = FL_SNAN;
758 break;
759 case 'i': /* __infinity__ */
760 case 'I':
761 type = FL_INFINITY;
762 break;
763 default:
764 nasm_error(ERR_NONFATAL|ERR_PASS1,
765 "internal error: unknown FP constant token `%s'\n", str);
766 type = FL_QNAN;
767 break;
769 } else {
770 if (str[0] == '0') {
771 switch (str[1]) {
772 case 'x': case 'X':
773 case 'h': case 'H':
774 ok = ieee_flconvert_bin(str+2, 4, mant, &exponent);
775 break;
776 case 'o': case 'O':
777 case 'q': case 'Q':
778 ok = ieee_flconvert_bin(str+2, 3, mant, &exponent);
779 break;
780 case 'b': case 'B':
781 case 'y': case 'Y':
782 ok = ieee_flconvert_bin(str+2, 1, mant, &exponent);
783 break;
784 case 'd': case 'D':
785 case 't': case 'T':
786 ok = ieee_flconvert(str+2, mant, &exponent);
787 break;
788 case 'p': case 'P':
789 return to_packed_bcd(str+2, strend-1, s, result, fmt);
790 default:
791 /* Leading zero was just a zero? */
792 ok = ieee_flconvert(str, mant, &exponent);
793 break;
795 } else if (str[0] == '$') {
796 ok = ieee_flconvert_bin(str+1, 4, mant, &exponent);
797 } else {
798 ok = ieee_flconvert(str, mant, &exponent);
801 if (!ok) {
802 type = FL_QNAN;
803 } else if (mant[0] & LIMB_TOP_BIT) {
805 * Non-zero.
807 exponent--;
808 if (exponent >= 2 - expmax && exponent <= expmax) {
809 type = FL_NORMAL;
810 } else if (exponent > 0) {
811 if (pass0 == 1)
812 nasm_error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
813 "overflow in floating-point constant");
814 type = FL_INFINITY;
815 } else {
816 /* underflow or denormal; the denormal code handles
817 actual underflow. */
818 type = FL_DENORMAL;
820 } else {
821 /* Zero */
822 type = FL_ZERO;
826 switch (type) {
827 case FL_ZERO:
828 zero:
829 memset(mant, 0, sizeof mant);
830 break;
832 case FL_DENORMAL:
834 shift = -(exponent + expmax - 2 - fmt->exponent)
835 + fmt->explicit;
836 ieee_shr(mant, shift);
837 ieee_round(minus, mant, bits);
838 if (mant[one_pos] & one_mask) {
839 /* One's position is set, we rounded up into normal range */
840 exponent = 1;
841 if (!fmt->explicit)
842 mant[one_pos] &= ~one_mask; /* remove explicit one */
843 mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
844 } else {
845 if (daz || is_zero(mant)) {
846 /* Flush denormals to zero */
847 nasm_error(ERR_WARNING|ERR_WARN_FL_UNDERFLOW|ERR_PASS1,
848 "underflow in floating-point constant");
849 goto zero;
850 } else {
851 nasm_error(ERR_WARNING|ERR_WARN_FL_DENORM|ERR_PASS1,
852 "denormal floating-point constant");
855 break;
858 case FL_NORMAL:
859 exponent += expmax - 1;
860 ieee_shr(mant, fmt->exponent+fmt->explicit);
861 ieee_round(minus, mant, bits);
862 /* did we scale up by one? */
863 if (test_bit(mant, fmt->exponent+fmt->explicit-1)) {
864 ieee_shr(mant, 1);
865 exponent++;
866 if (exponent >= (expmax << 1)-1) {
867 nasm_error(ERR_WARNING|ERR_WARN_FL_OVERFLOW|ERR_PASS1,
868 "overflow in floating-point constant");
869 type = FL_INFINITY;
870 goto overflow;
874 if (!fmt->explicit)
875 mant[one_pos] &= ~one_mask; /* remove explicit one */
876 mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
877 break;
879 case FL_INFINITY:
880 case FL_QNAN:
881 case FL_SNAN:
882 overflow:
883 memset(mant, 0, sizeof mant);
884 mant[0] = (((fp_limb)1 << fmt->exponent)-1)
885 << (LIMB_BITS-1 - fmt->exponent);
886 if (fmt->explicit)
887 mant[one_pos] |= one_mask;
888 if (type == FL_QNAN)
889 set_bit(mant, fmt->exponent+fmt->explicit+1);
890 else if (type == FL_SNAN)
891 set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa);
892 break;
895 mant[0] |= minus ? LIMB_TOP_BIT : 0;
897 for (i = fmt->bytes - 1; i >= 0; i--)
898 *result++ = mant[i/LIMB_BYTES] >> (((LIMB_BYTES-1)-(i%LIMB_BYTES))*8);
900 return 1; /* success */
903 int float_const(const char *number, int sign, uint8_t *result, int bytes)
905 switch (bytes) {
906 case 1:
907 return to_float(number, sign, result, &ieee_8);
908 case 2:
909 return to_float(number, sign, result, &ieee_16);
910 case 4:
911 return to_float(number, sign, result, &ieee_32);
912 case 8:
913 return to_float(number, sign, result, &ieee_64);
914 case 10:
915 return to_float(number, sign, result, &ieee_80);
916 case 16:
917 return to_float(number, sign, result, &ieee_128);
918 default:
919 nasm_panic(0, "strange value %d passed to float_const", bytes);
920 return 0;
924 /* Set floating-point options */
925 int float_option(const char *option)
927 if (!nasm_stricmp(option, "daz")) {
928 daz = true;
929 return 0;
930 } else if (!nasm_stricmp(option, "nodaz")) {
931 daz = false;
932 return 0;
933 } else if (!nasm_stricmp(option, "near")) {
934 rc = FLOAT_RC_NEAR;
935 return 0;
936 } else if (!nasm_stricmp(option, "down")) {
937 rc = FLOAT_RC_DOWN;
938 return 0;
939 } else if (!nasm_stricmp(option, "up")) {
940 rc = FLOAT_RC_UP;
941 return 0;
942 } else if (!nasm_stricmp(option, "zero")) {
943 rc = FLOAT_RC_ZERO;
944 return 0;
945 } else if (!nasm_stricmp(option, "default")) {
946 rc = FLOAT_RC_NEAR;
947 daz = false;
948 return 0;
949 } else {
950 return -1; /* Unknown option */