iflag: Drop the use of double underscores
[nasm.git] / assemble.c
blob193c4872db29fa81dd19b7d877ec0f549a700847
1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2013 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \14..\17 - the position of index register operand in MIB (BND insns)
46 * \20..\23 - a byte immediate operand, from operand 0..3
47 * \24..\27 - a zero-extended byte immediate operand, from operand 0..3
48 * \30..\33 - a word immediate operand, from operand 0..3
49 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
50 * assembly mode or the operand-size override on the operand
51 * \40..\43 - a long immediate operand, from operand 0..3
52 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
53 * depending on the address size of the instruction.
54 * \50..\53 - a byte relative operand, from operand 0..3
55 * \54..\57 - a qword immediate operand, from operand 0..3
56 * \60..\63 - a word relative operand, from operand 0..3
57 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
58 * assembly mode or the operand-size override on the operand
59 * \70..\73 - a long relative operand, from operand 0..3
60 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
61 * \1ab - a ModRM, calculated on EA in operand a, with the spare
62 * field the register value of operand b.
63 * \172\ab - the register number from operand a in bits 7..4, with
64 * the 4-bit immediate from operand b in bits 3..0.
65 * \173\xab - the register number from operand a in bits 7..4, with
66 * the value b in bits 3..0.
67 * \174..\177 - the register number from operand 0..3 in bits 7..4, and
68 * an arbitrary value in bits 3..0 (assembled as zero.)
69 * \2ab - a ModRM, calculated on EA in operand a, with the spare
70 * field equal to digit b.
72 * \240..\243 - this instruction uses EVEX rather than REX or VEX/XOP, with the
73 * V field taken from operand 0..3.
74 * \250 - this instruction uses EVEX rather than REX or VEX/XOP, with the
75 * V field set to 1111b.
76 * EVEX prefixes are followed by the sequence:
77 * \cm\wlp\tup where cm is:
78 * cc 000 0mm
79 * c = 2 for EVEX and m is the legacy escape (0f, 0f38, 0f3a)
80 * and wlp is:
81 * 00 wwl lpp
82 * [l0] ll = 0 (.128, .lz)
83 * [l1] ll = 1 (.256)
84 * [l2] ll = 2 (.512)
85 * [lig] ll = 3 for EVEX.L'L don't care (always assembled as 0)
87 * [w0] ww = 0 for W = 0
88 * [w1] ww = 1 for W = 1
89 * [wig] ww = 2 for W don't care (always assembled as 0)
90 * [ww] ww = 3 for W used as REX.W
92 * [p0] pp = 0 for no prefix
93 * [60] pp = 1 for legacy prefix 60
94 * [f3] pp = 2
95 * [f2] pp = 3
97 * tup is tuple type for Disp8*N from %tuple_codes in insns.pl
98 * (compressed displacement encoding)
100 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
101 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
102 * V field taken from operand 0..3.
103 * \270 - this instruction uses VEX/XOP rather than REX, with the
104 * V field set to 1111b.
106 * VEX/XOP prefixes are followed by the sequence:
107 * \tmm\wlp where mm is the M field; and wlp is:
108 * 00 wwl lpp
109 * [l0] ll = 0 for L = 0 (.128, .lz)
110 * [l1] ll = 1 for L = 1 (.256)
111 * [lig] ll = 2 for L don't care (always assembled as 0)
113 * [w0] ww = 0 for W = 0
114 * [w1 ] ww = 1 for W = 1
115 * [wig] ww = 2 for W don't care (always assembled as 0)
116 * [ww] ww = 3 for W used as REX.W
118 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
120 * \271 - instruction takes XRELEASE (F3) with or without lock
121 * \272 - instruction takes XACQUIRE/XRELEASE with or without lock
122 * \273 - instruction takes XACQUIRE/XRELEASE with lock only
123 * \274..\277 - a byte immediate operand, from operand 0..3, sign-extended
124 * to the operand size (if o16/o32/o64 present) or the bit size
125 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
126 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
127 * \312 - (disassembler only) invalid with non-default address size.
128 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
129 * \314 - (disassembler only) invalid with REX.B
130 * \315 - (disassembler only) invalid with REX.X
131 * \316 - (disassembler only) invalid with REX.R
132 * \317 - (disassembler only) invalid with REX.W
133 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
134 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
135 * \322 - indicates that this instruction is only valid when the
136 * operand size is the default (instruction to disassembler,
137 * generates no code in the assembler)
138 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
139 * \324 - indicates 64-bit operand size requiring REX prefix.
140 * \325 - instruction which always uses spl/bpl/sil/dil
141 * \326 - instruction not valid with 0xF3 REP prefix. Hint for
142 disassembler only; for SSE instructions.
143 * \330 - a literal byte follows in the code stream, to be added
144 * to the condition code value of the instruction.
145 * \331 - instruction not valid with REP prefix. Hint for
146 * disassembler only; for SSE instructions.
147 * \332 - REP prefix (0xF2 byte) used as opcode extension.
148 * \333 - REP prefix (0xF3 byte) used as opcode extension.
149 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
150 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
151 * \336 - force a REP(E) prefix (0xF3) even if not specified.
152 * \337 - force a REPNE prefix (0xF2) even if not specified.
153 * \336-\337 are still listed as prefixes in the disassembler.
154 * \340 - reserve <operand 0> bytes of uninitialized storage.
155 * Operand 0 had better be a segmentless constant.
156 * \341 - this instruction needs a WAIT "prefix"
157 * \360 - no SSE prefix (== \364\331)
158 * \361 - 66 SSE prefix (== \366\331)
159 * \364 - operand-size prefix (0x66) not permitted
160 * \365 - address-size prefix (0x67) not permitted
161 * \366 - operand-size prefix (0x66) used as opcode extension
162 * \367 - address-size prefix (0x67) used as opcode extension
163 * \370,\371 - match only if operand 0 meets byte jump criteria.
164 * 370 is used for Jcc, 371 is used for JMP.
165 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
166 * used for conditional jump over longer jump
167 * \374 - this instruction takes an XMM VSIB memory EA
168 * \375 - this instruction takes an YMM VSIB memory EA
169 * \376 - this instruction takes an ZMM VSIB memory EA
172 #include "compiler.h"
174 #include <stdio.h>
175 #include <string.h>
176 #include <inttypes.h>
178 #include "nasm.h"
179 #include "nasmlib.h"
180 #include "assemble.h"
181 #include "insns.h"
182 #include "tables.h"
183 #include "disp8.h"
185 enum match_result {
187 * Matching errors. These should be sorted so that more specific
188 * errors come later in the sequence.
190 MERR_INVALOP,
191 MERR_OPSIZEMISSING,
192 MERR_OPSIZEMISMATCH,
193 MERR_BRNUMMISMATCH,
194 MERR_BADCPU,
195 MERR_BADMODE,
196 MERR_BADHLE,
197 MERR_ENCMISMATCH,
198 MERR_BADBND,
200 * Matching success; the conditional ones first
202 MOK_JUMP, /* Matching OK but needs jmp_match() */
203 MOK_GOOD /* Matching unconditionally OK */
206 typedef struct {
207 enum ea_type type; /* what kind of EA is this? */
208 int sib_present; /* is a SIB byte necessary? */
209 int bytes; /* # of bytes of offset needed */
210 int size; /* lazy - this is sib+bytes+1 */
211 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
212 int8_t disp8; /* compressed displacement for EVEX */
213 } ea;
215 #define GEN_SIB(scale, index, base) \
216 (((scale) << 6) | ((index) << 3) | ((base)))
218 #define GEN_MODRM(mod, reg, rm) \
219 (((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
221 static iflag_t cpu; /* cpu level received from nasm.c */
222 static efunc errfunc;
223 static struct ofmt *outfmt;
224 static ListGen *list;
226 static int64_t calcsize(int32_t, int64_t, int, insn *,
227 const struct itemplate *);
228 static void gencode(int32_t segment, int64_t offset, int bits,
229 insn * ins, const struct itemplate *temp,
230 int64_t insn_end);
231 static enum match_result find_match(const struct itemplate **tempp,
232 insn *instruction,
233 int32_t segment, int64_t offset, int bits);
234 static enum match_result matches(const struct itemplate *, insn *, int bits);
235 static opflags_t regflag(const operand *);
236 static int32_t regval(const operand *);
237 static int rexflags(int, opflags_t, int);
238 static int op_rexflags(const operand *, int);
239 static int op_evexflags(const operand *, int, uint8_t);
240 static void add_asp(insn *, int);
242 static enum ea_type process_ea(operand *, ea *, int, int, opflags_t, insn *);
244 static int has_prefix(insn * ins, enum prefix_pos pos, int prefix)
246 return ins->prefixes[pos] == prefix;
249 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
251 if (ins->prefixes[pos])
252 errfunc(ERR_NONFATAL, "invalid %s prefix",
253 prefix_name(ins->prefixes[pos]));
256 static const char *size_name(int size)
258 switch (size) {
259 case 1:
260 return "byte";
261 case 2:
262 return "word";
263 case 4:
264 return "dword";
265 case 8:
266 return "qword";
267 case 10:
268 return "tword";
269 case 16:
270 return "oword";
271 case 32:
272 return "yword";
273 case 64:
274 return "zword";
275 default:
276 return "???";
280 static void warn_overflow(int pass, int size)
282 errfunc(ERR_WARNING | pass | ERR_WARN_NOV,
283 "%s data exceeds bounds", size_name(size));
286 static void warn_overflow_const(int64_t data, int size)
288 if (overflow_general(data, size))
289 warn_overflow(ERR_PASS1, size);
292 static void warn_overflow_opd(const struct operand *o, int size)
294 if (o->wrt == NO_SEG && o->segment == NO_SEG) {
295 if (overflow_general(o->offset, size))
296 warn_overflow(ERR_PASS2, size);
301 * This routine wrappers the real output format's output routine,
302 * in order to pass a copy of the data off to the listing file
303 * generator at the same time.
305 static void out(int64_t offset, int32_t segto, const void *data,
306 enum out_type type, uint64_t size,
307 int32_t segment, int32_t wrt)
309 static int32_t lineno = 0; /* static!!! */
310 static char *lnfname = NULL;
311 uint8_t p[8];
313 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
315 * This is a non-relocated address, and we're going to
316 * convert it into RAWDATA format.
318 uint8_t *q = p;
320 if (size > 8) {
321 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
322 return;
325 WRITEADDR(q, *(int64_t *)data, size);
326 data = p;
327 type = OUT_RAWDATA;
330 list->output(offset, data, type, size);
333 * this call to src_get determines when we call the
334 * debug-format-specific "linenum" function
335 * it updates lineno and lnfname to the current values
336 * returning 0 if "same as last time", -2 if lnfname
337 * changed, and the amount by which lineno changed,
338 * if it did. thus, these variables must be static
341 if (src_get(&lineno, &lnfname))
342 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
344 outfmt->output(segto, data, type, size, segment, wrt);
347 static void out_imm8(int64_t offset, int32_t segment, struct operand *opx)
349 if (opx->segment != NO_SEG) {
350 uint64_t data = opx->offset;
351 out(offset, segment, &data, OUT_ADDRESS, 1, opx->segment, opx->wrt);
352 } else {
353 uint8_t byte = opx->offset;
354 out(offset, segment, &byte, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
358 static bool jmp_match(int32_t segment, int64_t offset, int bits,
359 insn * ins, const struct itemplate *temp)
361 int64_t isize;
362 const uint8_t *code = temp->code;
363 uint8_t c = code[0];
364 bool is_byte;
366 if (((c & ~1) != 0370) || (ins->oprs[0].type & STRICT))
367 return false;
368 if (!optimizing)
369 return false;
370 if (optimizing < 0 && c == 0371)
371 return false;
373 isize = calcsize(segment, offset, bits, ins, temp);
375 if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
376 /* Be optimistic in pass 1 */
377 return true;
379 if (ins->oprs[0].segment != segment)
380 return false;
382 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
383 is_byte = (isize >= -128 && isize <= 127); /* is it byte size? */
385 if (is_byte && c == 0371 && ins->prefixes[PPS_REP] == P_BND) {
386 /* jmp short (opcode eb) cannot be used with bnd prefix. */
387 ins->prefixes[PPS_REP] = P_none;
390 return is_byte;
393 int64_t assemble(int32_t segment, int64_t offset, int bits, iflag_t cp,
394 insn * instruction, struct ofmt *output, efunc error,
395 ListGen * listgen)
397 const struct itemplate *temp;
398 int j;
399 enum match_result m;
400 int64_t insn_end;
401 int32_t itimes;
402 int64_t start = offset;
403 int64_t wsize; /* size for DB etc. */
405 errfunc = error; /* to pass to other functions */
406 cpu = cp;
407 outfmt = output; /* likewise */
408 list = listgen; /* and again */
410 wsize = idata_bytes(instruction->opcode);
411 if (wsize == -1)
412 return 0;
414 if (wsize) {
415 extop *e;
416 int32_t t = instruction->times;
417 if (t < 0)
418 errfunc(ERR_PANIC,
419 "instruction->times < 0 (%ld) in assemble()", t);
421 while (t--) { /* repeat TIMES times */
422 list_for_each(e, instruction->eops) {
423 if (e->type == EOT_DB_NUMBER) {
424 if (wsize > 8) {
425 errfunc(ERR_NONFATAL,
426 "integer supplied to a DT, DO or DY"
427 " instruction");
428 } else {
429 out(offset, segment, &e->offset,
430 OUT_ADDRESS, wsize, e->segment, e->wrt);
431 offset += wsize;
433 } else if (e->type == EOT_DB_STRING ||
434 e->type == EOT_DB_STRING_FREE) {
435 int align;
437 out(offset, segment, e->stringval,
438 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
439 align = e->stringlen % wsize;
441 if (align) {
442 align = wsize - align;
443 out(offset, segment, zero_buffer,
444 OUT_RAWDATA, align, NO_SEG, NO_SEG);
446 offset += e->stringlen + align;
449 if (t > 0 && t == instruction->times - 1) {
451 * Dummy call to list->output to give the offset to the
452 * listing module.
454 list->output(offset, NULL, OUT_RAWDATA, 0);
455 list->uplevel(LIST_TIMES);
458 if (instruction->times > 1)
459 list->downlevel(LIST_TIMES);
460 return offset - start;
463 if (instruction->opcode == I_INCBIN) {
464 const char *fname = instruction->eops->stringval;
465 FILE *fp;
467 fp = fopen(fname, "rb");
468 if (!fp) {
469 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
470 fname);
471 } else if (fseek(fp, 0L, SEEK_END) < 0) {
472 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
473 fname);
474 fclose(fp);
475 } else {
476 static char buf[4096];
477 size_t t = instruction->times;
478 size_t base = 0;
479 size_t len;
481 len = ftell(fp);
482 if (instruction->eops->next) {
483 base = instruction->eops->next->offset;
484 len -= base;
485 if (instruction->eops->next->next &&
486 len > (size_t)instruction->eops->next->next->offset)
487 len = (size_t)instruction->eops->next->next->offset;
490 * Dummy call to list->output to give the offset to the
491 * listing module.
493 list->output(offset, NULL, OUT_RAWDATA, 0);
494 list->uplevel(LIST_INCBIN);
495 while (t--) {
496 size_t l;
498 fseek(fp, base, SEEK_SET);
499 l = len;
500 while (l > 0) {
501 int32_t m;
502 m = fread(buf, 1, l > sizeof(buf) ? sizeof(buf) : l, fp);
503 if (!m) {
505 * This shouldn't happen unless the file
506 * actually changes while we are reading
507 * it.
509 error(ERR_NONFATAL,
510 "`incbin': unexpected EOF while"
511 " reading file `%s'", fname);
512 t = 0; /* Try to exit cleanly */
513 break;
515 out(offset, segment, buf, OUT_RAWDATA, m,
516 NO_SEG, NO_SEG);
517 l -= m;
520 list->downlevel(LIST_INCBIN);
521 if (instruction->times > 1) {
523 * Dummy call to list->output to give the offset to the
524 * listing module.
526 list->output(offset, NULL, OUT_RAWDATA, 0);
527 list->uplevel(LIST_TIMES);
528 list->downlevel(LIST_TIMES);
530 fclose(fp);
531 return instruction->times * len;
533 return 0; /* if we're here, there's an error */
536 /* Check to see if we need an address-size prefix */
537 add_asp(instruction, bits);
539 m = find_match(&temp, instruction, segment, offset, bits);
541 if (m == MOK_GOOD) {
542 /* Matches! */
543 int64_t insn_size = calcsize(segment, offset, bits, instruction, temp);
544 itimes = instruction->times;
545 if (insn_size < 0) /* shouldn't be, on pass two */
546 error(ERR_PANIC, "errors made it through from pass one");
547 else
548 while (itimes--) {
549 for (j = 0; j < MAXPREFIX; j++) {
550 uint8_t c = 0;
551 switch (instruction->prefixes[j]) {
552 case P_WAIT:
553 c = 0x9B;
554 break;
555 case P_LOCK:
556 c = 0xF0;
557 break;
558 case P_REPNE:
559 case P_REPNZ:
560 case P_XACQUIRE:
561 case P_BND:
562 c = 0xF2;
563 break;
564 case P_REPE:
565 case P_REPZ:
566 case P_REP:
567 case P_XRELEASE:
568 c = 0xF3;
569 break;
570 case R_CS:
571 if (bits == 64) {
572 error(ERR_WARNING | ERR_PASS2,
573 "cs segment base generated, but will be ignored in 64-bit mode");
575 c = 0x2E;
576 break;
577 case R_DS:
578 if (bits == 64) {
579 error(ERR_WARNING | ERR_PASS2,
580 "ds segment base generated, but will be ignored in 64-bit mode");
582 c = 0x3E;
583 break;
584 case R_ES:
585 if (bits == 64) {
586 error(ERR_WARNING | ERR_PASS2,
587 "es segment base generated, but will be ignored in 64-bit mode");
589 c = 0x26;
590 break;
591 case R_FS:
592 c = 0x64;
593 break;
594 case R_GS:
595 c = 0x65;
596 break;
597 case R_SS:
598 if (bits == 64) {
599 error(ERR_WARNING | ERR_PASS2,
600 "ss segment base generated, but will be ignored in 64-bit mode");
602 c = 0x36;
603 break;
604 case R_SEGR6:
605 case R_SEGR7:
606 error(ERR_NONFATAL,
607 "segr6 and segr7 cannot be used as prefixes");
608 break;
609 case P_A16:
610 if (bits == 64) {
611 error(ERR_NONFATAL,
612 "16-bit addressing is not supported "
613 "in 64-bit mode");
614 } else if (bits != 16)
615 c = 0x67;
616 break;
617 case P_A32:
618 if (bits != 32)
619 c = 0x67;
620 break;
621 case P_A64:
622 if (bits != 64) {
623 error(ERR_NONFATAL,
624 "64-bit addressing is only supported "
625 "in 64-bit mode");
627 break;
628 case P_ASP:
629 c = 0x67;
630 break;
631 case P_O16:
632 if (bits != 16)
633 c = 0x66;
634 break;
635 case P_O32:
636 if (bits == 16)
637 c = 0x66;
638 break;
639 case P_O64:
640 /* REX.W */
641 break;
642 case P_OSP:
643 c = 0x66;
644 break;
645 case P_EVEX:
646 /* EVEX */
647 break;
648 case P_none:
649 break;
650 default:
651 error(ERR_PANIC, "invalid instruction prefix");
653 if (c != 0) {
654 out(offset, segment, &c, OUT_RAWDATA, 1,
655 NO_SEG, NO_SEG);
656 offset++;
659 insn_end = offset + insn_size;
660 gencode(segment, offset, bits, instruction,
661 temp, insn_end);
662 offset += insn_size;
663 if (itimes > 0 && itimes == instruction->times - 1) {
665 * Dummy call to list->output to give the offset to the
666 * listing module.
668 list->output(offset, NULL, OUT_RAWDATA, 0);
669 list->uplevel(LIST_TIMES);
672 if (instruction->times > 1)
673 list->downlevel(LIST_TIMES);
674 return offset - start;
675 } else {
676 /* No match */
677 switch (m) {
678 case MERR_OPSIZEMISSING:
679 error(ERR_NONFATAL, "operation size not specified");
680 break;
681 case MERR_OPSIZEMISMATCH:
682 error(ERR_NONFATAL, "mismatch in operand sizes");
683 break;
684 case MERR_BRNUMMISMATCH:
685 error(ERR_NONFATAL,
686 "mismatch in the number of broadcasting elements");
687 break;
688 case MERR_BADCPU:
689 error(ERR_NONFATAL, "no instruction for this cpu level");
690 break;
691 case MERR_BADMODE:
692 error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
693 bits);
694 break;
695 case MERR_BADBND:
696 error(ERR_NONFATAL, "bnd prefix is not allowed");
697 break;
698 default:
699 error(ERR_NONFATAL,
700 "invalid combination of opcode and operands");
701 break;
704 return 0;
707 int64_t insn_size(int32_t segment, int64_t offset, int bits, iflag_t cp,
708 insn * instruction, efunc error)
710 const struct itemplate *temp;
711 enum match_result m;
713 errfunc = error; /* to pass to other functions */
714 cpu = cp;
716 if (instruction->opcode == I_none)
717 return 0;
719 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
720 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
721 instruction->opcode == I_DT || instruction->opcode == I_DO ||
722 instruction->opcode == I_DY) {
723 extop *e;
724 int32_t isize, osize, wsize;
726 isize = 0;
727 wsize = idata_bytes(instruction->opcode);
729 list_for_each(e, instruction->eops) {
730 int32_t align;
732 osize = 0;
733 if (e->type == EOT_DB_NUMBER) {
734 osize = 1;
735 warn_overflow_const(e->offset, wsize);
736 } else if (e->type == EOT_DB_STRING ||
737 e->type == EOT_DB_STRING_FREE)
738 osize = e->stringlen;
740 align = (-osize) % wsize;
741 if (align < 0)
742 align += wsize;
743 isize += osize + align;
745 return isize * instruction->times;
748 if (instruction->opcode == I_INCBIN) {
749 const char *fname = instruction->eops->stringval;
750 FILE *fp;
751 int64_t val = 0;
752 size_t len;
754 fp = fopen(fname, "rb");
755 if (!fp)
756 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
757 fname);
758 else if (fseek(fp, 0L, SEEK_END) < 0)
759 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
760 fname);
761 else {
762 len = ftell(fp);
763 if (instruction->eops->next) {
764 len -= instruction->eops->next->offset;
765 if (instruction->eops->next->next &&
766 len > (size_t)instruction->eops->next->next->offset) {
767 len = (size_t)instruction->eops->next->next->offset;
770 val = instruction->times * len;
772 if (fp)
773 fclose(fp);
774 return val;
777 /* Check to see if we need an address-size prefix */
778 add_asp(instruction, bits);
780 m = find_match(&temp, instruction, segment, offset, bits);
781 if (m == MOK_GOOD) {
782 /* we've matched an instruction. */
783 int64_t isize;
784 int j;
786 isize = calcsize(segment, offset, bits, instruction, temp);
787 if (isize < 0)
788 return -1;
789 for (j = 0; j < MAXPREFIX; j++) {
790 switch (instruction->prefixes[j]) {
791 case P_A16:
792 if (bits != 16)
793 isize++;
794 break;
795 case P_A32:
796 if (bits != 32)
797 isize++;
798 break;
799 case P_O16:
800 if (bits != 16)
801 isize++;
802 break;
803 case P_O32:
804 if (bits == 16)
805 isize++;
806 break;
807 case P_A64:
808 case P_O64:
809 case P_EVEX:
810 case P_none:
811 break;
812 default:
813 isize++;
814 break;
817 return isize * instruction->times;
818 } else {
819 return -1; /* didn't match any instruction */
823 static void bad_hle_warn(const insn * ins, uint8_t hleok)
825 enum prefixes rep_pfx = ins->prefixes[PPS_REP];
826 enum whatwarn { w_none, w_lock, w_inval } ww;
827 static const enum whatwarn warn[2][4] =
829 { w_inval, w_inval, w_none, w_lock }, /* XACQUIRE */
830 { w_inval, w_none, w_none, w_lock }, /* XRELEASE */
832 unsigned int n;
834 n = (unsigned int)rep_pfx - P_XACQUIRE;
835 if (n > 1)
836 return; /* Not XACQUIRE/XRELEASE */
838 ww = warn[n][hleok];
839 if (!is_class(MEMORY, ins->oprs[0].type))
840 ww = w_inval; /* HLE requires operand 0 to be memory */
842 switch (ww) {
843 case w_none:
844 break;
846 case w_lock:
847 if (ins->prefixes[PPS_LOCK] != P_LOCK) {
848 errfunc(ERR_WARNING | ERR_WARN_HLE | ERR_PASS2,
849 "%s with this instruction requires lock",
850 prefix_name(rep_pfx));
852 break;
854 case w_inval:
855 errfunc(ERR_WARNING | ERR_WARN_HLE | ERR_PASS2,
856 "%s invalid with this instruction",
857 prefix_name(rep_pfx));
858 break;
862 /* Common construct */
863 #define case3(x) case (x): case (x)+1: case (x)+2
864 #define case4(x) case3(x): case (x)+3
866 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
867 insn * ins, const struct itemplate *temp)
869 const uint8_t *codes = temp->code;
870 int64_t length = 0;
871 uint8_t c;
872 int rex_mask = ~0;
873 int op1, op2;
874 struct operand *opx;
875 uint8_t opex = 0;
876 enum ea_type eat;
877 uint8_t hleok = 0;
878 bool lockcheck = true;
879 enum reg_enum mib_index = R_none; /* For a separate index MIB reg form */
881 ins->rex = 0; /* Ensure REX is reset */
882 eat = EA_SCALAR; /* Expect a scalar EA */
883 memset(ins->evex_p, 0, 3); /* Ensure EVEX is reset */
885 if (ins->prefixes[PPS_OSIZE] == P_O64)
886 ins->rex |= REX_W;
888 (void)segment; /* Don't warn that this parameter is unused */
889 (void)offset; /* Don't warn that this parameter is unused */
891 while (*codes) {
892 c = *codes++;
893 op1 = (c & 3) + ((opex & 1) << 2);
894 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
895 opx = &ins->oprs[op1];
896 opex = 0; /* For the next iteration */
898 switch (c) {
899 case4(01):
900 codes += c, length += c;
901 break;
903 case3(05):
904 opex = c;
905 break;
907 case4(010):
908 ins->rex |=
909 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
910 codes++, length++;
911 break;
913 case4(014):
914 /* this is an index reg of MIB operand */
915 mib_index = opx->basereg;
916 break;
918 case4(020):
919 case4(024):
920 length++;
921 break;
923 case4(030):
924 length += 2;
925 break;
927 case4(034):
928 if (opx->type & (BITS16 | BITS32 | BITS64))
929 length += (opx->type & BITS16) ? 2 : 4;
930 else
931 length += (bits == 16) ? 2 : 4;
932 break;
934 case4(040):
935 length += 4;
936 break;
938 case4(044):
939 length += ins->addr_size >> 3;
940 break;
942 case4(050):
943 length++;
944 break;
946 case4(054):
947 length += 8; /* MOV reg64/imm */
948 break;
950 case4(060):
951 length += 2;
952 break;
954 case4(064):
955 if (opx->type & (BITS16 | BITS32 | BITS64))
956 length += (opx->type & BITS16) ? 2 : 4;
957 else
958 length += (bits == 16) ? 2 : 4;
959 break;
961 case4(070):
962 length += 4;
963 break;
965 case4(074):
966 length += 2;
967 break;
969 case 0172:
970 case 0173:
971 codes++;
972 length++;
973 break;
975 case4(0174):
976 length++;
977 break;
979 case4(0240):
980 ins->rex |= REX_EV;
981 ins->vexreg = regval(opx);
982 ins->evex_p[2] |= op_evexflags(opx, EVEX_P2VP, 2); /* High-16 NDS */
983 ins->vex_cm = *codes++;
984 ins->vex_wlp = *codes++;
985 ins->evex_tuple = (*codes++ - 0300);
986 break;
988 case 0250:
989 ins->rex |= REX_EV;
990 ins->vexreg = 0;
991 ins->vex_cm = *codes++;
992 ins->vex_wlp = *codes++;
993 ins->evex_tuple = (*codes++ - 0300);
994 break;
996 case4(0254):
997 length += 4;
998 break;
1000 case4(0260):
1001 ins->rex |= REX_V;
1002 ins->vexreg = regval(opx);
1003 ins->vex_cm = *codes++;
1004 ins->vex_wlp = *codes++;
1005 break;
1007 case 0270:
1008 ins->rex |= REX_V;
1009 ins->vexreg = 0;
1010 ins->vex_cm = *codes++;
1011 ins->vex_wlp = *codes++;
1012 break;
1014 case3(0271):
1015 hleok = c & 3;
1016 break;
1018 case4(0274):
1019 length++;
1020 break;
1022 case4(0300):
1023 break;
1025 case 0310:
1026 if (bits == 64)
1027 return -1;
1028 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
1029 break;
1031 case 0311:
1032 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
1033 break;
1035 case 0312:
1036 break;
1038 case 0313:
1039 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
1040 has_prefix(ins, PPS_ASIZE, P_A32))
1041 return -1;
1042 break;
1044 case4(0314):
1045 break;
1047 case 0320:
1049 enum prefixes pfx = ins->prefixes[PPS_OSIZE];
1050 if (pfx == P_O16)
1051 break;
1052 if (pfx != P_none)
1053 errfunc(ERR_WARNING | ERR_PASS2, "invalid operand size prefix");
1054 else
1055 ins->prefixes[PPS_OSIZE] = P_O16;
1056 break;
1059 case 0321:
1061 enum prefixes pfx = ins->prefixes[PPS_OSIZE];
1062 if (pfx == P_O32)
1063 break;
1064 if (pfx != P_none)
1065 errfunc(ERR_WARNING | ERR_PASS2, "invalid operand size prefix");
1066 else
1067 ins->prefixes[PPS_OSIZE] = P_O32;
1068 break;
1071 case 0322:
1072 break;
1074 case 0323:
1075 rex_mask &= ~REX_W;
1076 break;
1078 case 0324:
1079 ins->rex |= REX_W;
1080 break;
1082 case 0325:
1083 ins->rex |= REX_NH;
1084 break;
1086 case 0326:
1087 break;
1089 case 0330:
1090 codes++, length++;
1091 break;
1093 case 0331:
1094 break;
1096 case 0332:
1097 case 0333:
1098 length++;
1099 break;
1101 case 0334:
1102 ins->rex |= REX_L;
1103 break;
1105 case 0335:
1106 break;
1108 case 0336:
1109 if (!ins->prefixes[PPS_REP])
1110 ins->prefixes[PPS_REP] = P_REP;
1111 break;
1113 case 0337:
1114 if (!ins->prefixes[PPS_REP])
1115 ins->prefixes[PPS_REP] = P_REPNE;
1116 break;
1118 case 0340:
1119 if (ins->oprs[0].segment != NO_SEG)
1120 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1121 " quantity of BSS space");
1122 else
1123 length += ins->oprs[0].offset;
1124 break;
1126 case 0341:
1127 if (!ins->prefixes[PPS_WAIT])
1128 ins->prefixes[PPS_WAIT] = P_WAIT;
1129 break;
1131 case 0360:
1132 break;
1134 case 0361:
1135 length++;
1136 break;
1138 case 0364:
1139 case 0365:
1140 break;
1142 case 0366:
1143 case 0367:
1144 length++;
1145 break;
1147 case 0370:
1148 case 0371:
1149 break;
1151 case 0373:
1152 length++;
1153 break;
1155 case 0374:
1156 eat = EA_XMMVSIB;
1157 break;
1159 case 0375:
1160 eat = EA_YMMVSIB;
1161 break;
1163 case 0376:
1164 eat = EA_ZMMVSIB;
1165 break;
1167 case4(0100):
1168 case4(0110):
1169 case4(0120):
1170 case4(0130):
1171 case4(0200):
1172 case4(0204):
1173 case4(0210):
1174 case4(0214):
1175 case4(0220):
1176 case4(0224):
1177 case4(0230):
1178 case4(0234):
1180 ea ea_data;
1181 int rfield;
1182 opflags_t rflags;
1183 struct operand *opy = &ins->oprs[op2];
1184 struct operand *op_er_sae;
1186 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1188 if (c <= 0177) {
1189 /* pick rfield from operand b (opx) */
1190 rflags = regflag(opx);
1191 rfield = nasm_regvals[opx->basereg];
1192 } else {
1193 rflags = 0;
1194 rfield = c & 7;
1197 /* EVEX.b1 : evex_brerop contains the operand position */
1198 op_er_sae = (ins->evex_brerop >= 0 ?
1199 &ins->oprs[ins->evex_brerop] : NULL);
1201 if (op_er_sae && (op_er_sae->decoflags & (ER | SAE))) {
1202 /* set EVEX.b */
1203 ins->evex_p[2] |= EVEX_P2B;
1204 if (op_er_sae->decoflags & ER) {
1205 /* set EVEX.RC (rounding control) */
1206 ins->evex_p[2] |= ((ins->evex_rm - BRC_RN) << 5)
1207 & EVEX_P2RC;
1209 } else {
1210 /* set EVEX.L'L (vector length) */
1211 ins->evex_p[2] |= ((ins->vex_wlp << (5 - 2)) & EVEX_P2LL);
1212 ins->evex_p[1] |= ((ins->vex_wlp << (7 - 4)) & EVEX_P1W);
1213 if (opy->decoflags & BRDCAST_MASK) {
1214 /* set EVEX.b */
1215 ins->evex_p[2] |= EVEX_P2B;
1220 * if a separate form of MIB (ICC style) is used,
1221 * the index reg info is merged into mem operand
1223 if (mib_index != R_none) {
1224 opy->indexreg = mib_index;
1225 opy->scale = 1;
1226 opy->hintbase = mib_index;
1227 opy->hinttype = EAH_NOTBASE;
1231 * only for mib operands, make a single reg index [reg*1].
1232 * gas uses this form to explicitly denote index register.
1234 if (itemp_has(temp, IF_MIB) &&
1235 (opy->indexreg == -1 && opy->hintbase == opy->basereg &&
1236 opy->hinttype == EAH_NOTBASE)) {
1237 opy->indexreg = opy->basereg;
1238 opy->basereg = -1;
1239 opy->scale = 1;
1242 if (process_ea(opy, &ea_data, bits,
1243 rfield, rflags, ins) != eat) {
1244 errfunc(ERR_NONFATAL, "invalid effective address");
1245 return -1;
1246 } else {
1247 ins->rex |= ea_data.rex;
1248 length += ea_data.size;
1251 break;
1253 default:
1254 errfunc(ERR_PANIC, "internal instruction table corrupt"
1255 ": instruction code \\%o (0x%02X) given", c, c);
1256 break;
1260 ins->rex &= rex_mask;
1262 if (ins->rex & REX_NH) {
1263 if (ins->rex & REX_H) {
1264 errfunc(ERR_NONFATAL, "instruction cannot use high registers");
1265 return -1;
1267 ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
1270 if (ins->rex & (REX_V | REX_EV)) {
1271 int bad32 = REX_R|REX_W|REX_X|REX_B;
1273 if (ins->rex & REX_H) {
1274 errfunc(ERR_NONFATAL, "cannot use high register in AVX instruction");
1275 return -1;
1277 switch (ins->vex_wlp & 060) {
1278 case 000:
1279 case 040:
1280 ins->rex &= ~REX_W;
1281 break;
1282 case 020:
1283 ins->rex |= REX_W;
1284 bad32 &= ~REX_W;
1285 break;
1286 case 060:
1287 /* Follow REX_W */
1288 break;
1291 if (bits != 64 && ((ins->rex & bad32) || ins->vexreg > 7)) {
1292 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1293 return -1;
1294 } else if (!(ins->rex & REX_EV) &&
1295 ((ins->vexreg > 15) || (ins->evex_p[0] & 0xf0))) {
1296 errfunc(ERR_NONFATAL, "invalid high-16 register in non-AVX-512");
1297 return -1;
1299 if (ins->rex & REX_EV)
1300 length += 4;
1301 else if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B)))
1302 length += 3;
1303 else
1304 length += 2;
1305 } else if (ins->rex & REX_REAL) {
1306 if (ins->rex & REX_H) {
1307 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1308 return -1;
1309 } else if (bits == 64) {
1310 length++;
1311 } else if ((ins->rex & REX_L) &&
1312 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1313 iflag_ffs(&cpu) >= IF_X86_64) {
1314 /* LOCK-as-REX.R */
1315 assert_no_prefix(ins, PPS_LOCK);
1316 lockcheck = false; /* Already errored, no need for warning */
1317 length++;
1318 } else {
1319 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1320 return -1;
1324 if (has_prefix(ins, PPS_LOCK, P_LOCK) && lockcheck &&
1325 (!itemp_has(temp,IF_LOCK) || !is_class(MEMORY, ins->oprs[0].type))) {
1326 errfunc(ERR_WARNING | ERR_WARN_LOCK | ERR_PASS2 ,
1327 "instruction is not lockable");
1330 bad_hle_warn(ins, hleok);
1332 return length;
1335 static inline unsigned int emit_rex(insn *ins, int32_t segment, int64_t offset, int bits)
1337 if (bits == 64) {
1338 if ((ins->rex & REX_REAL) && !(ins->rex & (REX_V | REX_EV))) {
1339 ins->rex = (ins->rex & REX_REAL) | REX_P;
1340 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1341 ins->rex = 0;
1342 return 1;
1346 return 0;
1349 static void gencode(int32_t segment, int64_t offset, int bits,
1350 insn * ins, const struct itemplate *temp,
1351 int64_t insn_end)
1353 uint8_t c;
1354 uint8_t bytes[4];
1355 int64_t size;
1356 int64_t data;
1357 int op1, op2;
1358 struct operand *opx;
1359 const uint8_t *codes = temp->code;
1360 uint8_t opex = 0;
1361 enum ea_type eat = EA_SCALAR;
1363 while (*codes) {
1364 c = *codes++;
1365 op1 = (c & 3) + ((opex & 1) << 2);
1366 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1367 opx = &ins->oprs[op1];
1368 opex = 0; /* For the next iteration */
1370 switch (c) {
1371 case 01:
1372 case 02:
1373 case 03:
1374 case 04:
1375 offset += emit_rex(ins, segment, offset, bits);
1376 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1377 codes += c;
1378 offset += c;
1379 break;
1381 case 05:
1382 case 06:
1383 case 07:
1384 opex = c;
1385 break;
1387 case4(010):
1388 offset += emit_rex(ins, segment, offset, bits);
1389 bytes[0] = *codes++ + (regval(opx) & 7);
1390 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1391 offset += 1;
1392 break;
1394 case4(014):
1395 break;
1397 case4(020):
1398 if (opx->offset < -256 || opx->offset > 255) {
1399 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1400 "byte value exceeds bounds");
1402 out_imm8(offset, segment, opx);
1403 offset += 1;
1404 break;
1406 case4(024):
1407 if (opx->offset < 0 || opx->offset > 255)
1408 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1409 "unsigned byte value exceeds bounds");
1410 out_imm8(offset, segment, opx);
1411 offset += 1;
1412 break;
1414 case4(030):
1415 warn_overflow_opd(opx, 2);
1416 data = opx->offset;
1417 out(offset, segment, &data, OUT_ADDRESS, 2,
1418 opx->segment, opx->wrt);
1419 offset += 2;
1420 break;
1422 case4(034):
1423 if (opx->type & (BITS16 | BITS32))
1424 size = (opx->type & BITS16) ? 2 : 4;
1425 else
1426 size = (bits == 16) ? 2 : 4;
1427 warn_overflow_opd(opx, size);
1428 data = opx->offset;
1429 out(offset, segment, &data, OUT_ADDRESS, size,
1430 opx->segment, opx->wrt);
1431 offset += size;
1432 break;
1434 case4(040):
1435 warn_overflow_opd(opx, 4);
1436 data = opx->offset;
1437 out(offset, segment, &data, OUT_ADDRESS, 4,
1438 opx->segment, opx->wrt);
1439 offset += 4;
1440 break;
1442 case4(044):
1443 data = opx->offset;
1444 size = ins->addr_size >> 3;
1445 warn_overflow_opd(opx, size);
1446 out(offset, segment, &data, OUT_ADDRESS, size,
1447 opx->segment, opx->wrt);
1448 offset += size;
1449 break;
1451 case4(050):
1452 if (opx->segment != segment) {
1453 data = opx->offset;
1454 out(offset, segment, &data,
1455 OUT_REL1ADR, insn_end - offset,
1456 opx->segment, opx->wrt);
1457 } else {
1458 data = opx->offset - insn_end;
1459 if (data > 127 || data < -128)
1460 errfunc(ERR_NONFATAL, "short jump is out of range");
1461 out(offset, segment, &data,
1462 OUT_ADDRESS, 1, NO_SEG, NO_SEG);
1464 offset += 1;
1465 break;
1467 case4(054):
1468 data = (int64_t)opx->offset;
1469 out(offset, segment, &data, OUT_ADDRESS, 8,
1470 opx->segment, opx->wrt);
1471 offset += 8;
1472 break;
1474 case4(060):
1475 if (opx->segment != segment) {
1476 data = opx->offset;
1477 out(offset, segment, &data,
1478 OUT_REL2ADR, insn_end - offset,
1479 opx->segment, opx->wrt);
1480 } else {
1481 data = opx->offset - insn_end;
1482 out(offset, segment, &data,
1483 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1485 offset += 2;
1486 break;
1488 case4(064):
1489 if (opx->type & (BITS16 | BITS32 | BITS64))
1490 size = (opx->type & BITS16) ? 2 : 4;
1491 else
1492 size = (bits == 16) ? 2 : 4;
1493 if (opx->segment != segment) {
1494 data = opx->offset;
1495 out(offset, segment, &data,
1496 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1497 insn_end - offset, opx->segment, opx->wrt);
1498 } else {
1499 data = opx->offset - insn_end;
1500 out(offset, segment, &data,
1501 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1503 offset += size;
1504 break;
1506 case4(070):
1507 if (opx->segment != segment) {
1508 data = opx->offset;
1509 out(offset, segment, &data,
1510 OUT_REL4ADR, insn_end - offset,
1511 opx->segment, opx->wrt);
1512 } else {
1513 data = opx->offset - insn_end;
1514 out(offset, segment, &data,
1515 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1517 offset += 4;
1518 break;
1520 case4(074):
1521 if (opx->segment == NO_SEG)
1522 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1523 " relocatable");
1524 data = 0;
1525 out(offset, segment, &data, OUT_ADDRESS, 2,
1526 outfmt->segbase(1 + opx->segment),
1527 opx->wrt);
1528 offset += 2;
1529 break;
1531 case 0172:
1532 c = *codes++;
1533 opx = &ins->oprs[c >> 3];
1534 bytes[0] = nasm_regvals[opx->basereg] << 4;
1535 opx = &ins->oprs[c & 7];
1536 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1537 errfunc(ERR_NONFATAL,
1538 "non-absolute expression not permitted as argument %d",
1539 c & 7);
1540 } else {
1541 if (opx->offset & ~15) {
1542 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1543 "four-bit argument exceeds bounds");
1545 bytes[0] |= opx->offset & 15;
1547 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1548 offset++;
1549 break;
1551 case 0173:
1552 c = *codes++;
1553 opx = &ins->oprs[c >> 4];
1554 bytes[0] = nasm_regvals[opx->basereg] << 4;
1555 bytes[0] |= c & 15;
1556 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1557 offset++;
1558 break;
1560 case4(0174):
1561 bytes[0] = nasm_regvals[opx->basereg] << 4;
1562 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1563 offset++;
1564 break;
1566 case4(0254):
1567 data = opx->offset;
1568 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1569 (int32_t)data != (int64_t)data) {
1570 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1571 "signed dword immediate exceeds bounds");
1573 out(offset, segment, &data, OUT_ADDRESS, 4,
1574 opx->segment, opx->wrt);
1575 offset += 4;
1576 break;
1578 case4(0240):
1579 case 0250:
1580 codes += 3;
1581 ins->evex_p[2] |= op_evexflags(&ins->oprs[0],
1582 EVEX_P2Z | EVEX_P2AAA, 2);
1583 ins->evex_p[2] ^= EVEX_P2VP; /* 1's complement */
1584 bytes[0] = 0x62;
1585 /* EVEX.X can be set by either REX or EVEX for different reasons */
1586 bytes[1] = ((((ins->rex & 7) << 5) |
1587 (ins->evex_p[0] & (EVEX_P0X | EVEX_P0RP))) ^ 0xf0) |
1588 (ins->vex_cm & 3);
1589 bytes[2] = ((ins->rex & REX_W) << (7 - 3)) |
1590 ((~ins->vexreg & 15) << 3) |
1591 (1 << 2) | (ins->vex_wlp & 3);
1592 bytes[3] = ins->evex_p[2];
1593 out(offset, segment, &bytes, OUT_RAWDATA, 4, NO_SEG, NO_SEG);
1594 offset += 4;
1595 break;
1597 case4(0260):
1598 case 0270:
1599 codes += 2;
1600 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1601 bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
1602 bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
1603 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1604 ((~ins->vexreg & 15)<< 3) | (ins->vex_wlp & 07);
1605 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1606 offset += 3;
1607 } else {
1608 bytes[0] = 0xc5;
1609 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1610 ((~ins->vexreg & 15) << 3) | (ins->vex_wlp & 07);
1611 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1612 offset += 2;
1614 break;
1616 case 0271:
1617 case 0272:
1618 case 0273:
1619 break;
1621 case4(0274):
1623 uint64_t uv, um;
1624 int s;
1626 if (ins->rex & REX_W)
1627 s = 64;
1628 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1629 s = 16;
1630 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1631 s = 32;
1632 else
1633 s = bits;
1635 um = (uint64_t)2 << (s-1);
1636 uv = opx->offset;
1638 if (uv > 127 && uv < (uint64_t)-128 &&
1639 (uv < um-128 || uv > um-1)) {
1640 /* If this wasn't explicitly byte-sized, warn as though we
1641 * had fallen through to the imm16/32/64 case.
1643 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1644 "%s value exceeds bounds",
1645 (opx->type & BITS8) ? "signed byte" :
1646 s == 16 ? "word" :
1647 s == 32 ? "dword" :
1648 "signed dword");
1650 if (opx->segment != NO_SEG) {
1651 data = uv;
1652 out(offset, segment, &data, OUT_ADDRESS, 1,
1653 opx->segment, opx->wrt);
1654 } else {
1655 bytes[0] = uv;
1656 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1657 NO_SEG);
1659 offset += 1;
1660 break;
1663 case4(0300):
1664 break;
1666 case 0310:
1667 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1668 *bytes = 0x67;
1669 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1670 offset += 1;
1671 } else
1672 offset += 0;
1673 break;
1675 case 0311:
1676 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1677 *bytes = 0x67;
1678 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1679 offset += 1;
1680 } else
1681 offset += 0;
1682 break;
1684 case 0312:
1685 break;
1687 case 0313:
1688 ins->rex = 0;
1689 break;
1691 case4(0314):
1692 break;
1694 case 0320:
1695 case 0321:
1696 break;
1698 case 0322:
1699 case 0323:
1700 break;
1702 case 0324:
1703 ins->rex |= REX_W;
1704 break;
1706 case 0325:
1707 break;
1709 case 0326:
1710 break;
1712 case 0330:
1713 *bytes = *codes++ ^ get_cond_opcode(ins->condition);
1714 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1715 offset += 1;
1716 break;
1718 case 0331:
1719 break;
1721 case 0332:
1722 case 0333:
1723 *bytes = c - 0332 + 0xF2;
1724 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1725 offset += 1;
1726 break;
1728 case 0334:
1729 if (ins->rex & REX_R) {
1730 *bytes = 0xF0;
1731 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1732 offset += 1;
1734 ins->rex &= ~(REX_L|REX_R);
1735 break;
1737 case 0335:
1738 break;
1740 case 0336:
1741 case 0337:
1742 break;
1744 case 0340:
1745 if (ins->oprs[0].segment != NO_SEG)
1746 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1747 else {
1748 int64_t size = ins->oprs[0].offset;
1749 if (size > 0)
1750 out(offset, segment, NULL,
1751 OUT_RESERVE, size, NO_SEG, NO_SEG);
1752 offset += size;
1754 break;
1756 case 0341:
1757 break;
1759 case 0360:
1760 break;
1762 case 0361:
1763 bytes[0] = 0x66;
1764 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1765 offset += 1;
1766 break;
1768 case 0364:
1769 case 0365:
1770 break;
1772 case 0366:
1773 case 0367:
1774 *bytes = c - 0366 + 0x66;
1775 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1776 offset += 1;
1777 break;
1779 case3(0370):
1780 break;
1782 case 0373:
1783 *bytes = bits == 16 ? 3 : 5;
1784 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1785 offset += 1;
1786 break;
1788 case 0374:
1789 eat = EA_XMMVSIB;
1790 break;
1792 case 0375:
1793 eat = EA_YMMVSIB;
1794 break;
1796 case 0376:
1797 eat = EA_ZMMVSIB;
1798 break;
1800 case4(0100):
1801 case4(0110):
1802 case4(0120):
1803 case4(0130):
1804 case4(0200):
1805 case4(0204):
1806 case4(0210):
1807 case4(0214):
1808 case4(0220):
1809 case4(0224):
1810 case4(0230):
1811 case4(0234):
1813 ea ea_data;
1814 int rfield;
1815 opflags_t rflags;
1816 uint8_t *p;
1817 int32_t s;
1818 struct operand *opy = &ins->oprs[op2];
1820 if (c <= 0177) {
1821 /* pick rfield from operand b (opx) */
1822 rflags = regflag(opx);
1823 rfield = nasm_regvals[opx->basereg];
1824 } else {
1825 /* rfield is constant */
1826 rflags = 0;
1827 rfield = c & 7;
1830 if (process_ea(opy, &ea_data, bits,
1831 rfield, rflags, ins) != eat)
1832 errfunc(ERR_NONFATAL, "invalid effective address");
1834 p = bytes;
1835 *p++ = ea_data.modrm;
1836 if (ea_data.sib_present)
1837 *p++ = ea_data.sib;
1839 s = p - bytes;
1840 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1843 * Make sure the address gets the right offset in case
1844 * the line breaks in the .lst file (BR 1197827)
1846 offset += s;
1847 s = 0;
1849 switch (ea_data.bytes) {
1850 case 0:
1851 break;
1852 case 1:
1853 case 2:
1854 case 4:
1855 case 8:
1856 /* use compressed displacement, if available */
1857 data = ea_data.disp8 ? ea_data.disp8 : opy->offset;
1858 s += ea_data.bytes;
1859 if (ea_data.rip) {
1860 if (opy->segment == segment) {
1861 data -= insn_end;
1862 if (overflow_signed(data, ea_data.bytes))
1863 warn_overflow(ERR_PASS2, ea_data.bytes);
1864 out(offset, segment, &data, OUT_ADDRESS,
1865 ea_data.bytes, NO_SEG, NO_SEG);
1866 } else {
1867 /* overflow check in output/linker? */
1868 out(offset, segment, &data, OUT_REL4ADR,
1869 insn_end - offset, opy->segment, opy->wrt);
1871 } else {
1872 if (overflow_general(data, ins->addr_size >> 3) ||
1873 signed_bits(data, ins->addr_size) !=
1874 signed_bits(data, ea_data.bytes * 8))
1875 warn_overflow(ERR_PASS2, ea_data.bytes);
1877 out(offset, segment, &data, OUT_ADDRESS,
1878 ea_data.bytes, opy->segment, opy->wrt);
1880 break;
1881 default:
1882 /* Impossible! */
1883 errfunc(ERR_PANIC,
1884 "Invalid amount of bytes (%d) for offset?!",
1885 ea_data.bytes);
1886 break;
1888 offset += s;
1890 break;
1892 default:
1893 errfunc(ERR_PANIC, "internal instruction table corrupt"
1894 ": instruction code \\%o (0x%02X) given", c, c);
1895 break;
1900 static opflags_t regflag(const operand * o)
1902 if (!is_register(o->basereg))
1903 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1904 return nasm_reg_flags[o->basereg];
1907 static int32_t regval(const operand * o)
1909 if (!is_register(o->basereg))
1910 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1911 return nasm_regvals[o->basereg];
1914 static int op_rexflags(const operand * o, int mask)
1916 opflags_t flags;
1917 int val;
1919 if (!is_register(o->basereg))
1920 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1922 flags = nasm_reg_flags[o->basereg];
1923 val = nasm_regvals[o->basereg];
1925 return rexflags(val, flags, mask);
1928 static int rexflags(int val, opflags_t flags, int mask)
1930 int rex = 0;
1932 if (val >= 0 && (val & 8))
1933 rex |= REX_B|REX_X|REX_R;
1934 if (flags & BITS64)
1935 rex |= REX_W;
1936 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1937 rex |= REX_H;
1938 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1939 rex |= REX_P;
1941 return rex & mask;
1944 static int evexflags(int val, decoflags_t deco,
1945 int mask, uint8_t byte)
1947 int evex = 0;
1949 switch (byte) {
1950 case 0:
1951 if (val >= 0 && (val & 16))
1952 evex |= (EVEX_P0RP | EVEX_P0X);
1953 break;
1954 case 2:
1955 if (val >= 0 && (val & 16))
1956 evex |= EVEX_P2VP;
1957 if (deco & Z)
1958 evex |= EVEX_P2Z;
1959 if (deco & OPMASK_MASK)
1960 evex |= deco & EVEX_P2AAA;
1961 break;
1963 return evex & mask;
1966 static int op_evexflags(const operand * o, int mask, uint8_t byte)
1968 int val;
1970 if (!is_register(o->basereg))
1971 errfunc(ERR_PANIC, "invalid operand passed to op_evexflags()");
1973 val = nasm_regvals[o->basereg];
1975 return evexflags(val, o->decoflags, mask, byte);
1978 static enum match_result find_match(const struct itemplate **tempp,
1979 insn *instruction,
1980 int32_t segment, int64_t offset, int bits)
1982 const struct itemplate *temp;
1983 enum match_result m, merr;
1984 opflags_t xsizeflags[MAX_OPERANDS];
1985 bool opsizemissing = false;
1986 int8_t broadcast = instruction->evex_brerop;
1987 int i;
1989 /* broadcasting uses a different data element size */
1990 for (i = 0; i < instruction->operands; i++)
1991 if (i == broadcast)
1992 xsizeflags[i] = instruction->oprs[i].decoflags & BRSIZE_MASK;
1993 else
1994 xsizeflags[i] = instruction->oprs[i].type & SIZE_MASK;
1996 merr = MERR_INVALOP;
1998 for (temp = nasm_instructions[instruction->opcode];
1999 temp->opcode != I_none; temp++) {
2000 m = matches(temp, instruction, bits);
2001 if (m == MOK_JUMP) {
2002 if (jmp_match(segment, offset, bits, instruction, temp))
2003 m = MOK_GOOD;
2004 else
2005 m = MERR_INVALOP;
2006 } else if (m == MERR_OPSIZEMISSING && !itemp_has(temp, IF_SX)) {
2008 * Missing operand size and a candidate for fuzzy matching...
2010 for (i = 0; i < temp->operands; i++)
2011 if (i == broadcast)
2012 xsizeflags[i] |= temp->deco[i] & BRSIZE_MASK;
2013 else
2014 xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
2015 opsizemissing = true;
2017 if (m > merr)
2018 merr = m;
2019 if (merr == MOK_GOOD)
2020 goto done;
2023 /* No match, but see if we can get a fuzzy operand size match... */
2024 if (!opsizemissing)
2025 goto done;
2027 for (i = 0; i < instruction->operands; i++) {
2029 * We ignore extrinsic operand sizes on registers, so we should
2030 * never try to fuzzy-match on them. This also resolves the case
2031 * when we have e.g. "xmmrm128" in two different positions.
2033 if (is_class(REGISTER, instruction->oprs[i].type))
2034 continue;
2036 /* This tests if xsizeflags[i] has more than one bit set */
2037 if ((xsizeflags[i] & (xsizeflags[i]-1)))
2038 goto done; /* No luck */
2040 if (i == broadcast) {
2041 instruction->oprs[i].decoflags |= xsizeflags[i];
2042 instruction->oprs[i].type |= (xsizeflags[i] == BR_BITS32 ?
2043 BITS32 : BITS64);
2044 } else {
2045 instruction->oprs[i].type |= xsizeflags[i]; /* Set the size */
2049 /* Try matching again... */
2050 for (temp = nasm_instructions[instruction->opcode];
2051 temp->opcode != I_none; temp++) {
2052 m = matches(temp, instruction, bits);
2053 if (m == MOK_JUMP) {
2054 if (jmp_match(segment, offset, bits, instruction, temp))
2055 m = MOK_GOOD;
2056 else
2057 m = MERR_INVALOP;
2059 if (m > merr)
2060 merr = m;
2061 if (merr == MOK_GOOD)
2062 goto done;
2065 done:
2066 *tempp = temp;
2067 return merr;
2070 static enum match_result matches(const struct itemplate *itemp,
2071 insn *instruction, int bits)
2073 opflags_t size[MAX_OPERANDS], asize;
2074 bool opsizemissing = false;
2075 int i, oprs;
2078 * Check the opcode
2080 if (itemp->opcode != instruction->opcode)
2081 return MERR_INVALOP;
2084 * Count the operands
2086 if (itemp->operands != instruction->operands)
2087 return MERR_INVALOP;
2090 * Is it legal?
2092 if (!(optimizing > 0) && itemp_has(itemp, IF_OPT))
2093 return MERR_INVALOP;
2096 * Check that no spurious colons or TOs are present
2098 for (i = 0; i < itemp->operands; i++)
2099 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
2100 return MERR_INVALOP;
2103 * Process size flags
2105 switch (itemp_smask(itemp)) {
2106 case IF_GENBIT(IF_SB):
2107 asize = BITS8;
2108 break;
2109 case IF_GENBIT(IF_SW):
2110 asize = BITS16;
2111 break;
2112 case IF_GENBIT(IF_SD):
2113 asize = BITS32;
2114 break;
2115 case IF_GENBIT(IF_SQ):
2116 asize = BITS64;
2117 break;
2118 case IF_GENBIT(IF_SO):
2119 asize = BITS128;
2120 break;
2121 case IF_GENBIT(IF_SY):
2122 asize = BITS256;
2123 break;
2124 case IF_GENBIT(IF_SZ):
2125 asize = BITS512;
2126 break;
2127 case IF_GENBIT(IF_SIZE):
2128 switch (bits) {
2129 case 16:
2130 asize = BITS16;
2131 break;
2132 case 32:
2133 asize = BITS32;
2134 break;
2135 case 64:
2136 asize = BITS64;
2137 break;
2138 default:
2139 asize = 0;
2140 break;
2142 break;
2143 default:
2144 asize = 0;
2145 break;
2148 if (itemp_armask(itemp)) {
2149 /* S- flags only apply to a specific operand */
2150 i = itemp_arg(itemp);
2151 memset(size, 0, sizeof size);
2152 size[i] = asize;
2153 } else {
2154 /* S- flags apply to all operands */
2155 for (i = 0; i < MAX_OPERANDS; i++)
2156 size[i] = asize;
2160 * Check that the operand flags all match up,
2161 * it's a bit tricky so lets be verbose:
2163 * 1) Find out the size of operand. If instruction
2164 * doesn't have one specified -- we're trying to
2165 * guess it either from template (IF_S* flag) or
2166 * from code bits.
2168 * 2) If template operand do not match the instruction OR
2169 * template has an operand size specified AND this size differ
2170 * from which instruction has (perhaps we got it from code bits)
2171 * we are:
2172 * a) Check that only size of instruction and operand is differ
2173 * other characteristics do match
2174 * b) Perhaps it's a register specified in instruction so
2175 * for such a case we just mark that operand as "size
2176 * missing" and this will turn on fuzzy operand size
2177 * logic facility (handled by a caller)
2179 for (i = 0; i < itemp->operands; i++) {
2180 opflags_t type = instruction->oprs[i].type;
2181 decoflags_t deco = instruction->oprs[i].decoflags;
2182 bool is_broadcast = deco & BRDCAST_MASK;
2183 uint8_t brcast_num = 0;
2184 opflags_t template_opsize, insn_opsize;
2186 if (!(type & SIZE_MASK))
2187 type |= size[i];
2189 insn_opsize = type & SIZE_MASK;
2190 if (!is_broadcast) {
2191 template_opsize = itemp->opd[i] & SIZE_MASK;
2192 } else {
2193 decoflags_t deco_brsize = itemp->deco[i] & BRSIZE_MASK;
2195 * when broadcasting, the element size depends on
2196 * the instruction type. decorator flag should match.
2199 if (deco_brsize) {
2200 template_opsize = (deco_brsize == BR_BITS32 ? BITS32 : BITS64);
2201 /* calculate the proper number : {1to<brcast_num>} */
2202 brcast_num = (itemp->opd[i] & SIZE_MASK) / BITS128 *
2203 BITS64 / template_opsize * 2;
2204 } else {
2205 template_opsize = 0;
2209 if ((itemp->opd[i] & ~type & ~SIZE_MASK) ||
2210 (deco & ~itemp->deco[i] & ~BRNUM_MASK)) {
2211 return MERR_INVALOP;
2212 } else if (template_opsize) {
2213 if (template_opsize != insn_opsize) {
2214 if (insn_opsize) {
2215 return MERR_INVALOP;
2216 } else if (!is_class(REGISTER, type)) {
2218 * Note: we don't honor extrinsic operand sizes for registers,
2219 * so "missing operand size" for a register should be
2220 * considered a wildcard match rather than an error.
2222 opsizemissing = true;
2224 } else if (is_broadcast &&
2225 (brcast_num !=
2226 (8U << ((deco & BRNUM_MASK) >> BRNUM_SHIFT)))) {
2228 * broadcasting opsize matches but the number of repeated memory
2229 * element does not match.
2230 * if 64b double precision float is broadcasted to zmm (512b),
2231 * broadcasting decorator must be {1to8}.
2233 return MERR_BRNUMMISMATCH;
2235 } else if (is_register(instruction->oprs[i].basereg) &&
2236 nasm_regvals[instruction->oprs[i].basereg] >= 16 &&
2237 !itemp_has(itemp, IF_AVX512)) {
2238 return MERR_ENCMISMATCH;
2239 } else if (instruction->prefixes[PPS_EVEX] &&
2240 !itemp_has(itemp, IF_AVX512)) {
2241 return MERR_ENCMISMATCH;
2245 if (opsizemissing)
2246 return MERR_OPSIZEMISSING;
2249 * Check operand sizes
2251 if (itemp_has(itemp, IF_SM) || itemp_has(itemp, IF_SM2)) {
2252 oprs = (itemp_has(itemp, IF_SM2) ? 2 : itemp->operands);
2253 for (i = 0; i < oprs; i++) {
2254 asize = itemp->opd[i] & SIZE_MASK;
2255 if (asize) {
2256 for (i = 0; i < oprs; i++)
2257 size[i] = asize;
2258 break;
2261 } else {
2262 oprs = itemp->operands;
2265 for (i = 0; i < itemp->operands; i++) {
2266 if (!(itemp->opd[i] & SIZE_MASK) &&
2267 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2268 return MERR_OPSIZEMISMATCH;
2272 * Check template is okay at the set cpu level
2274 if (iflag_cmp_cpu_level(&insns_flags[itemp->iflag_idx], &cpu) > 0)
2275 return MERR_BADCPU;
2278 * Verify the appropriate long mode flag.
2280 if (itemp_has(itemp, (bits == 64 ? IF_NOLONG : IF_LONG)))
2281 return MERR_BADMODE;
2284 * If we have a HLE prefix, look for the NOHLE flag
2286 if (itemp_has(itemp, IF_NOHLE) &&
2287 (has_prefix(instruction, PPS_REP, P_XACQUIRE) ||
2288 has_prefix(instruction, PPS_REP, P_XRELEASE)))
2289 return MERR_BADHLE;
2292 * Check if special handling needed for Jumps
2294 if ((itemp->code[0] & ~1) == 0370)
2295 return MOK_JUMP;
2298 * Check if BND prefix is allowed
2300 if (!itemp_has(itemp, IF_BND) &&
2301 has_prefix(instruction, PPS_REP, P_BND))
2302 return MERR_BADBND;
2304 return MOK_GOOD;
2308 * Check if ModR/M.mod should/can be 01.
2309 * - EAF_BYTEOFFS is set
2310 * - offset can fit in a byte when EVEX is not used
2311 * - offset can be compressed when EVEX is used
2313 #define IS_MOD_01() (input->eaflags & EAF_BYTEOFFS || \
2314 (o >= -128 && o <= 127 && \
2315 seg == NO_SEG && !forw_ref && \
2316 !(input->eaflags & EAF_WORDOFFS) && \
2317 !(ins->rex & REX_EV)) || \
2318 (ins->rex & REX_EV && \
2319 is_disp8n(input, ins, &output->disp8)))
2321 static enum ea_type process_ea(operand *input, ea *output, int bits,
2322 int rfield, opflags_t rflags, insn *ins)
2324 bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
2325 int addrbits = ins->addr_size;
2327 output->type = EA_SCALAR;
2328 output->rip = false;
2329 output->disp8 = 0;
2331 /* REX flags for the rfield operand */
2332 output->rex |= rexflags(rfield, rflags, REX_R | REX_P | REX_W | REX_H);
2333 /* EVEX.R' flag for the REG operand */
2334 ins->evex_p[0] |= evexflags(rfield, 0, EVEX_P0RP, 0);
2336 if (is_class(REGISTER, input->type)) {
2338 * It's a direct register.
2340 if (!is_register(input->basereg))
2341 goto err;
2343 if (!is_reg_class(REG_EA, input->basereg))
2344 goto err;
2346 /* broadcasting is not available with a direct register operand. */
2347 if (input->decoflags & BRDCAST_MASK) {
2348 nasm_error(ERR_NONFATAL, "Broadcasting not allowed from a register");
2349 goto err;
2352 output->rex |= op_rexflags(input, REX_B | REX_P | REX_W | REX_H);
2353 ins->evex_p[0] |= op_evexflags(input, EVEX_P0X, 0);
2354 output->sib_present = false; /* no SIB necessary */
2355 output->bytes = 0; /* no offset necessary either */
2356 output->modrm = GEN_MODRM(3, rfield, nasm_regvals[input->basereg]);
2357 } else {
2359 * It's a memory reference.
2362 /* Embedded rounding or SAE is not available with a mem ref operand. */
2363 if (input->decoflags & (ER | SAE)) {
2364 nasm_error(ERR_NONFATAL,
2365 "Embedded rounding is available only with reg-reg op.");
2366 return -1;
2369 if (input->basereg == -1 &&
2370 (input->indexreg == -1 || input->scale == 0)) {
2372 * It's a pure offset.
2374 if (bits == 64 && ((input->type & IP_REL) == IP_REL) &&
2375 input->segment == NO_SEG) {
2376 nasm_error(ERR_WARNING | ERR_PASS1, "absolute address can not be RIP-relative");
2377 input->type &= ~IP_REL;
2378 input->type |= MEMORY;
2381 if (input->eaflags & EAF_BYTEOFFS ||
2382 (input->eaflags & EAF_WORDOFFS &&
2383 input->disp_size != (addrbits != 16 ? 32 : 16))) {
2384 nasm_error(ERR_WARNING | ERR_PASS1, "displacement size ignored on absolute address");
2387 if (bits == 64 && (~input->type & IP_REL)) {
2388 output->sib_present = true;
2389 output->sib = GEN_SIB(0, 4, 5);
2390 output->bytes = 4;
2391 output->modrm = GEN_MODRM(0, rfield, 4);
2392 output->rip = false;
2393 } else {
2394 output->sib_present = false;
2395 output->bytes = (addrbits != 16 ? 4 : 2);
2396 output->modrm = GEN_MODRM(0, rfield, (addrbits != 16 ? 5 : 6));
2397 output->rip = bits == 64;
2399 } else {
2401 * It's an indirection.
2403 int i = input->indexreg, b = input->basereg, s = input->scale;
2404 int32_t seg = input->segment;
2405 int hb = input->hintbase, ht = input->hinttype;
2406 int t, it, bt; /* register numbers */
2407 opflags_t x, ix, bx; /* register flags */
2409 if (s == 0)
2410 i = -1; /* make this easy, at least */
2412 if (is_register(i)) {
2413 it = nasm_regvals[i];
2414 ix = nasm_reg_flags[i];
2415 } else {
2416 it = -1;
2417 ix = 0;
2420 if (is_register(b)) {
2421 bt = nasm_regvals[b];
2422 bx = nasm_reg_flags[b];
2423 } else {
2424 bt = -1;
2425 bx = 0;
2428 /* if either one are a vector register... */
2429 if ((ix|bx) & (XMMREG|YMMREG|ZMMREG) & ~REG_EA) {
2430 opflags_t sok = BITS32 | BITS64;
2431 int32_t o = input->offset;
2432 int mod, scale, index, base;
2435 * For a vector SIB, one has to be a vector and the other,
2436 * if present, a GPR. The vector must be the index operand.
2438 if (it == -1 || (bx & (XMMREG|YMMREG|ZMMREG) & ~REG_EA)) {
2439 if (s == 0)
2440 s = 1;
2441 else if (s != 1)
2442 goto err;
2444 t = bt, bt = it, it = t;
2445 x = bx, bx = ix, ix = x;
2448 if (bt != -1) {
2449 if (REG_GPR & ~bx)
2450 goto err;
2451 if (!(REG64 & ~bx) || !(REG32 & ~bx))
2452 sok &= bx;
2453 else
2454 goto err;
2458 * While we're here, ensure the user didn't specify
2459 * WORD or QWORD
2461 if (input->disp_size == 16 || input->disp_size == 64)
2462 goto err;
2464 if (addrbits == 16 ||
2465 (addrbits == 32 && !(sok & BITS32)) ||
2466 (addrbits == 64 && !(sok & BITS64)))
2467 goto err;
2469 output->type = ((ix & ZMMREG & ~REG_EA) ? EA_ZMMVSIB
2470 : ((ix & YMMREG & ~REG_EA)
2471 ? EA_YMMVSIB : EA_XMMVSIB));
2473 output->rex |= rexflags(it, ix, REX_X);
2474 output->rex |= rexflags(bt, bx, REX_B);
2475 ins->evex_p[2] |= evexflags(it, 0, EVEX_P2VP, 2);
2477 index = it & 7; /* it is known to be != -1 */
2479 switch (s) {
2480 case 1:
2481 scale = 0;
2482 break;
2483 case 2:
2484 scale = 1;
2485 break;
2486 case 4:
2487 scale = 2;
2488 break;
2489 case 8:
2490 scale = 3;
2491 break;
2492 default: /* then what the smeg is it? */
2493 goto err; /* panic */
2496 if (bt == -1) {
2497 base = 5;
2498 mod = 0;
2499 } else {
2500 base = (bt & 7);
2501 if (base != REG_NUM_EBP && o == 0 &&
2502 seg == NO_SEG && !forw_ref &&
2503 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2504 mod = 0;
2505 else if (IS_MOD_01())
2506 mod = 1;
2507 else
2508 mod = 2;
2511 output->sib_present = true;
2512 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2513 output->modrm = GEN_MODRM(mod, rfield, 4);
2514 output->sib = GEN_SIB(scale, index, base);
2515 } else if ((ix|bx) & (BITS32|BITS64)) {
2517 * it must be a 32/64-bit memory reference. Firstly we have
2518 * to check that all registers involved are type E/Rxx.
2520 opflags_t sok = BITS32 | BITS64;
2521 int32_t o = input->offset;
2523 if (it != -1) {
2524 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2525 sok &= ix;
2526 else
2527 goto err;
2530 if (bt != -1) {
2531 if (REG_GPR & ~bx)
2532 goto err; /* Invalid register */
2533 if (~sok & bx & SIZE_MASK)
2534 goto err; /* Invalid size */
2535 sok &= bx;
2539 * While we're here, ensure the user didn't specify
2540 * WORD or QWORD
2542 if (input->disp_size == 16 || input->disp_size == 64)
2543 goto err;
2545 if (addrbits == 16 ||
2546 (addrbits == 32 && !(sok & BITS32)) ||
2547 (addrbits == 64 && !(sok & BITS64)))
2548 goto err;
2550 /* now reorganize base/index */
2551 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2552 ((hb == b && ht == EAH_NOTBASE) ||
2553 (hb == i && ht == EAH_MAKEBASE))) {
2554 /* swap if hints say so */
2555 t = bt, bt = it, it = t;
2556 x = bx, bx = ix, ix = x;
2558 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2559 bt = -1, bx = 0, s++;
2560 if (bt == -1 && s == 1 && !(hb == i && ht == EAH_NOTBASE)) {
2561 /* make single reg base, unless hint */
2562 bt = it, bx = ix, it = -1, ix = 0;
2564 if (((s == 2 && it != REG_NUM_ESP && !(input->eaflags & EAF_TIMESTWO)) ||
2565 s == 3 || s == 5 || s == 9) && bt == -1)
2566 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2567 if (it == -1 && (bt & 7) != REG_NUM_ESP &&
2568 (input->eaflags & EAF_TIMESTWO))
2569 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2570 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2571 if (s == 1 && it == REG_NUM_ESP) {
2572 /* swap ESP into base if scale is 1 */
2573 t = it, it = bt, bt = t;
2574 x = ix, ix = bx, bx = x;
2576 if (it == REG_NUM_ESP ||
2577 (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2578 goto err; /* wrong, for various reasons */
2580 output->rex |= rexflags(it, ix, REX_X);
2581 output->rex |= rexflags(bt, bx, REX_B);
2583 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2584 /* no SIB needed */
2585 int mod, rm;
2587 if (bt == -1) {
2588 rm = 5;
2589 mod = 0;
2590 } else {
2591 rm = (bt & 7);
2592 if (rm != REG_NUM_EBP && o == 0 &&
2593 seg == NO_SEG && !forw_ref &&
2594 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2595 mod = 0;
2596 else if (IS_MOD_01())
2597 mod = 1;
2598 else
2599 mod = 2;
2602 output->sib_present = false;
2603 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2604 output->modrm = GEN_MODRM(mod, rfield, rm);
2605 } else {
2606 /* we need a SIB */
2607 int mod, scale, index, base;
2609 if (it == -1)
2610 index = 4, s = 1;
2611 else
2612 index = (it & 7);
2614 switch (s) {
2615 case 1:
2616 scale = 0;
2617 break;
2618 case 2:
2619 scale = 1;
2620 break;
2621 case 4:
2622 scale = 2;
2623 break;
2624 case 8:
2625 scale = 3;
2626 break;
2627 default: /* then what the smeg is it? */
2628 goto err; /* panic */
2631 if (bt == -1) {
2632 base = 5;
2633 mod = 0;
2634 } else {
2635 base = (bt & 7);
2636 if (base != REG_NUM_EBP && o == 0 &&
2637 seg == NO_SEG && !forw_ref &&
2638 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2639 mod = 0;
2640 else if (IS_MOD_01())
2641 mod = 1;
2642 else
2643 mod = 2;
2646 output->sib_present = true;
2647 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2648 output->modrm = GEN_MODRM(mod, rfield, 4);
2649 output->sib = GEN_SIB(scale, index, base);
2651 } else { /* it's 16-bit */
2652 int mod, rm;
2653 int16_t o = input->offset;
2655 /* check for 64-bit long mode */
2656 if (addrbits == 64)
2657 goto err;
2659 /* check all registers are BX, BP, SI or DI */
2660 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI && b != R_DI) ||
2661 (i != -1 && i != R_BP && i != R_BX && i != R_SI && i != R_DI))
2662 goto err;
2664 /* ensure the user didn't specify DWORD/QWORD */
2665 if (input->disp_size == 32 || input->disp_size == 64)
2666 goto err;
2668 if (s != 1 && i != -1)
2669 goto err; /* no can do, in 16-bit EA */
2670 if (b == -1 && i != -1) {
2671 int tmp = b;
2672 b = i;
2673 i = tmp;
2674 } /* swap */
2675 if ((b == R_SI || b == R_DI) && i != -1) {
2676 int tmp = b;
2677 b = i;
2678 i = tmp;
2680 /* have BX/BP as base, SI/DI index */
2681 if (b == i)
2682 goto err; /* shouldn't ever happen, in theory */
2683 if (i != -1 && b != -1 &&
2684 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2685 goto err; /* invalid combinations */
2686 if (b == -1) /* pure offset: handled above */
2687 goto err; /* so if it gets to here, panic! */
2689 rm = -1;
2690 if (i != -1)
2691 switch (i * 256 + b) {
2692 case R_SI * 256 + R_BX:
2693 rm = 0;
2694 break;
2695 case R_DI * 256 + R_BX:
2696 rm = 1;
2697 break;
2698 case R_SI * 256 + R_BP:
2699 rm = 2;
2700 break;
2701 case R_DI * 256 + R_BP:
2702 rm = 3;
2703 break;
2704 } else
2705 switch (b) {
2706 case R_SI:
2707 rm = 4;
2708 break;
2709 case R_DI:
2710 rm = 5;
2711 break;
2712 case R_BP:
2713 rm = 6;
2714 break;
2715 case R_BX:
2716 rm = 7;
2717 break;
2719 if (rm == -1) /* can't happen, in theory */
2720 goto err; /* so panic if it does */
2722 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2723 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2724 mod = 0;
2725 else if (IS_MOD_01())
2726 mod = 1;
2727 else
2728 mod = 2;
2730 output->sib_present = false; /* no SIB - it's 16-bit */
2731 output->bytes = mod; /* bytes of offset needed */
2732 output->modrm = GEN_MODRM(mod, rfield, rm);
2737 output->size = 1 + output->sib_present + output->bytes;
2738 return output->type;
2740 err:
2741 return output->type = EA_INVALID;
2744 static void add_asp(insn *ins, int addrbits)
2746 int j, valid;
2747 int defdisp;
2749 valid = (addrbits == 64) ? 64|32 : 32|16;
2751 switch (ins->prefixes[PPS_ASIZE]) {
2752 case P_A16:
2753 valid &= 16;
2754 break;
2755 case P_A32:
2756 valid &= 32;
2757 break;
2758 case P_A64:
2759 valid &= 64;
2760 break;
2761 case P_ASP:
2762 valid &= (addrbits == 32) ? 16 : 32;
2763 break;
2764 default:
2765 break;
2768 for (j = 0; j < ins->operands; j++) {
2769 if (is_class(MEMORY, ins->oprs[j].type)) {
2770 opflags_t i, b;
2772 /* Verify as Register */
2773 if (!is_register(ins->oprs[j].indexreg))
2774 i = 0;
2775 else
2776 i = nasm_reg_flags[ins->oprs[j].indexreg];
2778 /* Verify as Register */
2779 if (!is_register(ins->oprs[j].basereg))
2780 b = 0;
2781 else
2782 b = nasm_reg_flags[ins->oprs[j].basereg];
2784 if (ins->oprs[j].scale == 0)
2785 i = 0;
2787 if (!i && !b) {
2788 int ds = ins->oprs[j].disp_size;
2789 if ((addrbits != 64 && ds > 8) ||
2790 (addrbits == 64 && ds == 16))
2791 valid &= ds;
2792 } else {
2793 if (!(REG16 & ~b))
2794 valid &= 16;
2795 if (!(REG32 & ~b))
2796 valid &= 32;
2797 if (!(REG64 & ~b))
2798 valid &= 64;
2800 if (!(REG16 & ~i))
2801 valid &= 16;
2802 if (!(REG32 & ~i))
2803 valid &= 32;
2804 if (!(REG64 & ~i))
2805 valid &= 64;
2810 if (valid & addrbits) {
2811 ins->addr_size = addrbits;
2812 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2813 /* Add an address size prefix */
2814 ins->prefixes[PPS_ASIZE] = (addrbits == 32) ? P_A16 : P_A32;;
2815 ins->addr_size = (addrbits == 32) ? 16 : 32;
2816 } else {
2817 /* Impossible... */
2818 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2819 ins->addr_size = addrbits; /* Error recovery */
2822 defdisp = ins->addr_size == 16 ? 16 : 32;
2824 for (j = 0; j < ins->operands; j++) {
2825 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2826 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp) != ins->addr_size) {
2828 * mem_offs sizes must match the address size; if not,
2829 * strip the MEM_OFFS bit and match only EA instructions
2831 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);