Don't warn for segmented references
[nasm.git] / assemble.c
blobd6010112a2d59cdfeba4ef81746f9835df4223c5
1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1, \2, \3 - that many literal bytes follow in the code stream
11 * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
12 * (POP is never used for CS) depending on operand 0
13 * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
14 * on operand 0
15 * \10..\13 - a literal byte follows in the code stream, to be added
16 * to the register value of operand 0..3
17 * \14..\17 - a signed byte immediate operand, from operand 0..3
18 * \20..\23 - a byte immediate operand, from operand 0..3
19 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
20 * \30..\33 - a word immediate operand, from operand 0..3
21 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
22 * assembly mode or the operand-size override on the operand
23 * \40..\43 - a long immediate operand, from operand 0..3
24 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
25 * depending on the address size of the instruction.
26 * \50..\53 - a byte relative operand, from operand 0..3
27 * \54..\57 - a qword immediate operand, from operand 0..3
28 * \60..\63 - a word relative operand, from operand 0..3
29 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
30 * assembly mode or the operand-size override on the operand
31 * \70..\73 - a long relative operand, from operand 0..3
32 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
33 * \1ab - a ModRM, calculated on EA in operand a, with the spare
34 * field the register value of operand b.
35 * \140..\143 - an immediate word or signed byte for operand 0..3
36 * \144..\147 - or 2 (s-field) into next opcode byte if operand 0..3
37 * is a signed byte rather than a word.
38 * \150..\153 - an immediate dword or signed byte for operand 0..3
39 * \154..\157 - or 2 (s-field) into next opcode byte if operand 0..3
40 * is a signed byte rather than a dword.
41 * \160..\163 - this instruction uses DREX rather than REX, with the
42 * OC0 field set to 0, and the dest field taken from
43 * operand 0..3.
44 * \164..\167 - this instruction uses DREX rather than REX, with the
45 * OC0 field set to 1, and the dest field taken from
46 * operand 0..3.
47 * \170 - encodes the literal byte 0. (Some compilers don't take
48 * kindly to a zero byte in the _middle_ of a compile time
49 * string constant, so I had to put this hack in.)
50 * \171 - placement of DREX suffix in the absence of an EA
51 * \2ab - a ModRM, calculated on EA in operand a, with the spare
52 * field equal to digit b.
53 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
54 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
55 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
56 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
57 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
58 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
59 * \322 - indicates that this instruction is only valid when the
60 * operand size is the default (instruction to disassembler,
61 * generates no code in the assembler)
62 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
63 * \324 - indicates 64-bit operand size requiring REX prefix.
64 * \330 - a literal byte follows in the code stream, to be added
65 * to the condition code value of the instruction.
66 * \331 - instruction not valid with REP prefix. Hint for
67 * disassembler only; for SSE instructions.
68 * \332 - REP prefix (0xF2 byte) used as opcode extension.
69 * \333 - REP prefix (0xF3 byte) used as opcode extension.
70 * \334 - LOCK prefix used instead of REX.R
71 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
72 * \340 - reserve <operand 0> bytes of uninitialized storage.
73 * Operand 0 had better be a segmentless constant.
74 * \364 - operand-size prefix (0x66) not permitted
75 * \365 - address-size prefix (0x67) not permitted
76 * \366 - operand-size prefix (0x66) used as opcode extension
77 * \367 - address-size prefix (0x67) used as opcode extension
78 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
79 * 370 is used for Jcc, 371 is used for JMP.
80 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
81 * used for conditional jump over longer jump
84 #include "compiler.h"
86 #include <stdio.h>
87 #include <string.h>
88 #include <inttypes.h>
90 #include "nasm.h"
91 #include "nasmlib.h"
92 #include "assemble.h"
93 #include "insns.h"
94 #include "preproc.h"
95 #include "regflags.c"
96 #include "regvals.c"
98 typedef struct {
99 int sib_present; /* is a SIB byte necessary? */
100 int bytes; /* # of bytes of offset needed */
101 int size; /* lazy - this is sib+bytes+1 */
102 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
103 } ea;
105 static uint32_t cpu; /* cpu level received from nasm.c */
106 static efunc errfunc;
107 static struct ofmt *outfmt;
108 static ListGen *list;
110 static int32_t calcsize(int32_t, int32_t, int, insn *, const char *);
111 static void gencode(int32_t, int32_t, int, insn *, const char *, int32_t);
112 static int matches(const struct itemplate *, insn *, int bits);
113 static int32_t regflag(const operand *);
114 static int32_t regval(const operand *);
115 static int rexflags(int, int32_t, int);
116 static int op_rexflags(const operand *, int);
117 static ea *process_ea(operand *, ea *, int, int, int, int32_t, int);
118 static void add_asp(insn *, int);
120 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
122 return ins->prefixes[pos] == prefix;
125 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
127 if (ins->prefixes[pos])
128 errfunc(ERR_NONFATAL, "invalid %s prefix",
129 prefix_name(ins->prefixes[pos]));
132 static const char *size_name(int size)
134 switch (size) {
135 case 1:
136 return "byte";
137 case 2:
138 return "word";
139 case 4:
140 return "dword";
141 case 8:
142 return "qword";
143 case 10:
144 return "tword";
145 case 16:
146 return "oword";
147 default:
148 return "???";
152 static void warn_overflow(int size, int64_t data)
154 if (size < 8) {
155 int64_t lim = (1 << (size*8))-1;
157 if (data < ~lim || data > lim)
158 errfunc(ERR_WARNING, "%s data exceeds bounds", size_name(size));
162 * This routine wrappers the real output format's output routine,
163 * in order to pass a copy of the data off to the listing file
164 * generator at the same time.
166 static void out(int32_t offset, int32_t segto, const void *data,
167 uint32_t type, int32_t segment, int32_t wrt)
169 static int32_t lineno = 0; /* static!!! */
170 static char *lnfname = NULL;
172 if ((type & OUT_TYPMASK) == OUT_ADDRESS) {
173 if (segment != NO_SEG || wrt != NO_SEG) {
175 * This address is relocated. We must write it as
176 * OUT_ADDRESS, so there's no work to be done here.
178 list->output(offset, data, type);
179 } else {
180 uint8_t p[8], *q = p;
182 * This is a non-relocated address, and we're going to
183 * convert it into RAWDATA format.
185 if ((type & OUT_SIZMASK) == 4) {
186 WRITELONG(q, *(int32_t *)data);
187 list->output(offset, p, OUT_RAWDATA + 4);
188 } else if ((type & OUT_SIZMASK) == 8) {
189 WRITEDLONG(q, *(int64_t *)data);
190 list->output(offset, p, OUT_RAWDATA + 8);
191 } else {
192 WRITESHORT(q, *(int32_t *)data);
193 list->output(offset, p, OUT_RAWDATA + 2);
196 } else if ((type & OUT_TYPMASK) == OUT_RAWDATA) {
197 list->output(offset, data, type);
198 } else if ((type & OUT_TYPMASK) == OUT_RESERVE) {
199 list->output(offset, NULL, type);
200 } else if ((type & OUT_TYPMASK) == OUT_REL2ADR ||
201 (type & OUT_TYPMASK) == OUT_REL4ADR) {
202 list->output(offset, data, type);
206 * this call to src_get determines when we call the
207 * debug-format-specific "linenum" function
208 * it updates lineno and lnfname to the current values
209 * returning 0 if "same as last time", -2 if lnfname
210 * changed, and the amount by which lineno changed,
211 * if it did. thus, these variables must be static
214 if (src_get(&lineno, &lnfname)) {
215 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
218 outfmt->output(segto, data, type, segment, wrt);
221 static int jmp_match(int32_t segment, int32_t offset, int bits,
222 insn * ins, const char *code)
224 int32_t isize;
225 uint8_t c = code[0];
227 if (c != 0370 && c != 0371)
228 return 0;
229 if (ins->oprs[0].opflags & OPFLAG_FORWARD) {
230 if ((optimizing < 0 || (ins->oprs[0].type & STRICT))
231 && c == 0370)
232 return 1;
233 else
234 return (pass0 == 0); /* match a forward reference */
236 isize = calcsize(segment, offset, bits, ins, code);
237 if (ins->oprs[0].segment != segment)
238 return 0;
239 isize = ins->oprs[0].offset - offset - isize; /* isize is now the delta */
240 if (isize >= -128L && isize <= 127L)
241 return 1; /* it is byte size */
243 return 0;
246 int32_t assemble(int32_t segment, int32_t offset, int bits, uint32_t cp,
247 insn * instruction, struct ofmt *output, efunc error,
248 ListGen * listgen)
250 const struct itemplate *temp;
251 int j;
252 int size_prob;
253 int32_t insn_end;
254 int32_t itimes;
255 int32_t start = offset;
256 int32_t wsize = 0; /* size for DB etc. */
258 errfunc = error; /* to pass to other functions */
259 cpu = cp;
260 outfmt = output; /* likewise */
261 list = listgen; /* and again */
263 switch (instruction->opcode) {
264 case -1:
265 return 0;
266 case I_DB:
267 wsize = 1;
268 break;
269 case I_DW:
270 wsize = 2;
271 break;
272 case I_DD:
273 wsize = 4;
274 break;
275 case I_DQ:
276 wsize = 8;
277 break;
278 case I_DT:
279 wsize = 10;
280 break;
281 case I_DO:
282 wsize = 16;
283 break;
284 default:
285 break;
288 if (wsize) {
289 extop *e;
290 int32_t t = instruction->times;
291 if (t < 0)
292 errfunc(ERR_PANIC,
293 "instruction->times < 0 (%ld) in assemble()", t);
295 while (t--) { /* repeat TIMES times */
296 for (e = instruction->eops; e; e = e->next) {
297 if (e->type == EOT_DB_NUMBER) {
298 if (wsize == 1) {
299 if (e->segment != NO_SEG)
300 errfunc(ERR_NONFATAL,
301 "one-byte relocation attempted");
302 else {
303 uint8_t out_byte = e->offset;
304 out(offset, segment, &out_byte,
305 OUT_RAWDATA + 1, NO_SEG, NO_SEG);
307 } else if (wsize > 8) {
308 errfunc(ERR_NONFATAL, "integer supplied to a DT or DO"
309 " instruction");
310 } else
311 out(offset, segment, &e->offset,
312 OUT_ADDRESS + wsize, e->segment, e->wrt);
313 offset += wsize;
314 } else if (e->type == EOT_DB_STRING) {
315 int align;
317 out(offset, segment, e->stringval,
318 OUT_RAWDATA + e->stringlen, NO_SEG, NO_SEG);
319 align = e->stringlen % wsize;
321 if (align) {
322 align = wsize - align;
323 out(offset, segment, "\0\0\0\0\0\0\0\0",
324 OUT_RAWDATA + align, NO_SEG, NO_SEG);
326 offset += e->stringlen + align;
329 if (t > 0 && t == instruction->times - 1) {
331 * Dummy call to list->output to give the offset to the
332 * listing module.
334 list->output(offset, NULL, OUT_RAWDATA);
335 list->uplevel(LIST_TIMES);
338 if (instruction->times > 1)
339 list->downlevel(LIST_TIMES);
340 return offset - start;
343 if (instruction->opcode == I_INCBIN) {
344 static char fname[FILENAME_MAX];
345 FILE *fp;
346 int32_t len;
347 char *prefix = "", *combine;
348 char **pPrevPath = NULL;
350 len = FILENAME_MAX - 1;
351 if (len > instruction->eops->stringlen)
352 len = instruction->eops->stringlen;
353 strncpy(fname, instruction->eops->stringval, len);
354 fname[len] = '\0';
356 while (1) { /* added by alexfru: 'incbin' uses include paths */
357 combine = nasm_malloc(strlen(prefix) + len + 1);
358 strcpy(combine, prefix);
359 strcat(combine, fname);
361 if ((fp = fopen(combine, "rb")) != NULL) {
362 nasm_free(combine);
363 break;
366 nasm_free(combine);
367 pPrevPath = pp_get_include_path_ptr(pPrevPath);
368 if (pPrevPath == NULL)
369 break;
370 prefix = *pPrevPath;
373 if (fp == NULL)
374 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
375 fname);
376 else if (fseek(fp, 0L, SEEK_END) < 0)
377 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
378 fname);
379 else {
380 static char buf[2048];
381 int32_t t = instruction->times;
382 int32_t base = 0;
384 len = ftell(fp);
385 if (instruction->eops->next) {
386 base = instruction->eops->next->offset;
387 len -= base;
388 if (instruction->eops->next->next &&
389 len > instruction->eops->next->next->offset)
390 len = instruction->eops->next->next->offset;
393 * Dummy call to list->output to give the offset to the
394 * listing module.
396 list->output(offset, NULL, OUT_RAWDATA);
397 list->uplevel(LIST_INCBIN);
398 while (t--) {
399 int32_t l;
401 fseek(fp, base, SEEK_SET);
402 l = len;
403 while (l > 0) {
404 int32_t m =
405 fread(buf, 1, (l > (int32_t) sizeof(buf) ? (int32_t) sizeof(buf) : l),
406 fp);
407 if (!m) {
409 * This shouldn't happen unless the file
410 * actually changes while we are reading
411 * it.
413 error(ERR_NONFATAL,
414 "`incbin': unexpected EOF while"
415 " reading file `%s'", fname);
416 t = 0; /* Try to exit cleanly */
417 break;
419 out(offset, segment, buf, OUT_RAWDATA + m,
420 NO_SEG, NO_SEG);
421 l -= m;
424 list->downlevel(LIST_INCBIN);
425 if (instruction->times > 1) {
427 * Dummy call to list->output to give the offset to the
428 * listing module.
430 list->output(offset, NULL, OUT_RAWDATA);
431 list->uplevel(LIST_TIMES);
432 list->downlevel(LIST_TIMES);
434 fclose(fp);
435 return instruction->times * len;
437 return 0; /* if we're here, there's an error */
440 /* Check to see if we need an address-size prefix */
441 add_asp(instruction, bits);
443 size_prob = false;
445 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++){
446 int m = matches(temp, instruction, bits);
448 if (m == 99)
449 m += jmp_match(segment, offset, bits, instruction, temp->code);
451 if (m == 100) { /* matches! */
452 const char *codes = temp->code;
453 int32_t insn_size = calcsize(segment, offset, bits,
454 instruction, codes);
455 itimes = instruction->times;
456 if (insn_size < 0) /* shouldn't be, on pass two */
457 error(ERR_PANIC, "errors made it through from pass one");
458 else
459 while (itimes--) {
460 for (j = 0; j < MAXPREFIX; j++) {
461 uint8_t c = 0;
462 switch (instruction->prefixes[j]) {
463 case P_LOCK:
464 c = 0xF0;
465 break;
466 case P_REPNE:
467 case P_REPNZ:
468 c = 0xF2;
469 break;
470 case P_REPE:
471 case P_REPZ:
472 case P_REP:
473 c = 0xF3;
474 break;
475 case R_CS:
476 if (bits == 64) {
477 error(ERR_WARNING,
478 "cs segment base ignored in 64-bit mode");
480 c = 0x2E;
481 break;
482 case R_DS:
483 if (bits == 64) {
484 error(ERR_WARNING,
485 "ds segment base ignored in 64-bit mode");
487 c = 0x3E;
488 break;
489 case R_ES:
490 if (bits == 64) {
491 error(ERR_WARNING,
492 "es segment base ignored in 64-bit mode");
494 c = 0x26;
495 break;
496 case R_FS:
497 c = 0x64;
498 break;
499 case R_GS:
500 c = 0x65;
501 break;
502 case R_SS:
503 if (bits == 64) {
504 error(ERR_WARNING,
505 "ss segment base ignored in 64-bit mode");
507 c = 0x36;
508 break;
509 case R_SEGR6:
510 case R_SEGR7:
511 error(ERR_NONFATAL,
512 "segr6 and segr7 cannot be used as prefixes");
513 break;
514 case P_A16:
515 if (bits == 64) {
516 error(ERR_NONFATAL,
517 "16-bit addressing is not supported "
518 "in 64-bit mode");
519 } else if (bits != 16)
520 c = 0x67;
521 break;
522 case P_A32:
523 if (bits != 32)
524 c = 0x67;
525 break;
526 case P_A64:
527 if (bits != 64) {
528 error(ERR_NONFATAL,
529 "64-bit addressing is only supported "
530 "in 64-bit mode");
532 break;
533 case P_ASP:
534 c = 0x67;
535 break;
536 case P_O16:
537 if (bits != 16)
538 c = 0x66;
539 break;
540 case P_O32:
541 if (bits == 16)
542 c = 0x66;
543 break;
544 case P_O64:
545 /* REX.W */
546 break;
547 case P_OSP:
548 c = 0x66;
549 break;
550 case P_none:
551 break;
552 default:
553 error(ERR_PANIC, "invalid instruction prefix");
555 if (c != 0) {
556 out(offset, segment, &c, OUT_RAWDATA + 1,
557 NO_SEG, NO_SEG);
558 offset++;
561 insn_end = offset + insn_size;
562 gencode(segment, offset, bits, instruction, codes,
563 insn_end);
564 offset += insn_size;
565 if (itimes > 0 && itimes == instruction->times - 1) {
567 * Dummy call to list->output to give the offset to the
568 * listing module.
570 list->output(offset, NULL, OUT_RAWDATA);
571 list->uplevel(LIST_TIMES);
574 if (instruction->times > 1)
575 list->downlevel(LIST_TIMES);
576 return offset - start;
577 } else if (m > 0 && m > size_prob) {
578 size_prob = m;
580 // temp++;
583 if (temp->opcode == -1) { /* didn't match any instruction */
584 switch (size_prob) {
585 case 1:
586 error(ERR_NONFATAL, "operation size not specified");
587 break;
588 case 2:
589 error(ERR_NONFATAL, "mismatch in operand sizes");
590 break;
591 case 3:
592 error(ERR_NONFATAL, "no instruction for this cpu level");
593 break;
594 case 4:
595 error(ERR_NONFATAL, "instruction not supported in 64-bit mode");
596 break;
597 default:
598 error(ERR_NONFATAL,
599 "invalid combination of opcode and operands");
600 break;
603 return 0;
606 int32_t insn_size(int32_t segment, int32_t offset, int bits, uint32_t cp,
607 insn * instruction, efunc error)
609 const struct itemplate *temp;
611 errfunc = error; /* to pass to other functions */
612 cpu = cp;
614 if (instruction->opcode == -1)
615 return 0;
617 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
618 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
619 instruction->opcode == I_DT || instruction->opcode == I_DO) {
620 extop *e;
621 int32_t isize, osize, wsize = 0; /* placate gcc */
623 isize = 0;
624 switch (instruction->opcode) {
625 case I_DB:
626 wsize = 1;
627 break;
628 case I_DW:
629 wsize = 2;
630 break;
631 case I_DD:
632 wsize = 4;
633 break;
634 case I_DQ:
635 wsize = 8;
636 break;
637 case I_DT:
638 wsize = 10;
639 break;
640 case I_DO:
641 wsize = 16;
642 break;
643 default:
644 break;
647 for (e = instruction->eops; e; e = e->next) {
648 int32_t align;
650 osize = 0;
651 if (e->type == EOT_DB_NUMBER)
652 osize = 1;
653 else if (e->type == EOT_DB_STRING)
654 osize = e->stringlen;
656 align = (-osize) % wsize;
657 if (align < 0)
658 align += wsize;
659 isize += osize + align;
661 return isize * instruction->times;
664 if (instruction->opcode == I_INCBIN) {
665 char fname[FILENAME_MAX];
666 FILE *fp;
667 int32_t len;
668 char *prefix = "", *combine;
669 char **pPrevPath = NULL;
671 len = FILENAME_MAX - 1;
672 if (len > instruction->eops->stringlen)
673 len = instruction->eops->stringlen;
674 strncpy(fname, instruction->eops->stringval, len);
675 fname[len] = '\0';
677 /* added by alexfru: 'incbin' uses include paths */
678 while (1) {
679 combine = nasm_malloc(strlen(prefix) + len + 1);
680 strcpy(combine, prefix);
681 strcat(combine, fname);
683 if ((fp = fopen(combine, "rb")) != NULL) {
684 nasm_free(combine);
685 break;
688 nasm_free(combine);
689 pPrevPath = pp_get_include_path_ptr(pPrevPath);
690 if (pPrevPath == NULL)
691 break;
692 prefix = *pPrevPath;
695 if (fp == NULL)
696 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
697 fname);
698 else if (fseek(fp, 0L, SEEK_END) < 0)
699 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
700 fname);
701 else {
702 len = ftell(fp);
703 fclose(fp);
704 if (instruction->eops->next) {
705 len -= instruction->eops->next->offset;
706 if (instruction->eops->next->next &&
707 len > instruction->eops->next->next->offset) {
708 len = instruction->eops->next->next->offset;
711 return instruction->times * len;
713 return 0; /* if we're here, there's an error */
716 /* Check to see if we need an address-size prefix */
717 add_asp(instruction, bits);
719 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++) {
720 int m = matches(temp, instruction, bits);
721 if (m == 99)
722 m += jmp_match(segment, offset, bits, instruction, temp->code);
724 if (m == 100) {
725 /* we've matched an instruction. */
726 int32_t isize;
727 const char *codes = temp->code;
728 int j;
730 isize = calcsize(segment, offset, bits, instruction, codes);
731 if (isize < 0)
732 return -1;
733 for (j = 0; j < MAXPREFIX; j++) {
734 switch (instruction->prefixes[j]) {
735 case P_A16:
736 if (bits != 16)
737 isize++;
738 break;
739 case P_A32:
740 if (bits != 32)
741 isize++;
742 break;
743 case P_O16:
744 if (bits != 16)
745 isize++;
746 break;
747 case P_O32:
748 if (bits == 16)
749 isize++;
750 break;
751 case P_A64:
752 case P_O64:
753 case P_none:
754 break;
755 default:
756 isize++;
757 break;
760 return isize * instruction->times;
763 return -1; /* didn't match any instruction */
766 /* check that opn[op] is a signed byte of size 16 or 32,
767 and return the signed value*/
768 static int is_sbyte(insn * ins, int op, int size)
770 int32_t v;
771 int ret;
773 ret = !(ins->forw_ref && ins->oprs[op].opflags) && /* dead in the water on forward reference or External */
774 optimizing >= 0 &&
775 !(ins->oprs[op].type & STRICT) &&
776 ins->oprs[op].wrt == NO_SEG && ins->oprs[op].segment == NO_SEG;
778 v = ins->oprs[op].offset;
779 if (size == 16)
780 v = (int16_t)v; /* sign extend if 16 bits */
782 return ret && v >= -128L && v <= 127L;
785 static int32_t calcsize(int32_t segment, int32_t offset, int bits,
786 insn * ins, const char *codes)
788 int32_t length = 0;
789 uint8_t c;
790 int rex_mask = ~0;
791 ins->rex = 0; /* Ensure REX is reset */
793 if (ins->prefixes[PPS_OSIZE] == P_O64)
794 ins->rex |= REX_W;
796 (void)segment; /* Don't warn that this parameter is unused */
797 (void)offset; /* Don't warn that this parameter is unused */
799 while (*codes)
800 switch (c = *codes++) {
801 case 01:
802 case 02:
803 case 03:
804 codes += c, length += c;
805 break;
806 case 04:
807 case 05:
808 case 06:
809 case 07:
810 length++;
811 break;
812 case 010:
813 case 011:
814 case 012:
815 case 013:
816 ins->rex |=
817 op_rexflags(&ins->oprs[c - 010], REX_B|REX_H|REX_P|REX_W);
818 codes++, length++;
819 break;
820 case 014:
821 case 015:
822 case 016:
823 case 017:
824 length++;
825 break;
826 case 020:
827 case 021:
828 case 022:
829 case 023:
830 length++;
831 break;
832 case 024:
833 case 025:
834 case 026:
835 case 027:
836 length++;
837 break;
838 case 030:
839 case 031:
840 case 032:
841 case 033:
842 length += 2;
843 break;
844 case 034:
845 case 035:
846 case 036:
847 case 037:
848 if (ins->oprs[c - 034].type & (BITS16 | BITS32 | BITS64))
849 length += (ins->oprs[c - 034].type & BITS16) ? 2 : 4;
850 else
851 length += (bits == 16) ? 2 : 4;
852 break;
853 case 040:
854 case 041:
855 case 042:
856 case 043:
857 length += 4;
858 break;
859 case 044:
860 case 045:
861 case 046:
862 case 047:
863 length += ins->addr_size >> 3;
864 break;
865 case 050:
866 case 051:
867 case 052:
868 case 053:
869 length++;
870 break;
871 case 054:
872 case 055:
873 case 056:
874 case 057:
875 length += 8; /* MOV reg64/imm */
876 break;
877 case 060:
878 case 061:
879 case 062:
880 case 063:
881 length += 2;
882 break;
883 case 064:
884 case 065:
885 case 066:
886 case 067:
887 if (ins->oprs[c - 064].type & (BITS16 | BITS32 | BITS64))
888 length += (ins->oprs[c - 064].type & BITS16) ? 2 : 4;
889 else
890 length += (bits == 16) ? 2 : 4;
891 break;
892 case 070:
893 case 071:
894 case 072:
895 case 073:
896 length += 4;
897 break;
898 case 074:
899 case 075:
900 case 076:
901 case 077:
902 length += 2;
903 break;
904 case 0140:
905 case 0141:
906 case 0142:
907 case 0143:
908 length += is_sbyte(ins, c - 0140, 16) ? 1 : 2;
909 break;
910 case 0144:
911 case 0145:
912 case 0146:
913 case 0147:
914 codes += 2;
915 length++;
916 break;
917 case 0150:
918 case 0151:
919 case 0152:
920 case 0153:
921 length += is_sbyte(ins, c - 0150, 32) ? 1 : 4;
922 break;
923 case 0154:
924 case 0155:
925 case 0156:
926 case 0157:
927 codes += 2;
928 length++;
929 break;
930 case 0160:
931 case 0161:
932 case 0162:
933 case 0163:
934 length++;
935 ins->rex |= REX_D;
936 ins->drexdst = regval(&ins->oprs[c & 3]);
937 break;
938 case 0164:
939 case 0165:
940 case 0166:
941 case 0167:
942 length++;
943 ins->rex |= REX_D|REX_OC;
944 ins->drexdst = regval(&ins->oprs[c & 3]);
945 break;
946 case 0170:
947 length++;
948 break;
949 case 0171:
950 break;
951 case 0300:
952 case 0301:
953 case 0302:
954 case 0303:
955 break;
956 case 0310:
957 if (bits == 64)
958 return -1;
959 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
960 break;
961 case 0311:
962 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
963 break;
964 case 0312:
965 break;
966 case 0313:
967 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
968 has_prefix(ins, PPS_ASIZE, P_A32))
969 return -1;
970 break;
971 case 0320:
972 length += (bits != 16);
973 break;
974 case 0321:
975 length += (bits == 16);
976 break;
977 case 0322:
978 break;
979 case 0323:
980 rex_mask &= ~REX_W;
981 break;
982 case 0324:
983 ins->rex |= REX_W;
984 break;
985 case 0330:
986 codes++, length++;
987 break;
988 case 0331:
989 break;
990 case 0332:
991 case 0333:
992 length++;
993 break;
994 case 0334:
995 ins->rex |= REX_L;
996 break;
997 case 0335:
998 break;
999 case 0340:
1000 case 0341:
1001 case 0342:
1002 if (ins->oprs[0].segment != NO_SEG)
1003 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1004 " quantity of BSS space");
1005 else
1006 length += ins->oprs[0].offset << (c - 0340);
1007 break;
1008 case 0364:
1009 case 0365:
1010 break;
1011 case 0366:
1012 case 0367:
1013 length++;
1014 break;
1015 case 0370:
1016 case 0371:
1017 case 0372:
1018 break;
1019 case 0373:
1020 length++;
1021 break;
1022 default: /* can't do it by 'case' statements */
1023 if (c >= 0100 && c <= 0277) { /* it's an EA */
1024 ea ea_data;
1025 int rfield;
1026 int32_t rflags;
1027 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1029 if (c <= 0177) {
1030 /* pick rfield from operand b */
1031 rflags = regflag(&ins->oprs[c & 7]);
1032 rfield = regvals[ins->oprs[c & 7].basereg];
1033 } else {
1034 rflags = 0;
1035 rfield = c & 7;
1038 if (!process_ea
1039 (&ins->oprs[(c >> 3) & 7], &ea_data, bits,
1040 ins->addr_size, rfield, rflags, ins->forw_ref)) {
1041 errfunc(ERR_NONFATAL, "invalid effective address");
1042 return -1;
1043 } else {
1044 ins->rex |= ea_data.rex;
1045 length += ea_data.size;
1047 } else
1048 errfunc(ERR_PANIC, "internal instruction table corrupt"
1049 ": instruction code 0x%02X given", c);
1052 ins->rex &= rex_mask;
1054 if (ins->rex & REX_D) {
1055 if (ins->rex & REX_H) {
1056 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1057 return -1;
1059 if (bits != 64 && ((ins->rex & (REX_W|REX_X|REX_B)) ||
1060 ins->drexdst > 7)) {
1061 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1062 return -1;
1064 length++;
1065 } else if (ins->rex & REX_REAL) {
1066 if (ins->rex & REX_H) {
1067 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1068 return -1;
1069 } else if (bits == 64) {
1070 length++;
1071 } else if ((ins->rex & REX_L) &&
1072 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1073 cpu >= IF_X86_64) {
1074 /* LOCK-as-REX.R */
1075 assert_no_prefix(ins, PPS_LREP);
1076 length++;
1077 } else {
1078 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1079 return -1;
1083 return length;
1086 #define EMIT_REX() \
1087 if (!(ins->rex & REX_D) && (ins->rex & REX_REAL) && (bits == 64)) { \
1088 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1089 out(offset, segment, &ins->rex, OUT_RAWDATA+1, NO_SEG, NO_SEG); \
1090 ins->rex = 0; \
1091 offset += 1; \
1094 static void gencode(int32_t segment, int32_t offset, int bits,
1095 insn * ins, const char *codes, int32_t insn_end)
1097 static char condval[] = { /* conditional opcodes */
1098 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1099 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1100 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1102 uint8_t c;
1103 uint8_t bytes[4];
1104 int32_t size;
1105 int64_t data;
1107 while (*codes)
1108 switch (c = *codes++) {
1109 case 01:
1110 case 02:
1111 case 03:
1112 EMIT_REX();
1113 out(offset, segment, codes, OUT_RAWDATA + c, NO_SEG, NO_SEG);
1114 codes += c;
1115 offset += c;
1116 break;
1118 case 04:
1119 case 06:
1120 switch (ins->oprs[0].basereg) {
1121 case R_CS:
1122 bytes[0] = 0x0E + (c == 0x04 ? 1 : 0);
1123 break;
1124 case R_DS:
1125 bytes[0] = 0x1E + (c == 0x04 ? 1 : 0);
1126 break;
1127 case R_ES:
1128 bytes[0] = 0x06 + (c == 0x04 ? 1 : 0);
1129 break;
1130 case R_SS:
1131 bytes[0] = 0x16 + (c == 0x04 ? 1 : 0);
1132 break;
1133 default:
1134 errfunc(ERR_PANIC,
1135 "bizarre 8086 segment register received");
1137 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1138 offset++;
1139 break;
1141 case 05:
1142 case 07:
1143 switch (ins->oprs[0].basereg) {
1144 case R_FS:
1145 bytes[0] = 0xA0 + (c == 0x05 ? 1 : 0);
1146 break;
1147 case R_GS:
1148 bytes[0] = 0xA8 + (c == 0x05 ? 1 : 0);
1149 break;
1150 default:
1151 errfunc(ERR_PANIC,
1152 "bizarre 386 segment register received");
1154 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1155 offset++;
1156 break;
1158 case 010:
1159 case 011:
1160 case 012:
1161 case 013:
1162 EMIT_REX();
1163 bytes[0] = *codes++ + ((regval(&ins->oprs[c - 010])) & 7);
1164 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1165 offset += 1;
1166 break;
1168 case 014:
1169 case 015:
1170 case 016:
1171 case 017:
1172 if (ins->oprs[c - 014].offset < -128
1173 || ins->oprs[c - 014].offset > 127) {
1174 errfunc(ERR_WARNING, "signed byte value exceeds bounds");
1177 if (ins->oprs[c - 014].segment != NO_SEG) {
1178 data = ins->oprs[c - 014].offset;
1179 out(offset, segment, &data, OUT_ADDRESS + 1,
1180 ins->oprs[c - 014].segment, ins->oprs[c - 014].wrt);
1181 } else {
1182 bytes[0] = ins->oprs[c - 014].offset;
1183 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG,
1184 NO_SEG);
1186 offset += 1;
1187 break;
1189 case 020:
1190 case 021:
1191 case 022:
1192 case 023:
1193 if (ins->oprs[c - 020].offset < -256
1194 || ins->oprs[c - 020].offset > 255) {
1195 errfunc(ERR_WARNING, "byte value exceeds bounds");
1197 if (ins->oprs[c - 020].segment != NO_SEG) {
1198 data = ins->oprs[c - 020].offset;
1199 out(offset, segment, &data, OUT_ADDRESS + 1,
1200 ins->oprs[c - 020].segment, ins->oprs[c - 020].wrt);
1201 } else {
1202 bytes[0] = ins->oprs[c - 020].offset;
1203 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG,
1204 NO_SEG);
1206 offset += 1;
1207 break;
1209 case 024:
1210 case 025:
1211 case 026:
1212 case 027:
1213 if (ins->oprs[c - 024].offset < 0
1214 || ins->oprs[c - 024].offset > 255)
1215 errfunc(ERR_WARNING, "unsigned byte value exceeds bounds");
1216 if (ins->oprs[c - 024].segment != NO_SEG) {
1217 data = ins->oprs[c - 024].offset;
1218 out(offset, segment, &data, OUT_ADDRESS + 1,
1219 ins->oprs[c - 024].segment, ins->oprs[c - 024].wrt);
1220 } else {
1221 bytes[0] = ins->oprs[c - 024].offset;
1222 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG,
1223 NO_SEG);
1225 offset += 1;
1226 break;
1228 case 030:
1229 case 031:
1230 case 032:
1231 case 033:
1232 data = ins->oprs[c - 030].offset;
1233 if (ins->oprs[c - 030].segment == NO_SEG &&
1234 ins->oprs[c - 030].wrt == NO_SEG)
1235 warn_overflow(2, data);
1236 out(offset, segment, &data, OUT_ADDRESS + 2,
1237 ins->oprs[c - 030].segment, ins->oprs[c - 030].wrt);
1238 offset += 2;
1239 break;
1241 case 034:
1242 case 035:
1243 case 036:
1244 case 037:
1245 if (ins->oprs[c - 034].type & (BITS16 | BITS32))
1246 size = (ins->oprs[c - 034].type & BITS16) ? 2 : 4;
1247 else
1248 size = (bits == 16) ? 2 : 4;
1249 data = ins->oprs[c - 034].offset;
1250 if (ins->oprs[c - 034].segment == NO_SEG &&
1251 ins->oprs[c - 034].wrt == NO_SEG)
1252 warn_overflow(size, data);
1253 out(offset, segment, &data, OUT_ADDRESS + size,
1254 ins->oprs[c - 034].segment, ins->oprs[c - 034].wrt);
1255 offset += size;
1256 break;
1258 case 040:
1259 case 041:
1260 case 042:
1261 case 043:
1262 data = ins->oprs[c - 040].offset;
1263 out(offset, segment, &data, OUT_ADDRESS + 4,
1264 ins->oprs[c - 040].segment, ins->oprs[c - 040].wrt);
1265 offset += 4;
1266 break;
1268 case 044:
1269 case 045:
1270 case 046:
1271 case 047:
1272 data = ins->oprs[c - 044].offset;
1273 size = ins->addr_size >> 3;
1274 if (ins->oprs[c - 044].segment == NO_SEG &&
1275 ins->oprs[c - 044].wrt == NO_SEG)
1276 warn_overflow(size, data);
1277 out(offset, segment, &data, OUT_ADDRESS + size,
1278 ins->oprs[c - 044].segment, ins->oprs[c - 044].wrt);
1279 offset += size;
1280 break;
1282 case 050:
1283 case 051:
1284 case 052:
1285 case 053:
1286 if (ins->oprs[c - 050].segment != segment)
1287 errfunc(ERR_NONFATAL,
1288 "short relative jump outside segment");
1289 data = ins->oprs[c - 050].offset - insn_end;
1290 if (data > 127 || data < -128)
1291 errfunc(ERR_NONFATAL, "short jump is out of range");
1292 bytes[0] = data;
1293 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1294 offset += 1;
1295 break;
1297 case 054:
1298 case 055:
1299 case 056:
1300 case 057:
1301 data = (int64_t)ins->oprs[c - 054].offset;
1302 out(offset, segment, &data, OUT_ADDRESS + 8,
1303 ins->oprs[c - 054].segment, ins->oprs[c - 054].wrt);
1304 offset += 8;
1305 break;
1307 case 060:
1308 case 061:
1309 case 062:
1310 case 063:
1311 if (ins->oprs[c - 060].segment != segment) {
1312 data = ins->oprs[c - 060].offset;
1313 out(offset, segment, &data,
1314 OUT_REL2ADR + insn_end - offset,
1315 ins->oprs[c - 060].segment, ins->oprs[c - 060].wrt);
1316 } else {
1317 data = ins->oprs[c - 060].offset - insn_end;
1318 out(offset, segment, &data,
1319 OUT_ADDRESS + 2, NO_SEG, NO_SEG);
1321 offset += 2;
1322 break;
1324 case 064:
1325 case 065:
1326 case 066:
1327 case 067:
1328 if (ins->oprs[c - 064].type & (BITS16 | BITS32 | BITS64))
1329 size = (ins->oprs[c - 064].type & BITS16) ? 2 : 4;
1330 else
1331 size = (bits == 16) ? 2 : 4;
1332 if (ins->oprs[c - 064].segment != segment) {
1333 int32_t reltype = (size == 2 ? OUT_REL2ADR : OUT_REL4ADR);
1334 data = ins->oprs[c - 064].offset;
1335 out(offset, segment, &data, reltype + insn_end - offset,
1336 ins->oprs[c - 064].segment, ins->oprs[c - 064].wrt);
1337 } else {
1338 data = ins->oprs[c - 064].offset - insn_end;
1339 out(offset, segment, &data,
1340 OUT_ADDRESS + size, NO_SEG, NO_SEG);
1342 offset += size;
1343 break;
1345 case 070:
1346 case 071:
1347 case 072:
1348 case 073:
1349 if (ins->oprs[c - 070].segment != segment) {
1350 data = ins->oprs[c - 070].offset;
1351 out(offset, segment, &data,
1352 OUT_REL4ADR + insn_end - offset,
1353 ins->oprs[c - 070].segment, ins->oprs[c - 070].wrt);
1354 } else {
1355 data = ins->oprs[c - 070].offset - insn_end;
1356 out(offset, segment, &data,
1357 OUT_ADDRESS + 4, NO_SEG, NO_SEG);
1359 offset += 4;
1360 break;
1362 case 074:
1363 case 075:
1364 case 076:
1365 case 077:
1366 if (ins->oprs[c - 074].segment == NO_SEG)
1367 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1368 " relocatable");
1369 data = 0L;
1370 out(offset, segment, &data, OUT_ADDRESS + 2,
1371 outfmt->segbase(1 + ins->oprs[c - 074].segment),
1372 ins->oprs[c - 074].wrt);
1373 offset += 2;
1374 break;
1376 case 0140:
1377 case 0141:
1378 case 0142:
1379 case 0143:
1380 data = ins->oprs[c - 0140].offset;
1381 if (is_sbyte(ins, c - 0140, 16)) {
1382 bytes[0] = data;
1383 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG,
1384 NO_SEG);
1385 offset++;
1386 } else {
1387 if (ins->oprs[c - 0140].segment == NO_SEG &&
1388 ins->oprs[c - 0140].wrt == NO_SEG)
1389 warn_overflow(2, data);
1390 out(offset, segment, &data, OUT_ADDRESS + 2,
1391 ins->oprs[c - 0140].segment, ins->oprs[c - 0140].wrt);
1392 offset += 2;
1394 break;
1396 case 0144:
1397 case 0145:
1398 case 0146:
1399 case 0147:
1400 EMIT_REX();
1401 codes++;
1402 bytes[0] = *codes++;
1403 if (is_sbyte(ins, c - 0144, 16))
1404 bytes[0] |= 2; /* s-bit */
1405 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1406 offset++;
1407 break;
1409 case 0150:
1410 case 0151:
1411 case 0152:
1412 case 0153:
1413 data = ins->oprs[c - 0150].offset;
1414 if (is_sbyte(ins, c - 0150, 32)) {
1415 bytes[0] = data;
1416 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG,
1417 NO_SEG);
1418 offset++;
1419 } else {
1420 out(offset, segment, &data, OUT_ADDRESS + 4,
1421 ins->oprs[c - 0150].segment, ins->oprs[c - 0150].wrt);
1422 offset += 4;
1424 break;
1426 case 0154:
1427 case 0155:
1428 case 0156:
1429 case 0157:
1430 EMIT_REX();
1431 codes++;
1432 bytes[0] = *codes++;
1433 if (is_sbyte(ins, c - 0154, 32))
1434 bytes[0] |= 2; /* s-bit */
1435 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1436 offset++;
1437 break;
1439 case 0160:
1440 case 0161:
1441 case 0162:
1442 case 0163:
1443 case 0164:
1444 case 0165:
1445 case 0166:
1446 case 0167:
1447 break;
1449 case 0170:
1450 EMIT_REX();
1451 bytes[0] = 0;
1452 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1453 offset += 1;
1454 break;
1456 case 0171:
1457 bytes[0] =
1458 (ins->drexdst << 4) |
1459 (ins->rex & REX_OC ? 0x08 : 0) |
1460 (ins->rex & (REX_R|REX_X|REX_B));
1461 ins->rex = 0;
1462 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1463 offset++;
1464 break;
1466 case 0300:
1467 case 0301:
1468 case 0302:
1469 case 0303:
1470 break;
1472 case 0310:
1473 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1474 *bytes = 0x67;
1475 out(offset, segment, bytes,
1476 OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1477 offset += 1;
1478 } else
1479 offset += 0;
1480 break;
1482 case 0311:
1483 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1484 *bytes = 0x67;
1485 out(offset, segment, bytes,
1486 OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1487 offset += 1;
1488 } else
1489 offset += 0;
1490 break;
1492 case 0312:
1493 break;
1495 case 0313:
1496 ins->rex = 0;
1497 break;
1499 case 0320:
1500 if (bits != 16) {
1501 *bytes = 0x66;
1502 out(offset, segment, bytes,
1503 OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1504 offset += 1;
1505 } else
1506 offset += 0;
1507 break;
1509 case 0321:
1510 if (bits == 16) {
1511 *bytes = 0x66;
1512 out(offset, segment, bytes,
1513 OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1514 offset += 1;
1515 } else
1516 offset += 0;
1517 break;
1519 case 0322:
1520 case 0323:
1521 break;
1523 case 0324:
1524 ins->rex |= REX_W;
1525 break;
1527 case 0330:
1528 *bytes = *codes++ ^ condval[ins->condition];
1529 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1530 offset += 1;
1531 break;
1533 case 0331:
1534 break;
1536 case 0332:
1537 case 0333:
1538 *bytes = c - 0332 + 0xF2;
1539 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1540 offset += 1;
1541 break;
1543 case 0334:
1544 if (ins->rex & REX_R) {
1545 *bytes = 0xF0;
1546 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1547 offset += 1;
1549 ins->rex &= ~(REX_L|REX_R);
1550 break;
1552 case 0335:
1553 break;
1555 case 0340:
1556 case 0341:
1557 case 0342:
1558 if (ins->oprs[0].segment != NO_SEG)
1559 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1560 else {
1561 int32_t size = ins->oprs[0].offset << (c - 0340);
1562 if (size > 0)
1563 out(offset, segment, NULL,
1564 OUT_RESERVE + size, NO_SEG, NO_SEG);
1565 offset += size;
1567 break;
1569 case 0364:
1570 case 0365:
1571 break;
1573 case 0366:
1574 case 0367:
1575 *bytes = c - 0366 + 0x66;
1576 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1577 offset += 1;
1578 break;
1580 case 0370:
1581 case 0371:
1582 case 0372:
1583 break;
1585 case 0373:
1586 *bytes = bits == 16 ? 3 : 5;
1587 out(offset, segment, bytes, OUT_RAWDATA + 1, NO_SEG, NO_SEG);
1588 offset += 1;
1589 break;
1591 default: /* can't do it by 'case' statements */
1592 if (c >= 0100 && c <= 0277) { /* it's an EA */
1593 ea ea_data;
1594 int rfield;
1595 int32_t rflags;
1596 uint8_t *p;
1597 int32_t s;
1599 if (c <= 0177) {
1600 /* pick rfield from operand b */
1601 rflags = regflag(&ins->oprs[c & 7]);
1602 rfield = regvals[ins->oprs[c & 7].basereg];
1603 } else {
1604 /* rfield is constant */
1605 rflags = 0;
1606 rfield = c & 7;
1609 if (!process_ea
1610 (&ins->oprs[(c >> 3) & 7], &ea_data, bits,
1611 ins->addr_size, rfield, rflags, ins->forw_ref)) {
1612 errfunc(ERR_NONFATAL, "invalid effective address");
1615 p = bytes;
1616 *p++ = ea_data.modrm;
1617 if (ea_data.sib_present)
1618 *p++ = ea_data.sib;
1620 /* DREX suffixes come between the SIB and the displacement */
1621 if (ins->rex & REX_D) {
1622 *p++ =
1623 (ins->drexdst << 4) |
1624 (ins->rex & REX_OC ? 0x08 : 0) |
1625 (ins->rex & (REX_R|REX_X|REX_B));
1626 ins->rex = 0;
1629 s = p - bytes;
1630 out(offset, segment, bytes, OUT_RAWDATA + s,
1631 NO_SEG, NO_SEG);
1633 switch (ea_data.bytes) {
1634 case 0:
1635 break;
1636 case 1:
1637 if (ins->oprs[(c >> 3) & 7].segment != NO_SEG) {
1638 data = ins->oprs[(c >> 3) & 7].offset;
1639 out(offset, segment, &data, OUT_ADDRESS + 1,
1640 ins->oprs[(c >> 3) & 7].segment,
1641 ins->oprs[(c >> 3) & 7].wrt);
1642 } else {
1643 *bytes = ins->oprs[(c >> 3) & 7].offset;
1644 out(offset, segment, bytes, OUT_RAWDATA + 1,
1645 NO_SEG, NO_SEG);
1647 s++;
1648 break;
1649 case 8:
1650 case 2:
1651 case 4:
1652 data = ins->oprs[(c >> 3) & 7].offset;
1653 out(offset, segment, &data,
1654 (ea_data.rip ? OUT_REL4ADR : OUT_ADDRESS)
1655 + ea_data.bytes,
1656 ins->oprs[(c >> 3) & 7].segment,
1657 ins->oprs[(c >> 3) & 7].wrt);
1658 s += ea_data.bytes;
1659 break;
1661 offset += s;
1662 } else
1663 errfunc(ERR_PANIC, "internal instruction table corrupt"
1664 ": instruction code 0x%02X given", c);
1668 static int32_t regflag(const operand * o)
1670 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1671 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1673 return reg_flags[o->basereg];
1676 static int32_t regval(const operand * o)
1678 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1679 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1681 return regvals[o->basereg];
1684 static int op_rexflags(const operand * o, int mask)
1686 int32_t flags;
1687 int val;
1689 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1690 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1693 flags = reg_flags[o->basereg];
1694 val = regvals[o->basereg];
1696 return rexflags(val, flags, mask);
1699 static int rexflags(int val, int32_t flags, int mask)
1701 int rex = 0;
1703 if (val >= 8)
1704 rex |= REX_B|REX_X|REX_R;
1705 if (flags & BITS64)
1706 rex |= REX_W;
1707 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1708 rex |= REX_H;
1709 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1710 rex |= REX_P;
1712 return rex & mask;
1715 static int matches(const struct itemplate *itemp, insn * instruction, int bits)
1717 int i, size[MAX_OPERANDS], asize, oprs, ret;
1719 ret = 100;
1722 * Check the opcode
1724 if (itemp->opcode != instruction->opcode)
1725 return 0;
1728 * Count the operands
1730 if (itemp->operands != instruction->operands)
1731 return 0;
1734 * Check that no spurious colons or TOs are present
1736 for (i = 0; i < itemp->operands; i++)
1737 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
1738 return 0;
1741 * Check that the operand flags all match up
1743 for (i = 0; i < itemp->operands; i++) {
1744 if (itemp->opd[i] & SAME_AS) {
1745 int j = itemp->opd[i] & ~SAME_AS;
1746 if (instruction->oprs[i].type != instruction->oprs[j].type ||
1747 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
1748 return 0;
1749 } else if (itemp->opd[i] & ~instruction->oprs[i].type ||
1750 ((itemp->opd[i] & SIZE_MASK) &&
1751 ((itemp->opd[i] ^ instruction->oprs[i].type) & SIZE_MASK))) {
1752 if ((itemp->opd[i] & ~instruction->oprs[i].type & ~SIZE_MASK) ||
1753 (instruction->oprs[i].type & SIZE_MASK))
1754 return 0;
1755 else
1756 return 1;
1761 * Check operand sizes
1763 if (itemp->flags & IF_ARMASK) {
1764 memset(size, 0, sizeof size);
1766 switch (itemp->flags & IF_ARMASK) {
1767 case IF_AR0:
1768 i = 0;
1769 break;
1770 case IF_AR1:
1771 i = 1;
1772 break;
1773 case IF_AR2:
1774 i = 2;
1775 break;
1776 case IF_AR3:
1777 i = 3;
1778 break;
1779 default:
1780 break; /* Shouldn't happen */
1782 switch (itemp->flags & IF_SMASK) {
1783 case IF_SB:
1784 size[i] = BITS8;
1785 break;
1786 case IF_SW:
1787 size[i] = BITS16;
1788 break;
1789 case IF_SD:
1790 size[i] = BITS32;
1791 break;
1792 case IF_SQ:
1793 size[i] = BITS64;
1794 break;
1795 case IF_SO:
1796 size[i] = BITS128;
1797 break;
1798 default:
1799 break;
1801 } else {
1802 asize = 0;
1803 switch (itemp->flags & IF_SMASK) {
1804 case IF_SB:
1805 asize = BITS8;
1806 oprs = itemp->operands;
1807 break;
1808 case IF_SW:
1809 asize = BITS16;
1810 oprs = itemp->operands;
1811 break;
1812 case IF_SD:
1813 asize = BITS32;
1814 oprs = itemp->operands;
1815 break;
1816 case IF_SQ:
1817 asize = BITS64;
1818 oprs = itemp->operands;
1819 break;
1820 case IF_SO:
1821 asize = BITS128;
1822 oprs = itemp->operands;
1823 break;
1824 default:
1825 break;
1827 for (i = 0; i < MAX_OPERANDS; i++)
1828 size[i] = asize;
1831 if (itemp->flags & (IF_SM | IF_SM2)) {
1832 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
1833 asize = 0;
1834 for (i = 0; i < oprs; i++) {
1835 if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
1836 int j;
1837 for (j = 0; j < oprs; j++)
1838 size[j] = asize;
1839 break;
1842 } else {
1843 oprs = itemp->operands;
1846 for (i = 0; i < itemp->operands; i++) {
1847 if (!(itemp->opd[i] & SIZE_MASK) &&
1848 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
1849 return 2;
1853 * Check template is okay at the set cpu level
1855 if (((itemp->flags & IF_PLEVEL) > cpu))
1856 return 3;
1859 * Check if instruction is available in long mode
1861 if ((itemp->flags & IF_NOLONG) && (bits == 64))
1862 return 4;
1865 * Check if special handling needed for Jumps
1867 if ((uint8_t)(itemp->code[0]) >= 0370)
1868 return 99;
1870 return ret;
1873 static ea *process_ea(operand * input, ea * output, int bits,
1874 int addrbits, int rfield, int32_t rflags, int forw_ref)
1876 output->rip = false;
1878 /* REX flags for the rfield operand */
1879 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
1881 if (!(REGISTER & ~input->type)) { /* register direct */
1882 int i;
1883 int32_t f;
1885 if (input->basereg < EXPR_REG_START /* Verify as Register */
1886 || input->basereg >= REG_ENUM_LIMIT)
1887 return NULL;
1888 f = regflag(input);
1889 i = regvals[input->basereg];
1891 if (REG_EA & ~f)
1892 return NULL; /* Invalid EA register */
1894 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
1896 output->sib_present = false; /* no SIB necessary */
1897 output->bytes = 0; /* no offset necessary either */
1898 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
1899 } else { /* it's a memory reference */
1900 if (input->basereg == -1
1901 && (input->indexreg == -1 || input->scale == 0)) {
1902 /* it's a pure offset */
1903 if (bits == 64 && (~input->type & IP_REL)) {
1904 int scale, index, base;
1905 output->sib_present = true;
1906 scale = 0;
1907 index = 4;
1908 base = 5;
1909 output->sib = (scale << 6) | (index << 3) | base;
1910 output->bytes = 4;
1911 output->modrm = 4 | ((rfield & 7) << 3);
1912 output->rip = false;
1913 } else {
1914 output->sib_present = false;
1915 output->bytes = (addrbits != 16 ? 4 : 2);
1916 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
1917 output->rip = bits == 64;
1919 } else { /* it's an indirection */
1920 int i = input->indexreg, b = input->basereg, s = input->scale;
1921 int32_t o = input->offset, seg = input->segment;
1922 int hb = input->hintbase, ht = input->hinttype;
1923 int t;
1924 int it, bt;
1925 int32_t ix, bx; /* register flags */
1927 if (s == 0)
1928 i = -1; /* make this easy, at least */
1930 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
1931 it = regvals[i];
1932 ix = reg_flags[i];
1933 } else {
1934 it = -1;
1935 ix = 0;
1938 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
1939 bt = regvals[b];
1940 bx = reg_flags[b];
1941 } else {
1942 bt = -1;
1943 bx = 0;
1946 /* check for a 32/64-bit memory reference... */
1947 if ((ix|bx) & (BITS32|BITS64)) {
1948 /* it must be a 32/64-bit memory reference. Firstly we have
1949 * to check that all registers involved are type E/Rxx. */
1950 int32_t sok = BITS32|BITS64;
1952 if (it != -1) {
1953 if (!(REG64 & ~ix) || !(REG32 & ~ix))
1954 sok &= ix;
1955 else
1956 return NULL;
1959 if (bt != -1) {
1960 if (REG_GPR & ~bx)
1961 return NULL; /* Invalid register */
1962 if (~sok & bx & SIZE_MASK)
1963 return NULL; /* Invalid size */
1964 sok &= bx;
1967 /* While we're here, ensure the user didn't specify
1968 WORD or QWORD. */
1969 if (input->disp_size == 16 || input->disp_size == 64)
1970 return NULL;
1972 if (addrbits == 16 ||
1973 (addrbits == 32 && !(sok & BITS32)) ||
1974 (addrbits == 64 && !(sok & BITS64)))
1975 return NULL;
1977 /* now reorganize base/index */
1978 if (s == 1 && bt != it && bt != -1 && it != -1 &&
1979 ((hb == b && ht == EAH_NOTBASE)
1980 || (hb == i && ht == EAH_MAKEBASE))) {
1981 /* swap if hints say so */
1982 t = bt, bt = it, it = t;
1983 t = bx, bx = ix, ix = t;
1985 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
1986 bt = -1, bx = 0, s++;
1987 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
1988 /* make single reg base, unless hint */
1989 bt = it, bx = ix, it = -1, ix = 0;
1991 if (((s == 2 && it != REG_NUM_ESP
1992 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
1993 || s == 5 || s == 9) && bt == -1)
1994 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
1995 if (it == -1 && (bt & 7) != REG_NUM_ESP
1996 && (input->eaflags & EAF_TIMESTWO))
1997 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
1998 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
1999 if (s == 1 && it == REG_NUM_ESP) {
2000 /* swap ESP into base if scale is 1 */
2001 t = it, it = bt, bt = t;
2002 t = ix, ix = bx, bx = t;
2004 if (it == REG_NUM_ESP
2005 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2006 return NULL; /* wrong, for various reasons */
2008 output->rex |= rexflags(it, ix, REX_X);
2009 output->rex |= rexflags(bt, bx, REX_B);
2011 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2012 /* no SIB needed */
2013 int mod, rm;
2015 if (bt == -1) {
2016 rm = 5;
2017 mod = 0;
2018 } else {
2019 rm = (bt & 7);
2020 if (rm != REG_NUM_EBP && o == 0 &&
2021 seg == NO_SEG && !forw_ref &&
2022 !(input->eaflags &
2023 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2024 mod = 0;
2025 else if (input->eaflags & EAF_BYTEOFFS ||
2026 (o >= -128 && o <= 127 && seg == NO_SEG
2027 && !forw_ref
2028 && !(input->eaflags & EAF_WORDOFFS)))
2029 mod = 1;
2030 else
2031 mod = 2;
2034 output->sib_present = false;
2035 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2036 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2037 } else {
2038 /* we need a SIB */
2039 int mod, scale, index, base;
2041 if (it == -1)
2042 index = 4, s = 1;
2043 else
2044 index = (it & 7);
2046 switch (s) {
2047 case 1:
2048 scale = 0;
2049 break;
2050 case 2:
2051 scale = 1;
2052 break;
2053 case 4:
2054 scale = 2;
2055 break;
2056 case 8:
2057 scale = 3;
2058 break;
2059 default: /* then what the smeg is it? */
2060 return NULL; /* panic */
2063 if (bt == -1) {
2064 base = 5;
2065 mod = 0;
2066 } else {
2067 base = (bt & 7);
2068 if (base != REG_NUM_EBP && o == 0 &&
2069 seg == NO_SEG && !forw_ref &&
2070 !(input->eaflags &
2071 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2072 mod = 0;
2073 else if (input->eaflags & EAF_BYTEOFFS ||
2074 (o >= -128 && o <= 127 && seg == NO_SEG
2075 && !forw_ref
2076 && !(input->eaflags & EAF_WORDOFFS)))
2077 mod = 1;
2078 else
2079 mod = 2;
2082 output->sib_present = true;
2083 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2084 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2085 output->sib = (scale << 6) | (index << 3) | base;
2087 } else { /* it's 16-bit */
2088 int mod, rm;
2090 /* check for 64-bit long mode */
2091 if (addrbits == 64)
2092 return NULL;
2094 /* check all registers are BX, BP, SI or DI */
2095 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2096 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2097 && i != R_SI && i != R_DI))
2098 return NULL;
2100 /* ensure the user didn't specify DWORD/QWORD */
2101 if (input->disp_size == 32 || input->disp_size == 64)
2102 return NULL;
2104 if (s != 1 && i != -1)
2105 return NULL; /* no can do, in 16-bit EA */
2106 if (b == -1 && i != -1) {
2107 int tmp = b;
2108 b = i;
2109 i = tmp;
2110 } /* swap */
2111 if ((b == R_SI || b == R_DI) && i != -1) {
2112 int tmp = b;
2113 b = i;
2114 i = tmp;
2116 /* have BX/BP as base, SI/DI index */
2117 if (b == i)
2118 return NULL; /* shouldn't ever happen, in theory */
2119 if (i != -1 && b != -1 &&
2120 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2121 return NULL; /* invalid combinations */
2122 if (b == -1) /* pure offset: handled above */
2123 return NULL; /* so if it gets to here, panic! */
2125 rm = -1;
2126 if (i != -1)
2127 switch (i * 256 + b) {
2128 case R_SI * 256 + R_BX:
2129 rm = 0;
2130 break;
2131 case R_DI * 256 + R_BX:
2132 rm = 1;
2133 break;
2134 case R_SI * 256 + R_BP:
2135 rm = 2;
2136 break;
2137 case R_DI * 256 + R_BP:
2138 rm = 3;
2139 break;
2140 } else
2141 switch (b) {
2142 case R_SI:
2143 rm = 4;
2144 break;
2145 case R_DI:
2146 rm = 5;
2147 break;
2148 case R_BP:
2149 rm = 6;
2150 break;
2151 case R_BX:
2152 rm = 7;
2153 break;
2155 if (rm == -1) /* can't happen, in theory */
2156 return NULL; /* so panic if it does */
2158 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2159 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2160 mod = 0;
2161 else if (input->eaflags & EAF_BYTEOFFS ||
2162 (o >= -128 && o <= 127 && seg == NO_SEG
2163 && !forw_ref
2164 && !(input->eaflags & EAF_WORDOFFS)))
2165 mod = 1;
2166 else
2167 mod = 2;
2169 output->sib_present = false; /* no SIB - it's 16-bit */
2170 output->bytes = mod; /* bytes of offset needed */
2171 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2176 output->size = 1 + output->sib_present + output->bytes;
2177 return output;
2180 static void add_asp(insn *ins, int addrbits)
2182 int j, valid;
2183 int defdisp;
2185 valid = (addrbits == 64) ? 64|32 : 32|16;
2187 switch (ins->prefixes[PPS_ASIZE]) {
2188 case P_A16:
2189 valid &= 16;
2190 break;
2191 case P_A32:
2192 valid &= 32;
2193 break;
2194 case P_A64:
2195 valid &= 64;
2196 break;
2197 case P_ASP:
2198 valid &= (addrbits == 32) ? 16 : 32;
2199 break;
2200 default:
2201 break;
2204 for (j = 0; j < ins->operands; j++) {
2205 if (!(MEMORY & ~ins->oprs[j].type)) {
2206 int32_t i, b;
2208 /* Verify as Register */
2209 if (ins->oprs[j].indexreg < EXPR_REG_START
2210 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2211 i = 0;
2212 else
2213 i = reg_flags[ins->oprs[j].indexreg];
2215 /* Verify as Register */
2216 if (ins->oprs[j].basereg < EXPR_REG_START
2217 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2218 b = 0;
2219 else
2220 b = reg_flags[ins->oprs[j].basereg];
2222 if (ins->oprs[j].scale == 0)
2223 i = 0;
2225 if (!i && !b) {
2226 int ds = ins->oprs[j].disp_size;
2227 if ((addrbits != 64 && ds > 8) ||
2228 (addrbits == 64 && ds == 16))
2229 valid &= ds;
2230 } else {
2231 if (!(REG16 & ~b))
2232 valid &= 16;
2233 if (!(REG32 & ~b))
2234 valid &= 32;
2235 if (!(REG64 & ~b))
2236 valid &= 64;
2238 if (!(REG16 & ~i))
2239 valid &= 16;
2240 if (!(REG32 & ~i))
2241 valid &= 32;
2242 if (!(REG64 & ~i))
2243 valid &= 64;
2248 if (valid & addrbits) {
2249 ins->addr_size = addrbits;
2250 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2251 /* Add an address size prefix */
2252 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2253 ins->prefixes[PPS_ASIZE] = pref;
2254 ins->addr_size = (addrbits == 32) ? 16 : 32;
2255 } else {
2256 /* Impossible... */
2257 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2258 ins->addr_size = addrbits; /* Error recovery */
2261 defdisp = ins->addr_size == 16 ? 16 : 32;
2263 for (j = 0; j < ins->operands; j++) {
2264 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2265 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2266 != ins->addr_size) {
2267 /* mem_offs sizes must match the address size; if not,
2268 strip the MEM_OFFS bit and match only EA instructions */
2269 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);