NASM 0.99.06
[nasm.git] / nasm.h
blobfe1819646bd2a37b312da80e6e25aaab532409b9
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include "compiler.h"
16 #include <stdio.h>
17 #include <inttypes.h>
18 #include "version.h" /* generated NASM version macros */
19 #include "nasmlib.h"
20 #include "insnsi.h" /* For enum opcode */
22 #define NO_SEG -1L /* null segment value */
23 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
25 #ifndef FILENAME_MAX
26 #define FILENAME_MAX 256
27 #endif
29 #ifndef PREFIX_MAX
30 #define PREFIX_MAX 10
31 #endif
33 #ifndef POSTFIX_MAX
34 #define POSTFIX_MAX 10
35 #endif
37 #define IDLEN_MAX 4096
40 * Name pollution problems: <time.h> on Digital UNIX pulls in some
41 * strange hardware header file which sees fit to define R_SP. We
42 * undefine it here so as not to break the enum below.
44 #ifdef R_SP
45 #undef R_SP
46 #endif
49 * We must declare the existence of this structure type up here,
50 * since we have to reference it before we define it...
52 struct ofmt;
55 * -----------------------
56 * Other function typedefs
57 * -----------------------
61 * A label-lookup function should look like this.
63 typedef bool (*lfunc) (char *label, int32_t *segment, int32_t *offset);
66 * And a label-definition function like this. The boolean parameter
67 * `is_norm' states whether the label is a `normal' label (which
68 * should affect the local-label system), or something odder like
69 * an EQU or a segment-base symbol, which shouldn't.
71 typedef void (*ldfunc) (char *label, int32_t segment, int32_t offset,
72 char *special, bool is_norm, bool isextrn,
73 struct ofmt * ofmt, efunc error);
76 * List-file generators should look like this:
78 typedef struct {
80 * Called to initialize the listing file generator. Before this
81 * is called, the other routines will silently do nothing when
82 * called. The `char *' parameter is the file name to write the
83 * listing to.
85 void (*init) (char *, efunc);
88 * Called to clear stuff up and close the listing file.
90 void (*cleanup) (void);
93 * Called to output binary data. Parameters are: the offset;
94 * the data; the data type. Data types are similar to the
95 * output-format interface, only OUT_ADDRESS will _always_ be
96 * displayed as if it's relocatable, so ensure that any non-
97 * relocatable address has been converted to OUT_RAWDATA by
98 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
99 * dummy call used to give the listing generator an offset to
100 * work with when doing things like uplevel(LIST_TIMES) or
101 * uplevel(LIST_INCBIN).
103 void (*output) (int32_t, const void *, uint32_t);
106 * Called to send a text line to the listing generator. The
107 * `int' parameter is LIST_READ or LIST_MACRO depending on
108 * whether the line came directly from an input file or is the
109 * result of a multi-line macro expansion.
111 void (*line) (int, char *);
114 * Called to change one of the various levelled mechanisms in
115 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
116 * used to increase the nesting level of include files and
117 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
118 * two binary-output-suppression mechanisms for large-scale
119 * pseudo-instructions.
121 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
122 * it indicates the beginning of the expansion of a `nolist'
123 * macro, so anything under that level won't be expanded unless
124 * it includes another file.
126 void (*uplevel) (int);
129 * Reverse the effects of uplevel.
131 void (*downlevel) (int);
132 } ListGen;
135 * The expression evaluator must be passed a scanner function; a
136 * standard scanner is provided as part of nasmlib.c. The
137 * preprocessor will use a different one. Scanners, and the
138 * token-value structures they return, look like this.
140 * The return value from the scanner is always a copy of the
141 * `t_type' field in the structure.
143 struct tokenval {
144 int t_type;
145 int64_t t_integer, t_inttwo;
146 char *t_charptr;
148 typedef int (*scanner) (void *private_data, struct tokenval * tv);
151 * Token types returned by the scanner, in addition to ordinary
152 * ASCII character values, and zero for end-of-string.
154 enum { /* token types, other than chars */
155 TOKEN_INVALID = -1, /* a placeholder value */
156 TOKEN_EOS = 0, /* end of string */
157 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
158 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
159 TOKEN_ERRNUM, /* numeric constant with error in */
160 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
161 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
162 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
163 TOKEN_SHL, TOKEN_SHR, /* << and >> */
164 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
165 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
166 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
167 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
168 TOKEN_FLOAT, /* floating-point constant */
169 TOKEN_FLOATIZE, /* __floatX__ */
172 enum floatize {
173 FLOAT_8,
174 FLOAT_16,
175 FLOAT_32,
176 FLOAT_64,
177 FLOAT_80M,
178 FLOAT_80E,
179 FLOAT_128L,
180 FLOAT_128H,
183 struct location {
184 int64_t offset;
185 int32_t segment;
186 int known;
190 * Expression-evaluator datatype. Expressions, within the
191 * evaluator, are stored as an array of these beasts, terminated by
192 * a record with type==0. Mostly, it's a vector type: each type
193 * denotes some kind of a component, and the value denotes the
194 * multiple of that component present in the expression. The
195 * exception is the WRT type, whose `value' field denotes the
196 * segment to which the expression is relative. These segments will
197 * be segment-base types, i.e. either odd segment values or SEG_ABS
198 * types. So it is still valid to assume that anything with a
199 * `value' field of zero is insignificant.
201 typedef struct {
202 int32_t type; /* a register, or EXPR_xxx */
203 int64_t value; /* must be >= 32 bits */
204 } expr;
207 * Library routines to manipulate expression data types.
209 int is_reloc(expr *);
210 int is_simple(expr *);
211 int is_really_simple(expr *);
212 int is_unknown(expr *);
213 int is_just_unknown(expr *);
214 int64_t reloc_value(expr *);
215 int32_t reloc_seg(expr *);
216 int32_t reloc_wrt(expr *);
219 * The evaluator can also return hints about which of two registers
220 * used in an expression should be the base register. See also the
221 * `operand' structure.
223 struct eval_hints {
224 int64_t base;
225 int type;
229 * The actual expression evaluator function looks like this. When
230 * called, it expects the first token of its expression to already
231 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
232 * it will start by calling the scanner.
234 * If a forward reference happens during evaluation, the evaluator
235 * must set `*fwref' to true if `fwref' is non-NULL.
237 * `critical' is non-zero if the expression may not contain forward
238 * references. The evaluator will report its own error if this
239 * occurs; if `critical' is 1, the error will be "symbol not
240 * defined before use", whereas if `critical' is 2, the error will
241 * be "symbol undefined".
243 * If `critical' has bit 8 set (in addition to its main value: 0x101
244 * and 0x102 correspond to 1 and 2) then an extended expression
245 * syntax is recognised, in which relational operators such as =, <
246 * and >= are accepted, as well as low-precedence logical operators
247 * &&, ^^ and ||.
249 * If `hints' is non-NULL, it gets filled in with some hints as to
250 * the base register in complex effective addresses.
252 #define CRITICAL 0x100
253 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
254 struct tokenval * tv, int *fwref, int critical,
255 efunc error, struct eval_hints * hints);
258 * Special values for expr->type. These come after EXPR_REG_END
259 * as defined in regs.h.
262 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
263 #define EXPR_SIMPLE (EXPR_REG_END+2)
264 #define EXPR_WRT (EXPR_REG_END+3)
265 #define EXPR_SEGBASE (EXPR_REG_END+4)
268 * Preprocessors ought to look like this:
270 typedef struct preproc_ops {
272 * Called at the start of a pass; given a file name, the number
273 * of the pass, an error reporting function, an evaluator
274 * function, and a listing generator to talk to.
276 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
279 * Called to fetch a line of preprocessed source. The line
280 * returned has been malloc'ed, and so should be freed after
281 * use.
283 char *(*getline) (void);
286 * Called at the end of a pass.
288 void (*cleanup) (int);
289 } Preproc;
291 extern Preproc nasmpp;
294 * ----------------------------------------------------------------
295 * Some lexical properties of the NASM source language, included
296 * here because they are shared between the parser and preprocessor
297 * ----------------------------------------------------------------
301 * isidstart matches any character that may start an identifier, and isidchar
302 * matches any character that may appear at places other than the start of an
303 * identifier. E.g. a period may only appear at the start of an identifier
304 * (for local labels), whereas a number may appear anywhere *but* at the
305 * start.
308 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
309 || (c)=='@' )
310 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
311 || (c)=='~' )
313 /* Ditto for numeric constants. */
315 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
316 #define isnumchar(c) ( isalnum(c) || (c)=='_' )
318 /* This returns the numeric value of a given 'digit'. */
320 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
323 * Data-type flags that get passed to listing-file routines.
325 enum {
326 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
327 LIST_INCBIN, LIST_TIMES
331 * -----------------------------------------------------------
332 * Format of the `insn' structure returned from `parser.c' and
333 * passed into `assemble.c'
334 * -----------------------------------------------------------
338 * Here we define the operand types. These are implemented as bit
339 * masks, since some are subsets of others; e.g. AX in a MOV
340 * instruction is a special operand type, whereas AX in other
341 * contexts is just another 16-bit register. (Also, consider CL in
342 * shift instructions, DX in OUT, etc.)
344 * The basic concept here is that
345 * (class & ~operand) == 0
347 * if and only if "operand" belongs to class type "class".
349 * The bits are assigned as follows:
351 * Bits 0-7, 29: sizes
352 * 0: 8 bits (BYTE)
353 * 1: 16 bits (WORD)
354 * 2: 32 bits (DWORD)
355 * 3: 64 bits (QWORD)
356 * 4: 80 bits (TWORD)
357 * 5: FAR
358 * 6: NEAR
359 * 7: SHORT
360 * 29: 128 bits (OWORD)
362 * Bits 8-11 modifiers
363 * 8: TO
364 * 9: COLON
365 * 10: STRICT
366 * 11: (reserved)
368 * Bits 12-15: type of operand
369 * 12: REGISTER
370 * 13: IMMEDIATE
371 * 14: MEMORY (always has REGMEM attribute as well)
372 * 15: REGMEM (valid EA operand)
374 * Bits 16-19: subclasses
375 * With REG_CDT:
376 * 16: REG_CREG (CRx)
377 * 17: REG_DREG (DRx)
378 * 18: REG_TREG (TRx)
380 * With REG_GPR:
381 * 16: REG_ACCUM (AL, AX, EAX, RAX)
382 * 17: REG_COUNT (CL, CX, ECX, RCX)
383 * 18: REG_DATA (DL, DX, EDX, RDX)
384 * 19: REG_HIGH (AH, CH, DH, BH)
386 * With REG_SREG:
387 * 16: REG_CS
388 * 17: REG_DESS (DS, ES, SS)
389 * 18: REG_FSGS
390 * 19: REG_SEG67
392 * With FPUREG:
393 * 16: FPU0
395 * With XMMREG:
396 * 16: XMM0
398 * With MEMORY:
399 * 16: MEM_OFFS (this is a simple offset)
400 * 17: IP_REL (IP-relative offset)
402 * With IMMEDIATE:
403 * 16: UNITY (1)
404 * 17: BYTENESS (-128..127)
406 * Bits 20-26: register classes
407 * 20: REG_CDT (CRx, DRx, TRx)
408 * 21: RM_GPR (REG_GPR) (integer register)
409 * 22: REG_SREG
410 * 23: IP_REG (RIP or EIP) [unused]
411 * 24: FPUREG
412 * 25: RM_MMX (MMXREG)
413 * 26: RM_XMM (XMMREG)
415 * Bits 27-29 & 31 are currently unallocated.
417 * 30: SAME_AS
418 * Special flag only used in instruction patterns; means this operand
419 * has to be identical to another operand. Currently only supported
420 * for registers.
423 typedef uint32_t opflags_t;
425 /* Size, and other attributes, of the operand */
426 #define BITS8 0x00000001L
427 #define BITS16 0x00000002L
428 #define BITS32 0x00000004L
429 #define BITS64 0x00000008L /* x64 and FPU only */
430 #define BITS80 0x00000010L /* FPU only */
431 #define BITS128 0x20000000L
432 #define FAR 0x00000020L /* grotty: this means 16:16 or */
433 /* 16:32, like in CALL/JMP */
434 #define NEAR 0x00000040L
435 #define SHORT 0x00000080L /* and this means what it says :) */
437 #define SIZE_MASK 0x200000FFL /* all the size attributes */
439 /* Modifiers */
440 #define MODIFIER_MASK 0x00000f00L
441 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
442 #define COLON 0x00000200L /* operand is followed by a colon */
443 #define STRICT 0x00000400L /* do not optimize this operand */
445 /* Type of operand: memory reference, register, etc. */
446 #define OPTYPE_MASK 0x0000f000L
447 #define REGISTER 0x00001000L /* register number in 'basereg' */
448 #define IMMEDIATE 0x00002000L
449 #define MEMORY 0x0000c000L
450 #define REGMEM 0x00008000L /* for r/m, ie EA, operands */
452 /* Register classes */
453 #define REG_EA 0x00009000L /* 'normal' reg, qualifies as EA */
454 #define RM_GPR 0x00208000L /* integer operand */
455 #define REG_GPR 0x00209000L /* integer register */
456 #define REG8 0x00209001L /* 8-bit GPR */
457 #define REG16 0x00209002L /* 16-bit GPR */
458 #define REG32 0x00209004L /* 32-bit GPR */
459 #define REG64 0x00209008L /* 64-bit GPR */
460 #define IP_REG 0x00801000L /* RIP or EIP register */
461 #define RIPREG 0x00801008L /* RIP */
462 #define EIPREG 0x00801004L /* EIP */
463 #define FPUREG 0x01001000L /* floating point stack registers */
464 #define FPU0 0x01011000L /* FPU stack register zero */
465 #define RM_MMX 0x02008000L /* MMX operand */
466 #define MMXREG 0x02009000L /* MMX register */
467 #define RM_XMM 0x04008000L /* XMM (SSE) operand */
468 #define XMMREG 0x04009000L /* XMM (SSE) register */
469 #define XMM0 0x04019000L /* XMM register zero */
470 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
471 #define REG_CREG 0x00111004L /* CRn */
472 #define REG_DREG 0x00121004L /* DRn */
473 #define REG_TREG 0x00141004L /* TRn */
474 #define REG_SREG 0x00401002L /* any segment register */
475 #define REG_CS 0x00411002L /* CS */
476 #define REG_DESS 0x00421002L /* DS, ES, SS */
477 #define REG_FSGS 0x00441002L /* FS, GS */
478 #define REG_SEG67 0x00481002L /* Unimplemented segment registers */
480 #define REG_RIP 0x00801008L /* RIP relative addressing */
481 #define REG_EIP 0x00801004L /* EIP relative addressing */
483 /* Special GPRs */
484 #define REG_SMASK 0x000f0000L /* a mask for the following */
485 #define REG_ACCUM 0x00219000L /* accumulator: AL, AX, EAX, RAX */
486 #define REG_AL 0x00219001L
487 #define REG_AX 0x00219002L
488 #define REG_EAX 0x00219004L
489 #define REG_RAX 0x00219008L
490 #define REG_COUNT 0x00229000L /* counter: CL, CX, ECX, RCX */
491 #define REG_CL 0x00229001L
492 #define REG_CX 0x00229002L
493 #define REG_ECX 0x00229004L
494 #define REG_RCX 0x00229008L
495 #define REG_DL 0x00249001L /* data: DL, DX, EDX, RDX */
496 #define REG_DX 0x00249002L
497 #define REG_EDX 0x00249004L
498 #define REG_RDX 0x00249008L
499 #define REG_HIGH 0x00289001L /* high regs: AH, CH, DH, BH */
501 /* special types of EAs */
502 #define MEM_OFFS 0x0001c000L /* simple [address] offset - absolute! */
503 #define IP_REL 0x0002c000L /* IP-relative offset */
505 /* memory which matches any type of r/m operand */
506 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM)
508 /* special type of immediate operand */
509 #define UNITY 0x00012000L /* for shift/rotate instructions */
510 #define SBYTE 0x00022000L /* for op r16/32,immediate instrs. */
512 /* special flags */
513 #define SAME_AS 0x40000000L
515 /* Register names automatically generated from regs.dat */
516 #include "regs.h"
518 enum ccode { /* condition code names */
519 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
520 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
521 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
522 C_none = -1
526 * REX flags
528 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
529 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
530 #define REX_H 0x80 /* High register present, REX forbidden */
531 #define REX_P 0x40 /* REX prefix present/required */
532 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
533 #define REX_W 0x08 /* 64-bit operand size */
534 #define REX_R 0x04 /* ModRM reg extension */
535 #define REX_X 0x02 /* SIB index extension */
536 #define REX_B 0x01 /* ModRM r/m extension */
537 #define REX_REAL 0x4f /* Actual REX prefix bits */
540 * Note that because segment registers may be used as instruction
541 * prefixes, we must ensure the enumerations for prefixes and
542 * register names do not overlap.
544 enum prefixes { /* instruction prefixes */
545 P_none = 0,
546 PREFIX_ENUM_START = REG_ENUM_LIMIT,
547 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
548 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
549 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
550 PREFIX_ENUM_LIMIT
553 enum { /* extended operand types */
554 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
557 enum { /* special EA flags */
558 EAF_BYTEOFFS = 1, /* force offset part to byte size */
559 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
560 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
561 EAF_REL = 8, /* IP-relative addressing */
562 EAF_ABS = 16, /* non-IP-relative addressing */
563 EAF_FSGS = 32 /* fs/gs segment override present */
566 enum eval_hint { /* values for `hinttype' */
567 EAH_NOHINT = 0, /* no hint at all - our discretion */
568 EAH_MAKEBASE = 1, /* try to make given reg the base */
569 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
572 typedef struct operand { /* operand to an instruction */
573 int32_t type; /* type of operand */
574 int disp_size; /* 0 means default; 16; 32; 64 */
575 enum reg_enum basereg, indexreg; /* address registers */
576 int scale; /* index scale */
577 int hintbase;
578 enum eval_hint hinttype; /* hint as to real base register */
579 int32_t segment; /* immediate segment, if needed */
580 int64_t offset; /* any immediate number */
581 int32_t wrt; /* segment base it's relative to */
582 int eaflags; /* special EA flags */
583 int opflags; /* see OPFLAG_* defines below */
584 } operand;
586 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
587 #define OPFLAG_EXTERN 2 /* operand is an external reference */
589 typedef struct extop { /* extended operand */
590 struct extop *next; /* linked list */
591 int32_t type; /* defined above */
592 char *stringval; /* if it's a string, then here it is */
593 int stringlen; /* ... and here's how long it is */
594 int32_t segment; /* if it's a number/address, then... */
595 int64_t offset; /* ... it's given here ... */
596 int32_t wrt; /* ... and here */
597 } extop;
599 /* Prefix positions: each type of prefix goes in a specific slot.
600 This affects the final ordering of the assembled output, which
601 shouldn't matter to the processor, but if you have stylistic
602 preferences, you can change this. REX prefixes are handled
603 differently for the time being.
605 Note that LOCK and REP are in the same slot. This is
606 an x86 architectural constraint. */
607 enum prefix_pos {
608 PPS_LREP, /* Lock or REP prefix */
609 PPS_SEG, /* Segment override prefix */
610 PPS_OSIZE, /* Operand size prefix */
611 PPS_ASIZE, /* Address size prefix */
612 MAXPREFIX /* Total number of prefix slots */
615 #define MAX_OPERANDS 4
617 typedef struct insn { /* an instruction itself */
618 char *label; /* the label defined, or NULL */
619 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
620 enum opcode opcode; /* the opcode - not just the string */
621 enum ccode condition; /* the condition code, if Jcc/SETcc */
622 int operands; /* how many operands? 0-3
623 * (more if db et al) */
624 int addr_size; /* address size */
625 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
626 extop *eops; /* extended operands */
627 int eops_float; /* true if DD and floating */
628 int32_t times; /* repeat count (TIMES prefix) */
629 int forw_ref; /* is there a forward reference? */
630 int rex; /* Special REX Prefix */
631 int drexdst; /* Destination register for DREX suffix */
632 } insn;
634 enum geninfo { GI_SWITCH };
636 * ------------------------------------------------------------
637 * The data structure defining an output format driver, and the
638 * interfaces to the functions therein.
639 * ------------------------------------------------------------
642 struct ofmt {
644 * This is a short (one-liner) description of the type of
645 * output generated by the driver.
647 const char *fullname;
650 * This is a single keyword used to select the driver.
652 const char *shortname;
656 * this is reserved for out module specific help.
657 * It is set to NULL in all the out modules and is not implemented
658 * in the main program
660 const char *helpstring;
663 * this is a pointer to the first element of the debug information
665 struct dfmt **debug_formats;
668 * and a pointer to the element that is being used
669 * note: this is set to the default at compile time and changed if the
670 * -F option is selected. If developing a set of new debug formats for
671 * an output format, be sure to set this to whatever default you want
674 struct dfmt *current_dfmt;
677 * This, if non-NULL, is a NULL-terminated list of `char *'s
678 * pointing to extra standard macros supplied by the object
679 * format (e.g. a sensible initial default value of __SECT__,
680 * and user-level equivalents for any format-specific
681 * directives).
683 const char **stdmac;
686 * This procedure is called at the start of an output session.
687 * It tells the output format what file it will be writing to,
688 * what routine to report errors through, and how to interface
689 * to the label manager and expression evaluator if necessary.
690 * It also gives it a chance to do other initialisation.
692 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
695 * This procedure is called to pass generic information to the
696 * object file. The first parameter gives the information type
697 * (currently only command line switches)
698 * and the second parameter gives the value. This function returns
699 * 1 if recognized, 0 if unrecognized
701 int (*setinfo) (enum geninfo type, char **string);
704 * This procedure is called by assemble() to write actual
705 * generated code or data to the object file. Typically it
706 * doesn't have to actually _write_ it, just store it for
707 * later.
709 * The `type' argument specifies the type of output data, and
710 * usually the size as well: its contents are described below.
712 void (*output) (int32_t segto, const void *data, uint32_t type,
713 int32_t segment, int32_t wrt);
716 * This procedure is called once for every symbol defined in
717 * the module being assembled. It gives the name and value of
718 * the symbol, in NASM's terms, and indicates whether it has
719 * been declared to be global. Note that the parameter "name",
720 * when passed, will point to a piece of static storage
721 * allocated inside the label manager - it's safe to keep using
722 * that pointer, because the label manager doesn't clean up
723 * until after the output driver has.
725 * Values of `is_global' are: 0 means the symbol is local; 1
726 * means the symbol is global; 2 means the symbol is common (in
727 * which case `offset' holds the _size_ of the variable).
728 * Anything else is available for the output driver to use
729 * internally.
731 * This routine explicitly _is_ allowed to call the label
732 * manager to define further symbols, if it wants to, even
733 * though it's been called _from_ the label manager. That much
734 * re-entrancy is guaranteed in the label manager. However, the
735 * label manager will in turn call this routine, so it should
736 * be prepared to be re-entrant itself.
738 * The `special' parameter contains special information passed
739 * through from the command that defined the label: it may have
740 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
741 * be obvious to the output format from the other parameters.
743 void (*symdef) (char *name, int32_t segment, int32_t offset,
744 int is_global, char *special);
747 * This procedure is called when the source code requests a
748 * segment change. It should return the corresponding segment
749 * _number_ for the name, or NO_SEG if the name is not a valid
750 * segment name.
752 * It may also be called with NULL, in which case it is to
753 * return the _default_ section number for starting assembly in.
755 * It is allowed to modify the string it is given a pointer to.
757 * It is also allowed to specify a default instruction size for
758 * the segment, by setting `*bits' to 16 or 32. Or, if it
759 * doesn't wish to define a default, it can leave `bits' alone.
761 int32_t (*section) (char *name, int pass, int *bits);
764 * This procedure is called to modify the segment base values
765 * returned from the SEG operator. It is given a segment base
766 * value (i.e. a segment value with the low bit set), and is
767 * required to produce in return a segment value which may be
768 * different. It can map segment bases to absolute numbers by
769 * means of returning SEG_ABS types.
771 * It should return NO_SEG if the segment base cannot be
772 * determined; the evaluator (which calls this routine) is
773 * responsible for throwing an error condition if that occurs
774 * in pass two or in a critical expression.
776 int32_t (*segbase) (int32_t segment);
779 * This procedure is called to allow the output driver to
780 * process its own specific directives. When called, it has the
781 * directive word in `directive' and the parameter string in
782 * `value'. It is called in both assembly passes, and `pass'
783 * will be either 1 or 2.
785 * This procedure should return zero if it does not _recognise_
786 * the directive, so that the main program can report an error.
787 * If it recognises the directive but then has its own errors,
788 * it should report them itself and then return non-zero. It
789 * should also return non-zero if it correctly processes the
790 * directive.
792 int (*directive) (char *directive, char *value, int pass);
795 * This procedure is called before anything else - even before
796 * the "init" routine - and is passed the name of the input
797 * file from which this output file is being generated. It
798 * should return its preferred name for the output file in
799 * `outname', if outname[0] is not '\0', and do nothing to
800 * `outname' otherwise. Since it is called before the driver is
801 * properly initialized, it has to be passed its error handler
802 * separately.
804 * This procedure may also take its own copy of the input file
805 * name for use in writing the output file: it is _guaranteed_
806 * that it will be called before the "init" routine.
808 * The parameter `outname' points to an area of storage
809 * guaranteed to be at least FILENAME_MAX in size.
811 void (*filename) (char *inname, char *outname, efunc error);
814 * This procedure is called after assembly finishes, to allow
815 * the output driver to clean itself up and free its memory.
816 * Typically, it will also be the point at which the object
817 * file actually gets _written_.
819 * One thing the cleanup routine should always do is to close
820 * the output file pointer.
822 void (*cleanup) (int debuginfo);
826 * values for the `type' parameter to an output function. Each one
827 * must have the actual number of _bytes_ added to it.
829 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
830 * which will be a relative jump. For this we need to know the
831 * distance in bytes from the start of the relocated record until
832 * the end of the containing instruction. _This_ is what is stored
833 * in the size part of the parameter, in this case.
835 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
836 * and the contents of the "data" parameter is irrelevant.
838 * The "data" parameter for the output function points to a "int32_t",
839 * containing the address in question, unless the type is
840 * OUT_RAWDATA, in which case it points to an "uint8_t"
841 * array.
843 #define OUT_RAWDATA 0x00000000UL
844 #define OUT_ADDRESS 0x10000000UL
845 #define OUT_REL2ADR 0x20000000UL
846 #define OUT_REL4ADR 0x30000000UL
847 #define OUT_RESERVE 0x40000000UL
848 #define OUT_TYPMASK 0xF0000000UL
849 #define OUT_SIZMASK 0x0FFFFFFFUL
852 * ------------------------------------------------------------
853 * The data structure defining a debug format driver, and the
854 * interfaces to the functions therein.
855 * ------------------------------------------------------------
858 struct dfmt {
861 * This is a short (one-liner) description of the type of
862 * output generated by the driver.
864 const char *fullname;
867 * This is a single keyword used to select the driver.
869 const char *shortname;
872 * init - called initially to set up local pointer to object format,
873 * void pointer to implementation defined data, file pointer (which
874 * probably won't be used, but who knows?), and error function.
876 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
879 * linenum - called any time there is output with a change of
880 * line number or file.
882 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
885 * debug_deflabel - called whenever a label is defined. Parameters
886 * are the same as to 'symdef()' in the output format. This function
887 * would be called before the output format version.
890 void (*debug_deflabel) (char *name, int32_t segment, int32_t offset,
891 int is_global, char *special);
893 * debug_directive - called whenever a DEBUG directive other than 'LINE'
894 * is encountered. 'directive' contains the first parameter to the
895 * DEBUG directive, and params contains the rest. For example,
896 * 'DEBUG VAR _somevar:int' would translate to a call to this
897 * function with 'directive' equal to "VAR" and 'params' equal to
898 * "_somevar:int".
900 void (*debug_directive) (const char *directive, const char *params);
903 * typevalue - called whenever the assembler wishes to register a type
904 * for the last defined label. This routine MUST detect if a type was
905 * already registered and not re-register it.
907 void (*debug_typevalue) (int32_t type);
910 * debug_output - called whenever output is required
911 * 'type' is the type of info required, and this is format-specific
913 void (*debug_output) (int type, void *param);
916 * cleanup - called after processing of file is complete
918 void (*cleanup) (void);
922 * The type definition macros
923 * for debugging
925 * low 3 bits: reserved
926 * next 5 bits: type
927 * next 24 bits: number of elements for arrays (0 for labels)
930 #define TY_UNKNOWN 0x00
931 #define TY_LABEL 0x08
932 #define TY_BYTE 0x10
933 #define TY_WORD 0x18
934 #define TY_DWORD 0x20
935 #define TY_FLOAT 0x28
936 #define TY_QWORD 0x30
937 #define TY_TBYTE 0x38
938 #define TY_OWORD 0x40
939 #define TY_COMMON 0xE0
940 #define TY_SEG 0xE8
941 #define TY_EXTERN 0xF0
942 #define TY_EQU 0xF8
944 #define TYM_TYPE(x) ((x) & 0xF8)
945 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
947 #define TYS_ELEMENTS(x) ((x) << 8)
950 * -----
951 * Special tokens
952 * -----
955 enum special_tokens {
956 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
957 S_ABS = SPECIAL_ENUM_START,
958 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
959 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD,
960 SPECIAL_ENUM_LIMIT
964 * -----
965 * Other
966 * -----
970 * This is a useful #define which I keep meaning to use more often:
971 * the number of elements of a statically defined array.
974 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
977 * -----
978 * Global modes
979 * -----
983 * This declaration passes the "pass" number to all other modules
984 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
985 * where 0 = optimizing pass
986 * 1 = pass 1
987 * 2 = pass 2
990 extern int pass0;
992 extern bool tasm_compatible_mode;
993 extern int optimizing;
994 extern int globalbits; /* 16, 32 or 64-bit mode */
995 extern int globalrel; /* default to relative addressing? */
996 extern int maxbits; /* max bits supported by output */
998 #endif