NASM 0.98p3.5
[nasm.git] / outobj.c
blob0a7544d623b14bdf96b967a832377e88acc1c014
1 /* outobj.c output routines for the Netwide Assembler to produce
2 * .OBJ object files
4 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
5 * Julian Hall. All rights reserved. The software is
6 * redistributable under the licence given in the file "Licence"
7 * distributed in the NASM archive.
8 */
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
15 #include "nasm.h"
16 #include "nasmlib.h"
17 #include "outform.h"
19 #ifdef OF_OBJ
22 * outobj.c is divided into two sections. The first section is low level
23 * routines for creating obj records; It has nearly zero NASM specific
24 * code. The second section is high level routines for processing calls and
25 * data structures from the rest of NASM into obj format.
27 * It should be easy (though not zero work) to lift the first section out for
28 * use as an obj file writer for some other assembler or compiler.
32 * These routines are built around the ObjRecord data struture. An ObjRecord
33 * holds an object file record that may be under construction or complete.
35 * A major function of these routines is to support continuation of an obj
36 * record into the next record when the maximum record size is exceeded. The
37 * high level code does not need to worry about where the record breaks occur.
38 * It does need to do some minor extra steps to make the automatic continuation
39 * work. Those steps may be skipped for records where the high level knows no
40 * continuation could be required.
42 * 1) An ObjRecord is allocated and cleared by obj_new, or an existing ObjRecord
43 * is cleared by obj_clear.
45 * 2) The caller should fill in .type.
47 * 3) If the record is continuable and there is processing that must be done at
48 * the start of each record then the caller should fill in .ori with the
49 * address of the record initializer routine.
51 * 4) If the record is continuable and it should be saved (rather than emitted
52 * immediately) as each record is done, the caller should set .up to be a
53 * pointer to a location in which the caller keeps the master pointer to the
54 * ObjRecord. When the record is continued, the obj_bump routine will then
55 * allocate a new ObjRecord structure and update the master pointer.
57 * 5) If the .ori field was used then the caller should fill in the .parm with
58 * any data required by the initializer.
60 * 6) The caller uses the routines: obj_byte, obj_word, obj_rword, obj_dword,
61 * obj_x, obj_index, obj_value and obj_name to fill in the various kinds of
62 * data required for this record.
64 * 7) If the record is continuable, the caller should call obj_commit at each
65 * point where breaking the record is permitted.
67 * 8) To write out the record, the caller should call obj_emit2. If the
68 * caller has called obj_commit for all data written then he can get slightly
69 * faster code by calling obj_emit instead of obj_emit2.
71 * Most of these routines return an ObjRecord pointer. This will be the input
72 * pointer most of the time and will be the new location if the ObjRecord
73 * moved as a result of the call. The caller may ignore the return value in
74 * three cases: It is a "Never Reallocates" routine; or The caller knows
75 * continuation is not possible; or The caller uses the master pointer for the
76 * next operation.
79 #define RECORD_MAX 1024 /* maximum size of _any_ record */
80 #define OBJ_PARMS 3 /* maximum .parm used by any .ori routine */
82 #define FIX_08_LOW 0x8000 /* location type for various fixup subrecords */
83 #define FIX_16_OFFSET 0x8400
84 #define FIX_16_SELECTOR 0x8800
85 #define FIX_32_POINTER 0x8C00
86 #define FIX_08_HIGH 0x9000
87 #define FIX_32_OFFSET 0xA400
88 #define FIX_48_POINTER 0xAC00
90 enum RecordID { /* record ID codes */
92 THEADR = 0x80, /* module header */
93 COMENT = 0x88, /* comment record */
95 LINNUM = 0x94, /* line number record */
96 LNAMES = 0x96, /* list of names */
98 SEGDEF = 0x98, /* segment definition */
99 GRPDEF = 0x9A, /* group definition */
100 EXTDEF = 0x8C, /* external definition */
101 PUBDEF = 0x90, /* public definition */
102 COMDEF = 0xB0, /* common definition */
104 LEDATA = 0xA0, /* logical enumerated data */
105 FIXUPP = 0x9C, /* fixups (relocations) */
107 MODEND = 0x8A /* module end */
110 enum ComentID { /* ID codes for comment records */
112 dEXTENDED = 0xA1, /* tells that we are using translator-specific extensions */
113 dLINKPASS = 0xA2, /* link pass 2 marker */
114 dTYPEDEF = 0xE3, /* define a type */
115 dSYM = 0xE6, /* symbol debug record */
116 dFILNAME = 0xE8, /* file name record */
117 dCOMPDEF = 0xEA /* compiler type info */
121 typedef struct ObjRecord ObjRecord;
122 typedef void ORI(ObjRecord *orp);
124 struct ObjRecord {
125 ORI *ori; /* Initialization routine */
126 int used; /* Current data size */
127 int committed; /* Data size at last boundary */
128 int x_size; /* (see obj_x) */
129 unsigned int type; /* Record type */
130 ObjRecord *child; /* Associated record below this one */
131 ObjRecord **up; /* Master pointer to this ObjRecord */
132 ObjRecord *back; /* Previous part of this record */
133 unsigned long parm[OBJ_PARMS]; /* Parameters for ori routine */
134 unsigned char buf[RECORD_MAX];
137 static void obj_fwrite(ObjRecord *orp);
138 static void ori_ledata(ObjRecord *orp);
139 static void ori_pubdef(ObjRecord *orp);
140 static void ori_null(ObjRecord *orp);
141 static ObjRecord *obj_commit(ObjRecord *orp);
142 static void obj_write_fixup (ObjRecord *orp, int bytes,
143 int segrel, long seg, long wrt);
145 static int obj_uppercase; /* Flag: all names in uppercase */
148 * Clear an ObjRecord structure. (Never reallocates).
149 * To simplify reuse of ObjRecord's, .type, .ori and .parm are not cleared.
151 static ObjRecord *obj_clear(ObjRecord *orp)
153 orp->used = 0;
154 orp->committed = 0;
155 orp->x_size = 0;
156 orp->child = NULL;
157 orp->up = NULL;
158 orp->back = NULL;
159 return (orp);
163 * Emit an ObjRecord structure. (Never reallocates).
164 * The record is written out preceeded (recursively) by its previous part (if
165 * any) and followed (recursively) by its child (if any).
166 * The previous part and the child are freed. The main ObjRecord is cleared,
167 * not freed.
169 static ObjRecord *obj_emit(ObjRecord *orp)
171 if (orp->back) {
172 obj_emit(orp->back);
173 nasm_free(orp->back);
176 if (orp->committed)
177 obj_fwrite(orp);
179 if (orp->child) {
180 obj_emit(orp->child);
181 nasm_free(orp->child);
184 return (obj_clear(orp));
188 * Commit and Emit a record. (Never reallocates).
190 static ObjRecord *obj_emit2(ObjRecord *orp)
192 obj_commit(orp);
193 return (obj_emit(orp));
197 * Allocate and clear a new ObjRecord; Also sets .ori to ori_null
199 static ObjRecord *obj_new(void)
201 ObjRecord *orp;
203 orp = obj_clear( nasm_malloc(sizeof(ObjRecord)) );
204 orp->ori = ori_null;
205 return (orp);
209 * Advance to the next record because the existing one is full or its x_size
210 * is incompatible.
211 * Any uncommited data is moved into the next record.
213 static ObjRecord *obj_bump(ObjRecord *orp)
215 ObjRecord *nxt;
216 int used = orp->used;
217 int committed = orp->committed;
219 if (orp->up) {
220 *orp->up = nxt = obj_new();
221 nxt->ori = orp->ori;
222 nxt->type = orp->type;
223 nxt->up = orp->up;
224 nxt->back = orp;
225 memcpy( nxt->parm, orp->parm, sizeof(orp->parm));
226 } else
227 nxt = obj_emit(orp);
229 used -= committed;
230 if (used) {
231 nxt->committed = 1;
232 nxt->ori (nxt);
233 nxt->committed = nxt->used;
234 memcpy( nxt->buf + nxt->committed, orp->buf + committed, used);
235 nxt->used = nxt->committed + used;
238 return (nxt);
242 * Advance to the next record if necessary to allow the next field to fit.
244 static ObjRecord *obj_check(ObjRecord *orp, int size)
246 if (orp->used + size > RECORD_MAX)
247 orp = obj_bump(orp);
249 if (!orp->committed) {
250 orp->committed = 1;
251 orp->ori (orp);
252 orp->committed = orp->used;
255 return (orp);
259 * All data written so far is commited to the current record (won't be moved to
260 * the next record in case of continuation).
262 static ObjRecord *obj_commit(ObjRecord *orp)
264 orp->committed = orp->used;
265 return (orp);
269 * Write a byte
271 static ObjRecord *obj_byte(ObjRecord *orp, unsigned char val)
273 orp = obj_check(orp, 1);
274 orp->buf[orp->used] = val;
275 orp->used++;
276 return (orp);
280 * Write a word
282 static ObjRecord *obj_word(ObjRecord *orp, unsigned int val)
284 orp = obj_check(orp, 2);
285 orp->buf[orp->used] = val;
286 orp->buf[orp->used+1] = val >> 8;
287 orp->used += 2;
288 return (orp);
292 * Write a reversed word
294 static ObjRecord *obj_rword(ObjRecord *orp, unsigned int val)
296 orp = obj_check(orp, 2);
297 orp->buf[orp->used] = val >> 8;
298 orp->buf[orp->used+1] = val;
299 orp->used += 2;
300 return (orp);
304 * Write a dword
306 static ObjRecord *obj_dword(ObjRecord *orp, unsigned long val)
308 orp = obj_check(orp, 4);
309 orp->buf[orp->used] = val;
310 orp->buf[orp->used+1] = val >> 8;
311 orp->buf[orp->used+2] = val >> 16;
312 orp->buf[orp->used+3] = val >> 24;
313 orp->used += 4;
314 return (orp);
318 * All fields of "size x" in one obj record must be the same size (either 16
319 * bits or 32 bits). There is a one bit flag in each record which specifies
320 * which.
321 * This routine is used to force the current record to have the desired
322 * x_size. x_size is normally automatic (using obj_x), so that this
323 * routine should be used outside obj_x, only to provide compatibility with
324 * linkers that have bugs in their processing of the size bit.
327 static ObjRecord *obj_force(ObjRecord *orp, int x)
329 if (orp->x_size == (x^48))
330 orp = obj_bump(orp);
331 orp->x_size = x;
332 return (orp);
336 * This routine writes a field of size x. The caller does not need to worry at
337 * all about whether 16-bits or 32-bits are required.
339 static ObjRecord *obj_x(ObjRecord *orp, unsigned long val)
341 if (orp->type & 1)
342 orp->x_size = 32;
343 if (val > 0xFFFF)
344 orp = obj_force(orp, 32);
345 if (orp->x_size == 32)
346 return (obj_dword(orp, val));
347 orp->x_size = 16;
348 return (obj_word(orp, val));
352 * Writes an index
354 static ObjRecord *obj_index(ObjRecord *orp, unsigned int val)
356 if (val < 128)
357 return ( obj_byte(orp, val) );
358 return (obj_word(orp, (val>>8) | (val<<8) | 0x80));
362 * Writes a variable length value
364 static ObjRecord *obj_value(ObjRecord *orp, unsigned long val)
366 if (val <= 128)
367 return ( obj_byte(orp, val) );
368 if (val <= 0xFFFF) {
369 orp = obj_byte(orp, 129);
370 return ( obj_word(orp, val) );
372 if (val <= 0xFFFFFF)
373 return ( obj_dword(orp, (val<<8) + 132 ) );
374 orp = obj_byte(orp, 136);
375 return ( obj_dword(orp, val) );
379 * Writes a counted string
381 static ObjRecord *obj_name(ObjRecord *orp, char *name)
383 int len = strlen(name);
384 unsigned char *ptr;
386 orp = obj_check(orp, len+1);
387 ptr = orp->buf + orp->used;
388 *ptr++ = len;
389 orp->used += len+1;
390 if (obj_uppercase)
391 while (--len >= 0) {
392 *ptr++ = toupper(*name);
393 name++;
394 } else
395 memcpy(ptr, name, len);
396 return (orp);
400 * Initializer for an LEDATA record.
401 * parm[0] = offset
402 * parm[1] = segment index
403 * During the use of a LEDATA ObjRecord, parm[0] is constantly updated to
404 * represent the offset that would be required if the record were split at the
405 * last commit point.
406 * parm[2] is a copy of parm[0] as it was when the current record was initted.
408 static void ori_ledata(ObjRecord *orp)
410 obj_index (orp, orp->parm[1]);
411 orp->parm[2] = orp->parm[0];
412 obj_x (orp, orp->parm[0]);
416 * Initializer for a PUBDEF record.
417 * parm[0] = group index
418 * parm[1] = segment index
419 * parm[2] = frame (only used when both indexes are zero)
421 static void ori_pubdef(ObjRecord *orp)
423 obj_index (orp, orp->parm[0]);
424 obj_index (orp, orp->parm[1]);
425 if ( !(orp->parm[0] | orp->parm[1]) )
426 obj_word (orp, orp->parm[2]);
430 * Initializer for a LINNUM record.
431 * parm[0] = group index
432 * parm[1] = segment index
434 static void ori_linnum(ObjRecord *orp)
436 obj_index (orp, orp->parm[0]);
437 obj_index (orp, orp->parm[1]);
440 * Initializer for a local vars record.
442 static void ori_local(ObjRecord *orp)
444 obj_byte (orp, 0x40);
445 obj_byte (orp, dSYM);
449 * Null initializer for records that continue without any header info
451 static void ori_null(ObjRecord *orp)
453 (void) orp; /* Do nothing */
457 * This concludes the low level section of outobj.c
460 static char obj_infile[FILENAME_MAX];
462 static efunc error;
463 static evalfunc evaluate;
464 static ldfunc deflabel;
465 static FILE *ofp;
466 static long first_seg;
467 static int any_segs;
468 static int passtwo;
469 static int arrindex;
471 #define GROUP_MAX 256 /* we won't _realistically_ have more
472 * than this many segs in a group */
473 #define EXT_BLKSIZ 256 /* block size for externals list */
475 struct Segment; /* need to know these structs exist */
476 struct Group;
478 struct LineNumber {
479 struct LineNumber *next;
480 struct Segment *segment;
481 long offset;
482 long lineno;
485 static struct FileName {
486 struct FileName *next;
487 char *name;
488 struct LineNumber *lnhead, **lntail;
489 int index;
490 } *fnhead, **fntail;
492 static struct Array {
493 struct Array *next;
494 unsigned size;
495 int basetype;
496 } *arrhead, **arrtail;
498 #define ARRAYBOT 31 /* magic number for first array index */
501 static struct Public {
502 struct Public *next;
503 char *name;
504 long offset;
505 long segment; /* only if it's far-absolute */
506 int type; /* only for local debug syms */
507 } *fpubhead, **fpubtail, *last_defined;
509 static struct External {
510 struct External *next;
511 char *name;
512 long commonsize;
513 long commonelem; /* element size if FAR, else zero */
514 int index; /* OBJ-file external index */
515 enum {
516 DEFWRT_NONE, /* no unusual default-WRT */
517 DEFWRT_STRING, /* a string we don't yet understand */
518 DEFWRT_SEGMENT, /* a segment */
519 DEFWRT_GROUP /* a group */
520 } defwrt_type;
521 union {
522 char *string;
523 struct Segment *seg;
524 struct Group *grp;
525 } defwrt_ptr;
526 struct External *next_dws; /* next with DEFWRT_STRING */
527 } *exthead, **exttail, *dws;
529 static int externals;
531 static struct ExtBack {
532 struct ExtBack *next;
533 struct External *exts[EXT_BLKSIZ];
534 } *ebhead, **ebtail;
536 static struct Segment {
537 struct Segment *next;
538 long index; /* the NASM segment id */
539 long obj_index; /* the OBJ-file segment index */
540 struct Group *grp; /* the group it belongs to */
541 unsigned long currentpos;
542 long align; /* can be SEG_ABS + absolute addr */
543 enum {
544 CMB_PRIVATE = 0,
545 CMB_PUBLIC = 2,
546 CMB_STACK = 5,
547 CMB_COMMON = 6
548 } combine;
549 long use32; /* is this segment 32-bit? */
550 struct Public *pubhead, **pubtail, *lochead, **loctail;
551 char *name;
552 char *segclass, *overlay; /* `class' is a C++ keyword :-) */
553 ObjRecord *orp;
554 } *seghead, **segtail, *obj_seg_needs_update;
556 static struct Group {
557 struct Group *next;
558 char *name;
559 long index; /* NASM segment id */
560 long obj_index; /* OBJ-file group index */
561 long nentries; /* number of elements... */
562 long nindices; /* ...and number of index elts... */
563 union {
564 long index;
565 char *name;
566 } segs[GROUP_MAX]; /* ...in this */
567 } *grphead, **grptail, *obj_grp_needs_update;
569 static struct ImpDef {
570 struct ImpDef *next;
571 char *extname;
572 char *libname;
573 unsigned int impindex;
574 char *impname;
575 } *imphead, **imptail;
577 static struct ExpDef {
578 struct ExpDef *next;
579 char *intname;
580 char *extname;
581 unsigned int ordinal;
582 int flags;
583 } *exphead, **exptail;
585 #define EXPDEF_FLAG_ORDINAL 0x80
586 #define EXPDEF_FLAG_RESIDENT 0x40
587 #define EXPDEF_FLAG_NODATA 0x20
588 #define EXPDEF_MASK_PARMCNT 0x1F
590 static long obj_entry_seg, obj_entry_ofs;
592 struct ofmt of_obj;
594 static long obj_segment (char *, int, int *);
595 static void obj_write_file(int debuginfo);
596 static int obj_directive (char *, char *, int);
598 static void obj_init (FILE *fp, efunc errfunc, ldfunc ldef, evalfunc eval)
600 ofp = fp;
601 error = errfunc;
602 evaluate = eval;
603 deflabel = ldef;
604 first_seg = seg_alloc();
605 any_segs = FALSE;
606 fpubhead = NULL;
607 fpubtail = &fpubhead;
608 exthead = NULL;
609 exttail = &exthead;
610 imphead = NULL;
611 imptail = &imphead;
612 exphead = NULL;
613 exptail = &exphead;
614 dws = NULL;
615 externals = 0;
616 ebhead = NULL;
617 ebtail = &ebhead;
618 seghead = obj_seg_needs_update = NULL;
619 segtail = &seghead;
620 grphead = obj_grp_needs_update = NULL;
621 grptail = &grphead;
622 obj_entry_seg = NO_SEG;
623 obj_uppercase = FALSE;
624 passtwo = 0;
626 of_obj.current_dfmt->init (&of_obj,NULL,fp,errfunc);
629 static int obj_set_info(enum geninfo type, char **val)
631 (void) type;
632 (void) val;
634 return 0;
636 static void obj_cleanup (int debuginfo)
638 obj_write_file(debuginfo);
639 of_obj.current_dfmt->cleanup();
640 fclose (ofp);
641 while (seghead) {
642 struct Segment *segtmp = seghead;
643 seghead = seghead->next;
644 while (segtmp->pubhead) {
645 struct Public *pubtmp = segtmp->pubhead;
646 segtmp->pubhead = pubtmp->next;
647 nasm_free (pubtmp->name);
648 nasm_free (pubtmp);
650 nasm_free (segtmp->segclass);
651 nasm_free (segtmp->overlay);
652 nasm_free (segtmp);
654 while (fpubhead) {
655 struct Public *pubtmp = fpubhead;
656 fpubhead = fpubhead->next;
657 nasm_free (pubtmp->name);
658 nasm_free (pubtmp);
660 while (exthead) {
661 struct External *exttmp = exthead;
662 exthead = exthead->next;
663 nasm_free (exttmp);
665 while (imphead) {
666 struct ImpDef *imptmp = imphead;
667 imphead = imphead->next;
668 nasm_free (imptmp->extname);
669 nasm_free (imptmp->libname);
670 nasm_free (imptmp->impname); /* nasm_free won't mind if it's NULL */
671 nasm_free (imptmp);
673 while (exphead) {
674 struct ExpDef *exptmp = exphead;
675 exphead = exphead->next;
676 nasm_free (exptmp->extname);
677 nasm_free (exptmp->intname);
678 nasm_free (exptmp);
680 while (ebhead) {
681 struct ExtBack *ebtmp = ebhead;
682 ebhead = ebhead->next;
683 nasm_free (ebtmp);
685 while (grphead) {
686 struct Group *grptmp = grphead;
687 grphead = grphead->next;
688 nasm_free (grptmp);
692 static void obj_ext_set_defwrt (struct External *ext, char *id)
694 struct Segment *seg;
695 struct Group *grp;
697 for (seg = seghead; seg; seg = seg->next)
698 if (!strcmp(seg->name, id)) {
699 ext->defwrt_type = DEFWRT_SEGMENT;
700 ext->defwrt_ptr.seg = seg;
701 nasm_free (id);
702 return;
705 for (grp = grphead; grp; grp = grp->next)
706 if (!strcmp(grp->name, id)) {
707 ext->defwrt_type = DEFWRT_GROUP;
708 ext->defwrt_ptr.grp = grp;
709 nasm_free (id);
710 return;
713 ext->defwrt_type = DEFWRT_STRING;
714 ext->defwrt_ptr.string = id;
715 ext->next_dws = dws;
716 dws = ext;
719 static void obj_deflabel (char *name, long segment,
720 long offset, int is_global, char *special)
723 * We have three cases:
725 * (i) `segment' is a segment-base. If so, set the name field
726 * for the segment or group structure it refers to, and then
727 * return.
729 * (ii) `segment' is one of our segments, or a SEG_ABS segment.
730 * Save the label position for later output of a PUBDEF record.
731 * (Or a MODPUB, if we work out how.)
733 * (iii) `segment' is not one of our segments. Save the label
734 * position for later output of an EXTDEF, and also store a
735 * back-reference so that we can map later references to this
736 * segment number to the external index.
738 struct External *ext;
739 struct ExtBack *eb;
740 struct Segment *seg;
741 int i;
742 int used_special = FALSE; /* have we used the special text? */
745 * If it's a special-retry from pass two, discard it.
747 if (is_global == 3)
748 return;
751 * First check for the double-period, signifying something
752 * unusual.
754 if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
755 if (!strcmp(name, "..start")) {
756 obj_entry_seg = segment;
757 obj_entry_ofs = offset;
758 return;
760 error (ERR_NONFATAL, "unrecognised special symbol `%s'", name);
764 * Case (i):
766 if (obj_seg_needs_update) {
767 obj_seg_needs_update->name = name;
768 return;
769 } else if (obj_grp_needs_update) {
770 obj_grp_needs_update->name = name;
771 return;
773 if (segment < SEG_ABS && segment != NO_SEG && segment % 2)
774 return;
776 if (segment >= SEG_ABS || segment == NO_SEG) {
778 * SEG_ABS subcase of (ii).
780 if (is_global) {
781 struct Public *pub;
783 pub = *fpubtail = nasm_malloc(sizeof(*pub));
784 fpubtail = &pub->next;
785 pub->next = NULL;
786 pub->name = nasm_strdup(name);
787 pub->offset = offset;
788 pub->segment = (segment == NO_SEG ? 0 : segment & ~SEG_ABS);
790 if (special)
791 error(ERR_NONFATAL, "OBJ supports no special symbol features"
792 " for this symbol type");
793 return;
797 * If `any_segs' is still FALSE, we might need to define a
798 * default segment, if they're trying to declare a label in
799 * `first_seg'.
801 if (!any_segs && segment == first_seg) {
802 int tempint; /* ignored */
803 if (segment != obj_segment("__NASMDEFSEG", 2, &tempint))
804 error (ERR_PANIC, "strange segment conditions in OBJ driver");
807 for (seg = seghead; seg && is_global; seg = seg->next)
808 if (seg->index == segment) {
809 struct Public *loc = nasm_malloc (sizeof(*loc));
811 * Case (ii). Maybe MODPUB someday?
813 *seg->pubtail = loc;
814 seg->pubtail = &loc->next;
815 loc->next = NULL;
816 loc->name = nasm_strdup(name);
817 loc->offset = offset;
819 if (special)
820 error(ERR_NONFATAL, "OBJ supports no special symbol features"
821 " for this symbol type");
822 return;
826 * Case (iii).
828 if (is_global) {
829 ext = *exttail = nasm_malloc(sizeof(*ext));
830 ext->next = NULL;
831 exttail = &ext->next;
832 ext->name = name;
833 ext->defwrt_type = DEFWRT_NONE;
834 if (is_global == 2) {
835 ext->commonsize = offset;
836 ext->commonelem = 1; /* default FAR */
837 } else
838 ext->commonsize = 0;
840 else
841 return;
844 * Now process the special text, if any, to find default-WRT
845 * specifications and common-variable element-size and near/far
846 * specifications.
848 while (special && *special) {
849 used_special = TRUE;
852 * We might have a default-WRT specification.
854 if (!nasm_strnicmp(special, "wrt", 3)) {
855 char *p;
856 int len;
857 special += 3;
858 special += strspn(special, " \t");
859 p = nasm_strndup(special, len = strcspn(special, ":"));
860 obj_ext_set_defwrt (ext, p);
861 special += len;
862 if (*special && *special != ':')
863 error(ERR_NONFATAL, "`:' expected in special symbol"
864 " text for `%s'", ext->name);
865 else if (*special == ':')
866 special++;
870 * The NEAR or FAR keywords specify nearness or
871 * farness. FAR gives default element size 1.
873 if (!nasm_strnicmp(special, "far", 3)) {
874 if (ext->commonsize)
875 ext->commonelem = 1;
876 else
877 error(ERR_NONFATAL, "`%s': `far' keyword may only be applied"
878 " to common variables\n", ext->name);
879 special += 3;
880 special += strspn(special, " \t");
881 } else if (!nasm_strnicmp(special, "near", 4)) {
882 if (ext->commonsize)
883 ext->commonelem = 0;
884 else
885 error(ERR_NONFATAL, "`%s': `far' keyword may only be applied"
886 " to common variables\n", ext->name);
887 special += 4;
888 special += strspn(special, " \t");
892 * If it's a common, and anything else remains on the line
893 * before a further colon, evaluate it as an expression and
894 * use that as the element size. Forward references aren't
895 * allowed.
897 if (*special == ':')
898 special++;
899 else if (*special) {
900 if (ext->commonsize) {
901 expr *e;
902 struct tokenval tokval;
904 stdscan_reset();
905 stdscan_bufptr = special;
906 tokval.t_type = TOKEN_INVALID;
907 e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL);
908 if (e) {
909 if (!is_simple(e))
910 error (ERR_NONFATAL, "cannot use relocatable"
911 " expression as common-variable element size");
912 else
913 ext->commonelem = reloc_value(e);
915 special = stdscan_bufptr;
916 } else {
917 error (ERR_NONFATAL, "`%s': element-size specifications only"
918 " apply to common variables", ext->name);
919 while (*special && *special != ':')
920 special++;
921 if (*special == ':')
922 special++;
927 i = segment/2;
928 eb = ebhead;
929 if (!eb) {
930 eb = *ebtail = nasm_malloc(sizeof(*eb));
931 eb->next = NULL;
932 ebtail = &eb->next;
934 while (i > EXT_BLKSIZ) {
935 if (eb && eb->next)
936 eb = eb->next;
937 else {
938 eb = *ebtail = nasm_malloc(sizeof(*eb));
939 eb->next = NULL;
940 ebtail = &eb->next;
942 i -= EXT_BLKSIZ;
944 eb->exts[i] = ext;
945 ext->index = ++externals;
947 if (special && !used_special)
948 error(ERR_NONFATAL, "OBJ supports no special symbol features"
949 " for this symbol type");
952 static void obj_out (long segto, void *data, unsigned long type,
953 long segment, long wrt)
955 long size, realtype;
956 unsigned char *ucdata;
957 long ldata;
958 struct Segment *seg;
959 ObjRecord *orp;
962 * handle absolute-assembly (structure definitions)
964 if (segto == NO_SEG) {
965 if ((type & OUT_TYPMASK) != OUT_RESERVE)
966 error (ERR_NONFATAL, "attempt to assemble code in [ABSOLUTE]"
967 " space");
968 return;
972 * If `any_segs' is still FALSE, we must define a default
973 * segment.
975 if (!any_segs) {
976 int tempint; /* ignored */
977 if (segto != obj_segment("__NASMDEFSEG", 2, &tempint))
978 error (ERR_PANIC, "strange segment conditions in OBJ driver");
982 * Find the segment we are targetting.
984 for (seg = seghead; seg; seg = seg->next)
985 if (seg->index == segto)
986 break;
987 if (!seg)
988 error (ERR_PANIC, "code directed to nonexistent segment?");
990 orp = seg->orp;
991 orp->parm[0] = seg->currentpos;
993 size = type & OUT_SIZMASK;
994 realtype = type & OUT_TYPMASK;
995 if (realtype == OUT_RAWDATA) {
996 ucdata = data;
997 while (size > 0) {
998 unsigned int len;
999 orp = obj_check(seg->orp, 1);
1000 len = RECORD_MAX - orp->used;
1001 if (len > size)
1002 len = size;
1003 memcpy (orp->buf+orp->used, ucdata, len);
1004 orp->committed = orp->used += len;
1005 orp->parm[0] = seg->currentpos += len;
1006 ucdata += len;
1007 size -= len;
1010 else if (realtype == OUT_ADDRESS || realtype == OUT_REL2ADR ||
1011 realtype == OUT_REL4ADR)
1013 int rsize;
1015 if (segment == NO_SEG && realtype != OUT_ADDRESS)
1016 error(ERR_NONFATAL, "relative call to absolute address not"
1017 " supported by OBJ format");
1018 if (segment >= SEG_ABS)
1019 error(ERR_NONFATAL, "far-absolute relocations not supported"
1020 " by OBJ format");
1021 ldata = *(long *)data;
1022 if (realtype == OUT_REL2ADR) {
1023 ldata += (size-2);
1024 size = 2;
1026 if (realtype == OUT_REL4ADR) {
1027 ldata += (size-4);
1028 size = 4;
1030 if (size == 2)
1031 orp = obj_word (orp, ldata);
1032 else
1033 orp = obj_dword (orp, ldata);
1034 rsize = size;
1035 if (segment < SEG_ABS && (segment != NO_SEG && segment % 2) &&
1036 size == 4) {
1038 * This is a 4-byte segment-base relocation such as
1039 * `MOV EAX,SEG foo'. OBJ format can't actually handle
1040 * these, but if the constant term has the 16 low bits
1041 * zero, we can just apply a 2-byte segment-base
1042 * relocation to the low word instead.
1044 rsize = 2;
1045 if (ldata & 0xFFFF)
1046 error(ERR_NONFATAL, "OBJ format cannot handle complex"
1047 " dword-size segment base references");
1049 if (segment != NO_SEG)
1050 obj_write_fixup (orp, rsize,
1051 (realtype == OUT_ADDRESS ? 0x4000 : 0),
1052 segment, wrt);
1053 seg->currentpos += size;
1054 } else if (realtype == OUT_RESERVE) {
1055 if (orp->committed)
1056 orp = obj_bump(orp);
1057 seg->currentpos += size;
1059 obj_commit(orp);
1062 static void obj_write_fixup (ObjRecord *orp, int bytes,
1063 int segrel, long seg, long wrt)
1065 int locat, method;
1066 int base;
1067 long tidx, fidx;
1068 struct Segment *s = NULL;
1069 struct Group *g = NULL;
1070 struct External *e = NULL;
1071 ObjRecord *forp;
1073 if (bytes == 1) {
1074 error(ERR_NONFATAL, "`obj' output driver does not support"
1075 " one-byte relocations");
1076 return;
1079 forp = orp->child;
1080 if (forp == NULL) {
1081 orp->child = forp = obj_new();
1082 forp->up = &(orp->child);
1083 forp->type = FIXUPP;
1086 if (seg % 2) {
1087 base = TRUE;
1088 locat = FIX_16_SELECTOR;
1089 seg--;
1090 if (bytes != 2)
1091 error(ERR_PANIC, "OBJ: 4-byte segment base fixup got"
1092 " through sanity check");
1094 else {
1095 base = FALSE;
1096 locat = (bytes == 2) ? FIX_16_OFFSET : FIX_32_OFFSET;
1097 if (!segrel)
1099 * There is a bug in tlink that makes it process self relative
1100 * fixups incorrectly if the x_size doesn't match the location
1101 * size.
1103 forp = obj_force(forp, bytes<<3);
1106 forp = obj_rword (forp, locat | segrel | (orp->parm[0]-orp->parm[2]));
1108 tidx = fidx = -1, method = 0; /* placate optimisers */
1111 * See if we can find the segment ID in our segment list. If
1112 * so, we have a T4 (LSEG) target.
1114 for (s = seghead; s; s = s->next)
1115 if (s->index == seg)
1116 break;
1117 if (s)
1118 method = 4, tidx = s->obj_index;
1119 else {
1120 for (g = grphead; g; g = g->next)
1121 if (g->index == seg)
1122 break;
1123 if (g)
1124 method = 5, tidx = g->obj_index;
1125 else {
1126 long i = seg/2;
1127 struct ExtBack *eb = ebhead;
1128 while (i > EXT_BLKSIZ) {
1129 if (eb)
1130 eb = eb->next;
1131 else
1132 break;
1133 i -= EXT_BLKSIZ;
1135 if (eb)
1136 method = 6, e = eb->exts[i], tidx = e->index;
1137 else
1138 error(ERR_PANIC,
1139 "unrecognised segment value in obj_write_fixup");
1144 * If no WRT given, assume the natural default, which is method
1145 * F5 unless:
1147 * - we are doing an OFFSET fixup for a grouped segment, in
1148 * which case we require F1 (group).
1150 * - we are doing an OFFSET fixup for an external with a
1151 * default WRT, in which case we must honour the default WRT.
1153 if (wrt == NO_SEG) {
1154 if (!base && s && s->grp)
1155 method |= 0x10, fidx = s->grp->obj_index;
1156 else if (!base && e && e->defwrt_type != DEFWRT_NONE) {
1157 if (e->defwrt_type == DEFWRT_SEGMENT)
1158 method |= 0x00, fidx = e->defwrt_ptr.seg->obj_index;
1159 else if (e->defwrt_type == DEFWRT_GROUP)
1160 method |= 0x10, fidx = e->defwrt_ptr.grp->obj_index;
1161 else {
1162 error(ERR_NONFATAL, "default WRT specification for"
1163 " external `%s' unresolved", e->name);
1164 method |= 0x50, fidx = -1; /* got to do _something_ */
1166 } else
1167 method |= 0x50, fidx = -1;
1168 } else {
1170 * See if we can find the WRT-segment ID in our segment
1171 * list. If so, we have a F0 (LSEG) frame.
1173 for (s = seghead; s; s = s->next)
1174 if (s->index == wrt-1)
1175 break;
1176 if (s)
1177 method |= 0x00, fidx = s->obj_index;
1178 else {
1179 for (g = grphead; g; g = g->next)
1180 if (g->index == wrt-1)
1181 break;
1182 if (g)
1183 method |= 0x10, fidx = g->obj_index;
1184 else {
1185 long i = wrt/2;
1186 struct ExtBack *eb = ebhead;
1187 while (i > EXT_BLKSIZ) {
1188 if (eb)
1189 eb = eb->next;
1190 else
1191 break;
1192 i -= EXT_BLKSIZ;
1194 if (eb)
1195 method |= 0x20, fidx = eb->exts[i]->index;
1196 else
1197 error(ERR_PANIC,
1198 "unrecognised WRT value in obj_write_fixup");
1203 forp = obj_byte (forp, method);
1204 if (fidx != -1)
1205 forp = obj_index (forp, fidx);
1206 forp = obj_index (forp, tidx);
1207 obj_commit (forp);
1210 static long obj_segment (char *name, int pass, int *bits)
1213 * We call the label manager here to define a name for the new
1214 * segment, and when our _own_ label-definition stub gets
1215 * called in return, it should register the new segment name
1216 * using the pointer it gets passed. That way we save memory,
1217 * by sponging off the label manager.
1219 if (!name) {
1220 *bits = 16;
1221 return first_seg;
1222 } else {
1223 struct Segment *seg;
1224 struct Group *grp;
1225 struct External **extp;
1226 int obj_idx, i, attrs, rn_error;
1227 char *p;
1230 * Look for segment attributes.
1232 attrs = 0;
1233 while (*name == '.')
1234 name++; /* hack, but a documented one */
1235 p = name;
1236 while (*p && !isspace(*p))
1237 p++;
1238 if (*p) {
1239 *p++ = '\0';
1240 while (*p && isspace(*p))
1241 *p++ = '\0';
1243 while (*p) {
1244 while (*p && !isspace(*p))
1245 p++;
1246 if (*p) {
1247 *p++ = '\0';
1248 while (*p && isspace(*p))
1249 *p++ = '\0';
1252 attrs++;
1255 obj_idx = 1;
1256 for (seg = seghead; seg; seg = seg->next) {
1257 obj_idx++;
1258 if (!strcmp(seg->name, name)) {
1259 if (attrs > 0 && pass == 1)
1260 error(ERR_WARNING, "segment attributes specified on"
1261 " redeclaration of segment: ignoring");
1262 if (seg->use32)
1263 *bits = 32;
1264 else
1265 *bits = 16;
1266 return seg->index;
1270 *segtail = seg = nasm_malloc(sizeof(*seg));
1271 seg->next = NULL;
1272 segtail = &seg->next;
1273 seg->index = (any_segs ? seg_alloc() : first_seg);
1274 seg->obj_index = obj_idx;
1275 seg->grp = NULL;
1276 any_segs = TRUE;
1277 seg->name = NULL;
1278 seg->currentpos = 0;
1279 seg->align = 1; /* default */
1280 seg->use32 = FALSE; /* default */
1281 seg->combine = CMB_PUBLIC; /* default */
1282 seg->segclass = seg->overlay = NULL;
1283 seg->pubhead = NULL;
1284 seg->pubtail = &seg->pubhead;
1285 seg->lochead = NULL;
1286 seg->loctail = &seg->lochead;
1287 seg->orp = obj_new();
1288 seg->orp->up = &(seg->orp);
1289 seg->orp->ori = ori_ledata;
1290 seg->orp->type = LEDATA;
1291 seg->orp->parm[1] = obj_idx;
1294 * Process the segment attributes.
1296 p = name;
1297 while (attrs--) {
1298 p += strlen(p);
1299 while (!*p) p++;
1302 * `p' contains a segment attribute.
1304 if (!nasm_stricmp(p, "private"))
1305 seg->combine = CMB_PRIVATE;
1306 else if (!nasm_stricmp(p, "public"))
1307 seg->combine = CMB_PUBLIC;
1308 else if (!nasm_stricmp(p, "common"))
1309 seg->combine = CMB_COMMON;
1310 else if (!nasm_stricmp(p, "stack"))
1311 seg->combine = CMB_STACK;
1312 else if (!nasm_stricmp(p, "use16"))
1313 seg->use32 = FALSE;
1314 else if (!nasm_stricmp(p, "use32"))
1315 seg->use32 = TRUE;
1316 else if (!nasm_stricmp(p, "flat")) {
1318 * This segment is an OS/2 FLAT segment. That means
1319 * that its default group is group FLAT, even if
1320 * the group FLAT does not explicitly _contain_ the
1321 * segment.
1323 * When we see this, we must create the group
1324 * `FLAT', containing no segments, if it does not
1325 * already exist; then we must set the default
1326 * group of this segment to be the FLAT group.
1328 struct Group *grp;
1329 for (grp = grphead; grp; grp = grp->next)
1330 if (!strcmp(grp->name, "FLAT"))
1331 break;
1332 if (!grp) {
1333 obj_directive ("group", "FLAT", 1);
1334 for (grp = grphead; grp; grp = grp->next)
1335 if (!strcmp(grp->name, "FLAT"))
1336 break;
1337 if (!grp)
1338 error (ERR_PANIC, "failure to define FLAT?!");
1340 seg->grp = grp;
1341 } else if (!nasm_strnicmp(p, "class=", 6))
1342 seg->segclass = nasm_strdup(p+6);
1343 else if (!nasm_strnicmp(p, "overlay=", 8))
1344 seg->overlay = nasm_strdup(p+8);
1345 else if (!nasm_strnicmp(p, "align=", 6)) {
1346 seg->align = readnum(p+6, &rn_error);
1347 if (rn_error) {
1348 seg->align = 1;
1349 error (ERR_NONFATAL, "segment alignment should be"
1350 " numeric");
1352 switch ((int) seg->align) {
1353 case 1: /* BYTE */
1354 case 2: /* WORD */
1355 case 4: /* DWORD */
1356 case 16: /* PARA */
1357 case 256: /* PAGE */
1358 case 4096: /* PharLap extension */
1359 break;
1360 case 8:
1361 error(ERR_WARNING, "OBJ format does not support alignment"
1362 " of 8: rounding up to 16");
1363 seg->align = 16;
1364 break;
1365 case 32:
1366 case 64:
1367 case 128:
1368 error(ERR_WARNING, "OBJ format does not support alignment"
1369 " of %d: rounding up to 256", seg->align);
1370 seg->align = 256;
1371 break;
1372 case 512:
1373 case 1024:
1374 case 2048:
1375 error(ERR_WARNING, "OBJ format does not support alignment"
1376 " of %d: rounding up to 4096", seg->align);
1377 seg->align = 4096;
1378 break;
1379 default:
1380 error(ERR_NONFATAL, "invalid alignment value %d",
1381 seg->align);
1382 seg->align = 1;
1383 break;
1385 } else if (!nasm_strnicmp(p, "absolute=", 9)) {
1386 seg->align = SEG_ABS + readnum(p+9, &rn_error);
1387 if (rn_error)
1388 error (ERR_NONFATAL, "argument to `absolute' segment"
1389 " attribute should be numeric");
1393 obj_seg_needs_update = seg;
1394 if (seg->align >= SEG_ABS)
1395 deflabel (name, NO_SEG, seg->align - SEG_ABS,
1396 NULL, FALSE, FALSE, &of_obj, error);
1397 else
1398 deflabel (name, seg->index+1, 0L,
1399 NULL, FALSE, FALSE, &of_obj, error);
1400 obj_seg_needs_update = NULL;
1403 * See if this segment is defined in any groups.
1405 for (grp = grphead; grp; grp = grp->next) {
1406 for (i = grp->nindices; i < grp->nentries; i++) {
1407 if (!strcmp(grp->segs[i].name, seg->name)) {
1408 nasm_free (grp->segs[i].name);
1409 grp->segs[i] = grp->segs[grp->nindices];
1410 grp->segs[grp->nindices++].index = seg->obj_index;
1411 if (seg->grp)
1412 error(ERR_WARNING, "segment `%s' is already part of"
1413 " a group: first one takes precedence",
1414 seg->name);
1415 else
1416 seg->grp = grp;
1422 * Walk through the list of externals with unresolved
1423 * default-WRT clauses, and resolve any that point at this
1424 * segment.
1426 extp = &dws;
1427 while (*extp) {
1428 if ((*extp)->defwrt_type == DEFWRT_STRING &&
1429 !strcmp((*extp)->defwrt_ptr.string, seg->name)) {
1430 nasm_free((*extp)->defwrt_ptr.string);
1431 (*extp)->defwrt_type = DEFWRT_SEGMENT;
1432 (*extp)->defwrt_ptr.seg = seg;
1433 *extp = (*extp)->next_dws;
1434 } else
1435 extp = &(*extp)->next_dws;
1438 if (seg->use32)
1439 *bits = 32;
1440 else
1441 *bits = 16;
1442 return seg->index;
1446 static int obj_directive (char *directive, char *value, int pass)
1448 if (!strcmp(directive, "group")) {
1449 char *p, *q, *v;
1450 if (pass == 1) {
1451 struct Group *grp;
1452 struct Segment *seg;
1453 struct External **extp;
1454 int obj_idx;
1456 q = value;
1457 while (*q == '.')
1458 q++; /* hack, but a documented one */
1459 v = q;
1460 while (*q && !isspace(*q))
1461 q++;
1462 if (isspace(*q)) {
1463 *q++ = '\0';
1464 while (*q && isspace(*q))
1465 q++;
1468 * Here we used to sanity-check the group directive to
1469 * ensure nobody tried to declare a group containing no
1470 * segments. However, OS/2 does this as standard
1471 * practice, so the sanity check has been removed.
1473 * if (!*q) {
1474 * error(ERR_NONFATAL,"GROUP directive contains no segments");
1475 * return 1;
1479 obj_idx = 1;
1480 for (grp = grphead; grp; grp = grp->next) {
1481 obj_idx++;
1482 if (!strcmp(grp->name, v)) {
1483 error(ERR_NONFATAL, "group `%s' defined twice", v);
1484 return 1;
1488 *grptail = grp = nasm_malloc(sizeof(*grp));
1489 grp->next = NULL;
1490 grptail = &grp->next;
1491 grp->index = seg_alloc();
1492 grp->obj_index = obj_idx;
1493 grp->nindices = grp->nentries = 0;
1494 grp->name = NULL;
1496 obj_grp_needs_update = grp;
1497 deflabel (v, grp->index+1, 0L,
1498 NULL, FALSE, FALSE, &of_obj, error);
1499 obj_grp_needs_update = NULL;
1501 while (*q) {
1502 p = q;
1503 while (*q && !isspace(*q))
1504 q++;
1505 if (isspace(*q)) {
1506 *q++ = '\0';
1507 while (*q && isspace(*q))
1508 q++;
1511 * Now p contains a segment name. Find it.
1513 for (seg = seghead; seg; seg = seg->next)
1514 if (!strcmp(seg->name, p))
1515 break;
1516 if (seg) {
1518 * We have a segment index. Shift a name entry
1519 * to the end of the array to make room.
1521 grp->segs[grp->nentries++] = grp->segs[grp->nindices];
1522 grp->segs[grp->nindices++].index = seg->obj_index;
1523 if (seg->grp)
1524 error(ERR_WARNING, "segment `%s' is already part of"
1525 " a group: first one takes precedence",
1526 seg->name);
1527 else
1528 seg->grp = grp;
1529 } else {
1531 * We have an as-yet undefined segment.
1532 * Remember its name, for later.
1534 grp->segs[grp->nentries++].name = nasm_strdup(p);
1539 * Walk through the list of externals with unresolved
1540 * default-WRT clauses, and resolve any that point at
1541 * this group.
1543 extp = &dws;
1544 while (*extp) {
1545 if ((*extp)->defwrt_type == DEFWRT_STRING &&
1546 !strcmp((*extp)->defwrt_ptr.string, grp->name)) {
1547 nasm_free((*extp)->defwrt_ptr.string);
1548 (*extp)->defwrt_type = DEFWRT_GROUP;
1549 (*extp)->defwrt_ptr.grp = grp;
1550 *extp = (*extp)->next_dws;
1551 } else
1552 extp = &(*extp)->next_dws;
1555 return 1;
1557 if (!strcmp(directive, "uppercase")) {
1558 obj_uppercase = TRUE;
1559 return 1;
1561 if (!strcmp(directive, "import")) {
1562 char *q, *extname, *libname, *impname;
1564 if (pass == 2)
1565 return 1; /* ignore in pass two */
1566 extname = q = value;
1567 while (*q && !isspace(*q))
1568 q++;
1569 if (isspace(*q)) {
1570 *q++ = '\0';
1571 while (*q && isspace(*q))
1572 q++;
1575 libname = q;
1576 while (*q && !isspace(*q))
1577 q++;
1578 if (isspace(*q)) {
1579 *q++ = '\0';
1580 while (*q && isspace(*q))
1581 q++;
1584 impname = q;
1586 if (!*extname || !*libname)
1587 error(ERR_NONFATAL, "`import' directive requires symbol name"
1588 " and library name");
1589 else {
1590 struct ImpDef *imp;
1591 int err = FALSE;
1593 imp = *imptail = nasm_malloc(sizeof(struct ImpDef));
1594 imptail = &imp->next;
1595 imp->next = NULL;
1596 imp->extname = nasm_strdup(extname);
1597 imp->libname = nasm_strdup(libname);
1598 imp->impindex = readnum(impname, &err);
1599 if (!*impname || err)
1600 imp->impname = nasm_strdup(impname);
1601 else
1602 imp->impname = NULL;
1605 return 1;
1607 if (!strcmp(directive, "export")) {
1608 char *q, *extname, *intname, *v;
1609 struct ExpDef *export;
1610 int flags = 0;
1611 unsigned int ordinal = 0;
1613 if (pass == 2)
1614 return 1; /* ignore in pass two */
1615 intname = q = value;
1616 while (*q && !isspace(*q))
1617 q++;
1618 if (isspace(*q)) {
1619 *q++ = '\0';
1620 while (*q && isspace(*q))
1621 q++;
1624 extname = q;
1625 while (*q && !isspace(*q))
1626 q++;
1627 if (isspace(*q)) {
1628 *q++ = '\0';
1629 while (*q && isspace(*q))
1630 q++;
1633 if (!*intname) {
1634 error(ERR_NONFATAL, "`export' directive requires export name");
1635 return 1;
1637 if (!*extname) {
1638 extname = intname;
1639 intname = "";
1641 while (*q) {
1642 v = q;
1643 while (*q && !isspace(*q))
1644 q++;
1645 if (isspace(*q)) {
1646 *q++ = '\0';
1647 while (*q && isspace(*q))
1648 q++;
1650 if (!nasm_stricmp(v, "resident"))
1651 flags |= EXPDEF_FLAG_RESIDENT;
1652 else if (!nasm_stricmp(v, "nodata"))
1653 flags |= EXPDEF_FLAG_NODATA;
1654 else if (!nasm_strnicmp(v, "parm=", 5)) {
1655 int err = FALSE;
1656 flags |= EXPDEF_MASK_PARMCNT & readnum(v+5, &err);
1657 if (err) {
1658 error(ERR_NONFATAL,
1659 "value `%s' for `parm' is non-numeric", v+5);
1660 return 1;
1662 } else {
1663 int err = FALSE;
1664 ordinal = readnum(v, &err);
1665 if (err) {
1666 error(ERR_NONFATAL, "unrecognised export qualifier `%s'",
1668 return 1;
1670 flags |= EXPDEF_FLAG_ORDINAL;
1674 export = *exptail = nasm_malloc(sizeof(struct ExpDef));
1675 exptail = &export->next;
1676 export->next = NULL;
1677 export->extname = nasm_strdup(extname);
1678 export->intname = nasm_strdup(intname);
1679 export->ordinal = ordinal;
1680 export->flags = flags;
1682 return 1;
1684 return 0;
1687 static long obj_segbase (long segment)
1689 struct Segment *seg;
1692 * Find the segment in our list.
1694 for (seg = seghead; seg; seg = seg->next)
1695 if (seg->index == segment-1)
1696 break;
1698 if (!seg) {
1700 * Might be an external with a default WRT.
1702 long i = segment/2;
1703 struct ExtBack *eb = ebhead;
1704 struct External *e;
1706 while (i > EXT_BLKSIZ) {
1707 if (eb)
1708 eb = eb->next;
1709 else
1710 break;
1711 i -= EXT_BLKSIZ;
1713 if (eb) {
1714 e = eb->exts[i];
1715 if (e->defwrt_type == DEFWRT_NONE)
1716 return segment; /* fine */
1717 else if (e->defwrt_type == DEFWRT_SEGMENT)
1718 return e->defwrt_ptr.seg->index+1;
1719 else if (e->defwrt_type == DEFWRT_GROUP)
1720 return e->defwrt_ptr.grp->index+1;
1721 else
1722 return NO_SEG; /* can't tell what it is */
1725 return segment; /* not one of ours - leave it alone */
1728 if (seg->align >= SEG_ABS)
1729 return seg->align; /* absolute segment */
1730 if (seg->grp)
1731 return seg->grp->index+1; /* grouped segment */
1733 return segment; /* no special treatment */
1736 static void obj_filename (char *inname, char *outname, efunc error)
1738 strcpy(obj_infile, inname);
1739 standard_extension (inname, outname, ".obj", error);
1742 static void obj_write_file (int debuginfo)
1744 struct Segment *seg, *entry_seg_ptr = 0;
1745 struct FileName *fn;
1746 struct LineNumber *ln;
1747 struct Group *grp;
1748 struct Public *pub, *loc;
1749 struct External *ext;
1750 struct ImpDef *imp;
1751 struct ExpDef *export;
1752 static char boast[] = "The Netwide Assembler " NASM_VER;
1753 int lname_idx;
1754 ObjRecord *orp;
1757 * Write the THEADR module header.
1759 orp = obj_new();
1760 orp->type = THEADR;
1761 obj_name (orp, obj_infile);
1762 obj_emit2 (orp);
1765 * Write the NASM boast comment.
1767 orp->type = COMENT;
1768 obj_rword (orp, 0); /* comment type zero */
1769 obj_name (orp, boast);
1770 obj_emit2 (orp);
1772 orp->type = COMENT;
1774 * Write the IMPDEF records, if any.
1776 for (imp = imphead; imp; imp = imp->next) {
1777 obj_rword (orp, 0xA0); /* comment class A0 */
1778 obj_byte (orp, 1); /* subfunction 1: IMPDEF */
1779 if (imp->impname)
1780 obj_byte (orp, 0); /* import by name */
1781 else
1782 obj_byte (orp, 1); /* import by ordinal */
1783 obj_name (orp, imp->extname);
1784 obj_name (orp, imp->libname);
1785 if (imp->impname)
1786 obj_name (orp, imp->impname);
1787 else
1788 obj_word (orp, imp->impindex);
1789 obj_emit2 (orp);
1793 * Write the EXPDEF records, if any.
1795 for (export = exphead; export; export = export->next) {
1796 obj_rword (orp, 0xA0); /* comment class A0 */
1797 obj_byte (orp, 2); /* subfunction 2: EXPDEF */
1798 obj_byte (orp, export->flags);
1799 obj_name (orp, export->extname);
1800 obj_name (orp, export->intname);
1801 if (export->flags & EXPDEF_FLAG_ORDINAL)
1802 obj_word (orp, export->ordinal);
1803 obj_emit2 (orp);
1806 /* we're using extended OMF if we put in debug info*/
1807 if (debuginfo) {
1808 orp->type = COMENT;
1809 obj_byte (orp, 0x40);
1810 obj_byte (orp, dEXTENDED);
1811 obj_emit2 (orp);
1815 * Write the first LNAMES record, containing LNAME one, which
1816 * is null. Also initialise the LNAME counter.
1818 orp->type = LNAMES;
1819 obj_byte (orp, 0);
1820 lname_idx = 1;
1822 * Write some LNAMES for the segment names
1824 for (seg = seghead; seg; seg = seg->next) {
1825 orp = obj_name (orp, seg->name);
1826 if (seg->segclass)
1827 orp = obj_name (orp, seg->segclass);
1828 if (seg->overlay)
1829 orp = obj_name (orp, seg->overlay);
1830 obj_commit (orp);
1833 * Write some LNAMES for the group names
1835 for (grp = grphead; grp; grp = grp->next) {
1836 orp = obj_name (orp, grp->name);
1837 obj_commit (orp);
1839 obj_emit (orp);
1843 * Write the SEGDEF records.
1845 orp->type = SEGDEF;
1846 for (seg = seghead; seg; seg = seg->next) {
1847 int acbp;
1848 unsigned long seglen = seg->currentpos;
1850 acbp = (seg->combine << 2); /* C field */
1852 if (seg->use32)
1853 acbp |= 0x01; /* P bit is Use32 flag */
1854 else if (seglen == 0x10000L) {
1855 seglen = 0; /* This special case may be needed for old linkers */
1856 acbp |= 0x02; /* B bit */
1860 /* A field */
1861 if (seg->align >= SEG_ABS)
1862 /* acbp |= 0x00 */;
1863 else if (seg->align >= 4096) {
1864 if (seg->align > 4096)
1865 error(ERR_NONFATAL, "segment `%s' requires more alignment"
1866 " than OBJ format supports", seg->name);
1867 acbp |= 0xC0; /* PharLap extension */
1868 } else if (seg->align >= 256) {
1869 acbp |= 0x80;
1870 } else if (seg->align >= 16) {
1871 acbp |= 0x60;
1872 } else if (seg->align >= 4) {
1873 acbp |= 0xA0;
1874 } else if (seg->align >= 2) {
1875 acbp |= 0x40;
1876 } else
1877 acbp |= 0x20;
1879 obj_byte (orp, acbp);
1880 if (seg->align & SEG_ABS) {
1881 obj_x (orp, seg->align - SEG_ABS); /* Frame */
1882 obj_byte (orp, 0); /* Offset */
1884 obj_x (orp, seglen);
1885 obj_index (orp, ++lname_idx);
1886 obj_index (orp, seg->segclass ? ++lname_idx : 1);
1887 obj_index (orp, seg->overlay ? ++lname_idx : 1);
1888 obj_emit2 (orp);
1892 * Write the GRPDEF records.
1894 orp->type = GRPDEF;
1895 for (grp = grphead; grp; grp = grp->next) {
1896 int i;
1898 if (grp->nindices != grp->nentries) {
1899 for (i = grp->nindices; i < grp->nentries; i++) {
1900 error(ERR_NONFATAL, "group `%s' contains undefined segment"
1901 " `%s'", grp->name, grp->segs[i].name);
1902 nasm_free (grp->segs[i].name);
1903 grp->segs[i].name = NULL;
1906 obj_index (orp, ++lname_idx);
1907 for (i = 0; i < grp->nindices; i++) {
1908 obj_byte (orp, 0xFF);
1909 obj_index (orp, grp->segs[i].index);
1911 obj_emit2 (orp);
1915 * Write the PUBDEF records: first the ones in the segments,
1916 * then the far-absolutes.
1918 orp->type = PUBDEF;
1919 orp->ori = ori_pubdef;
1920 for (seg = seghead; seg; seg = seg->next) {
1921 orp->parm[0] = seg->grp ? seg->grp->obj_index : 0;
1922 orp->parm[1] = seg->obj_index;
1923 for (pub = seg->pubhead; pub; pub = pub->next) {
1924 orp = obj_name (orp, pub->name);
1925 orp = obj_x (orp, pub->offset);
1926 orp = obj_byte (orp, 0); /* type index */
1927 obj_commit (orp);
1929 obj_emit (orp);
1931 orp->parm[0] = 0;
1932 orp->parm[1] = 0;
1933 for (pub = fpubhead; pub; pub = pub->next) { /* pub-crawl :-) */
1934 if (orp->parm[2] != pub->segment) {
1935 obj_emit (orp);
1936 orp->parm[2] = pub->segment;
1938 orp = obj_name (orp, pub->name);
1939 orp = obj_x (orp, pub->offset);
1940 orp = obj_byte (orp, 0); /* type index */
1941 obj_commit (orp);
1943 obj_emit (orp);
1946 * Write the EXTDEF and COMDEF records, in order.
1948 orp->ori = ori_null;
1949 for (ext = exthead; ext; ext = ext->next) {
1950 if (ext->commonsize == 0) {
1951 if (orp->type != EXTDEF) {
1952 obj_emit (orp);
1953 orp->type = EXTDEF;
1955 orp = obj_name (orp, ext->name);
1956 orp = obj_index (orp, 0);
1957 } else {
1958 if (orp->type != COMDEF) {
1959 obj_emit (orp);
1960 orp->type = COMDEF;
1962 orp = obj_name (orp, ext->name);
1963 orp = obj_index (orp, 0);
1964 if (ext->commonelem) {
1965 orp = obj_byte (orp, 0x61);/* far communal */
1966 orp = obj_value (orp, (ext->commonsize / ext->commonelem));
1967 orp = obj_value (orp, ext->commonelem);
1968 } else {
1969 orp = obj_byte (orp, 0x62);/* near communal */
1970 orp = obj_value (orp, ext->commonsize);
1973 obj_commit (orp);
1975 obj_emit (orp);
1978 * Write a COMENT record stating that the linker's first pass
1979 * may stop processing at this point. Exception is if our
1980 * MODEND record specifies a start point, in which case,
1981 * according to some variants of the documentation, this COMENT
1982 * should be omitted. So we'll omit it just in case.
1983 * But, TASM puts it in all the time so if we are using
1984 * TASM debug stuff we are putting it in
1986 if (debuginfo || obj_entry_seg == NO_SEG) {
1987 orp->type = COMENT;
1988 obj_byte (orp, 0x40);
1989 obj_byte (orp, dLINKPASS);
1990 obj_byte (orp, 1);
1991 obj_emit2 (orp);
1995 * 1) put out the compiler type
1996 * 2) Put out the type info. The only type we are using is near label #19
1998 if (debuginfo) {
1999 int i;
2000 struct Array *arrtmp = arrhead;
2001 orp->type = COMENT;
2002 obj_byte (orp, 0x40);
2003 obj_byte (orp, dCOMPDEF);
2004 obj_byte (orp, 4);
2005 obj_byte (orp, 0);
2006 obj_emit2 (orp);
2008 obj_byte (orp, 0x40);
2009 obj_byte (orp, dTYPEDEF);
2010 obj_word (orp, 0x18); /* type # for linking */
2011 obj_word (orp, 6); /* size of type */
2012 obj_byte (orp, 0x2a); /* absolute type for debugging */
2013 obj_emit2 (orp);
2014 obj_byte (orp, 0x40);
2015 obj_byte (orp, dTYPEDEF);
2016 obj_word (orp, 0x19); /* type # for linking */
2017 obj_word (orp, 0); /* size of type */
2018 obj_byte (orp, 0x24); /* absolute type for debugging */
2019 obj_byte (orp, 0); /* near/far specifier */
2020 obj_emit2 (orp);
2021 obj_byte (orp, 0x40);
2022 obj_byte (orp, dTYPEDEF);
2023 obj_word (orp, 0x1A); /* type # for linking */
2024 obj_word (orp, 0); /* size of type */
2025 obj_byte (orp, 0x24); /* absolute type for debugging */
2026 obj_byte (orp, 1); /* near/far specifier */
2027 obj_emit2 (orp);
2028 obj_byte (orp, 0x40);
2029 obj_byte (orp, dTYPEDEF);
2030 obj_word (orp, 0x1b); /* type # for linking */
2031 obj_word (orp, 0); /* size of type */
2032 obj_byte (orp, 0x23); /* absolute type for debugging */
2033 obj_byte (orp, 0);
2034 obj_byte (orp, 0);
2035 obj_byte (orp, 0);
2036 obj_emit2 (orp);
2037 obj_byte (orp, 0x40);
2038 obj_byte (orp, dTYPEDEF);
2039 obj_word (orp, 0x1c); /* type # for linking */
2040 obj_word (orp, 0); /* size of type */
2041 obj_byte (orp, 0x23); /* absolute type for debugging */
2042 obj_byte (orp, 0);
2043 obj_byte (orp, 4);
2044 obj_byte (orp, 0);
2045 obj_emit2 (orp);
2046 obj_byte (orp, 0x40);
2047 obj_byte (orp, dTYPEDEF);
2048 obj_word (orp, 0x1d); /* type # for linking */
2049 obj_word (orp, 0); /* size of type */
2050 obj_byte (orp, 0x23); /* absolute type for debugging */
2051 obj_byte (orp, 0);
2052 obj_byte (orp, 1);
2053 obj_byte (orp, 0);
2054 obj_emit2 (orp);
2055 obj_byte (orp, 0x40);
2056 obj_byte (orp, dTYPEDEF);
2057 obj_word (orp, 0x1e); /* type # for linking */
2058 obj_word (orp, 0); /* size of type */
2059 obj_byte (orp, 0x23); /* absolute type for debugging */
2060 obj_byte (orp, 0);
2061 obj_byte (orp, 5);
2062 obj_byte (orp, 0);
2063 obj_emit2 (orp);
2065 /* put out the array types */
2066 for (i= ARRAYBOT; i < arrindex; i++) {
2067 obj_byte (orp, 0x40);
2068 obj_byte (orp, dTYPEDEF);
2069 obj_word (orp, i ); /* type # for linking */
2070 obj_word (orp, arrtmp->size); /* size of type */
2071 obj_byte (orp, 0x1A); /* absolute type for debugging (array)*/
2072 obj_byte (orp, arrtmp->basetype ); /* base type */
2073 obj_emit2 (orp);
2074 arrtmp = arrtmp->next ;
2078 * write out line number info with a LINNUM record
2079 * switch records when we switch segments, and output the
2080 * file in a pseudo-TASM fashion. The record switch is naive; that
2081 * is that one file may have many records for the same segment
2082 * if there are lots of segment switches
2084 if (fnhead && debuginfo) {
2085 seg = fnhead->lnhead->segment;
2087 for (fn = fnhead; fn; fn = fn->next) {
2088 /* write out current file name */
2089 orp->type = COMENT;
2090 orp->ori = ori_null;
2091 obj_byte (orp, 0x40);
2092 obj_byte (orp, dFILNAME);
2093 obj_byte( orp,0);
2094 obj_name( orp,fn->name);
2095 obj_dword(orp, 0);
2096 obj_emit2 (orp);
2098 /* write out line numbers this file */
2100 orp->type = LINNUM;
2101 orp->ori = ori_linnum;
2102 for (ln = fn->lnhead; ln; ln = ln->next) {
2103 if (seg != ln->segment) {
2104 /* if we get here have to flush the buffer and start
2105 * a new record for a new segment
2107 seg = ln->segment;
2108 obj_emit ( orp );
2110 orp->parm[0] = seg->grp ? seg->grp->obj_index : 0;
2111 orp->parm[1] = seg->obj_index;
2112 orp = obj_word(orp, ln->lineno);
2113 orp = obj_x(orp, ln->offset);
2114 obj_commit (orp);
2116 obj_emit (orp);
2120 * we are going to locate the entry point segment now
2121 * rather than wait until the MODEND record, because,
2122 * then we can output a special symbol to tell where the
2123 * entry point is.
2126 if (obj_entry_seg != NO_SEG) {
2127 for (seg = seghead; seg; seg = seg->next) {
2128 if (seg->index == obj_entry_seg) {
2129 entry_seg_ptr = seg;
2130 break;
2133 if (!seg)
2134 error(ERR_NONFATAL, "entry point is not in this module");
2138 * get ready to put out symbol records
2140 orp->type = COMENT;
2141 orp->ori = ori_local;
2144 * put out a symbol for the entry point
2145 * no dots in this symbol, because, borland does
2146 * not (officially) support dots in label names
2147 * and I don't know what various versions of TLINK will do
2149 if (debuginfo && obj_entry_seg != NO_SEG) {
2150 orp = obj_name (orp,"start_of_program");
2151 orp = obj_word (orp,0x19); /* type: near label */
2152 orp = obj_index (orp, seg->grp ? seg->grp->obj_index : 0);
2153 orp = obj_index (orp, seg->obj_index);
2154 orp = obj_x (orp, obj_entry_ofs);
2155 obj_commit (orp);
2159 * put out the local labels
2161 for (seg = seghead; seg && debuginfo; seg = seg->next) {
2162 /* labels this seg */
2163 for (loc = seg->lochead; loc; loc = loc->next) {
2164 orp = obj_name (orp,loc->name);
2165 orp = obj_word (orp, loc->type);
2166 orp = obj_index (orp, seg->grp ? seg->grp->obj_index : 0);
2167 orp = obj_index (orp, seg->obj_index);
2168 orp = obj_x (orp,loc->offset);
2169 obj_commit (orp);
2172 if (orp->used)
2173 obj_emit (orp);
2176 * Write the LEDATA/FIXUPP pairs.
2178 for (seg = seghead; seg; seg = seg->next) {
2179 obj_emit (seg->orp);
2180 nasm_free (seg->orp);
2184 * Write the MODEND module end marker.
2186 orp->type = MODEND;
2187 orp->ori = ori_null;
2188 if (entry_seg_ptr) {
2189 obj_byte (orp, 0xC1);
2190 seg = entry_seg_ptr;
2191 if (seg->grp) {
2192 obj_byte (orp, 0x10);
2193 obj_index (orp, seg->grp->obj_index);
2194 } else {
2196 * the below changed to prevent TLINK crashing.
2197 * Previous more efficient version read:
2199 * obj_byte (orp, 0x50);
2201 obj_byte (orp, 0x00);
2202 obj_index (orp, seg->obj_index);
2204 obj_index (orp, seg->obj_index);
2205 obj_x (orp, obj_entry_ofs);
2206 } else
2207 obj_byte (orp, 0);
2208 obj_emit2 (orp);
2209 nasm_free (orp);
2212 void obj_fwrite(ObjRecord *orp)
2214 unsigned int cksum, len;
2215 unsigned char *ptr;
2217 cksum = orp->type;
2218 if (orp->x_size == 32)
2219 cksum |= 1;
2220 fputc (cksum, ofp);
2221 len = orp->committed+1;
2222 cksum += (len & 0xFF) + ((len>>8) & 0xFF);
2223 fwriteshort (len, ofp);
2224 fwrite (orp->buf, 1, len-1, ofp);
2225 for (ptr=orp->buf; --len; ptr++)
2226 cksum += *ptr;
2227 fputc ( (-cksum) & 0xFF, ofp);
2230 static char *obj_stdmac[] = {
2231 "%define __SECT__ [section .text]",
2232 "%imacro group 1+.nolist",
2233 "[group %1]",
2234 "%endmacro",
2235 "%imacro uppercase 0+.nolist",
2236 "[uppercase %1]",
2237 "%endmacro",
2238 "%imacro export 1+.nolist",
2239 "[export %1]",
2240 "%endmacro",
2241 "%imacro import 1+.nolist",
2242 "[import %1]",
2243 "%endmacro",
2244 "%macro __NASM_CDecl__ 1",
2245 "%endmacro",
2246 NULL
2249 void dbgbi_init(struct ofmt * of, void * id, FILE * fp, efunc error)
2251 (void) of;
2252 (void) id;
2253 (void) fp;
2254 (void) error;
2256 fnhead = NULL;
2257 fntail = &fnhead;
2258 arrindex = ARRAYBOT ;
2259 arrhead = NULL;
2260 arrtail = &arrhead;
2262 static void dbgbi_cleanup(void)
2264 struct Segment *segtmp;
2265 while (fnhead) {
2266 struct FileName *fntemp = fnhead;
2267 while (fnhead->lnhead) {
2268 struct LineNumber *lntemp = fnhead->lnhead;
2269 fnhead->lnhead = lntemp->next;
2270 nasm_free( lntemp);
2272 fnhead = fnhead->next;
2273 nasm_free (fntemp->name);
2274 nasm_free (fntemp);
2276 for (segtmp=seghead; segtmp; segtmp=segtmp->next) {
2277 while (segtmp->lochead) {
2278 struct Public *loctmp = segtmp->lochead;
2279 segtmp->lochead = loctmp->next;
2280 nasm_free (loctmp->name);
2281 nasm_free (loctmp);
2284 while (arrhead) {
2285 struct Array *arrtmp = arrhead;
2286 arrhead = arrhead->next;
2287 nasm_free (arrtmp);
2291 static void dbgbi_linnum (const char *lnfname, long lineno, long segto)
2293 struct FileName *fn;
2294 struct LineNumber *ln;
2295 struct Segment *seg;
2297 if (segto == NO_SEG)
2298 return;
2301 * If `any_segs' is still FALSE, we must define a default
2302 * segment.
2304 if (!any_segs) {
2305 int tempint; /* ignored */
2306 if (segto != obj_segment("__NASMDEFSEG", 2, &tempint))
2307 error (ERR_PANIC, "strange segment conditions in OBJ driver");
2311 * Find the segment we are targetting.
2313 for (seg = seghead; seg; seg = seg->next)
2314 if (seg->index == segto)
2315 break;
2316 if (!seg)
2317 error (ERR_PANIC, "lineno directed to nonexistent segment?");
2319 for (fn = fnhead; fn; fn = fnhead->next)
2320 if (!nasm_stricmp(lnfname,fn->name))
2321 break;
2322 if (!fn) {
2323 fn = nasm_malloc ( sizeof( *fn));
2324 fn->name = nasm_malloc ( strlen(lnfname) + 1) ;
2325 strcpy (fn->name,lnfname);
2326 fn->lnhead = NULL;
2327 fn->lntail = & fn->lnhead;
2328 fn->next = NULL;
2329 *fntail = fn;
2330 fntail = &fn->next;
2332 ln = nasm_malloc ( sizeof( *ln));
2333 ln->segment = seg;
2334 ln->offset = seg->currentpos;
2335 ln->lineno = lineno;
2336 ln->next = NULL;
2337 *fn->lntail = ln;
2338 fn->lntail = &ln->next;
2341 static void dbgbi_deflabel (char *name, long segment,
2342 long offset, int is_global, char *special)
2344 struct Segment *seg;
2346 (void) special;
2349 * If it's a special-retry from pass two, discard it.
2351 if (is_global == 3)
2352 return;
2355 * First check for the double-period, signifying something
2356 * unusual.
2358 if (name[0] == '.' && name[1] == '.' && name[2] != '@') {
2359 return;
2363 * Case (i):
2365 if (obj_seg_needs_update) {
2366 return;
2367 } else if (obj_grp_needs_update) {
2368 return;
2370 if (segment < SEG_ABS && segment != NO_SEG && segment % 2)
2371 return;
2373 if (segment >= SEG_ABS || segment == NO_SEG) {
2374 return;
2378 * If `any_segs' is still FALSE, we might need to define a
2379 * default segment, if they're trying to declare a label in
2380 * `first_seg'. But the label should exist due to a prior
2381 * call to obj_deflabel so we can skip that.
2384 for (seg = seghead; seg; seg = seg->next)
2385 if (seg->index == segment) {
2386 struct Public *loc = nasm_malloc (sizeof(*loc));
2388 * Case (ii). Maybe MODPUB someday?
2390 last_defined = *seg->loctail = loc;
2391 seg->loctail = &loc->next;
2392 loc->next = NULL;
2393 loc->name = nasm_strdup(name);
2394 loc->offset = offset;
2397 static void dbgbi_typevalue (long type)
2399 int vsize;
2400 int elem = TYM_ELEMENTS(type);
2401 type = TYM_TYPE(type);
2403 if (!last_defined)
2404 return;
2406 switch (type) {
2407 case TY_BYTE:
2408 last_defined->type = 8; /* unsigned char */
2409 vsize = 1;
2410 break;
2411 case TY_WORD:
2412 last_defined->type = 10; /* unsigned word */
2413 vsize = 2;
2414 break;
2415 case TY_DWORD:
2416 last_defined->type = 12; /* unsigned dword */
2417 vsize = 4;
2418 break;
2419 case TY_FLOAT:
2420 last_defined->type = 14; /* float */
2421 vsize = 4;
2422 break;
2423 case TY_QWORD:
2424 last_defined->type = 15; /* qword */
2425 vsize = 8;
2426 break;
2427 case TY_TBYTE:
2428 last_defined->type = 16; /* TBYTE */
2429 vsize = 10;
2430 break;
2431 default:
2432 last_defined->type = 0x19; /*label */
2433 vsize = 0;
2434 break;
2437 if (elem > 1) {
2438 struct Array *arrtmp = nasm_malloc (sizeof(*arrtmp));
2439 int vtype = last_defined->type;
2440 arrtmp->size = vsize * elem;
2441 arrtmp->basetype = vtype;
2442 arrtmp->next = NULL;
2443 last_defined->type = arrindex++;
2444 *arrtail = arrtmp;
2445 arrtail = & (arrtmp->next);
2447 last_defined = NULL;
2449 static void dbgbi_output (int output_type, void *param)
2451 (void) output_type;
2452 (void) param;
2454 static struct dfmt borland_debug_form = {
2455 "Borland Debug Records",
2456 "borland",
2457 dbgbi_init,
2458 dbgbi_linnum,
2459 dbgbi_deflabel,
2460 null_debug_routine,
2461 dbgbi_typevalue,
2462 dbgbi_output,
2463 dbgbi_cleanup,
2466 static struct dfmt *borland_debug_arr[3] = {
2467 &borland_debug_form,
2468 &null_debug_form,
2469 NULL
2472 struct ofmt of_obj = {
2473 "MS-DOS 16-bit/32-bit OMF object files",
2474 "obj",
2475 NULL,
2476 borland_debug_arr,
2477 &null_debug_form,
2478 obj_stdmac,
2479 obj_init,
2480 obj_set_info,
2481 obj_out,
2482 obj_deflabel,
2483 obj_segment,
2484 obj_segbase,
2485 obj_directive,
2486 obj_filename,
2487 obj_cleanup
2489 #endif /* OF_OBJ */