Elf: Allow symbols binding to undefined section
[nasm.git] / nasm.h
blob5d5aae7f7d3ccd05d35d3f6546b58e20ee728c4b
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directives.h" /* For enum directive */
49 #include "opflags.h"
51 #define NO_SEG -1L /* null segment value */
52 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
54 #ifndef FILENAME_MAX
55 #define FILENAME_MAX 256
56 #endif
58 #ifndef PREFIX_MAX
59 #define PREFIX_MAX 10
60 #endif
62 #ifndef POSTFIX_MAX
63 #define POSTFIX_MAX 10
64 #endif
66 #define IDLEN_MAX 4096
69 * Name pollution problems: <time.h> on Digital UNIX pulls in some
70 * strange hardware header file which sees fit to define R_SP. We
71 * undefine it here so as not to break the enum below.
73 #ifdef R_SP
74 #undef R_SP
75 #endif
78 * We must declare the existence of this structure type up here,
79 * since we have to reference it before we define it...
81 struct ofmt;
84 * values for the `type' parameter to an output function.
86 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
87 * which will be a relative jump. For this we need to know the
88 * distance in bytes from the start of the relocated record until
89 * the end of the containing instruction. _This_ is what is stored
90 * in the size part of the parameter, in this case.
92 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
93 * and the contents of the "data" parameter is irrelevant.
95 * The "data" parameter for the output function points to a "int32_t",
96 * containing the address in question, unless the type is
97 * OUT_RAWDATA, in which case it points to an "uint8_t"
98 * array.
100 enum out_type {
101 OUT_RAWDATA, /* Plain bytes */
102 OUT_ADDRESS, /* An address (symbol value) */
103 OUT_RESERVE, /* Reserved bytes (RESB et al) */
104 OUT_REL2ADR, /* 2-byte relative address */
105 OUT_REL4ADR, /* 4-byte relative address */
106 OUT_REL8ADR, /* 8-byte relative address */
110 * -----------------------
111 * Other function typedefs
112 * -----------------------
116 * A label-lookup function should look like this.
118 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
121 * And a label-definition function like this. The boolean parameter
122 * `is_norm' states whether the label is a `normal' label (which
123 * should affect the local-label system), or something odder like
124 * an EQU or a segment-base symbol, which shouldn't.
126 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
127 char *special, bool is_norm, bool isextrn);
128 void define_label(char *label, int32_t segment, int64_t offset,
129 char *special, bool is_norm, bool isextrn);
132 * List-file generators should look like this:
134 typedef struct {
136 * Called to initialize the listing file generator. Before this
137 * is called, the other routines will silently do nothing when
138 * called. The `char *' parameter is the file name to write the
139 * listing to.
141 void (*init) (char *, efunc);
144 * Called to clear stuff up and close the listing file.
146 void (*cleanup) (void);
149 * Called to output binary data. Parameters are: the offset;
150 * the data; the data type. Data types are similar to the
151 * output-format interface, only OUT_ADDRESS will _always_ be
152 * displayed as if it's relocatable, so ensure that any non-
153 * relocatable address has been converted to OUT_RAWDATA by
154 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
155 * dummy call used to give the listing generator an offset to
156 * work with when doing things like uplevel(LIST_TIMES) or
157 * uplevel(LIST_INCBIN).
159 void (*output) (int32_t, const void *, enum out_type, uint64_t);
162 * Called to send a text line to the listing generator. The
163 * `int' parameter is LIST_READ or LIST_MACRO depending on
164 * whether the line came directly from an input file or is the
165 * result of a multi-line macro expansion.
167 void (*line) (int, char *);
170 * Called to change one of the various levelled mechanisms in
171 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
172 * used to increase the nesting level of include files and
173 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
174 * two binary-output-suppression mechanisms for large-scale
175 * pseudo-instructions.
177 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
178 * it indicates the beginning of the expansion of a `nolist'
179 * macro, so anything under that level won't be expanded unless
180 * it includes another file.
182 void (*uplevel) (int);
185 * Reverse the effects of uplevel.
187 void (*downlevel) (int);
190 * Called on a warning or error, with the error message.
192 void (*error)(int severity, const char *pfx, const char *msg);
193 } ListGen;
196 * Token types returned by the scanner, in addition to ordinary
197 * ASCII character values, and zero for end-of-string.
199 enum token_type { /* token types, other than chars */
200 TOKEN_INVALID = -1, /* a placeholder value */
201 TOKEN_EOS = 0, /* end of string */
202 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
203 TOKEN_ID = 256, /* identifier */
204 TOKEN_NUM, /* numeric constant */
205 TOKEN_ERRNUM, /* malformed numeric constant */
206 TOKEN_STR, /* string constant */
207 TOKEN_ERRSTR, /* unterminated string constant */
208 TOKEN_FLOAT, /* floating-point constant */
209 TOKEN_REG, /* register name */
210 TOKEN_INSN, /* instruction name */
211 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
212 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
213 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
214 TOKEN_SHL, TOKEN_SHR, /* << and >> */
215 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
216 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
217 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
218 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
219 TOKEN_FLOATIZE, /* __floatX__ */
220 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
223 enum floatize {
224 FLOAT_8,
225 FLOAT_16,
226 FLOAT_32,
227 FLOAT_64,
228 FLOAT_80M,
229 FLOAT_80E,
230 FLOAT_128L,
231 FLOAT_128H,
234 /* Must match the list in string_transform(), in strfunc.c */
235 enum strfunc {
236 STRFUNC_UTF16,
237 STRFUNC_UTF32,
240 size_t string_transform(char *, size_t, char **, enum strfunc);
243 * The expression evaluator must be passed a scanner function; a
244 * standard scanner is provided as part of nasmlib.c. The
245 * preprocessor will use a different one. Scanners, and the
246 * token-value structures they return, look like this.
248 * The return value from the scanner is always a copy of the
249 * `t_type' field in the structure.
251 struct tokenval {
252 enum token_type t_type;
253 char *t_charptr;
254 int64_t t_integer, t_inttwo;
256 typedef int (*scanner) (void *private_data, struct tokenval * tv);
258 struct location {
259 int64_t offset;
260 int32_t segment;
261 int known;
265 * Expression-evaluator datatype. Expressions, within the
266 * evaluator, are stored as an array of these beasts, terminated by
267 * a record with type==0. Mostly, it's a vector type: each type
268 * denotes some kind of a component, and the value denotes the
269 * multiple of that component present in the expression. The
270 * exception is the WRT type, whose `value' field denotes the
271 * segment to which the expression is relative. These segments will
272 * be segment-base types, i.e. either odd segment values or SEG_ABS
273 * types. So it is still valid to assume that anything with a
274 * `value' field of zero is insignificant.
276 typedef struct {
277 int32_t type; /* a register, or EXPR_xxx */
278 int64_t value; /* must be >= 32 bits */
279 } expr;
282 * Library routines to manipulate expression data types.
284 int is_reloc(expr *);
285 int is_simple(expr *);
286 int is_really_simple(expr *);
287 int is_unknown(expr *);
288 int is_just_unknown(expr *);
289 int64_t reloc_value(expr *);
290 int32_t reloc_seg(expr *);
291 int32_t reloc_wrt(expr *);
294 * The evaluator can also return hints about which of two registers
295 * used in an expression should be the base register. See also the
296 * `operand' structure.
298 struct eval_hints {
299 int64_t base;
300 int type;
304 * The actual expression evaluator function looks like this. When
305 * called, it expects the first token of its expression to already
306 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
307 * it will start by calling the scanner.
309 * If a forward reference happens during evaluation, the evaluator
310 * must set `*fwref' to true if `fwref' is non-NULL.
312 * `critical' is non-zero if the expression may not contain forward
313 * references. The evaluator will report its own error if this
314 * occurs; if `critical' is 1, the error will be "symbol not
315 * defined before use", whereas if `critical' is 2, the error will
316 * be "symbol undefined".
318 * If `critical' has bit 8 set (in addition to its main value: 0x101
319 * and 0x102 correspond to 1 and 2) then an extended expression
320 * syntax is recognised, in which relational operators such as =, <
321 * and >= are accepted, as well as low-precedence logical operators
322 * &&, ^^ and ||.
324 * If `hints' is non-NULL, it gets filled in with some hints as to
325 * the base register in complex effective addresses.
327 #define CRITICAL 0x100
328 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
329 struct tokenval * tv, int *fwref, int critical,
330 efunc error, struct eval_hints * hints);
333 * Special values for expr->type. These come after EXPR_REG_END
334 * as defined in regs.h.
337 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
338 #define EXPR_SIMPLE (EXPR_REG_END+2)
339 #define EXPR_WRT (EXPR_REG_END+3)
340 #define EXPR_SEGBASE (EXPR_REG_END+4)
343 * Linked list of strings...
345 typedef struct string_list {
346 struct string_list *next;
347 char str[1];
348 } StrList;
351 * preprocessors ought to look like this:
353 typedef struct preproc_ops {
355 * Called at the start of a pass; given a file name, the number
356 * of the pass, an error reporting function, an evaluator
357 * function, and a listing generator to talk to.
359 void (*reset) (char *, int, ListGen *, StrList **);
362 * Called to fetch a line of preprocessed source. The line
363 * returned has been malloc'ed, and so should be freed after
364 * use.
366 char *(*getline) (void);
369 * Called at the end of a pass.
371 void (*cleanup) (int);
372 } Preproc;
374 extern Preproc nasmpp;
377 * ----------------------------------------------------------------
378 * Some lexical properties of the NASM source language, included
379 * here because they are shared between the parser and preprocessor
380 * ----------------------------------------------------------------
384 * isidstart matches any character that may start an identifier, and isidchar
385 * matches any character that may appear at places other than the start of an
386 * identifier. E.g. a period may only appear at the start of an identifier
387 * (for local labels), whereas a number may appear anywhere *but* at the
388 * start.
391 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
392 || (c)=='@' )
393 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
394 (c)=='$' || (c)=='#' || (c)=='~' )
396 /* Ditto for numeric constants. */
398 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
399 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
401 /* This returns the numeric value of a given 'digit'. */
403 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
406 * Data-type flags that get passed to listing-file routines.
408 enum {
409 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
410 LIST_INCBIN, LIST_TIMES
414 * -----------------------------------------------------------
415 * Format of the `insn' structure returned from `parser.c' and
416 * passed into `assemble.c'
417 * -----------------------------------------------------------
420 /* Register names automatically generated from regs.dat */
421 #include "regs.h"
423 enum ccode { /* condition code names */
424 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
425 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
426 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
427 C_none = -1
431 * REX flags
433 #define REX_REAL 0x4f /* Actual REX prefix bits */
434 #define REX_B 0x01 /* ModRM r/m extension */
435 #define REX_X 0x02 /* SIB index extension */
436 #define REX_R 0x04 /* ModRM reg extension */
437 #define REX_W 0x08 /* 64-bit operand size */
438 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
439 #define REX_P 0x40 /* REX prefix present/required */
440 #define REX_H 0x80 /* High register present, REX forbidden */
441 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
442 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
443 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
444 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
447 * REX_V "classes" (prefixes which behave like VEX)
449 enum vex_class {
450 RV_VEX = 0, /* C4/C5 */
451 RV_XOP = 1 /* 8F */
455 * Note that because segment registers may be used as instruction
456 * prefixes, we must ensure the enumerations for prefixes and
457 * register names do not overlap.
459 enum prefixes { /* instruction prefixes */
460 P_none = 0,
461 PREFIX_ENUM_START = REG_ENUM_LIMIT,
462 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
463 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
464 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
465 P_WAIT,
466 PREFIX_ENUM_LIMIT
469 enum extop_type { /* extended operand types */
470 EOT_NOTHING,
471 EOT_DB_STRING, /* Byte string */
472 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
473 EOT_DB_NUMBER, /* Integer */
476 enum ea_flags { /* special EA flags */
477 EAF_BYTEOFFS = 1, /* force offset part to byte size */
478 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
479 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
480 EAF_REL = 8, /* IP-relative addressing */
481 EAF_ABS = 16, /* non-IP-relative addressing */
482 EAF_FSGS = 32 /* fs/gs segment override present */
485 enum eval_hint { /* values for `hinttype' */
486 EAH_NOHINT = 0, /* no hint at all - our discretion */
487 EAH_MAKEBASE = 1, /* try to make given reg the base */
488 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
491 typedef struct operand { /* operand to an instruction */
492 opflags_t type; /* type of operand */
493 int disp_size; /* 0 means default; 16; 32; 64 */
494 enum reg_enum basereg, indexreg; /* address registers */
495 int scale; /* index scale */
496 int hintbase;
497 enum eval_hint hinttype; /* hint as to real base register */
498 int32_t segment; /* immediate segment, if needed */
499 int64_t offset; /* any immediate number */
500 int32_t wrt; /* segment base it's relative to */
501 int eaflags; /* special EA flags */
502 int opflags; /* see OPFLAG_* defines below */
503 } operand;
505 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
506 #define OPFLAG_EXTERN 2 /* operand is an external reference */
507 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
508 /* (always a forward reference also) */
510 typedef struct extop { /* extended operand */
511 struct extop *next; /* linked list */
512 char *stringval; /* if it's a string, then here it is */
513 size_t stringlen; /* ... and here's how long it is */
514 int64_t offset; /* ... it's given here ... */
515 int32_t segment; /* if it's a number/address, then... */
516 int32_t wrt; /* ... and here */
517 enum extop_type type; /* defined above */
518 } extop;
520 /* Prefix positions: each type of prefix goes in a specific slot.
521 This affects the final ordering of the assembled output, which
522 shouldn't matter to the processor, but if you have stylistic
523 preferences, you can change this. REX prefixes are handled
524 differently for the time being.
526 Note that LOCK and REP are in the same slot. This is
527 an x86 architectural constraint. */
528 enum prefix_pos {
529 PPS_WAIT, /* WAIT (technically not a prefix!) */
530 PPS_LREP, /* Lock or REP prefix */
531 PPS_SEG, /* Segment override prefix */
532 PPS_OSIZE, /* Operand size prefix */
533 PPS_ASIZE, /* Address size prefix */
534 MAXPREFIX /* Total number of prefix slots */
537 /* If you need to change this, also change it in insns.pl */
538 #define MAX_OPERANDS 5
540 typedef struct insn { /* an instruction itself */
541 char *label; /* the label defined, or NULL */
542 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
543 enum opcode opcode; /* the opcode - not just the string */
544 enum ccode condition; /* the condition code, if Jcc/SETcc */
545 int operands; /* how many operands? 0-3
546 * (more if db et al) */
547 int addr_size; /* address size */
548 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
549 extop *eops; /* extended operands */
550 int eops_float; /* true if DD and floating */
551 int32_t times; /* repeat count (TIMES prefix) */
552 bool forw_ref; /* is there a forward reference? */
553 int rex; /* Special REX Prefix */
554 int drexdst; /* Destination register for DREX/VEX suffix */
555 int vex_cm; /* Class and M field for VEX prefix */
556 int vex_wlp; /* W, P and L information for VEX prefix */
557 } insn;
559 enum geninfo { GI_SWITCH };
561 * ------------------------------------------------------------
562 * The data structure defining an output format driver, and the
563 * interfaces to the functions therein.
564 * ------------------------------------------------------------
567 struct ofmt {
569 * This is a short (one-liner) description of the type of
570 * output generated by the driver.
572 const char *fullname;
575 * This is a single keyword used to select the driver.
577 const char *shortname;
580 * Output format flags.
582 #define OFMT_TEXT 1 /* Text file format */
583 unsigned int flags;
586 * this is a pointer to the first element of the debug information
588 struct dfmt **debug_formats;
591 * and a pointer to the element that is being used
592 * note: this is set to the default at compile time and changed if the
593 * -F option is selected. If developing a set of new debug formats for
594 * an output format, be sure to set this to whatever default you want
597 const struct dfmt *current_dfmt;
600 * This, if non-NULL, is a NULL-terminated list of `char *'s
601 * pointing to extra standard macros supplied by the object
602 * format (e.g. a sensible initial default value of __SECT__,
603 * and user-level equivalents for any format-specific
604 * directives).
606 macros_t *stdmac;
609 * This procedure is called at the start of an output session to set
610 * up internal parameters.
612 void (*init)(void);
615 * This procedure is called to pass generic information to the
616 * object file. The first parameter gives the information type
617 * (currently only command line switches)
618 * and the second parameter gives the value. This function returns
619 * 1 if recognized, 0 if unrecognized
621 int (*setinfo) (enum geninfo type, char **string);
624 * This procedure is called by assemble() to write actual
625 * generated code or data to the object file. Typically it
626 * doesn't have to actually _write_ it, just store it for
627 * later.
629 * The `type' argument specifies the type of output data, and
630 * usually the size as well: its contents are described below.
632 void (*output) (int32_t segto, const void *data,
633 enum out_type type, uint64_t size,
634 int32_t segment, int32_t wrt);
637 * This procedure is called once for every symbol defined in
638 * the module being assembled. It gives the name and value of
639 * the symbol, in NASM's terms, and indicates whether it has
640 * been declared to be global. Note that the parameter "name",
641 * when passed, will point to a piece of static storage
642 * allocated inside the label manager - it's safe to keep using
643 * that pointer, because the label manager doesn't clean up
644 * until after the output driver has.
646 * Values of `is_global' are: 0 means the symbol is local; 1
647 * means the symbol is global; 2 means the symbol is common (in
648 * which case `offset' holds the _size_ of the variable).
649 * Anything else is available for the output driver to use
650 * internally.
652 * This routine explicitly _is_ allowed to call the label
653 * manager to define further symbols, if it wants to, even
654 * though it's been called _from_ the label manager. That much
655 * re-entrancy is guaranteed in the label manager. However, the
656 * label manager will in turn call this routine, so it should
657 * be prepared to be re-entrant itself.
659 * The `special' parameter contains special information passed
660 * through from the command that defined the label: it may have
661 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
662 * be obvious to the output format from the other parameters.
664 void (*symdef) (char *name, int32_t segment, int64_t offset,
665 int is_global, char *special);
668 * This procedure is called when the source code requests a
669 * segment change. It should return the corresponding segment
670 * _number_ for the name, or NO_SEG if the name is not a valid
671 * segment name.
673 * It may also be called with NULL, in which case it is to
674 * return the _default_ section number for starting assembly in.
676 * It is allowed to modify the string it is given a pointer to.
678 * It is also allowed to specify a default instruction size for
679 * the segment, by setting `*bits' to 16 or 32. Or, if it
680 * doesn't wish to define a default, it can leave `bits' alone.
682 int32_t (*section) (char *name, int pass, int *bits);
685 * This procedure is called to modify the segment base values
686 * returned from the SEG operator. It is given a segment base
687 * value (i.e. a segment value with the low bit set), and is
688 * required to produce in return a segment value which may be
689 * different. It can map segment bases to absolute numbers by
690 * means of returning SEG_ABS types.
692 * It should return NO_SEG if the segment base cannot be
693 * determined; the evaluator (which calls this routine) is
694 * responsible for throwing an error condition if that occurs
695 * in pass two or in a critical expression.
697 int32_t (*segbase) (int32_t segment);
700 * This procedure is called to allow the output driver to
701 * process its own specific directives. When called, it has the
702 * directive word in `directive' and the parameter string in
703 * `value'. It is called in both assembly passes, and `pass'
704 * will be either 1 or 2.
706 * This procedure should return zero if it does not _recognise_
707 * the directive, so that the main program can report an error.
708 * If it recognises the directive but then has its own errors,
709 * it should report them itself and then return non-zero. It
710 * should also return non-zero if it correctly processes the
711 * directive.
713 int (*directive)(enum directives directive, char *value, int pass);
716 * This procedure is called before anything else - even before
717 * the "init" routine - and is passed the name of the input
718 * file from which this output file is being generated. It
719 * should return its preferred name for the output file in
720 * `outname', if outname[0] is not '\0', and do nothing to
721 * `outname' otherwise. Since it is called before the driver is
722 * properly initialized, it has to be passed its error handler
723 * separately.
725 * This procedure may also take its own copy of the input file
726 * name for use in writing the output file: it is _guaranteed_
727 * that it will be called before the "init" routine.
729 * The parameter `outname' points to an area of storage
730 * guaranteed to be at least FILENAME_MAX in size.
732 void (*filename) (char *inname, char *outname);
735 * This procedure is called after assembly finishes, to allow
736 * the output driver to clean itself up and free its memory.
737 * Typically, it will also be the point at which the object
738 * file actually gets _written_.
740 * One thing the cleanup routine should always do is to close
741 * the output file pointer.
743 void (*cleanup) (int debuginfo);
746 extern struct ofmt *ofmt;
747 extern FILE *ofile;
750 * ------------------------------------------------------------
751 * The data structure defining a debug format driver, and the
752 * interfaces to the functions therein.
753 * ------------------------------------------------------------
756 struct dfmt {
758 * This is a short (one-liner) description of the type of
759 * output generated by the driver.
761 const char *fullname;
764 * This is a single keyword used to select the driver.
766 const char *shortname;
769 * init - called initially to set up local pointer to object format.
771 void (*init)(void);
774 * linenum - called any time there is output with a change of
775 * line number or file.
777 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
780 * debug_deflabel - called whenever a label is defined. Parameters
781 * are the same as to 'symdef()' in the output format. This function
782 * would be called before the output format version.
785 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
786 int is_global, char *special);
788 * debug_directive - called whenever a DEBUG directive other than 'LINE'
789 * is encountered. 'directive' contains the first parameter to the
790 * DEBUG directive, and params contains the rest. For example,
791 * 'DEBUG VAR _somevar:int' would translate to a call to this
792 * function with 'directive' equal to "VAR" and 'params' equal to
793 * "_somevar:int".
795 void (*debug_directive)(const char *directive, const char *params);
798 * typevalue - called whenever the assembler wishes to register a type
799 * for the last defined label. This routine MUST detect if a type was
800 * already registered and not re-register it.
802 void (*debug_typevalue)(int32_t type);
805 * debug_output - called whenever output is required
806 * 'type' is the type of info required, and this is format-specific
808 void (*debug_output)(int type, void *param);
811 * cleanup - called after processing of file is complete
813 void (*cleanup)(void);
816 extern const struct dfmt *dfmt;
819 * The type definition macros
820 * for debugging
822 * low 3 bits: reserved
823 * next 5 bits: type
824 * next 24 bits: number of elements for arrays (0 for labels)
827 #define TY_UNKNOWN 0x00
828 #define TY_LABEL 0x08
829 #define TY_BYTE 0x10
830 #define TY_WORD 0x18
831 #define TY_DWORD 0x20
832 #define TY_FLOAT 0x28
833 #define TY_QWORD 0x30
834 #define TY_TBYTE 0x38
835 #define TY_OWORD 0x40
836 #define TY_YWORD 0x48
837 #define TY_COMMON 0xE0
838 #define TY_SEG 0xE8
839 #define TY_EXTERN 0xF0
840 #define TY_EQU 0xF8
842 #define TYM_TYPE(x) ((x) & 0xF8)
843 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
845 #define TYS_ELEMENTS(x) ((x) << 8)
848 * -----
849 * Special tokens
850 * -----
853 enum special_tokens {
854 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
855 S_ABS = SPECIAL_ENUM_START,
856 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
857 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
858 SPECIAL_ENUM_LIMIT
862 * -----
863 * Global modes
864 * -----
868 * This declaration passes the "pass" number to all other modules
869 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
870 * where 0 = optimizing pass
871 * 1 = pass 1
872 * 2 = pass 2
875 extern int pass0;
876 extern int passn; /* Actual pass number */
878 extern bool tasm_compatible_mode;
879 extern int optimizing;
880 extern int globalbits; /* 16, 32 or 64-bit mode */
881 extern int globalrel; /* default to relative addressing? */
882 extern int maxbits; /* max bits supported by output */
885 * NASM version strings, defined in ver.c
887 extern const char nasm_version[];
888 extern const char nasm_date[];
889 extern const char nasm_compile_options[];
890 extern const char nasm_comment[];
891 extern const char nasm_signature[];
893 #endif