opflags: Rework opflags bits with OP_ macros
[nasm.git] / output / outelf64.c
blob5635761e7d71cd091d63e6240a67c02b449492df
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2010 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * outelf64.c output routines for the Netwide Assembler to produce
36 * ELF64 (x86_64 of course) object file format
39 #include "compiler.h"
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <ctype.h>
45 #include <inttypes.h>
47 #include "nasm.h"
48 #include "nasmlib.h"
49 #include "saa.h"
50 #include "raa.h"
51 #include "stdscan.h"
52 #include "eval.h"
53 #include "output/outform.h"
54 #include "output/outlib.h"
55 #include "rbtree.h"
57 #include "output/dwarf.h"
58 #include "output/stabs.h"
59 #include "output/outelf.h"
61 #ifdef OF_ELF64
64 * Relocation types.
66 struct Reloc {
67 struct Reloc *next;
68 int64_t address; /* relative to _start_ of section */
69 int64_t symbol; /* symbol index */
70 int64_t offset; /* symbol addend */
71 int type; /* type of relocation */
74 struct Symbol {
75 struct rbtree symv; /* symbol value and rbtree of globals */
76 int32_t strpos; /* string table position of name */
77 int32_t section; /* section ID of the symbol */
78 int type; /* symbol type */
79 int other; /* symbol visibility */
80 int32_t size; /* size of symbol */
81 int32_t globnum; /* symbol table offset if global */
82 struct Symbol *nextfwd; /* list of unresolved-size symbols */
83 char *name; /* used temporarily if in above list */
86 struct Section {
87 struct SAA *data;
88 uint64_t len, size;
89 uint32_t nrelocs;
90 int32_t index; /* index into sects array */
91 int type; /* SHT_PROGBITS or SHT_NOBITS */
92 uint64_t align; /* alignment: power of two */
93 uint64_t flags; /* section flags */
94 char *name;
95 struct SAA *rel;
96 uint64_t rellen;
97 struct Reloc *head, **tail;
98 struct rbtree *gsyms; /* global symbols in section */
101 #define SECT_DELTA 32
102 static struct Section **sects;
103 static int nsects, sectlen;
105 #define SHSTR_DELTA 256
106 static char *shstrtab;
107 static int shstrtablen, shstrtabsize;
109 static struct SAA *syms;
110 static uint32_t nlocals, nglobs, ndebugs; /* Symbol counts */
112 static int32_t def_seg;
114 static struct RAA *bsym;
116 static struct SAA *strs;
117 static uint32_t strslen;
119 static struct Symbol *fwds;
121 static char elf_module[FILENAME_MAX];
123 static uint8_t elf_osabi = 0; /* Default OSABI = 0 (System V or Linux) */
124 static uint8_t elf_abiver = 0; /* Current ABI version */
126 extern struct ofmt of_elf64;
128 static struct ELF_SECTDATA {
129 void *data;
130 int64_t len;
131 bool is_saa;
132 } *elf_sects;
133 static int elf_nsect, nsections;
134 static int64_t elf_foffs;
136 static void elf_write(void);
137 static void elf_sect_write(struct Section *, const void *, size_t);
138 static void elf_sect_writeaddr(struct Section *, int64_t, size_t);
139 static void elf_section_header(int, int, uint64_t, void *, bool, uint64_t, int, int,
140 int, int);
141 static void elf_write_sections(void);
142 static struct SAA *elf_build_symtab(int32_t *, int32_t *);
143 static struct SAA *elf_build_reltab(uint64_t *, struct Reloc *);
144 static void add_sectname(char *, char *);
146 struct erel {
147 int offset, info;
150 struct symlininfo {
151 int offset;
152 int section; /* index into sects[] */
153 int segto; /* internal section number */
154 char *name; /* shallow-copied pointer of section name */
157 struct linelist {
158 struct linelist *next;
159 struct linelist *last;
160 struct symlininfo info;
161 char *filename;
162 int line;
165 struct sectlist {
166 struct SAA *psaa;
167 int section;
168 int line;
169 int offset;
170 int file;
171 struct sectlist *next;
172 struct sectlist *last;
175 /* common debug variables */
176 static int currentline = 1;
177 static int debug_immcall = 0;
179 /* stabs debug variables */
180 static struct linelist *stabslines = 0;
181 static int numlinestabs = 0;
182 static char *stabs_filename = 0;
183 static int symtabsection;
184 static uint8_t *stabbuf = 0, *stabstrbuf = 0, *stabrelbuf = 0;
185 static int stablen, stabstrlen, stabrellen;
187 /* dwarf debug variables */
188 static struct linelist *dwarf_flist = 0, *dwarf_clist = 0, *dwarf_elist = 0;
189 static struct sectlist *dwarf_fsect = 0, *dwarf_csect = 0, *dwarf_esect = 0;
190 static int dwarf_numfiles = 0, dwarf_nsections;
191 static uint8_t *arangesbuf = 0, *arangesrelbuf = 0, *pubnamesbuf = 0, *infobuf = 0, *inforelbuf = 0,
192 *abbrevbuf = 0, *linebuf = 0, *linerelbuf = 0, *framebuf = 0, *locbuf = 0;
193 static int8_t line_base = -5, line_range = 14, opcode_base = 13;
194 static int arangeslen, arangesrellen, pubnameslen, infolen, inforellen,
195 abbrevlen, linelen, linerellen, framelen, loclen;
196 static int64_t dwarf_infosym, dwarf_abbrevsym, dwarf_linesym;
199 static struct dfmt df_dwarf;
200 static struct dfmt df_stabs;
201 static struct Symbol *lastsym;
203 /* common debugging routines */
204 static void debug64_typevalue(int32_t);
205 static void debug64_deflabel(char *, int32_t, int64_t, int, char *);
206 static void debug64_directive(const char *, const char *);
208 /* stabs debugging routines */
209 static void stabs64_linenum(const char *filename, int32_t linenumber, int32_t);
210 static void stabs64_output(int, void *);
211 static void stabs64_generate(void);
212 static void stabs64_cleanup(void);
214 /* dwarf debugging routines */
215 static void dwarf64_init(void);
216 static void dwarf64_linenum(const char *filename, int32_t linenumber, int32_t);
217 static void dwarf64_output(int, void *);
218 static void dwarf64_generate(void);
219 static void dwarf64_cleanup(void);
220 static void dwarf64_findfile(const char *);
221 static void dwarf64_findsect(const int);
224 * Special section numbers which are used to define ELF special
225 * symbols, which can be used with WRT to provide PIC relocation
226 * types.
228 static int32_t elf_gotpc_sect, elf_gotoff_sect;
229 static int32_t elf_got_sect, elf_plt_sect;
230 static int32_t elf_sym_sect;
231 static int32_t elf_gottpoff_sect;
233 static void elf_init(void)
235 maxbits = 64;
236 sects = NULL;
237 nsects = sectlen = 0;
238 syms = saa_init((int32_t)sizeof(struct Symbol));
239 nlocals = nglobs = ndebugs = 0;
240 bsym = raa_init();
241 strs = saa_init(1L);
242 saa_wbytes(strs, "\0", 1L);
243 saa_wbytes(strs, elf_module, strlen(elf_module)+1);
244 strslen = 2 + strlen(elf_module);
245 shstrtab = NULL;
246 shstrtablen = shstrtabsize = 0;;
247 add_sectname("", "");
249 fwds = NULL;
251 elf_gotpc_sect = seg_alloc();
252 define_label("..gotpc", elf_gotpc_sect + 1, 0L, NULL, false, false);
253 elf_gotoff_sect = seg_alloc();
254 define_label("..gotoff", elf_gotoff_sect + 1, 0L, NULL, false, false);
255 elf_got_sect = seg_alloc();
256 define_label("..got", elf_got_sect + 1, 0L, NULL, false, false);
257 elf_plt_sect = seg_alloc();
258 define_label("..plt", elf_plt_sect + 1, 0L, NULL, false, false);
259 elf_sym_sect = seg_alloc();
260 define_label("..sym", elf_sym_sect + 1, 0L, NULL, false, false);
261 elf_gottpoff_sect = seg_alloc();
262 define_label("..gottpoff", elf_gottpoff_sect + 1, 0L, NULL, false, false);
264 def_seg = seg_alloc();
268 static void elf_cleanup(int debuginfo)
270 struct Reloc *r;
271 int i;
273 (void)debuginfo;
275 elf_write();
276 for (i = 0; i < nsects; i++) {
277 if (sects[i]->type != SHT_NOBITS)
278 saa_free(sects[i]->data);
279 if (sects[i]->head)
280 saa_free(sects[i]->rel);
281 while (sects[i]->head) {
282 r = sects[i]->head;
283 sects[i]->head = sects[i]->head->next;
284 nasm_free(r);
287 nasm_free(sects);
288 saa_free(syms);
289 raa_free(bsym);
290 saa_free(strs);
291 if (of_elf64.current_dfmt) {
292 of_elf64.current_dfmt->cleanup();
296 /* add entry to the elf .shstrtab section */
297 static void add_sectname(char *firsthalf, char *secondhalf)
299 int len = strlen(firsthalf) + strlen(secondhalf);
300 while (shstrtablen + len + 1 > shstrtabsize)
301 shstrtab = nasm_realloc(shstrtab, (shstrtabsize += SHSTR_DELTA));
302 strcpy(shstrtab + shstrtablen, firsthalf);
303 strcat(shstrtab + shstrtablen, secondhalf);
304 shstrtablen += len + 1;
307 static int elf_make_section(char *name, int type, int flags, int align)
309 struct Section *s;
311 s = nasm_zalloc(sizeof(*s));
313 if (type != SHT_NOBITS)
314 s->data = saa_init(1L);
315 s->tail = &s->head;
316 if (!strcmp(name, ".text"))
317 s->index = def_seg;
318 else
319 s->index = seg_alloc();
320 add_sectname("", name);
322 s->name = nasm_strdup(name);
323 s->type = type;
324 s->flags = flags;
325 s->align = align;
327 if (nsects >= sectlen)
328 sects = nasm_realloc(sects, (sectlen += SECT_DELTA) * sizeof(*sects));
329 sects[nsects++] = s;
331 return nsects - 1;
334 static int32_t elf_section_names(char *name, int pass, int *bits)
336 char *p;
337 uint32_t flags, flags_and, flags_or;
338 uint64_t align;
339 int type, i;
342 * Default is 64 bits.
344 if (!name) {
345 *bits = 64;
346 return def_seg;
349 p = nasm_skip_word(name);
350 if (*p)
351 *p++ = '\0';
352 flags_and = flags_or = type = align = 0;
354 section_attrib(name, p, pass, &flags_and,
355 &flags_or, &align, &type);
357 if (!strcmp(name, ".shstrtab") ||
358 !strcmp(name, ".symtab") ||
359 !strcmp(name, ".strtab")) {
360 nasm_error(ERR_NONFATAL, "attempt to redefine reserved section"
361 "name `%s'", name);
362 return NO_SEG;
365 for (i = 0; i < nsects; i++)
366 if (!strcmp(name, sects[i]->name))
367 break;
368 if (i == nsects) {
369 const struct elf_known_section *ks = elf_known_sections;
371 while (ks->name) {
372 if (!strcmp(name, ks->name))
373 break;
374 ks++;
377 type = type ? type : ks->type;
378 align = align ? align : ks->align;
379 flags = (ks->flags & ~flags_and) | flags_or;
381 i = elf_make_section(name, type, flags, align);
382 } else if (pass == 1) {
383 if ((type && sects[i]->type != type)
384 || (align && sects[i]->align != align)
385 || (flags_and && ((sects[i]->flags & flags_and) != flags_or)))
386 nasm_error(ERR_WARNING, "incompatible section attributes ignored on"
387 " redeclaration of section `%s'", name);
390 return sects[i]->index;
393 static void elf_deflabel(char *name, int32_t segment, int64_t offset,
394 int is_global, char *special)
396 int pos = strslen;
397 struct Symbol *sym;
398 bool special_used = false;
400 #if defined(DEBUG) && DEBUG>2
401 nasm_error(ERR_DEBUG,
402 " elf_deflabel: %s, seg=%"PRIx32", off=%"PRIx64", is_global=%d, %s\n",
403 name, segment, offset, is_global, special);
404 #endif
405 if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
407 * This is a NASM special symbol. We never allow it into
408 * the ELF symbol table, even if it's a valid one. If it
409 * _isn't_ a valid one, we should barf immediately.
411 if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") &&
412 strcmp(name, "..got") && strcmp(name, "..plt") &&
413 strcmp(name, "..sym") && strcmp(name, "..gottpoff"))
414 nasm_error(ERR_NONFATAL, "unrecognised special symbol `%s'", name);
415 return;
418 if (is_global == 3) {
419 struct Symbol **s;
421 * Fix up a forward-reference symbol size from the first
422 * pass.
424 for (s = &fwds; *s; s = &(*s)->nextfwd)
425 if (!strcmp((*s)->name, name)) {
426 struct tokenval tokval;
427 expr *e;
428 char *p = nasm_skip_spaces(nasm_skip_word(special));
430 stdscan_reset();
431 stdscan_set(p);
432 tokval.t_type = TOKEN_INVALID;
433 e = evaluate(stdscan, NULL, &tokval, NULL, 1, nasm_error, NULL);
434 if (e) {
435 if (!is_simple(e))
436 nasm_error(ERR_NONFATAL, "cannot use relocatable"
437 " expression as symbol size");
438 else
439 (*s)->size = reloc_value(e);
443 * Remove it from the list of unresolved sizes.
445 nasm_free((*s)->name);
446 *s = (*s)->nextfwd;
447 return;
449 return; /* it wasn't an important one */
452 saa_wbytes(strs, name, (int32_t)(1 + strlen(name)));
453 strslen += 1 + strlen(name);
455 lastsym = sym = saa_wstruct(syms);
457 memset(&sym->symv, 0, sizeof(struct rbtree));
459 sym->strpos = pos;
460 sym->type = is_global ? SYM_GLOBAL : SYM_LOCAL;
461 sym->other = STV_DEFAULT;
462 sym->size = 0;
463 if (segment == NO_SEG)
464 sym->section = SHN_ABS;
465 else {
466 int i;
467 sym->section = SHN_UNDEF;
468 if (segment == def_seg) {
469 /* we have to be sure at least text section is there */
470 int tempint;
471 if (segment != elf_section_names(".text", 2, &tempint))
472 nasm_error(ERR_PANIC, "strange segment conditions in ELF driver");
474 for (i = 0; i < nsects; i++) {
475 if (segment == sects[i]->index) {
476 sym->section = i + 1;
477 break;
482 if (is_global == 2) {
483 sym->size = offset;
484 sym->symv.key = 0;
485 sym->section = SHN_COMMON;
487 * We have a common variable. Check the special text to see
488 * if it's a valid number and power of two; if so, store it
489 * as the alignment for the common variable.
491 if (special) {
492 bool err;
493 sym->symv.key = readnum(special, &err);
494 if (err)
495 nasm_error(ERR_NONFATAL, "alignment constraint `%s' is not a"
496 " valid number", special);
497 else if ((sym->symv.key | (sym->symv.key - 1)) != 2 * sym->symv.key - 1)
498 nasm_error(ERR_NONFATAL, "alignment constraint `%s' is not a"
499 " power of two", special);
501 special_used = true;
502 } else
503 sym->symv.key = (sym->section == SHN_UNDEF ? 0 : offset);
505 if (sym->type == SYM_GLOBAL) {
507 * If sym->section == SHN_ABS, then the first line of the
508 * else section would cause a core dump, because its a reference
509 * beyond the end of the section array.
510 * This behaviour is exhibited by this code:
511 * GLOBAL crash_nasm
512 * crash_nasm equ 0
513 * To avoid such a crash, such requests are silently discarded.
514 * This may not be the best solution.
516 if (sym->section == SHN_UNDEF || sym->section == SHN_COMMON) {
517 bsym = raa_write(bsym, segment, nglobs);
518 } else if (sym->section != SHN_ABS) {
520 * This is a global symbol; so we must add it to the rbtree
521 * of global symbols in its section.
523 * In addition, we check the special text for symbol
524 * type and size information.
526 sects[sym->section-1]->gsyms =
527 rb_insert(sects[sym->section-1]->gsyms, &sym->symv);
529 if (special) {
530 int n = strcspn(special, " \t");
532 if (!nasm_strnicmp(special, "function", n))
533 sym->type |= STT_FUNC;
534 else if (!nasm_strnicmp(special, "data", n) ||
535 !nasm_strnicmp(special, "object", n))
536 sym->type |= STT_OBJECT;
537 else if (!nasm_strnicmp(special, "notype", n))
538 sym->type |= STT_NOTYPE;
539 else
540 nasm_error(ERR_NONFATAL, "unrecognised symbol type `%.*s'",
541 n, special);
542 special += n;
544 special = nasm_skip_spaces(special);
545 if (*special) {
546 n = strcspn(special, " \t");
547 if (!nasm_strnicmp(special, "default", n))
548 sym->other = STV_DEFAULT;
549 else if (!nasm_strnicmp(special, "internal", n))
550 sym->other = STV_INTERNAL;
551 else if (!nasm_strnicmp(special, "hidden", n))
552 sym->other = STV_HIDDEN;
553 else if (!nasm_strnicmp(special, "protected", n))
554 sym->other = STV_PROTECTED;
555 else
556 n = 0;
557 special += n;
560 if (*special) {
561 struct tokenval tokval;
562 expr *e;
563 int fwd = 0;
564 char *saveme = stdscan_get();
566 while (special[n] && nasm_isspace(special[n]))
567 n++;
569 * We have a size expression; attempt to
570 * evaluate it.
572 stdscan_reset();
573 stdscan_set(special + n);
574 tokval.t_type = TOKEN_INVALID;
575 e = evaluate(stdscan, NULL, &tokval, &fwd, 0, nasm_error,
576 NULL);
577 if (fwd) {
578 sym->nextfwd = fwds;
579 fwds = sym;
580 sym->name = nasm_strdup(name);
581 } else if (e) {
582 if (!is_simple(e))
583 nasm_error(ERR_NONFATAL, "cannot use relocatable"
584 " expression as symbol size");
585 else
586 sym->size = reloc_value(e);
588 stdscan_set(saveme);
590 special_used = true;
593 * If TLS segment, mark symbol accordingly.
595 if (sects[sym->section - 1]->flags & SHF_TLS) {
596 sym->type &= 0xf0;
597 sym->type |= STT_TLS;
600 sym->globnum = nglobs;
601 nglobs++;
602 } else
603 nlocals++;
605 if (special && !special_used)
606 nasm_error(ERR_NONFATAL, "no special symbol features supported here");
609 static void elf_add_reloc(struct Section *sect, int32_t segment,
610 int64_t offset, int type)
612 struct Reloc *r;
614 r = *sect->tail = nasm_zalloc(sizeof(struct Reloc));
615 sect->tail = &r->next;
617 r->address = sect->len;
618 r->offset = offset;
620 if (segment != NO_SEG) {
621 int i;
622 for (i = 0; i < nsects; i++)
623 if (segment == sects[i]->index)
624 r->symbol = i + 2;
625 if (!r->symbol)
626 r->symbol = GLOBAL_TEMP_BASE + raa_read(bsym, segment);
628 r->type = type;
630 sect->nrelocs++;
634 * This routine deals with ..got and ..sym relocations: the more
635 * complicated kinds. In shared-library writing, some relocations
636 * with respect to global symbols must refer to the precise symbol
637 * rather than referring to an offset from the base of the section
638 * _containing_ the symbol. Such relocations call to this routine,
639 * which searches the symbol list for the symbol in question.
641 * R_386_GOT32 references require the _exact_ symbol address to be
642 * used; R_386_32 references can be at an offset from the symbol.
643 * The boolean argument `exact' tells us this.
645 * Return value is the adjusted value of `addr', having become an
646 * offset from the symbol rather than the section. Should always be
647 * zero when returning from an exact call.
649 * Limitation: if you define two symbols at the same place,
650 * confusion will occur.
652 * Inefficiency: we search, currently, using a linked list which
653 * isn't even necessarily sorted.
655 static void elf_add_gsym_reloc(struct Section *sect,
656 int32_t segment, uint64_t offset, int64_t pcrel,
657 int type, bool exact)
659 struct Reloc *r;
660 struct Section *s;
661 struct Symbol *sym;
662 struct rbtree *srb;
663 int i;
666 * First look up the segment/offset pair and find a global
667 * symbol corresponding to it. If it's not one of our segments,
668 * then it must be an external symbol, in which case we're fine
669 * doing a normal elf_add_reloc after first sanity-checking
670 * that the offset from the symbol is zero.
672 s = NULL;
673 for (i = 0; i < nsects; i++)
674 if (segment == sects[i]->index) {
675 s = sects[i];
676 break;
679 if (!s) {
680 if (exact && offset)
681 nasm_error(ERR_NONFATAL, "invalid access to an external symbol");
682 else
683 elf_add_reloc(sect, segment, offset - pcrel, type);
684 return;
687 srb = rb_search(s->gsyms, offset);
688 if (!srb || (exact && srb->key != offset)) {
689 nasm_error(ERR_NONFATAL, "unable to find a suitable global symbol"
690 " for this reference");
691 return;
693 sym = container_of(srb, struct Symbol, symv);
695 r = *sect->tail = nasm_malloc(sizeof(struct Reloc));
696 sect->tail = &r->next;
697 r->next = NULL;
699 r->address = sect->len;
700 r->offset = offset - pcrel - sym->symv.key;
701 r->symbol = GLOBAL_TEMP_BASE + sym->globnum;
702 r->type = type;
704 sect->nrelocs++;
707 static void elf_out(int32_t segto, const void *data,
708 enum out_type type, uint64_t size,
709 int32_t segment, int32_t wrt)
711 struct Section *s;
712 int64_t addr;
713 int reltype, bytes;
714 int i;
715 static struct symlininfo sinfo;
717 #if defined(DEBUG) && DEBUG>2
718 if (data)
719 nasm_error(ERR_DEBUG,
720 " elf_out line: %d type: %x seg: %"PRIx32" segto: %"PRIx32" bytes: %"PRIx64" data: %"PRIx64"\n",
721 currentline, type, segment, segto, size, *(int64_t *)data);
722 else
723 nasm_error(ERR_DEBUG,
724 " elf_out line: %d type: %x seg: %"PRIx32" segto: %"PRIx32" bytes: %"PRIx64"\n",
725 currentline, type, segment, segto, size);
726 #endif
729 * handle absolute-assembly (structure definitions)
731 if (segto == NO_SEG) {
732 if (type != OUT_RESERVE)
733 nasm_error(ERR_NONFATAL, "attempt to assemble code in [ABSOLUTE]"
734 " space");
735 return;
738 s = NULL;
739 for (i = 0; i < nsects; i++)
740 if (segto == sects[i]->index) {
741 s = sects[i];
742 break;
744 if (!s) {
745 int tempint; /* ignored */
746 if (segto != elf_section_names(".text", 2, &tempint))
747 nasm_error(ERR_PANIC, "strange segment conditions in ELF driver");
748 else {
749 s = sects[nsects - 1];
750 i = nsects - 1;
754 /* again some stabs debugging stuff */
755 if (of_elf64.current_dfmt) {
756 sinfo.offset = s->len;
757 sinfo.section = i;
758 sinfo.segto = segto;
759 sinfo.name = s->name;
760 of_elf64.current_dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo);
762 /* end of debugging stuff */
764 if (s->type == SHT_NOBITS && type != OUT_RESERVE) {
765 nasm_error(ERR_WARNING, "attempt to initialize memory in"
766 " BSS section `%s': ignored", s->name);
767 s->len += realsize(type, size);
768 return;
771 switch (type) {
772 case OUT_RESERVE:
773 if (s->type == SHT_PROGBITS) {
774 nasm_error(ERR_WARNING, "uninitialized space declared in"
775 " non-BSS section `%s': zeroing", s->name);
776 elf_sect_write(s, NULL, size);
777 } else
778 s->len += size;
779 break;
781 case OUT_RAWDATA:
782 if (segment != NO_SEG)
783 nasm_error(ERR_PANIC, "OUT_RAWDATA with other than NO_SEG");
784 elf_sect_write(s, data, size);
785 break;
787 case OUT_ADDRESS:
788 addr = *(int64_t *)data;
789 if (segment == NO_SEG) {
790 /* Do nothing */
791 } else if (segment % 2) {
792 nasm_error(ERR_NONFATAL, "ELF format does not support"
793 " segment base references");
794 } else {
795 if (wrt == NO_SEG) {
796 switch ((int)size) {
797 case 1:
798 elf_add_reloc(s, segment, addr, R_X86_64_8);
799 break;
800 case 2:
801 elf_add_reloc(s, segment, addr, R_X86_64_16);
802 break;
803 case 4:
804 elf_add_reloc(s, segment, addr, R_X86_64_32);
805 break;
806 case 8:
807 elf_add_reloc(s, segment, addr, R_X86_64_64);
808 break;
809 default:
810 nasm_error(ERR_PANIC, "internal error elf64-hpa-871");
811 break;
813 addr = 0;
814 } else if (wrt == elf_gotpc_sect + 1) {
816 * The user will supply GOT relative to $$. ELF
817 * will let us have GOT relative to $. So we
818 * need to fix up the data item by $-$$.
820 addr += s->len;
821 elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32);
822 addr = 0;
823 } else if (wrt == elf_gotoff_sect + 1) {
824 if (size != 8) {
825 nasm_error(ERR_NONFATAL, "ELF64 requires ..gotoff "
826 "references to be qword");
827 } else {
828 elf_add_reloc(s, segment, addr, R_X86_64_GOTOFF64);
829 addr = 0;
831 } else if (wrt == elf_got_sect + 1) {
832 switch ((int)size) {
833 case 4:
834 elf_add_gsym_reloc(s, segment, addr, 0,
835 R_X86_64_GOT32, true);
836 addr = 0;
837 break;
838 case 8:
839 elf_add_gsym_reloc(s, segment, addr, 0,
840 R_X86_64_GOT64, true);
841 addr = 0;
842 break;
843 default:
844 nasm_error(ERR_NONFATAL, "invalid ..got reference");
845 break;
847 } else if (wrt == elf_sym_sect + 1) {
848 switch ((int)size) {
849 case 1:
850 elf_add_gsym_reloc(s, segment, addr, 0,
851 R_X86_64_8, false);
852 addr = 0;
853 break;
854 case 2:
855 elf_add_gsym_reloc(s, segment, addr, 0,
856 R_X86_64_16, false);
857 addr = 0;
858 break;
859 case 4:
860 elf_add_gsym_reloc(s, segment, addr, 0,
861 R_X86_64_32, false);
862 addr = 0;
863 break;
864 case 8:
865 elf_add_gsym_reloc(s, segment, addr, 0,
866 R_X86_64_64, false);
867 addr = 0;
868 break;
869 default:
870 nasm_error(ERR_PANIC, "internal error elf64-hpa-903");
871 break;
873 } else if (wrt == elf_plt_sect + 1) {
874 nasm_error(ERR_NONFATAL, "ELF format cannot produce non-PC-"
875 "relative PLT references");
876 } else {
877 nasm_error(ERR_NONFATAL, "ELF format does not support this"
878 " use of WRT");
881 elf_sect_writeaddr(s, addr, size);
882 break;
884 case OUT_REL1ADR:
885 reltype = R_X86_64_PC8;
886 bytes = 1;
887 goto rel12adr;
889 case OUT_REL2ADR:
890 reltype = R_X86_64_PC16;
891 bytes = 2;
892 goto rel12adr;
894 rel12adr:
895 addr = *(int64_t *)data - size;
896 if (segment == segto)
897 nasm_error(ERR_PANIC, "intra-segment OUT_REL1ADR");
898 if (segment == NO_SEG) {
899 /* Do nothing */
900 } else if (segment % 2) {
901 nasm_error(ERR_NONFATAL, "ELF format does not support"
902 " segment base references");
903 } else {
904 if (wrt == NO_SEG) {
905 elf_add_reloc(s, segment, addr, reltype);
906 addr = 0;
907 } else {
908 nasm_error(ERR_NONFATAL,
909 "Unsupported non-32-bit ELF relocation");
912 elf_sect_writeaddr(s, addr, bytes);
913 break;
915 case OUT_REL4ADR:
916 addr = *(int64_t *)data - size;
917 if (segment == segto)
918 nasm_error(ERR_PANIC, "intra-segment OUT_REL4ADR");
919 if (segment == NO_SEG) {
920 /* Do nothing */
921 } else if (segment % 2) {
922 nasm_error(ERR_NONFATAL, "ELF64 format does not support"
923 " segment base references");
924 } else {
925 if (wrt == NO_SEG) {
926 elf_add_reloc(s, segment, addr, R_X86_64_PC32);
927 addr = 0;
928 } else if (wrt == elf_plt_sect + 1) {
929 elf_add_gsym_reloc(s, segment, addr+size, size,
930 R_X86_64_PLT32, true);
931 addr = 0;
932 } else if (wrt == elf_gotpc_sect + 1 ||
933 wrt == elf_got_sect + 1) {
934 elf_add_gsym_reloc(s, segment, addr+size, size,
935 R_X86_64_GOTPCREL, true);
936 addr = 0;
937 } else if (wrt == elf_gotoff_sect + 1 ||
938 wrt == elf_got_sect + 1) {
939 nasm_error(ERR_NONFATAL, "ELF64 requires ..gotoff references to be "
940 "qword absolute");
941 } else if (wrt == elf_gottpoff_sect + 1) {
942 elf_add_gsym_reloc(s, segment, addr+size, size,
943 R_X86_64_GOTTPOFF, true);
944 addr = 0;
945 } else {
946 nasm_error(ERR_NONFATAL, "ELF64 format does not support this"
947 " use of WRT");
950 elf_sect_writeaddr(s, addr, 4);
951 break;
953 case OUT_REL8ADR:
954 addr = *(int64_t *)data - size;
955 if (segment == segto)
956 nasm_error(ERR_PANIC, "intra-segment OUT_REL8ADR");
957 if (segment == NO_SEG) {
958 /* Do nothing */
959 } else if (segment % 2) {
960 nasm_error(ERR_NONFATAL, "ELF64 format does not support"
961 " segment base references");
962 } else {
963 if (wrt == NO_SEG) {
964 elf_add_reloc(s, segment, addr, R_X86_64_PC64);
965 addr = 0;
966 } else if (wrt == elf_gotpc_sect + 1 ||
967 wrt == elf_got_sect + 1) {
968 elf_add_gsym_reloc(s, segment, addr+size, size,
969 R_X86_64_GOTPCREL64, true);
970 addr = 0;
971 } else if (wrt == elf_gotoff_sect + 1 ||
972 wrt == elf_got_sect + 1) {
973 nasm_error(ERR_NONFATAL, "ELF64 requires ..gotoff references to be "
974 "absolute");
975 } else if (wrt == elf_gottpoff_sect + 1) {
976 nasm_error(ERR_NONFATAL, "ELF64 requires ..gottpoff references to be "
977 "dword");
978 } else {
979 nasm_error(ERR_NONFATAL, "ELF64 format does not support this"
980 " use of WRT");
983 elf_sect_writeaddr(s, addr, 8);
984 break;
988 static void elf_write(void)
990 int align;
991 char *p;
992 int i;
994 struct SAA *symtab;
995 int32_t symtablen, symtablocal;
998 * Work out how many sections we will have. We have SHN_UNDEF,
999 * then the flexible user sections, then the fixed sections
1000 * `.shstrtab', `.symtab' and `.strtab', then optionally
1001 * relocation sections for the user sections.
1003 nsections = sec_numspecial + 1;
1004 if (of_elf64.current_dfmt == &df_stabs)
1005 nsections += 3;
1006 else if (of_elf64.current_dfmt == &df_dwarf)
1007 nsections += 10;
1009 add_sectname("", ".shstrtab");
1010 add_sectname("", ".symtab");
1011 add_sectname("", ".strtab");
1012 for (i = 0; i < nsects; i++) {
1013 nsections++; /* for the section itself */
1014 if (sects[i]->head) {
1015 nsections++; /* for its relocations */
1016 add_sectname(".rela", sects[i]->name);
1020 if (of_elf64.current_dfmt == &df_stabs) {
1021 /* in case the debug information is wanted, just add these three sections... */
1022 add_sectname("", ".stab");
1023 add_sectname("", ".stabstr");
1024 add_sectname(".rel", ".stab");
1027 else if (of_elf64.current_dfmt == &df_dwarf) {
1028 /* the dwarf debug standard specifies the following ten sections,
1029 not all of which are currently implemented,
1030 although all of them are defined. */
1031 #define debug_aranges (int64_t) (nsections-10)
1032 #define debug_info (int64_t) (nsections-7)
1033 #define debug_abbrev (int64_t) (nsections-5)
1034 #define debug_line (int64_t) (nsections-4)
1035 add_sectname("", ".debug_aranges");
1036 add_sectname(".rela", ".debug_aranges");
1037 add_sectname("", ".debug_pubnames");
1038 add_sectname("", ".debug_info");
1039 add_sectname(".rela", ".debug_info");
1040 add_sectname("", ".debug_abbrev");
1041 add_sectname("", ".debug_line");
1042 add_sectname(".rela", ".debug_line");
1043 add_sectname("", ".debug_frame");
1044 add_sectname("", ".debug_loc");
1048 * Output the ELF header.
1050 fwrite("\177ELF\2\1\1", 7, 1, ofile);
1051 fputc(elf_osabi, ofile);
1052 fputc(elf_abiver, ofile);
1053 fwritezero(7, ofile);
1054 fwriteint16_t(ET_REL, ofile); /* relocatable file */
1055 fwriteint16_t(EM_X86_64, ofile); /* processor ID */
1056 fwriteint32_t(1L, ofile); /* EV_CURRENT file format version */
1057 fwriteint64_t(0L, ofile); /* no entry point */
1058 fwriteint64_t(0L, ofile); /* no program header table */
1059 fwriteint64_t(0x40L, ofile); /* section headers straight after
1060 * ELF header plus alignment */
1061 fwriteint32_t(0L, ofile); /* 386 defines no special flags */
1062 fwriteint16_t(0x40, ofile); /* size of ELF header */
1063 fwriteint16_t(0, ofile); /* no program header table, again */
1064 fwriteint16_t(0, ofile); /* still no program header table */
1065 fwriteint16_t(sizeof(Elf64_Shdr), ofile); /* size of section header */
1066 fwriteint16_t(nsections, ofile); /* number of sections */
1067 fwriteint16_t(sec_shstrtab, ofile); /* string table section index for
1068 * section header table */
1071 * Build the symbol table and relocation tables.
1073 symtab = elf_build_symtab(&symtablen, &symtablocal);
1074 for (i = 0; i < nsects; i++)
1075 if (sects[i]->head)
1076 sects[i]->rel = elf_build_reltab(&sects[i]->rellen,
1077 sects[i]->head);
1080 * Now output the section header table.
1083 elf_foffs = 0x40 + sizeof(Elf64_Shdr) * nsections;
1084 align = ALIGN(elf_foffs, SEC_FILEALIGN) - elf_foffs;
1085 elf_foffs += align;
1086 elf_nsect = 0;
1087 elf_sects = nasm_malloc(sizeof(*elf_sects) * nsections);
1089 /* SHN_UNDEF */
1090 elf_section_header(0, SHT_NULL, 0, NULL, false, 0, SHN_UNDEF, 0, 0, 0);
1091 p = shstrtab + 1;
1093 /* The normal sections */
1094 for (i = 0; i < nsects; i++) {
1095 elf_section_header(p - shstrtab, sects[i]->type, sects[i]->flags,
1096 (sects[i]->type == SHT_PROGBITS ?
1097 sects[i]->data : NULL), true,
1098 sects[i]->len, 0, 0, sects[i]->align, 0);
1099 p += strlen(p) + 1;
1102 /* .shstrtab */
1103 elf_section_header(p - shstrtab, SHT_STRTAB, 0, shstrtab, false,
1104 shstrtablen, 0, 0, 1, 0);
1105 p += strlen(p) + 1;
1107 /* .symtab */
1108 elf_section_header(p - shstrtab, SHT_SYMTAB, 0, symtab, true,
1109 symtablen, sec_strtab, symtablocal, 4, 24);
1110 p += strlen(p) + 1;
1112 /* .strtab */
1113 elf_section_header(p - shstrtab, SHT_STRTAB, 0, strs, true,
1114 strslen, 0, 0, 1, 0);
1115 p += strlen(p) + 1;
1117 /* The relocation sections */
1118 for (i = 0; i < nsects; i++)
1119 if (sects[i]->head) {
1120 elf_section_header(p - shstrtab, SHT_RELA, 0, sects[i]->rel, true,
1121 sects[i]->rellen, sec_symtab, i + 1, 4, 24);
1122 p += strlen(p) + 1;
1125 if (of_elf64.current_dfmt == &df_stabs) {
1126 /* for debugging information, create the last three sections
1127 which are the .stab , .stabstr and .rel.stab sections respectively */
1129 /* this function call creates the stab sections in memory */
1130 stabs64_generate();
1132 if (stabbuf && stabstrbuf && stabrelbuf) {
1133 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, stabbuf, false,
1134 stablen, sec_stabstr, 0, 4, 12);
1135 p += strlen(p) + 1;
1137 elf_section_header(p - shstrtab, SHT_STRTAB, 0, stabstrbuf, false,
1138 stabstrlen, 0, 0, 4, 0);
1139 p += strlen(p) + 1;
1141 /* link -> symtable info -> section to refer to */
1142 elf_section_header(p - shstrtab, SHT_REL, 0, stabrelbuf, false,
1143 stabrellen, symtabsection, sec_stab, 4, 16);
1144 p += strlen(p) + 1;
1146 } else if (of_elf64.current_dfmt == &df_dwarf) {
1147 /* for dwarf debugging information, create the ten dwarf sections */
1149 /* this function call creates the dwarf sections in memory */
1150 if (dwarf_fsect)
1151 dwarf64_generate();
1153 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, arangesbuf, false,
1154 arangeslen, 0, 0, 1, 0);
1155 p += strlen(p) + 1;
1157 elf_section_header(p - shstrtab, SHT_RELA, 0, arangesrelbuf, false,
1158 arangesrellen, symtabsection, debug_aranges, 1, 24);
1159 p += strlen(p) + 1;
1161 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, pubnamesbuf, false,
1162 pubnameslen, 0, 0, 1, 0);
1163 p += strlen(p) + 1;
1165 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, infobuf, false,
1166 infolen, 0, 0, 1, 0);
1167 p += strlen(p) + 1;
1169 elf_section_header(p - shstrtab, SHT_RELA, 0, inforelbuf, false,
1170 inforellen, symtabsection, debug_info, 1, 24);
1171 p += strlen(p) + 1;
1173 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, abbrevbuf, false,
1174 abbrevlen, 0, 0, 1, 0);
1175 p += strlen(p) + 1;
1177 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, linebuf, false,
1178 linelen, 0, 0, 1, 0);
1179 p += strlen(p) + 1;
1181 elf_section_header(p - shstrtab, SHT_RELA, 0, linerelbuf, false,
1182 linerellen, symtabsection, debug_line, 1, 24);
1183 p += strlen(p) + 1;
1185 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, framebuf, false,
1186 framelen, 0, 0, 8, 0);
1187 p += strlen(p) + 1;
1189 elf_section_header(p - shstrtab, SHT_PROGBITS, 0, locbuf, false,
1190 loclen, 0, 0, 1, 0);
1191 p += strlen(p) + 1;
1193 fwritezero(align, ofile);
1196 * Now output the sections.
1198 elf_write_sections();
1200 nasm_free(elf_sects);
1201 saa_free(symtab);
1204 static struct SAA *elf_build_symtab(int32_t *len, int32_t *local)
1206 struct SAA *s = saa_init(1L);
1207 struct Symbol *sym;
1208 uint8_t entry[24], *p;
1209 int i;
1211 *len = *local = 0;
1214 * First, an all-zeros entry, required by the ELF spec.
1216 saa_wbytes(s, NULL, 24L); /* null symbol table entry */
1217 *len += 24;
1218 (*local)++;
1221 * Next, an entry for the file name.
1223 p = entry;
1224 WRITELONG(p, 1); /* we know it's 1st entry in strtab */
1225 WRITESHORT(p, STT_FILE); /* type FILE */
1226 WRITESHORT(p, SHN_ABS);
1227 WRITEDLONG(p, (uint64_t) 0); /* no value */
1228 WRITEDLONG(p, (uint64_t) 0); /* no size either */
1229 saa_wbytes(s, entry, 24L);
1230 *len += 24;
1231 (*local)++;
1234 * Now some standard symbols defining the segments, for relocation
1235 * purposes.
1237 for (i = 1; i <= nsects; i++) {
1238 p = entry;
1239 WRITELONG(p, 0); /* no symbol name */
1240 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1241 WRITESHORT(p, i); /* section id */
1242 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1243 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1244 saa_wbytes(s, entry, 24L);
1245 *len += 24;
1246 (*local)++;
1251 * Now the other local symbols.
1253 saa_rewind(syms);
1254 while ((sym = saa_rstruct(syms))) {
1255 if (sym->type & SYM_GLOBAL)
1256 continue;
1257 p = entry;
1258 WRITELONG(p, sym->strpos); /* index into symbol string table */
1259 WRITECHAR(p, sym->type); /* type and binding */
1260 WRITECHAR(p, sym->other); /* visibility */
1261 WRITESHORT(p, sym->section); /* index into section header table */
1262 WRITEDLONG(p, (int64_t)sym->symv.key); /* value of symbol */
1263 WRITEDLONG(p, (int64_t)sym->size); /* size of symbol */
1264 saa_wbytes(s, entry, 24L);
1265 *len += 24;
1266 (*local)++;
1269 * dwarf needs symbols for debug sections
1270 * which are relocation targets.
1272 if (of_elf64.current_dfmt == &df_dwarf) {
1273 dwarf_infosym = *local;
1274 p = entry;
1275 WRITELONG(p, 0); /* no symbol name */
1276 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1277 WRITESHORT(p, debug_info); /* section id */
1278 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1279 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1280 saa_wbytes(s, entry, 24L);
1281 *len += 24;
1282 (*local)++;
1283 dwarf_abbrevsym = *local;
1284 p = entry;
1285 WRITELONG(p, 0); /* no symbol name */
1286 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1287 WRITESHORT(p, debug_abbrev); /* section id */
1288 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1289 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1290 saa_wbytes(s, entry, 24L);
1291 *len += 24;
1292 (*local)++;
1293 dwarf_linesym = *local;
1294 p = entry;
1295 WRITELONG(p, 0); /* no symbol name */
1296 WRITESHORT(p, STT_SECTION); /* type, binding, and visibility */
1297 WRITESHORT(p, debug_line); /* section id */
1298 WRITEDLONG(p, (uint64_t) 0); /* offset zero */
1299 WRITEDLONG(p, (uint64_t) 0); /* size zero */
1300 saa_wbytes(s, entry, 24L);
1301 *len += 24;
1302 (*local)++;
1306 * Now the global symbols.
1308 saa_rewind(syms);
1309 while ((sym = saa_rstruct(syms))) {
1310 if (!(sym->type & SYM_GLOBAL))
1311 continue;
1312 p = entry;
1313 WRITELONG(p, sym->strpos);
1314 WRITECHAR(p, sym->type); /* type and binding */
1315 WRITECHAR(p, sym->other); /* visibility */
1316 WRITESHORT(p, sym->section);
1317 WRITEDLONG(p, (int64_t)sym->symv.key);
1318 WRITEDLONG(p, (int64_t)sym->size);
1319 saa_wbytes(s, entry, 24L);
1320 *len += 24;
1323 return s;
1326 static struct SAA *elf_build_reltab(uint64_t *len, struct Reloc *r)
1328 struct SAA *s;
1329 uint8_t *p, entry[24];
1330 int32_t global_offset;
1332 if (!r)
1333 return NULL;
1335 s = saa_init(1L);
1336 *len = 0;
1339 * How to onvert from a global placeholder to a real symbol index;
1340 * the +2 refers to the two special entries, the null entry and
1341 * the filename entry.
1343 global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2;
1345 while (r) {
1346 int32_t sym = r->symbol;
1348 if (sym >= GLOBAL_TEMP_BASE)
1349 sym += global_offset;
1351 p = entry;
1352 WRITEDLONG(p, r->address);
1353 WRITELONG(p, r->type);
1354 WRITELONG(p, sym);
1355 WRITEDLONG(p, r->offset);
1356 saa_wbytes(s, entry, 24L);
1357 *len += 24;
1359 r = r->next;
1362 return s;
1365 static void elf_section_header(int name, int type, uint64_t flags,
1366 void *data, bool is_saa, uint64_t datalen,
1367 int link, int info, int align, int eltsize)
1369 elf_sects[elf_nsect].data = data;
1370 elf_sects[elf_nsect].len = datalen;
1371 elf_sects[elf_nsect].is_saa = is_saa;
1372 elf_nsect++;
1374 fwriteint32_t((int32_t)name, ofile);
1375 fwriteint32_t((int32_t)type, ofile);
1376 fwriteint64_t((int64_t)flags, ofile);
1377 fwriteint64_t(0L, ofile); /* no address, ever, in object files */
1378 fwriteint64_t(type == 0 ? 0L : elf_foffs, ofile);
1379 fwriteint64_t(datalen, ofile);
1380 if (data)
1381 elf_foffs += ALIGN(datalen, SEC_FILEALIGN);
1382 fwriteint32_t((int32_t)link, ofile);
1383 fwriteint32_t((int32_t)info, ofile);
1384 fwriteint64_t((int64_t)align, ofile);
1385 fwriteint64_t((int64_t)eltsize, ofile);
1388 static void elf_write_sections(void)
1390 int i;
1391 for (i = 0; i < elf_nsect; i++)
1392 if (elf_sects[i].data) {
1393 int32_t len = elf_sects[i].len;
1394 int32_t reallen = ALIGN(len, SEC_FILEALIGN);
1395 int32_t align = reallen - len;
1396 if (elf_sects[i].is_saa)
1397 saa_fpwrite(elf_sects[i].data, ofile);
1398 else
1399 fwrite(elf_sects[i].data, len, 1, ofile);
1400 fwritezero(align, ofile);
1404 static void elf_sect_write(struct Section *sect, const void *data, size_t len)
1406 saa_wbytes(sect->data, data, len);
1407 sect->len += len;
1409 static void elf_sect_writeaddr(struct Section *sect, int64_t data, size_t len)
1411 saa_writeaddr(sect->data, data, len);
1412 sect->len += len;
1415 static void elf_sectalign(int32_t seg, unsigned int value)
1417 struct Section *s = NULL;
1418 int i;
1420 for (i = 0; i < nsects; i++) {
1421 if (sects[i]->index == seg) {
1422 s = sects[i];
1423 break;
1426 if (!s || !is_power2(value))
1427 return;
1429 if (value > s->align)
1430 s->align = value;
1433 static int32_t elf_segbase(int32_t segment)
1435 return segment;
1438 static int elf_directive(enum directives directive, char *value, int pass)
1440 bool err;
1441 int64_t n;
1442 char *p;
1444 switch (directive) {
1445 case D_OSABI:
1446 if (pass == 2)
1447 return 1; /* ignore in pass 2 */
1449 n = readnum(value, &err);
1450 if (err) {
1451 nasm_error(ERR_NONFATAL, "`osabi' directive requires a parameter");
1452 return 1;
1454 if (n < 0 || n > 255) {
1455 nasm_error(ERR_NONFATAL, "valid osabi numbers are 0 to 255");
1456 return 1;
1458 elf_osabi = n;
1459 elf_abiver = 0;
1461 if ((p = strchr(value,',')) == NULL)
1462 return 1;
1464 n = readnum(p+1, &err);
1465 if (err || n < 0 || n > 255) {
1466 nasm_error(ERR_NONFATAL, "invalid ABI version number (valid: 0 to 255)");
1467 return 1;
1470 elf_abiver = n;
1471 return 1;
1473 default:
1474 return 0;
1478 static void elf_filename(char *inname, char *outname)
1480 strcpy(elf_module, inname);
1481 standard_extension(inname, outname, ".o");
1484 extern macros_t elf_stdmac[];
1486 static int elf_set_info(enum geninfo type, char **val)
1488 (void)type;
1489 (void)val;
1490 return 0;
1492 static struct dfmt df_dwarf = {
1493 "ELF64 (x86-64) dwarf debug format for Linux/Unix",
1494 "dwarf",
1495 dwarf64_init,
1496 dwarf64_linenum,
1497 debug64_deflabel,
1498 debug64_directive,
1499 debug64_typevalue,
1500 dwarf64_output,
1501 dwarf64_cleanup
1503 static struct dfmt df_stabs = {
1504 "ELF64 (x86-64) stabs debug format for Linux/Unix",
1505 "stabs",
1506 null_debug_init,
1507 stabs64_linenum,
1508 debug64_deflabel,
1509 debug64_directive,
1510 debug64_typevalue,
1511 stabs64_output,
1512 stabs64_cleanup
1515 struct dfmt *elf64_debugs_arr[3] = { &df_dwarf, &df_stabs, NULL };
1517 struct ofmt of_elf64 = {
1518 "ELF64 (x86_64) object files (e.g. Linux)",
1519 "elf64",
1521 elf64_debugs_arr,
1522 &df_stabs,
1523 elf_stdmac,
1524 elf_init,
1525 elf_set_info,
1526 elf_out,
1527 elf_deflabel,
1528 elf_section_names,
1529 elf_sectalign,
1530 elf_segbase,
1531 elf_directive,
1532 elf_filename,
1533 elf_cleanup
1536 /* common debugging routines */
1537 static void debug64_deflabel(char *name, int32_t segment, int64_t offset,
1538 int is_global, char *special)
1540 (void)name;
1541 (void)segment;
1542 (void)offset;
1543 (void)is_global;
1544 (void)special;
1547 static void debug64_directive(const char *directive, const char *params)
1549 (void)directive;
1550 (void)params;
1553 static void debug64_typevalue(int32_t type)
1555 int32_t stype, ssize;
1556 switch (TYM_TYPE(type)) {
1557 case TY_LABEL:
1558 ssize = 0;
1559 stype = STT_NOTYPE;
1560 break;
1561 case TY_BYTE:
1562 ssize = 1;
1563 stype = STT_OBJECT;
1564 break;
1565 case TY_WORD:
1566 ssize = 2;
1567 stype = STT_OBJECT;
1568 break;
1569 case TY_DWORD:
1570 ssize = 4;
1571 stype = STT_OBJECT;
1572 break;
1573 case TY_FLOAT:
1574 ssize = 4;
1575 stype = STT_OBJECT;
1576 break;
1577 case TY_QWORD:
1578 ssize = 8;
1579 stype = STT_OBJECT;
1580 break;
1581 case TY_TBYTE:
1582 ssize = 10;
1583 stype = STT_OBJECT;
1584 break;
1585 case TY_OWORD:
1586 ssize = 16;
1587 stype = STT_OBJECT;
1588 break;
1589 case TY_YWORD:
1590 ssize = 32;
1591 stype = STT_OBJECT;
1592 break;
1593 case TY_COMMON:
1594 ssize = 0;
1595 stype = STT_COMMON;
1596 break;
1597 case TY_SEG:
1598 ssize = 0;
1599 stype = STT_SECTION;
1600 break;
1601 case TY_EXTERN:
1602 ssize = 0;
1603 stype = STT_NOTYPE;
1604 break;
1605 case TY_EQU:
1606 ssize = 0;
1607 stype = STT_NOTYPE;
1608 break;
1609 default:
1610 ssize = 0;
1611 stype = STT_NOTYPE;
1612 break;
1614 if (stype == STT_OBJECT && lastsym && !lastsym->type) {
1615 lastsym->size = ssize;
1616 lastsym->type = stype;
1620 /* stabs debugging routines */
1622 static void stabs64_linenum(const char *filename, int32_t linenumber, int32_t segto)
1624 (void)segto;
1625 if (!stabs_filename) {
1626 stabs_filename = (char *)nasm_malloc(strlen(filename) + 1);
1627 strcpy(stabs_filename, filename);
1628 } else {
1629 if (strcmp(stabs_filename, filename)) {
1630 /* yep, a memory leak...this program is one-shot anyway, so who cares...
1631 in fact, this leak comes in quite handy to maintain a list of files
1632 encountered so far in the symbol lines... */
1634 /* why not nasm_free(stabs_filename); we're done with the old one */
1636 stabs_filename = (char *)nasm_malloc(strlen(filename) + 1);
1637 strcpy(stabs_filename, filename);
1640 debug_immcall = 1;
1641 currentline = linenumber;
1645 static void stabs64_output(int type, void *param)
1647 struct symlininfo *s;
1648 struct linelist *el;
1649 if (type == TY_DEBUGSYMLIN) {
1650 if (debug_immcall) {
1651 s = (struct symlininfo *)param;
1652 if (!(sects[s->section]->flags & SHF_EXECINSTR))
1653 return; /* line info is only collected for executable sections */
1654 numlinestabs++;
1655 el = (struct linelist *)nasm_malloc(sizeof(struct linelist));
1656 el->info.offset = s->offset;
1657 el->info.section = s->section;
1658 el->info.name = s->name;
1659 el->line = currentline;
1660 el->filename = stabs_filename;
1661 el->next = 0;
1662 if (stabslines) {
1663 stabslines->last->next = el;
1664 stabslines->last = el;
1665 } else {
1666 stabslines = el;
1667 stabslines->last = el;
1671 debug_immcall = 0;
1674 /* for creating the .stab , .stabstr and .rel.stab sections in memory */
1676 static void stabs64_generate(void)
1678 int i, numfiles, strsize, numstabs = 0, currfile, mainfileindex;
1679 uint8_t *sbuf, *ssbuf, *rbuf, *sptr, *rptr;
1680 char **allfiles;
1681 int *fileidx;
1683 struct linelist *ptr;
1685 ptr = stabslines;
1687 allfiles = (char **)nasm_zalloc(numlinestabs * sizeof(char *));
1688 numfiles = 0;
1689 while (ptr) {
1690 if (numfiles == 0) {
1691 allfiles[0] = ptr->filename;
1692 numfiles++;
1693 } else {
1694 for (i = 0; i < numfiles; i++) {
1695 if (!strcmp(allfiles[i], ptr->filename))
1696 break;
1698 if (i >= numfiles) {
1699 allfiles[i] = ptr->filename;
1700 numfiles++;
1703 ptr = ptr->next;
1705 strsize = 1;
1706 fileidx = (int *)nasm_malloc(numfiles * sizeof(int));
1707 for (i = 0; i < numfiles; i++) {
1708 fileidx[i] = strsize;
1709 strsize += strlen(allfiles[i]) + 1;
1711 mainfileindex = 0;
1712 for (i = 0; i < numfiles; i++) {
1713 if (!strcmp(allfiles[i], elf_module)) {
1714 mainfileindex = i;
1715 break;
1720 * worst case size of the stab buffer would be:
1721 * the sourcefiles changes each line, which would mean 1 SOL, 1 SYMLIN per line
1722 * plus one "ending" entry
1724 sbuf = (uint8_t *)nasm_malloc((numlinestabs * 2 + 4) *
1725 sizeof(struct stabentry));
1726 ssbuf = (uint8_t *)nasm_malloc(strsize);
1727 rbuf = (uint8_t *)nasm_malloc(numlinestabs * 16 * (2 + 3));
1728 rptr = rbuf;
1730 for (i = 0; i < numfiles; i++)
1731 strcpy((char *)ssbuf + fileidx[i], allfiles[i]);
1732 ssbuf[0] = 0;
1734 stabstrlen = strsize; /* set global variable for length of stab strings */
1736 sptr = sbuf;
1737 ptr = stabslines;
1738 numstabs = 0;
1740 if (ptr) {
1742 * this is the first stab, its strx points to the filename of the
1743 * the source-file, the n_desc field should be set to the number
1744 * of remaining stabs
1746 WRITE_STAB(sptr, fileidx[0], 0, 0, 0, strlen(allfiles[0] + 12));
1748 /* this is the stab for the main source file */
1749 WRITE_STAB(sptr, fileidx[mainfileindex], N_SO, 0, 0, 0);
1751 /* relocation table entry */
1754 * Since the symbol table has two entries before
1755 * the section symbols, the index in the info.section
1756 * member must be adjusted by adding 2
1759 WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
1760 WRITELONG(rptr, R_X86_64_32);
1761 WRITELONG(rptr, ptr->info.section + 2);
1763 numstabs++;
1764 currfile = mainfileindex;
1767 while (ptr) {
1768 if (strcmp(allfiles[currfile], ptr->filename)) {
1769 /* oops file has changed... */
1770 for (i = 0; i < numfiles; i++)
1771 if (!strcmp(allfiles[i], ptr->filename))
1772 break;
1773 currfile = i;
1774 WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0,
1775 ptr->info.offset);
1776 numstabs++;
1778 /* relocation table entry */
1780 WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
1781 WRITELONG(rptr, R_X86_64_32);
1782 WRITELONG(rptr, ptr->info.section + 2);
1785 WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset);
1786 numstabs++;
1788 /* relocation table entry */
1790 WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4);
1791 WRITELONG(rptr, R_X86_64_32);
1792 WRITELONG(rptr, ptr->info.section + 2);
1794 ptr = ptr->next;
1798 /* this is an "ending" token */
1799 WRITE_STAB(sptr, 0, N_SO, 0, 0, 0);
1800 numstabs++;
1802 ((struct stabentry *)sbuf)->n_desc = numstabs;
1804 nasm_free(allfiles);
1805 nasm_free(fileidx);
1807 stablen = (sptr - sbuf);
1808 stabrellen = (rptr - rbuf);
1809 stabrelbuf = rbuf;
1810 stabbuf = sbuf;
1811 stabstrbuf = ssbuf;
1814 static void stabs64_cleanup(void)
1816 struct linelist *ptr, *del;
1817 if (!stabslines)
1818 return;
1820 ptr = stabslines;
1821 while (ptr) {
1822 del = ptr;
1823 ptr = ptr->next;
1824 nasm_free(del);
1827 nasm_free(stabbuf);
1828 nasm_free(stabrelbuf);
1829 nasm_free(stabstrbuf);
1832 /* dwarf routines */
1834 static void dwarf64_init(void)
1836 ndebugs = 3; /* 3 debug symbols */
1839 static void dwarf64_linenum(const char *filename, int32_t linenumber,
1840 int32_t segto)
1842 (void)segto;
1843 dwarf64_findfile(filename);
1844 debug_immcall = 1;
1845 currentline = linenumber;
1848 /* called from elf_out with type == TY_DEBUGSYMLIN */
1849 static void dwarf64_output(int type, void *param)
1851 int ln, aa, inx, maxln, soc;
1852 struct symlininfo *s;
1853 struct SAA *plinep;
1855 (void)type;
1857 s = (struct symlininfo *)param;
1859 /* line number info is only gathered for executable sections */
1860 if (!(sects[s->section]->flags & SHF_EXECINSTR))
1861 return;
1863 /* Check if section index has changed */
1864 if (!(dwarf_csect && (dwarf_csect->section) == (s->section)))
1865 dwarf64_findsect(s->section);
1867 /* do nothing unless line or file has changed */
1868 if (!debug_immcall)
1869 return;
1871 ln = currentline - dwarf_csect->line;
1872 aa = s->offset - dwarf_csect->offset;
1873 inx = dwarf_clist->line;
1874 plinep = dwarf_csect->psaa;
1875 /* check for file change */
1876 if (!(inx == dwarf_csect->file)) {
1877 saa_write8(plinep,DW_LNS_set_file);
1878 saa_write8(plinep,inx);
1879 dwarf_csect->file = inx;
1881 /* check for line change */
1882 if (ln) {
1883 /* test if in range of special op code */
1884 maxln = line_base + line_range;
1885 soc = (ln - line_base) + (line_range * aa) + opcode_base;
1886 if (ln >= line_base && ln < maxln && soc < 256) {
1887 saa_write8(plinep,soc);
1888 } else {
1889 saa_write8(plinep,DW_LNS_advance_line);
1890 saa_wleb128s(plinep,ln);
1891 if (aa) {
1892 saa_write8(plinep,DW_LNS_advance_pc);
1893 saa_wleb128u(plinep,aa);
1896 dwarf_csect->line = currentline;
1897 dwarf_csect->offset = s->offset;
1900 /* show change handled */
1901 debug_immcall = 0;
1905 static void dwarf64_generate(void)
1907 uint8_t *pbuf;
1908 int indx;
1909 struct linelist *ftentry;
1910 struct SAA *paranges, *ppubnames, *pinfo, *pabbrev, *plines, *plinep;
1911 struct SAA *parangesrel, *plinesrel, *pinforel;
1912 struct sectlist *psect;
1913 size_t saalen, linepoff, totlen, highaddr;
1915 /* write epilogues for each line program range */
1916 /* and build aranges section */
1917 paranges = saa_init(1L);
1918 parangesrel = saa_init(1L);
1919 saa_write16(paranges,3); /* dwarf version */
1920 saa_write64(parangesrel, paranges->datalen+4);
1921 saa_write64(parangesrel, (dwarf_infosym << 32) + R_X86_64_32); /* reloc to info */
1922 saa_write64(parangesrel, 0);
1923 saa_write32(paranges,0); /* offset into info */
1924 saa_write8(paranges,8); /* pointer size */
1925 saa_write8(paranges,0); /* not segmented */
1926 saa_write32(paranges,0); /* padding */
1927 /* iterate though sectlist entries */
1928 psect = dwarf_fsect;
1929 totlen = 0;
1930 highaddr = 0;
1931 for (indx = 0; indx < dwarf_nsections; indx++)
1933 plinep = psect->psaa;
1934 /* Line Number Program Epilogue */
1935 saa_write8(plinep,2); /* std op 2 */
1936 saa_write8(plinep,(sects[psect->section]->len)-psect->offset);
1937 saa_write8(plinep,DW_LNS_extended_op);
1938 saa_write8(plinep,1); /* operand length */
1939 saa_write8(plinep,DW_LNE_end_sequence);
1940 totlen += plinep->datalen;
1941 /* range table relocation entry */
1942 saa_write64(parangesrel, paranges->datalen + 4);
1943 saa_write64(parangesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64);
1944 saa_write64(parangesrel, (uint64_t) 0);
1945 /* range table entry */
1946 saa_write64(paranges,0x0000); /* range start */
1947 saa_write64(paranges,sects[psect->section]->len); /* range length */
1948 highaddr += sects[psect->section]->len;
1949 /* done with this entry */
1950 psect = psect->next;
1952 saa_write64(paranges,0); /* null address */
1953 saa_write64(paranges,0); /* null length */
1954 saalen = paranges->datalen;
1955 arangeslen = saalen + 4;
1956 arangesbuf = pbuf = nasm_malloc(arangeslen);
1957 WRITELONG(pbuf,saalen); /* initial length */
1958 saa_rnbytes(paranges, pbuf, saalen);
1959 saa_free(paranges);
1961 /* build rela.aranges section */
1962 arangesrellen = saalen = parangesrel->datalen;
1963 arangesrelbuf = pbuf = nasm_malloc(arangesrellen);
1964 saa_rnbytes(parangesrel, pbuf, saalen);
1965 saa_free(parangesrel);
1967 /* build pubnames section */
1968 ppubnames = saa_init(1L);
1969 saa_write16(ppubnames,3); /* dwarf version */
1970 saa_write32(ppubnames,0); /* offset into info */
1971 saa_write32(ppubnames,0); /* space used in info */
1972 saa_write32(ppubnames,0); /* end of list */
1973 saalen = ppubnames->datalen;
1974 pubnameslen = saalen + 4;
1975 pubnamesbuf = pbuf = nasm_malloc(pubnameslen);
1976 WRITELONG(pbuf,saalen); /* initial length */
1977 saa_rnbytes(ppubnames, pbuf, saalen);
1978 saa_free(ppubnames);
1980 /* build info section */
1981 pinfo = saa_init(1L);
1982 pinforel = saa_init(1L);
1983 saa_write16(pinfo,3); /* dwarf version */
1984 saa_write64(pinforel, pinfo->datalen + 4);
1985 saa_write64(pinforel, (dwarf_abbrevsym << 32) + R_X86_64_32); /* reloc to abbrev */
1986 saa_write64(pinforel, 0);
1987 saa_write32(pinfo,0); /* offset into abbrev */
1988 saa_write8(pinfo,8); /* pointer size */
1989 saa_write8(pinfo,1); /* abbrviation number LEB128u */
1990 saa_write64(pinforel, pinfo->datalen + 4);
1991 saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
1992 saa_write64(pinforel, 0);
1993 saa_write64(pinfo,0); /* DW_AT_low_pc */
1994 saa_write64(pinforel, pinfo->datalen + 4);
1995 saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
1996 saa_write64(pinforel, 0);
1997 saa_write64(pinfo,highaddr); /* DW_AT_high_pc */
1998 saa_write64(pinforel, pinfo->datalen + 4);
1999 saa_write64(pinforel, (dwarf_linesym << 32) + R_X86_64_32); /* reloc to line */
2000 saa_write64(pinforel, 0);
2001 saa_write32(pinfo,0); /* DW_AT_stmt_list */
2002 saa_wbytes(pinfo, elf_module, strlen(elf_module)+1);
2003 saa_wbytes(pinfo, nasm_signature, strlen(nasm_signature)+1);
2004 saa_write16(pinfo,DW_LANG_Mips_Assembler);
2005 saa_write8(pinfo,2); /* abbrviation number LEB128u */
2006 saa_write64(pinforel, pinfo->datalen + 4);
2007 saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64);
2008 saa_write64(pinforel, 0);
2009 saa_write64(pinfo,0); /* DW_AT_low_pc */
2010 saa_write64(pinfo,0); /* DW_AT_frame_base */
2011 saa_write8(pinfo,0); /* end of entries */
2012 saalen = pinfo->datalen;
2013 infolen = saalen + 4;
2014 infobuf = pbuf = nasm_malloc(infolen);
2015 WRITELONG(pbuf,saalen); /* initial length */
2016 saa_rnbytes(pinfo, pbuf, saalen);
2017 saa_free(pinfo);
2019 /* build rela.info section */
2020 inforellen = saalen = pinforel->datalen;
2021 inforelbuf = pbuf = nasm_malloc(inforellen);
2022 saa_rnbytes(pinforel, pbuf, saalen);
2023 saa_free(pinforel);
2025 /* build abbrev section */
2026 pabbrev = saa_init(1L);
2027 saa_write8(pabbrev,1); /* entry number LEB128u */
2028 saa_write8(pabbrev,DW_TAG_compile_unit); /* tag LEB128u */
2029 saa_write8(pabbrev,1); /* has children */
2030 /* the following attributes and forms are all LEB128u values */
2031 saa_write8(pabbrev,DW_AT_low_pc);
2032 saa_write8(pabbrev,DW_FORM_addr);
2033 saa_write8(pabbrev,DW_AT_high_pc);
2034 saa_write8(pabbrev,DW_FORM_addr);
2035 saa_write8(pabbrev,DW_AT_stmt_list);
2036 saa_write8(pabbrev,DW_FORM_data4);
2037 saa_write8(pabbrev,DW_AT_name);
2038 saa_write8(pabbrev,DW_FORM_string);
2039 saa_write8(pabbrev,DW_AT_producer);
2040 saa_write8(pabbrev,DW_FORM_string);
2041 saa_write8(pabbrev,DW_AT_language);
2042 saa_write8(pabbrev,DW_FORM_data2);
2043 saa_write16(pabbrev,0); /* end of entry */
2044 /* LEB128u usage same as above */
2045 saa_write8(pabbrev,2); /* entry number */
2046 saa_write8(pabbrev,DW_TAG_subprogram);
2047 saa_write8(pabbrev,0); /* no children */
2048 saa_write8(pabbrev,DW_AT_low_pc);
2049 saa_write8(pabbrev,DW_FORM_addr);
2050 saa_write8(pabbrev,DW_AT_frame_base);
2051 saa_write8(pabbrev,DW_FORM_data4);
2052 saa_write16(pabbrev,0); /* end of entry */
2053 abbrevlen = saalen = pabbrev->datalen;
2054 abbrevbuf = pbuf = nasm_malloc(saalen);
2055 saa_rnbytes(pabbrev, pbuf, saalen);
2056 saa_free(pabbrev);
2058 /* build line section */
2059 /* prolog */
2060 plines = saa_init(1L);
2061 saa_write8(plines,1); /* Minimum Instruction Length */
2062 saa_write8(plines,1); /* Initial value of 'is_stmt' */
2063 saa_write8(plines,line_base); /* Line Base */
2064 saa_write8(plines,line_range); /* Line Range */
2065 saa_write8(plines,opcode_base); /* Opcode Base */
2066 /* standard opcode lengths (# of LEB128u operands) */
2067 saa_write8(plines,0); /* Std opcode 1 length */
2068 saa_write8(plines,1); /* Std opcode 2 length */
2069 saa_write8(plines,1); /* Std opcode 3 length */
2070 saa_write8(plines,1); /* Std opcode 4 length */
2071 saa_write8(plines,1); /* Std opcode 5 length */
2072 saa_write8(plines,0); /* Std opcode 6 length */
2073 saa_write8(plines,0); /* Std opcode 7 length */
2074 saa_write8(plines,0); /* Std opcode 8 length */
2075 saa_write8(plines,1); /* Std opcode 9 length */
2076 saa_write8(plines,0); /* Std opcode 10 length */
2077 saa_write8(plines,0); /* Std opcode 11 length */
2078 saa_write8(plines,1); /* Std opcode 12 length */
2079 /* Directory Table */
2080 saa_write8(plines,0); /* End of table */
2081 /* File Name Table */
2082 ftentry = dwarf_flist;
2083 for (indx = 0;indx<dwarf_numfiles;indx++)
2085 saa_wbytes(plines, ftentry->filename, (int32_t)(strlen(ftentry->filename) + 1));
2086 saa_write8(plines,0); /* directory LEB128u */
2087 saa_write8(plines,0); /* time LEB128u */
2088 saa_write8(plines,0); /* size LEB128u */
2089 ftentry = ftentry->next;
2091 saa_write8(plines,0); /* End of table */
2092 linepoff = plines->datalen;
2093 linelen = linepoff + totlen + 10;
2094 linebuf = pbuf = nasm_malloc(linelen);
2095 WRITELONG(pbuf,linelen-4); /* initial length */
2096 WRITESHORT(pbuf,3); /* dwarf version */
2097 WRITELONG(pbuf,linepoff); /* offset to line number program */
2098 /* write line header */
2099 saalen = linepoff;
2100 saa_rnbytes(plines, pbuf, saalen); /* read a given no. of bytes */
2101 pbuf += linepoff;
2102 saa_free(plines);
2103 /* concatonate line program ranges */
2104 linepoff += 13;
2105 plinesrel = saa_init(1L);
2106 psect = dwarf_fsect;
2107 for (indx = 0; indx < dwarf_nsections; indx++) {
2108 saa_write64(plinesrel, linepoff);
2109 saa_write64(plinesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64);
2110 saa_write64(plinesrel, (uint64_t) 0);
2111 plinep = psect->psaa;
2112 saalen = plinep->datalen;
2113 saa_rnbytes(plinep, pbuf, saalen);
2114 pbuf += saalen;
2115 linepoff += saalen;
2116 saa_free(plinep);
2117 /* done with this entry */
2118 psect = psect->next;
2122 /* build rela.lines section */
2123 linerellen =saalen = plinesrel->datalen;
2124 linerelbuf = pbuf = nasm_malloc(linerellen);
2125 saa_rnbytes(plinesrel, pbuf, saalen);
2126 saa_free(plinesrel);
2128 /* build frame section */
2129 framelen = 4;
2130 framebuf = pbuf = nasm_malloc(framelen);
2131 WRITELONG(pbuf,framelen-4); /* initial length */
2133 /* build loc section */
2134 loclen = 16;
2135 locbuf = pbuf = nasm_malloc(loclen);
2136 WRITEDLONG(pbuf,0); /* null beginning offset */
2137 WRITEDLONG(pbuf,0); /* null ending offset */
2140 static void dwarf64_cleanup(void)
2142 nasm_free(arangesbuf);
2143 nasm_free(arangesrelbuf);
2144 nasm_free(pubnamesbuf);
2145 nasm_free(infobuf);
2146 nasm_free(inforelbuf);
2147 nasm_free(abbrevbuf);
2148 nasm_free(linebuf);
2149 nasm_free(linerelbuf);
2150 nasm_free(framebuf);
2151 nasm_free(locbuf);
2154 static void dwarf64_findfile(const char * fname)
2156 int finx;
2157 struct linelist *match;
2159 /* return if fname is current file name */
2160 if (dwarf_clist && !(strcmp(fname, dwarf_clist->filename)))
2161 return;
2163 /* search for match */
2164 match = 0;
2165 if (dwarf_flist) {
2166 match = dwarf_flist;
2167 for (finx = 0; finx < dwarf_numfiles; finx++) {
2168 if (!(strcmp(fname, match->filename))) {
2169 dwarf_clist = match;
2170 return;
2175 /* add file name to end of list */
2176 dwarf_clist = (struct linelist *)nasm_malloc(sizeof(struct linelist));
2177 dwarf_numfiles++;
2178 dwarf_clist->line = dwarf_numfiles;
2179 dwarf_clist->filename = nasm_malloc(strlen(fname) + 1);
2180 strcpy(dwarf_clist->filename,fname);
2181 dwarf_clist->next = 0;
2182 if (!dwarf_flist) { /* if first entry */
2183 dwarf_flist = dwarf_elist = dwarf_clist;
2184 dwarf_clist->last = 0;
2185 } else { /* chain to previous entry */
2186 dwarf_elist->next = dwarf_clist;
2187 dwarf_elist = dwarf_clist;
2191 static void dwarf64_findsect(const int index)
2193 int sinx;
2194 struct sectlist *match;
2195 struct SAA *plinep;
2197 /* return if index is current section index */
2198 if (dwarf_csect && (dwarf_csect->section == index))
2199 return;
2201 /* search for match */
2202 match = 0;
2203 if (dwarf_fsect) {
2204 match = dwarf_fsect;
2205 for (sinx = 0; sinx < dwarf_nsections; sinx++) {
2206 if ((match->section == index)) {
2207 dwarf_csect = match;
2208 return;
2210 match = match->next;
2214 /* add entry to end of list */
2215 dwarf_csect = (struct sectlist *)nasm_malloc(sizeof(struct sectlist));
2216 dwarf_nsections++;
2217 dwarf_csect->psaa = plinep = saa_init(1L);
2218 dwarf_csect->line = 1;
2219 dwarf_csect->offset = 0;
2220 dwarf_csect->file = 1;
2221 dwarf_csect->section = index;
2222 dwarf_csect->next = 0;
2223 /* set relocatable address at start of line program */
2224 saa_write8(plinep,DW_LNS_extended_op);
2225 saa_write8(plinep,9); /* operand length */
2226 saa_write8(plinep,DW_LNE_set_address);
2227 saa_write64(plinep,0); /* Start Address */
2229 if (!dwarf_fsect) { /* if first entry */
2230 dwarf_fsect = dwarf_esect = dwarf_csect;
2231 dwarf_csect->last = 0;
2232 } else { /* chain to previous entry */
2233 dwarf_esect->next = dwarf_csect;
2234 dwarf_esect = dwarf_csect;
2238 #endif /* OF_ELF */