added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / net / ipv4 / route.c
blobfef32d5eed9cc265d9f98e91e11158b0af87baaa
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
14 * Fixes:
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
24 * clamper.
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <net/dst.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
96 #include <net/ip.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
99 #include <net/sock.h>
100 #include <net/ip_fib.h>
101 #include <net/arp.h>
102 #include <net/tcp.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
107 #ifdef CONFIG_SYSCTL
108 #include <linux/sysctl.h>
109 #endif
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114 #define IP_MAX_MTU 0xFFF0
116 #define RT_GC_TIMEOUT (300*HZ)
118 static int ip_rt_max_size;
119 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT;
120 static int ip_rt_gc_interval __read_mostly = 60 * HZ;
121 static int ip_rt_gc_min_interval __read_mostly = HZ / 2;
122 static int ip_rt_redirect_number __read_mostly = 9;
123 static int ip_rt_redirect_load __read_mostly = HZ / 50;
124 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly = HZ;
126 static int ip_rt_error_burst __read_mostly = 5 * HZ;
127 static int ip_rt_gc_elasticity __read_mostly = 8;
128 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ;
129 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly = 256;
131 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ;
132 static int rt_chain_length_max __read_mostly = 20;
134 static void rt_worker_func(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
138 * Interface to generic destination cache.
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void ipv4_dst_destroy(struct dst_entry *dst);
143 static void ipv4_dst_ifdown(struct dst_entry *dst,
144 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void ipv4_link_failure(struct sk_buff *skb);
147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149 static void rt_emergency_hash_rebuild(struct net *net);
152 static struct dst_ops ipv4_dst_ops = {
153 .family = AF_INET,
154 .protocol = __constant_htons(ETH_P_IP),
155 .gc = rt_garbage_collect,
156 .check = ipv4_dst_check,
157 .destroy = ipv4_dst_destroy,
158 .ifdown = ipv4_dst_ifdown,
159 .negative_advice = ipv4_negative_advice,
160 .link_failure = ipv4_link_failure,
161 .update_pmtu = ip_rt_update_pmtu,
162 .local_out = __ip_local_out,
163 .entries = ATOMIC_INIT(0),
166 #define ECN_OR_COST(class) TC_PRIO_##class
168 const __u8 ip_tos2prio[16] = {
169 TC_PRIO_BESTEFFORT,
170 ECN_OR_COST(FILLER),
171 TC_PRIO_BESTEFFORT,
172 ECN_OR_COST(BESTEFFORT),
173 TC_PRIO_BULK,
174 ECN_OR_COST(BULK),
175 TC_PRIO_BULK,
176 ECN_OR_COST(BULK),
177 TC_PRIO_INTERACTIVE,
178 ECN_OR_COST(INTERACTIVE),
179 TC_PRIO_INTERACTIVE,
180 ECN_OR_COST(INTERACTIVE),
181 TC_PRIO_INTERACTIVE_BULK,
182 ECN_OR_COST(INTERACTIVE_BULK),
183 TC_PRIO_INTERACTIVE_BULK,
184 ECN_OR_COST(INTERACTIVE_BULK)
189 * Route cache.
192 /* The locking scheme is rather straight forward:
194 * 1) Read-Copy Update protects the buckets of the central route hash.
195 * 2) Only writers remove entries, and they hold the lock
196 * as they look at rtable reference counts.
197 * 3) Only readers acquire references to rtable entries,
198 * they do so with atomic increments and with the
199 * lock held.
202 struct rt_hash_bucket {
203 struct rtable *chain;
206 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
207 defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_PREEMPT_RT)
209 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
210 * The size of this table is a power of two and depends on the number of CPUS.
211 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
213 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
214 # define RT_HASH_LOCK_SZ 256
215 #else
216 # if NR_CPUS >= 32
217 # define RT_HASH_LOCK_SZ 4096
218 # elif NR_CPUS >= 16
219 # define RT_HASH_LOCK_SZ 2048
220 # elif NR_CPUS >= 8
221 # define RT_HASH_LOCK_SZ 1024
222 # elif NR_CPUS >= 4
223 # define RT_HASH_LOCK_SZ 512
224 # else
225 # define RT_HASH_LOCK_SZ 256
226 # endif
227 #endif
229 static spinlock_t *rt_hash_locks;
230 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
232 static __init void rt_hash_lock_init(void)
234 int i;
236 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
237 GFP_KERNEL);
238 if (!rt_hash_locks)
239 panic("IP: failed to allocate rt_hash_locks\n");
241 for (i = 0; i < RT_HASH_LOCK_SZ; i++)
242 spin_lock_init(&rt_hash_locks[i]);
244 #else
245 # define rt_hash_lock_addr(slot) ((spinlock_t *)NULL)
247 static inline void rt_hash_lock_init(void)
250 #endif
252 static struct rt_hash_bucket *rt_hash_table __read_mostly;
253 static unsigned rt_hash_mask __read_mostly;
254 static unsigned int rt_hash_log __read_mostly;
256 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
257 #define RT_CACHE_STAT_INC(field) \
258 (__raw_get_cpu_var(rt_cache_stat).field++)
260 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
261 int genid)
263 return jhash_3words((__force u32)(__be32)(daddr),
264 (__force u32)(__be32)(saddr),
265 idx, genid)
266 & rt_hash_mask;
269 static inline int rt_genid(struct net *net)
271 return atomic_read(&net->ipv4.rt_genid);
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state {
276 struct seq_net_private p;
277 int bucket;
278 int genid;
281 static struct rtable *rt_cache_get_first(struct seq_file *seq)
283 struct rt_cache_iter_state *st = seq->private;
284 struct rtable *r = NULL;
286 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
287 if (!rt_hash_table[st->bucket].chain)
288 continue;
289 rcu_read_lock_bh();
290 r = rcu_dereference(rt_hash_table[st->bucket].chain);
291 while (r) {
292 if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
293 r->rt_genid == st->genid)
294 return r;
295 r = rcu_dereference(r->u.dst.rt_next);
297 rcu_read_unlock_bh();
299 return r;
302 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
303 struct rtable *r)
305 struct rt_cache_iter_state *st = seq->private;
307 r = r->u.dst.rt_next;
308 while (!r) {
309 rcu_read_unlock_bh();
310 do {
311 if (--st->bucket < 0)
312 return NULL;
313 } while (!rt_hash_table[st->bucket].chain);
314 rcu_read_lock_bh();
315 r = rt_hash_table[st->bucket].chain;
317 return rcu_dereference(r);
320 static struct rtable *rt_cache_get_next(struct seq_file *seq,
321 struct rtable *r)
323 struct rt_cache_iter_state *st = seq->private;
324 while ((r = __rt_cache_get_next(seq, r)) != NULL) {
325 if (dev_net(r->u.dst.dev) != seq_file_net(seq))
326 continue;
327 if (r->rt_genid == st->genid)
328 break;
330 return r;
333 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
335 struct rtable *r = rt_cache_get_first(seq);
337 if (r)
338 while (pos && (r = rt_cache_get_next(seq, r)))
339 --pos;
340 return pos ? NULL : r;
343 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
345 struct rt_cache_iter_state *st = seq->private;
346 if (*pos)
347 return rt_cache_get_idx(seq, *pos - 1);
348 st->genid = rt_genid(seq_file_net(seq));
349 return SEQ_START_TOKEN;
352 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
354 struct rtable *r;
356 if (v == SEQ_START_TOKEN)
357 r = rt_cache_get_first(seq);
358 else
359 r = rt_cache_get_next(seq, v);
360 ++*pos;
361 return r;
364 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
366 if (v && v != SEQ_START_TOKEN)
367 rcu_read_unlock_bh();
370 static int rt_cache_seq_show(struct seq_file *seq, void *v)
372 if (v == SEQ_START_TOKEN)
373 seq_printf(seq, "%-127s\n",
374 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
375 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
376 "HHUptod\tSpecDst");
377 else {
378 struct rtable *r = v;
379 int len;
381 seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
382 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
383 r->u.dst.dev ? r->u.dst.dev->name : "*",
384 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
385 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
386 r->u.dst.__use, 0, (unsigned long)r->rt_src,
387 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
388 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
389 dst_metric(&r->u.dst, RTAX_WINDOW),
390 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
391 dst_metric(&r->u.dst, RTAX_RTTVAR)),
392 r->fl.fl4_tos,
393 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
394 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
395 dev_queue_xmit) : 0,
396 r->rt_spec_dst, &len);
398 seq_printf(seq, "%*s\n", 127 - len, "");
400 return 0;
403 static const struct seq_operations rt_cache_seq_ops = {
404 .start = rt_cache_seq_start,
405 .next = rt_cache_seq_next,
406 .stop = rt_cache_seq_stop,
407 .show = rt_cache_seq_show,
410 static int rt_cache_seq_open(struct inode *inode, struct file *file)
412 return seq_open_net(inode, file, &rt_cache_seq_ops,
413 sizeof(struct rt_cache_iter_state));
416 static const struct file_operations rt_cache_seq_fops = {
417 .owner = THIS_MODULE,
418 .open = rt_cache_seq_open,
419 .read = seq_read,
420 .llseek = seq_lseek,
421 .release = seq_release_net,
425 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
427 int cpu;
429 if (*pos == 0)
430 return SEQ_START_TOKEN;
432 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
433 if (!cpu_possible(cpu))
434 continue;
435 *pos = cpu+1;
436 return &per_cpu(rt_cache_stat, cpu);
438 return NULL;
441 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
443 int cpu;
445 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
446 if (!cpu_possible(cpu))
447 continue;
448 *pos = cpu+1;
449 return &per_cpu(rt_cache_stat, cpu);
451 return NULL;
455 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
460 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
462 struct rt_cache_stat *st = v;
464 if (v == SEQ_START_TOKEN) {
465 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
466 return 0;
469 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
470 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
471 atomic_read(&ipv4_dst_ops.entries),
472 st->in_hit,
473 st->in_slow_tot,
474 st->in_slow_mc,
475 st->in_no_route,
476 st->in_brd,
477 st->in_martian_dst,
478 st->in_martian_src,
480 st->out_hit,
481 st->out_slow_tot,
482 st->out_slow_mc,
484 st->gc_total,
485 st->gc_ignored,
486 st->gc_goal_miss,
487 st->gc_dst_overflow,
488 st->in_hlist_search,
489 st->out_hlist_search
491 return 0;
494 static const struct seq_operations rt_cpu_seq_ops = {
495 .start = rt_cpu_seq_start,
496 .next = rt_cpu_seq_next,
497 .stop = rt_cpu_seq_stop,
498 .show = rt_cpu_seq_show,
502 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
504 return seq_open(file, &rt_cpu_seq_ops);
507 static const struct file_operations rt_cpu_seq_fops = {
508 .owner = THIS_MODULE,
509 .open = rt_cpu_seq_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = seq_release,
515 #ifdef CONFIG_NET_CLS_ROUTE
516 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
517 int length, int *eof, void *data)
519 unsigned int i;
521 if ((offset & 3) || (length & 3))
522 return -EIO;
524 if (offset >= sizeof(struct ip_rt_acct) * 256) {
525 *eof = 1;
526 return 0;
529 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
530 length = sizeof(struct ip_rt_acct) * 256 - offset;
531 *eof = 1;
534 offset /= sizeof(u32);
536 if (length > 0) {
537 u32 *dst = (u32 *) buffer;
539 *start = buffer;
540 memset(dst, 0, length);
542 for_each_possible_cpu(i) {
543 unsigned int j;
544 u32 *src;
546 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
547 for (j = 0; j < length/4; j++)
548 dst[j] += src[j];
551 return length;
553 #endif
555 static int __net_init ip_rt_do_proc_init(struct net *net)
557 struct proc_dir_entry *pde;
559 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
560 &rt_cache_seq_fops);
561 if (!pde)
562 goto err1;
564 pde = proc_create("rt_cache", S_IRUGO,
565 net->proc_net_stat, &rt_cpu_seq_fops);
566 if (!pde)
567 goto err2;
569 #ifdef CONFIG_NET_CLS_ROUTE
570 pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
571 ip_rt_acct_read, NULL);
572 if (!pde)
573 goto err3;
574 #endif
575 return 0;
577 #ifdef CONFIG_NET_CLS_ROUTE
578 err3:
579 remove_proc_entry("rt_cache", net->proc_net_stat);
580 #endif
581 err2:
582 remove_proc_entry("rt_cache", net->proc_net);
583 err1:
584 return -ENOMEM;
587 static void __net_exit ip_rt_do_proc_exit(struct net *net)
589 remove_proc_entry("rt_cache", net->proc_net_stat);
590 remove_proc_entry("rt_cache", net->proc_net);
591 remove_proc_entry("rt_acct", net->proc_net);
594 static struct pernet_operations ip_rt_proc_ops __net_initdata = {
595 .init = ip_rt_do_proc_init,
596 .exit = ip_rt_do_proc_exit,
599 static int __init ip_rt_proc_init(void)
601 return register_pernet_subsys(&ip_rt_proc_ops);
604 #else
605 static inline int ip_rt_proc_init(void)
607 return 0;
609 #endif /* CONFIG_PROC_FS */
611 static inline void rt_free(struct rtable *rt)
613 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
616 static inline void rt_drop(struct rtable *rt)
618 ip_rt_put(rt);
619 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
622 static inline int rt_fast_clean(struct rtable *rth)
624 /* Kill broadcast/multicast entries very aggresively, if they
625 collide in hash table with more useful entries */
626 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
627 rth->fl.iif && rth->u.dst.rt_next;
630 static inline int rt_valuable(struct rtable *rth)
632 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
633 rth->u.dst.expires;
636 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
638 unsigned long age;
639 int ret = 0;
641 if (atomic_read(&rth->u.dst.__refcnt))
642 goto out;
644 ret = 1;
645 if (rth->u.dst.expires &&
646 time_after_eq(jiffies, rth->u.dst.expires))
647 goto out;
649 age = jiffies - rth->u.dst.lastuse;
650 ret = 0;
651 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
652 (age <= tmo2 && rt_valuable(rth)))
653 goto out;
654 ret = 1;
655 out: return ret;
658 /* Bits of score are:
659 * 31: very valuable
660 * 30: not quite useless
661 * 29..0: usage counter
663 static inline u32 rt_score(struct rtable *rt)
665 u32 score = jiffies - rt->u.dst.lastuse;
667 score = ~score & ~(3<<30);
669 if (rt_valuable(rt))
670 score |= (1<<31);
672 if (!rt->fl.iif ||
673 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
674 score |= (1<<30);
676 return score;
679 static inline bool rt_caching(const struct net *net)
681 return net->ipv4.current_rt_cache_rebuild_count <=
682 net->ipv4.sysctl_rt_cache_rebuild_count;
685 static inline bool compare_hash_inputs(const struct flowi *fl1,
686 const struct flowi *fl2)
688 return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
689 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) |
690 (fl1->iif ^ fl2->iif)) == 0);
693 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
695 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
696 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
697 (fl1->mark ^ fl2->mark) |
698 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
699 *(u16 *)&fl2->nl_u.ip4_u.tos) |
700 (fl1->oif ^ fl2->oif) |
701 (fl1->iif ^ fl2->iif)) == 0;
704 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
706 return dev_net(rt1->u.dst.dev) == dev_net(rt2->u.dst.dev);
709 static inline int rt_is_expired(struct rtable *rth)
711 return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
715 * Perform a full scan of hash table and free all entries.
716 * Can be called by a softirq or a process.
717 * In the later case, we want to be reschedule if necessary
719 static void rt_do_flush(int process_context)
721 unsigned int i;
722 struct rtable *rth, *next;
723 struct rtable * tail;
725 for (i = 0; i <= rt_hash_mask; i++) {
726 if (process_context && need_resched())
727 cond_resched();
728 rth = rt_hash_table[i].chain;
729 if (!rth)
730 continue;
732 spin_lock_bh(rt_hash_lock_addr(i));
733 #ifdef CONFIG_NET_NS
735 struct rtable ** prev, * p;
737 rth = rt_hash_table[i].chain;
739 /* defer releasing the head of the list after spin_unlock */
740 for (tail = rth; tail; tail = tail->u.dst.rt_next)
741 if (!rt_is_expired(tail))
742 break;
743 if (rth != tail)
744 rt_hash_table[i].chain = tail;
746 /* call rt_free on entries after the tail requiring flush */
747 prev = &rt_hash_table[i].chain;
748 for (p = *prev; p; p = next) {
749 next = p->u.dst.rt_next;
750 if (!rt_is_expired(p)) {
751 prev = &p->u.dst.rt_next;
752 } else {
753 *prev = next;
754 rt_free(p);
758 #else
759 rth = rt_hash_table[i].chain;
760 rt_hash_table[i].chain = NULL;
761 tail = NULL;
762 #endif
763 spin_unlock_bh(rt_hash_lock_addr(i));
765 for (; rth != tail; rth = next) {
766 next = rth->u.dst.rt_next;
767 rt_free(rth);
773 * While freeing expired entries, we compute average chain length
774 * and standard deviation, using fixed-point arithmetic.
775 * This to have an estimation of rt_chain_length_max
776 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
777 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
780 #define FRACT_BITS 3
781 #define ONE (1UL << FRACT_BITS)
783 static void rt_check_expire(void)
785 static unsigned int rover;
786 unsigned int i = rover, goal;
787 struct rtable *rth, *aux, **rthp;
788 unsigned long samples = 0;
789 unsigned long sum = 0, sum2 = 0;
790 u64 mult;
792 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
793 if (ip_rt_gc_timeout > 1)
794 do_div(mult, ip_rt_gc_timeout);
795 goal = (unsigned int)mult;
796 if (goal > rt_hash_mask)
797 goal = rt_hash_mask + 1;
798 for (; goal > 0; goal--) {
799 unsigned long tmo = ip_rt_gc_timeout;
800 unsigned long length;
802 i = (i + 1) & rt_hash_mask;
803 rthp = &rt_hash_table[i].chain;
805 if (need_resched())
806 cond_resched();
808 samples++;
810 if (*rthp == NULL)
811 continue;
812 length = 0;
813 spin_lock_bh(rt_hash_lock_addr(i));
814 while ((rth = *rthp) != NULL) {
815 prefetch(rth->u.dst.rt_next);
816 if (rt_is_expired(rth)) {
817 *rthp = rth->u.dst.rt_next;
818 rt_free(rth);
819 continue;
821 if (rth->u.dst.expires) {
822 /* Entry is expired even if it is in use */
823 if (time_before_eq(jiffies, rth->u.dst.expires)) {
824 nofree:
825 tmo >>= 1;
826 rthp = &rth->u.dst.rt_next;
828 * We only count entries on
829 * a chain with equal hash inputs once
830 * so that entries for different QOS
831 * levels, and other non-hash input
832 * attributes don't unfairly skew
833 * the length computation
835 for (aux = rt_hash_table[i].chain;;) {
836 if (aux == rth) {
837 length += ONE;
838 break;
840 if (compare_hash_inputs(&aux->fl, &rth->fl))
841 break;
842 aux = aux->u.dst.rt_next;
844 continue;
846 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout))
847 goto nofree;
849 /* Cleanup aged off entries. */
850 *rthp = rth->u.dst.rt_next;
851 rt_free(rth);
853 spin_unlock_bh(rt_hash_lock_addr(i));
854 sum += length;
855 sum2 += length*length;
857 if (samples) {
858 unsigned long avg = sum / samples;
859 unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
860 rt_chain_length_max = max_t(unsigned long,
861 ip_rt_gc_elasticity,
862 (avg + 4*sd) >> FRACT_BITS);
864 rover = i;
868 * rt_worker_func() is run in process context.
869 * we call rt_check_expire() to scan part of the hash table
871 static void rt_worker_func(struct work_struct *work)
873 rt_check_expire();
874 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
878 * Pertubation of rt_genid by a small quantity [1..256]
879 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
880 * many times (2^24) without giving recent rt_genid.
881 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
883 static void rt_cache_invalidate(struct net *net)
885 unsigned char shuffle;
887 get_random_bytes(&shuffle, sizeof(shuffle));
888 atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
892 * delay < 0 : invalidate cache (fast : entries will be deleted later)
893 * delay >= 0 : invalidate & flush cache (can be long)
895 void rt_cache_flush(struct net *net, int delay)
897 rt_cache_invalidate(net);
898 if (delay >= 0)
899 rt_do_flush(!in_softirq());
903 * We change rt_genid and let gc do the cleanup
905 static void rt_secret_rebuild(unsigned long __net)
907 struct net *net = (struct net *)__net;
908 rt_cache_invalidate(net);
909 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
912 static void rt_secret_rebuild_oneshot(struct net *net)
914 del_timer_sync(&net->ipv4.rt_secret_timer);
915 rt_cache_invalidate(net);
916 if (ip_rt_secret_interval) {
917 net->ipv4.rt_secret_timer.expires += ip_rt_secret_interval;
918 add_timer(&net->ipv4.rt_secret_timer);
922 static void rt_emergency_hash_rebuild(struct net *net)
924 if (net_ratelimit()) {
925 printk(KERN_WARNING "Route hash chain too long!\n");
926 printk(KERN_WARNING "Adjust your secret_interval!\n");
929 rt_secret_rebuild_oneshot(net);
933 Short description of GC goals.
935 We want to build algorithm, which will keep routing cache
936 at some equilibrium point, when number of aged off entries
937 is kept approximately equal to newly generated ones.
939 Current expiration strength is variable "expire".
940 We try to adjust it dynamically, so that if networking
941 is idle expires is large enough to keep enough of warm entries,
942 and when load increases it reduces to limit cache size.
945 static int rt_garbage_collect(struct dst_ops *ops)
947 static unsigned long expire = RT_GC_TIMEOUT;
948 static unsigned long last_gc;
949 static int rover;
950 static int equilibrium;
951 struct rtable *rth, **rthp;
952 unsigned long now = jiffies;
953 int goal;
956 * Garbage collection is pretty expensive,
957 * do not make it too frequently.
960 RT_CACHE_STAT_INC(gc_total);
962 if (now - last_gc < ip_rt_gc_min_interval &&
963 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
964 RT_CACHE_STAT_INC(gc_ignored);
965 goto out;
968 /* Calculate number of entries, which we want to expire now. */
969 goal = atomic_read(&ipv4_dst_ops.entries) -
970 (ip_rt_gc_elasticity << rt_hash_log);
971 if (goal <= 0) {
972 if (equilibrium < ipv4_dst_ops.gc_thresh)
973 equilibrium = ipv4_dst_ops.gc_thresh;
974 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
975 if (goal > 0) {
976 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
977 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
979 } else {
980 /* We are in dangerous area. Try to reduce cache really
981 * aggressively.
983 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
984 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
987 if (now - last_gc >= ip_rt_gc_min_interval)
988 last_gc = now;
990 if (goal <= 0) {
991 equilibrium += goal;
992 goto work_done;
995 do {
996 int i, k;
998 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
999 unsigned long tmo = expire;
1001 k = (k + 1) & rt_hash_mask;
1002 rthp = &rt_hash_table[k].chain;
1003 spin_lock_bh(rt_hash_lock_addr(k));
1004 while ((rth = *rthp) != NULL) {
1005 if (!rt_is_expired(rth) &&
1006 !rt_may_expire(rth, tmo, expire)) {
1007 tmo >>= 1;
1008 rthp = &rth->u.dst.rt_next;
1009 continue;
1011 *rthp = rth->u.dst.rt_next;
1012 rt_free(rth);
1013 goal--;
1015 spin_unlock_bh(rt_hash_lock_addr(k));
1016 if (goal <= 0)
1017 break;
1019 rover = k;
1021 if (goal <= 0)
1022 goto work_done;
1024 /* Goal is not achieved. We stop process if:
1026 - if expire reduced to zero. Otherwise, expire is halfed.
1027 - if table is not full.
1028 - if we are called from interrupt.
1029 - jiffies check is just fallback/debug loop breaker.
1030 We will not spin here for long time in any case.
1033 RT_CACHE_STAT_INC(gc_goal_miss);
1035 if (expire == 0)
1036 break;
1038 expire >>= 1;
1039 #if RT_CACHE_DEBUG >= 2
1040 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1041 atomic_read(&ipv4_dst_ops.entries), goal, i);
1042 #endif
1044 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1045 goto out;
1046 } while (!in_softirq() && time_before_eq(jiffies, now));
1048 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1049 goto out;
1050 if (net_ratelimit())
1051 printk(KERN_WARNING "dst cache overflow\n");
1052 RT_CACHE_STAT_INC(gc_dst_overflow);
1053 return 1;
1055 work_done:
1056 expire += ip_rt_gc_min_interval;
1057 if (expire > ip_rt_gc_timeout ||
1058 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1059 expire = ip_rt_gc_timeout;
1060 #if RT_CACHE_DEBUG >= 2
1061 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1062 atomic_read(&ipv4_dst_ops.entries), goal, rover);
1063 #endif
1064 out: return 0;
1067 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
1069 struct rtable *rth, **rthp;
1070 unsigned long now;
1071 struct rtable *cand, **candp;
1072 u32 min_score;
1073 int chain_length;
1074 int attempts = !in_softirq();
1076 restart:
1077 chain_length = 0;
1078 min_score = ~(u32)0;
1079 cand = NULL;
1080 candp = NULL;
1081 now = jiffies;
1083 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1084 rt_drop(rt);
1085 return 0;
1088 rthp = &rt_hash_table[hash].chain;
1090 spin_lock_bh(rt_hash_lock_addr(hash));
1091 while ((rth = *rthp) != NULL) {
1092 if (rt_is_expired(rth)) {
1093 *rthp = rth->u.dst.rt_next;
1094 rt_free(rth);
1095 continue;
1097 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1098 /* Put it first */
1099 *rthp = rth->u.dst.rt_next;
1101 * Since lookup is lockfree, the deletion
1102 * must be visible to another weakly ordered CPU before
1103 * the insertion at the start of the hash chain.
1105 rcu_assign_pointer(rth->u.dst.rt_next,
1106 rt_hash_table[hash].chain);
1108 * Since lookup is lockfree, the update writes
1109 * must be ordered for consistency on SMP.
1111 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1113 dst_use(&rth->u.dst, now);
1114 spin_unlock_bh(rt_hash_lock_addr(hash));
1116 rt_drop(rt);
1117 *rp = rth;
1118 return 0;
1121 if (!atomic_read(&rth->u.dst.__refcnt)) {
1122 u32 score = rt_score(rth);
1124 if (score <= min_score) {
1125 cand = rth;
1126 candp = rthp;
1127 min_score = score;
1131 chain_length++;
1133 rthp = &rth->u.dst.rt_next;
1136 if (cand) {
1137 /* ip_rt_gc_elasticity used to be average length of chain
1138 * length, when exceeded gc becomes really aggressive.
1140 * The second limit is less certain. At the moment it allows
1141 * only 2 entries per bucket. We will see.
1143 if (chain_length > ip_rt_gc_elasticity) {
1144 *candp = cand->u.dst.rt_next;
1145 rt_free(cand);
1147 } else {
1148 if (chain_length > rt_chain_length_max) {
1149 struct net *net = dev_net(rt->u.dst.dev);
1150 int num = ++net->ipv4.current_rt_cache_rebuild_count;
1151 if (!rt_caching(dev_net(rt->u.dst.dev))) {
1152 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1153 rt->u.dst.dev->name, num);
1155 rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev));
1159 /* Try to bind route to arp only if it is output
1160 route or unicast forwarding path.
1162 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1163 int err = arp_bind_neighbour(&rt->u.dst);
1164 if (err) {
1165 spin_unlock_bh(rt_hash_lock_addr(hash));
1167 if (err != -ENOBUFS) {
1168 rt_drop(rt);
1169 return err;
1172 /* Neighbour tables are full and nothing
1173 can be released. Try to shrink route cache,
1174 it is most likely it holds some neighbour records.
1176 if (attempts-- > 0) {
1177 int saved_elasticity = ip_rt_gc_elasticity;
1178 int saved_int = ip_rt_gc_min_interval;
1179 ip_rt_gc_elasticity = 1;
1180 ip_rt_gc_min_interval = 0;
1181 rt_garbage_collect(&ipv4_dst_ops);
1182 ip_rt_gc_min_interval = saved_int;
1183 ip_rt_gc_elasticity = saved_elasticity;
1184 goto restart;
1187 if (net_ratelimit())
1188 printk(KERN_WARNING "Neighbour table overflow.\n");
1189 rt_drop(rt);
1190 return -ENOBUFS;
1194 rt->u.dst.rt_next = rt_hash_table[hash].chain;
1196 #if RT_CACHE_DEBUG >= 2
1197 if (rt->u.dst.rt_next) {
1198 struct rtable *trt;
1199 printk(KERN_DEBUG "rt_cache @%02x: %pI4", hash, &rt->rt_dst);
1200 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1201 printk(" . %pI4", &trt->rt_dst);
1202 printk("\n");
1204 #endif
1206 * Since lookup is lockfree, we must make sure
1207 * previous writes to rt are comitted to memory
1208 * before making rt visible to other CPUS.
1210 rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1212 spin_unlock_bh(rt_hash_lock_addr(hash));
1213 *rp = rt;
1214 return 0;
1217 void rt_bind_peer(struct rtable *rt, int create)
1219 static DEFINE_SPINLOCK(rt_peer_lock);
1220 struct inet_peer *peer;
1222 peer = inet_getpeer(rt->rt_dst, create);
1224 spin_lock_bh(&rt_peer_lock);
1225 if (rt->peer == NULL) {
1226 rt->peer = peer;
1227 peer = NULL;
1229 spin_unlock_bh(&rt_peer_lock);
1230 if (peer)
1231 inet_putpeer(peer);
1235 * Peer allocation may fail only in serious out-of-memory conditions. However
1236 * we still can generate some output.
1237 * Random ID selection looks a bit dangerous because we have no chances to
1238 * select ID being unique in a reasonable period of time.
1239 * But broken packet identifier may be better than no packet at all.
1241 static void ip_select_fb_ident(struct iphdr *iph)
1243 static DEFINE_SPINLOCK(ip_fb_id_lock);
1244 static u32 ip_fallback_id;
1245 u32 salt;
1247 spin_lock_bh(&ip_fb_id_lock);
1248 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1249 iph->id = htons(salt & 0xFFFF);
1250 ip_fallback_id = salt;
1251 spin_unlock_bh(&ip_fb_id_lock);
1254 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1256 struct rtable *rt = (struct rtable *) dst;
1258 if (rt) {
1259 if (rt->peer == NULL)
1260 rt_bind_peer(rt, 1);
1262 /* If peer is attached to destination, it is never detached,
1263 so that we need not to grab a lock to dereference it.
1265 if (rt->peer) {
1266 iph->id = htons(inet_getid(rt->peer, more));
1267 return;
1269 } else
1270 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1271 __builtin_return_address(0));
1273 ip_select_fb_ident(iph);
1276 static void rt_del(unsigned hash, struct rtable *rt)
1278 struct rtable **rthp, *aux;
1280 rthp = &rt_hash_table[hash].chain;
1281 spin_lock_bh(rt_hash_lock_addr(hash));
1282 ip_rt_put(rt);
1283 while ((aux = *rthp) != NULL) {
1284 if (aux == rt || rt_is_expired(aux)) {
1285 *rthp = aux->u.dst.rt_next;
1286 rt_free(aux);
1287 continue;
1289 rthp = &aux->u.dst.rt_next;
1291 spin_unlock_bh(rt_hash_lock_addr(hash));
1294 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1295 __be32 saddr, struct net_device *dev)
1297 int i, k;
1298 struct in_device *in_dev = in_dev_get(dev);
1299 struct rtable *rth, **rthp;
1300 __be32 skeys[2] = { saddr, 0 };
1301 int ikeys[2] = { dev->ifindex, 0 };
1302 struct netevent_redirect netevent;
1303 struct net *net;
1305 if (!in_dev)
1306 return;
1308 net = dev_net(dev);
1309 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1310 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1311 || ipv4_is_zeronet(new_gw))
1312 goto reject_redirect;
1314 if (!rt_caching(net))
1315 goto reject_redirect;
1317 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1318 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1319 goto reject_redirect;
1320 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1321 goto reject_redirect;
1322 } else {
1323 if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1324 goto reject_redirect;
1327 for (i = 0; i < 2; i++) {
1328 for (k = 0; k < 2; k++) {
1329 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1330 rt_genid(net));
1332 rthp=&rt_hash_table[hash].chain;
1334 rcu_read_lock();
1335 while ((rth = rcu_dereference(*rthp)) != NULL) {
1336 struct rtable *rt;
1338 if (rth->fl.fl4_dst != daddr ||
1339 rth->fl.fl4_src != skeys[i] ||
1340 rth->fl.oif != ikeys[k] ||
1341 rth->fl.iif != 0 ||
1342 rt_is_expired(rth) ||
1343 !net_eq(dev_net(rth->u.dst.dev), net)) {
1344 rthp = &rth->u.dst.rt_next;
1345 continue;
1348 if (rth->rt_dst != daddr ||
1349 rth->rt_src != saddr ||
1350 rth->u.dst.error ||
1351 rth->rt_gateway != old_gw ||
1352 rth->u.dst.dev != dev)
1353 break;
1355 dst_hold(&rth->u.dst);
1356 rcu_read_unlock();
1358 rt = dst_alloc(&ipv4_dst_ops);
1359 if (rt == NULL) {
1360 ip_rt_put(rth);
1361 in_dev_put(in_dev);
1362 return;
1365 /* Copy all the information. */
1366 *rt = *rth;
1367 rt->u.dst.__use = 1;
1368 atomic_set(&rt->u.dst.__refcnt, 1);
1369 rt->u.dst.child = NULL;
1370 if (rt->u.dst.dev)
1371 dev_hold(rt->u.dst.dev);
1372 if (rt->idev)
1373 in_dev_hold(rt->idev);
1374 rt->u.dst.obsolete = 0;
1375 rt->u.dst.lastuse = jiffies;
1376 rt->u.dst.path = &rt->u.dst;
1377 rt->u.dst.neighbour = NULL;
1378 rt->u.dst.hh = NULL;
1379 #ifdef CONFIG_XFRM
1380 rt->u.dst.xfrm = NULL;
1381 #endif
1382 rt->rt_genid = rt_genid(net);
1383 rt->rt_flags |= RTCF_REDIRECTED;
1385 /* Gateway is different ... */
1386 rt->rt_gateway = new_gw;
1388 /* Redirect received -> path was valid */
1389 dst_confirm(&rth->u.dst);
1391 if (rt->peer)
1392 atomic_inc(&rt->peer->refcnt);
1394 if (arp_bind_neighbour(&rt->u.dst) ||
1395 !(rt->u.dst.neighbour->nud_state &
1396 NUD_VALID)) {
1397 if (rt->u.dst.neighbour)
1398 neigh_event_send(rt->u.dst.neighbour, NULL);
1399 ip_rt_put(rth);
1400 rt_drop(rt);
1401 goto do_next;
1404 netevent.old = &rth->u.dst;
1405 netevent.new = &rt->u.dst;
1406 call_netevent_notifiers(NETEVENT_REDIRECT,
1407 &netevent);
1409 rt_del(hash, rth);
1410 if (!rt_intern_hash(hash, rt, &rt))
1411 ip_rt_put(rt);
1412 goto do_next;
1414 rcu_read_unlock();
1415 do_next:
1419 in_dev_put(in_dev);
1420 return;
1422 reject_redirect:
1423 #ifdef CONFIG_IP_ROUTE_VERBOSE
1424 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1425 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1426 " Advised path = %pI4 -> %pI4\n",
1427 &old_gw, dev->name, &new_gw,
1428 &saddr, &daddr);
1429 #endif
1430 in_dev_put(in_dev);
1433 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1435 struct rtable *rt = (struct rtable *)dst;
1436 struct dst_entry *ret = dst;
1438 if (rt) {
1439 if (dst->obsolete) {
1440 ip_rt_put(rt);
1441 ret = NULL;
1442 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1443 rt->u.dst.expires) {
1444 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1445 rt->fl.oif,
1446 rt_genid(dev_net(dst->dev)));
1447 #if RT_CACHE_DEBUG >= 1
1448 printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1449 &rt->rt_dst, rt->fl.fl4_tos);
1450 #endif
1451 rt_del(hash, rt);
1452 ret = NULL;
1455 return ret;
1459 * Algorithm:
1460 * 1. The first ip_rt_redirect_number redirects are sent
1461 * with exponential backoff, then we stop sending them at all,
1462 * assuming that the host ignores our redirects.
1463 * 2. If we did not see packets requiring redirects
1464 * during ip_rt_redirect_silence, we assume that the host
1465 * forgot redirected route and start to send redirects again.
1467 * This algorithm is much cheaper and more intelligent than dumb load limiting
1468 * in icmp.c.
1470 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1471 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1474 void ip_rt_send_redirect(struct sk_buff *skb)
1476 struct rtable *rt = skb->rtable;
1477 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1479 if (!in_dev)
1480 return;
1482 if (!IN_DEV_TX_REDIRECTS(in_dev))
1483 goto out;
1485 /* No redirected packets during ip_rt_redirect_silence;
1486 * reset the algorithm.
1488 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1489 rt->u.dst.rate_tokens = 0;
1491 /* Too many ignored redirects; do not send anything
1492 * set u.dst.rate_last to the last seen redirected packet.
1494 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1495 rt->u.dst.rate_last = jiffies;
1496 goto out;
1499 /* Check for load limit; set rate_last to the latest sent
1500 * redirect.
1502 if (rt->u.dst.rate_tokens == 0 ||
1503 time_after(jiffies,
1504 (rt->u.dst.rate_last +
1505 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1506 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1507 rt->u.dst.rate_last = jiffies;
1508 ++rt->u.dst.rate_tokens;
1509 #ifdef CONFIG_IP_ROUTE_VERBOSE
1510 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1511 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1512 net_ratelimit())
1513 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1514 &rt->rt_src, rt->rt_iif,
1515 &rt->rt_dst, &rt->rt_gateway);
1516 #endif
1518 out:
1519 in_dev_put(in_dev);
1522 static int ip_error(struct sk_buff *skb)
1524 struct rtable *rt = skb->rtable;
1525 unsigned long now;
1526 int code;
1528 switch (rt->u.dst.error) {
1529 case EINVAL:
1530 default:
1531 goto out;
1532 case EHOSTUNREACH:
1533 code = ICMP_HOST_UNREACH;
1534 break;
1535 case ENETUNREACH:
1536 code = ICMP_NET_UNREACH;
1537 IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1538 IPSTATS_MIB_INNOROUTES);
1539 break;
1540 case EACCES:
1541 code = ICMP_PKT_FILTERED;
1542 break;
1545 now = jiffies;
1546 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1547 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1548 rt->u.dst.rate_tokens = ip_rt_error_burst;
1549 rt->u.dst.rate_last = now;
1550 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1551 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1552 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1555 out: kfree_skb(skb);
1556 return 0;
1560 * The last two values are not from the RFC but
1561 * are needed for AMPRnet AX.25 paths.
1564 static const unsigned short mtu_plateau[] =
1565 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1567 static inline unsigned short guess_mtu(unsigned short old_mtu)
1569 int i;
1571 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1572 if (old_mtu > mtu_plateau[i])
1573 return mtu_plateau[i];
1574 return 68;
1577 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1578 unsigned short new_mtu,
1579 struct net_device *dev)
1581 int i, k;
1582 unsigned short old_mtu = ntohs(iph->tot_len);
1583 struct rtable *rth;
1584 int ikeys[2] = { dev->ifindex, 0 };
1585 __be32 skeys[2] = { iph->saddr, 0, };
1586 __be32 daddr = iph->daddr;
1587 unsigned short est_mtu = 0;
1589 if (ipv4_config.no_pmtu_disc)
1590 return 0;
1592 for (k = 0; k < 2; k++) {
1593 for (i = 0; i < 2; i++) {
1594 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1595 rt_genid(net));
1597 rcu_read_lock();
1598 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1599 rth = rcu_dereference(rth->u.dst.rt_next)) {
1600 unsigned short mtu = new_mtu;
1602 if (rth->fl.fl4_dst != daddr ||
1603 rth->fl.fl4_src != skeys[i] ||
1604 rth->rt_dst != daddr ||
1605 rth->rt_src != iph->saddr ||
1606 rth->fl.oif != ikeys[k] ||
1607 rth->fl.iif != 0 ||
1608 dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1609 !net_eq(dev_net(rth->u.dst.dev), net) ||
1610 rt_is_expired(rth))
1611 continue;
1613 if (new_mtu < 68 || new_mtu >= old_mtu) {
1615 /* BSD 4.2 compatibility hack :-( */
1616 if (mtu == 0 &&
1617 old_mtu >= dst_mtu(&rth->u.dst) &&
1618 old_mtu >= 68 + (iph->ihl << 2))
1619 old_mtu -= iph->ihl << 2;
1621 mtu = guess_mtu(old_mtu);
1623 if (mtu <= dst_mtu(&rth->u.dst)) {
1624 if (mtu < dst_mtu(&rth->u.dst)) {
1625 dst_confirm(&rth->u.dst);
1626 if (mtu < ip_rt_min_pmtu) {
1627 mtu = ip_rt_min_pmtu;
1628 rth->u.dst.metrics[RTAX_LOCK-1] |=
1629 (1 << RTAX_MTU);
1631 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1632 dst_set_expires(&rth->u.dst,
1633 ip_rt_mtu_expires);
1635 est_mtu = mtu;
1638 rcu_read_unlock();
1641 return est_mtu ? : new_mtu;
1644 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1646 if (dst_mtu(dst) > mtu && mtu >= 68 &&
1647 !(dst_metric_locked(dst, RTAX_MTU))) {
1648 if (mtu < ip_rt_min_pmtu) {
1649 mtu = ip_rt_min_pmtu;
1650 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1652 dst->metrics[RTAX_MTU-1] = mtu;
1653 dst_set_expires(dst, ip_rt_mtu_expires);
1654 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1658 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1660 return NULL;
1663 static void ipv4_dst_destroy(struct dst_entry *dst)
1665 struct rtable *rt = (struct rtable *) dst;
1666 struct inet_peer *peer = rt->peer;
1667 struct in_device *idev = rt->idev;
1669 if (peer) {
1670 rt->peer = NULL;
1671 inet_putpeer(peer);
1674 if (idev) {
1675 rt->idev = NULL;
1676 in_dev_put(idev);
1680 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1681 int how)
1683 struct rtable *rt = (struct rtable *) dst;
1684 struct in_device *idev = rt->idev;
1685 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1686 struct in_device *loopback_idev =
1687 in_dev_get(dev_net(dev)->loopback_dev);
1688 if (loopback_idev) {
1689 rt->idev = loopback_idev;
1690 in_dev_put(idev);
1695 static void ipv4_link_failure(struct sk_buff *skb)
1697 struct rtable *rt;
1699 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1701 rt = skb->rtable;
1702 if (rt)
1703 dst_set_expires(&rt->u.dst, 0);
1706 static int ip_rt_bug(struct sk_buff *skb)
1708 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1709 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1710 skb->dev ? skb->dev->name : "?");
1711 kfree_skb(skb);
1712 return 0;
1716 We do not cache source address of outgoing interface,
1717 because it is used only by IP RR, TS and SRR options,
1718 so that it out of fast path.
1720 BTW remember: "addr" is allowed to be not aligned
1721 in IP options!
1724 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1726 __be32 src;
1727 struct fib_result res;
1729 if (rt->fl.iif == 0)
1730 src = rt->rt_src;
1731 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1732 src = FIB_RES_PREFSRC(res);
1733 fib_res_put(&res);
1734 } else
1735 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1736 RT_SCOPE_UNIVERSE);
1737 memcpy(addr, &src, 4);
1740 #ifdef CONFIG_NET_CLS_ROUTE
1741 static void set_class_tag(struct rtable *rt, u32 tag)
1743 if (!(rt->u.dst.tclassid & 0xFFFF))
1744 rt->u.dst.tclassid |= tag & 0xFFFF;
1745 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1746 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1748 #endif
1750 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1752 struct fib_info *fi = res->fi;
1754 if (fi) {
1755 if (FIB_RES_GW(*res) &&
1756 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1757 rt->rt_gateway = FIB_RES_GW(*res);
1758 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1759 sizeof(rt->u.dst.metrics));
1760 if (fi->fib_mtu == 0) {
1761 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1762 if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1763 rt->rt_gateway != rt->rt_dst &&
1764 rt->u.dst.dev->mtu > 576)
1765 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1767 #ifdef CONFIG_NET_CLS_ROUTE
1768 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1769 #endif
1770 } else
1771 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1773 if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1774 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1775 if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1776 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1777 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1778 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1779 ip_rt_min_advmss);
1780 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1781 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1783 #ifdef CONFIG_NET_CLS_ROUTE
1784 #ifdef CONFIG_IP_MULTIPLE_TABLES
1785 set_class_tag(rt, fib_rules_tclass(res));
1786 #endif
1787 set_class_tag(rt, itag);
1788 #endif
1789 rt->rt_type = res->type;
1792 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1793 u8 tos, struct net_device *dev, int our)
1795 unsigned hash;
1796 struct rtable *rth;
1797 __be32 spec_dst;
1798 struct in_device *in_dev = in_dev_get(dev);
1799 u32 itag = 0;
1801 /* Primary sanity checks. */
1803 if (in_dev == NULL)
1804 return -EINVAL;
1806 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1807 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1808 goto e_inval;
1810 if (ipv4_is_zeronet(saddr)) {
1811 if (!ipv4_is_local_multicast(daddr))
1812 goto e_inval;
1813 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1814 } else if (fib_validate_source(saddr, 0, tos, 0,
1815 dev, &spec_dst, &itag) < 0)
1816 goto e_inval;
1818 rth = dst_alloc(&ipv4_dst_ops);
1819 if (!rth)
1820 goto e_nobufs;
1822 rth->u.dst.output= ip_rt_bug;
1824 atomic_set(&rth->u.dst.__refcnt, 1);
1825 rth->u.dst.flags= DST_HOST;
1826 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1827 rth->u.dst.flags |= DST_NOPOLICY;
1828 rth->fl.fl4_dst = daddr;
1829 rth->rt_dst = daddr;
1830 rth->fl.fl4_tos = tos;
1831 rth->fl.mark = skb->mark;
1832 rth->fl.fl4_src = saddr;
1833 rth->rt_src = saddr;
1834 #ifdef CONFIG_NET_CLS_ROUTE
1835 rth->u.dst.tclassid = itag;
1836 #endif
1837 rth->rt_iif =
1838 rth->fl.iif = dev->ifindex;
1839 rth->u.dst.dev = init_net.loopback_dev;
1840 dev_hold(rth->u.dst.dev);
1841 rth->idev = in_dev_get(rth->u.dst.dev);
1842 rth->fl.oif = 0;
1843 rth->rt_gateway = daddr;
1844 rth->rt_spec_dst= spec_dst;
1845 rth->rt_genid = rt_genid(dev_net(dev));
1846 rth->rt_flags = RTCF_MULTICAST;
1847 rth->rt_type = RTN_MULTICAST;
1848 if (our) {
1849 rth->u.dst.input= ip_local_deliver;
1850 rth->rt_flags |= RTCF_LOCAL;
1853 #ifdef CONFIG_IP_MROUTE
1854 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1855 rth->u.dst.input = ip_mr_input;
1856 #endif
1857 RT_CACHE_STAT_INC(in_slow_mc);
1859 in_dev_put(in_dev);
1860 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1861 return rt_intern_hash(hash, rth, &skb->rtable);
1863 e_nobufs:
1864 in_dev_put(in_dev);
1865 return -ENOBUFS;
1867 e_inval:
1868 in_dev_put(in_dev);
1869 return -EINVAL;
1873 static void ip_handle_martian_source(struct net_device *dev,
1874 struct in_device *in_dev,
1875 struct sk_buff *skb,
1876 __be32 daddr,
1877 __be32 saddr)
1879 RT_CACHE_STAT_INC(in_martian_src);
1880 #ifdef CONFIG_IP_ROUTE_VERBOSE
1881 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1883 * RFC1812 recommendation, if source is martian,
1884 * the only hint is MAC header.
1886 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1887 &daddr, &saddr, dev->name);
1888 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1889 int i;
1890 const unsigned char *p = skb_mac_header(skb);
1891 printk(KERN_WARNING "ll header: ");
1892 for (i = 0; i < dev->hard_header_len; i++, p++) {
1893 printk("%02x", *p);
1894 if (i < (dev->hard_header_len - 1))
1895 printk(":");
1897 printk("\n");
1900 #endif
1903 static int __mkroute_input(struct sk_buff *skb,
1904 struct fib_result *res,
1905 struct in_device *in_dev,
1906 __be32 daddr, __be32 saddr, u32 tos,
1907 struct rtable **result)
1910 struct rtable *rth;
1911 int err;
1912 struct in_device *out_dev;
1913 unsigned flags = 0;
1914 __be32 spec_dst;
1915 u32 itag;
1917 /* get a working reference to the output device */
1918 out_dev = in_dev_get(FIB_RES_DEV(*res));
1919 if (out_dev == NULL) {
1920 if (net_ratelimit())
1921 printk(KERN_CRIT "Bug in ip_route_input" \
1922 "_slow(). Please, report\n");
1923 return -EINVAL;
1927 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1928 in_dev->dev, &spec_dst, &itag);
1929 if (err < 0) {
1930 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1931 saddr);
1933 err = -EINVAL;
1934 goto cleanup;
1937 if (err)
1938 flags |= RTCF_DIRECTSRC;
1940 if (out_dev == in_dev && err &&
1941 (IN_DEV_SHARED_MEDIA(out_dev) ||
1942 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1943 flags |= RTCF_DOREDIRECT;
1945 if (skb->protocol != htons(ETH_P_IP)) {
1946 /* Not IP (i.e. ARP). Do not create route, if it is
1947 * invalid for proxy arp. DNAT routes are always valid.
1949 if (out_dev == in_dev) {
1950 err = -EINVAL;
1951 goto cleanup;
1956 rth = dst_alloc(&ipv4_dst_ops);
1957 if (!rth) {
1958 err = -ENOBUFS;
1959 goto cleanup;
1962 atomic_set(&rth->u.dst.__refcnt, 1);
1963 rth->u.dst.flags= DST_HOST;
1964 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1965 rth->u.dst.flags |= DST_NOPOLICY;
1966 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1967 rth->u.dst.flags |= DST_NOXFRM;
1968 rth->fl.fl4_dst = daddr;
1969 rth->rt_dst = daddr;
1970 rth->fl.fl4_tos = tos;
1971 rth->fl.mark = skb->mark;
1972 rth->fl.fl4_src = saddr;
1973 rth->rt_src = saddr;
1974 rth->rt_gateway = daddr;
1975 rth->rt_iif =
1976 rth->fl.iif = in_dev->dev->ifindex;
1977 rth->u.dst.dev = (out_dev)->dev;
1978 dev_hold(rth->u.dst.dev);
1979 rth->idev = in_dev_get(rth->u.dst.dev);
1980 rth->fl.oif = 0;
1981 rth->rt_spec_dst= spec_dst;
1983 rth->u.dst.input = ip_forward;
1984 rth->u.dst.output = ip_output;
1985 rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
1987 rt_set_nexthop(rth, res, itag);
1989 rth->rt_flags = flags;
1991 *result = rth;
1992 err = 0;
1993 cleanup:
1994 /* release the working reference to the output device */
1995 in_dev_put(out_dev);
1996 return err;
1999 static int ip_mkroute_input(struct sk_buff *skb,
2000 struct fib_result *res,
2001 const struct flowi *fl,
2002 struct in_device *in_dev,
2003 __be32 daddr, __be32 saddr, u32 tos)
2005 struct rtable* rth = NULL;
2006 int err;
2007 unsigned hash;
2009 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2010 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2011 fib_select_multipath(fl, res);
2012 #endif
2014 /* create a routing cache entry */
2015 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2016 if (err)
2017 return err;
2019 /* put it into the cache */
2020 hash = rt_hash(daddr, saddr, fl->iif,
2021 rt_genid(dev_net(rth->u.dst.dev)));
2022 return rt_intern_hash(hash, rth, &skb->rtable);
2026 * NOTE. We drop all the packets that has local source
2027 * addresses, because every properly looped back packet
2028 * must have correct destination already attached by output routine.
2030 * Such approach solves two big problems:
2031 * 1. Not simplex devices are handled properly.
2032 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2035 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2036 u8 tos, struct net_device *dev)
2038 struct fib_result res;
2039 struct in_device *in_dev = in_dev_get(dev);
2040 struct flowi fl = { .nl_u = { .ip4_u =
2041 { .daddr = daddr,
2042 .saddr = saddr,
2043 .tos = tos,
2044 .scope = RT_SCOPE_UNIVERSE,
2045 } },
2046 .mark = skb->mark,
2047 .iif = dev->ifindex };
2048 unsigned flags = 0;
2049 u32 itag = 0;
2050 struct rtable * rth;
2051 unsigned hash;
2052 __be32 spec_dst;
2053 int err = -EINVAL;
2054 int free_res = 0;
2055 struct net * net = dev_net(dev);
2057 /* IP on this device is disabled. */
2059 if (!in_dev)
2060 goto out;
2062 /* Check for the most weird martians, which can be not detected
2063 by fib_lookup.
2066 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2067 ipv4_is_loopback(saddr))
2068 goto martian_source;
2070 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2071 goto brd_input;
2073 /* Accept zero addresses only to limited broadcast;
2074 * I even do not know to fix it or not. Waiting for complains :-)
2076 if (ipv4_is_zeronet(saddr))
2077 goto martian_source;
2079 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2080 ipv4_is_loopback(daddr))
2081 goto martian_destination;
2084 * Now we are ready to route packet.
2086 if ((err = fib_lookup(net, &fl, &res)) != 0) {
2087 if (!IN_DEV_FORWARD(in_dev))
2088 goto e_hostunreach;
2089 goto no_route;
2091 free_res = 1;
2093 RT_CACHE_STAT_INC(in_slow_tot);
2095 if (res.type == RTN_BROADCAST)
2096 goto brd_input;
2098 if (res.type == RTN_LOCAL) {
2099 int result;
2100 result = fib_validate_source(saddr, daddr, tos,
2101 net->loopback_dev->ifindex,
2102 dev, &spec_dst, &itag);
2103 if (result < 0)
2104 goto martian_source;
2105 if (result)
2106 flags |= RTCF_DIRECTSRC;
2107 spec_dst = daddr;
2108 goto local_input;
2111 if (!IN_DEV_FORWARD(in_dev))
2112 goto e_hostunreach;
2113 if (res.type != RTN_UNICAST)
2114 goto martian_destination;
2116 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2117 done:
2118 in_dev_put(in_dev);
2119 if (free_res)
2120 fib_res_put(&res);
2121 out: return err;
2123 brd_input:
2124 if (skb->protocol != htons(ETH_P_IP))
2125 goto e_inval;
2127 if (ipv4_is_zeronet(saddr))
2128 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2129 else {
2130 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2131 &itag);
2132 if (err < 0)
2133 goto martian_source;
2134 if (err)
2135 flags |= RTCF_DIRECTSRC;
2137 flags |= RTCF_BROADCAST;
2138 res.type = RTN_BROADCAST;
2139 RT_CACHE_STAT_INC(in_brd);
2141 local_input:
2142 rth = dst_alloc(&ipv4_dst_ops);
2143 if (!rth)
2144 goto e_nobufs;
2146 rth->u.dst.output= ip_rt_bug;
2147 rth->rt_genid = rt_genid(net);
2149 atomic_set(&rth->u.dst.__refcnt, 1);
2150 rth->u.dst.flags= DST_HOST;
2151 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2152 rth->u.dst.flags |= DST_NOPOLICY;
2153 rth->fl.fl4_dst = daddr;
2154 rth->rt_dst = daddr;
2155 rth->fl.fl4_tos = tos;
2156 rth->fl.mark = skb->mark;
2157 rth->fl.fl4_src = saddr;
2158 rth->rt_src = saddr;
2159 #ifdef CONFIG_NET_CLS_ROUTE
2160 rth->u.dst.tclassid = itag;
2161 #endif
2162 rth->rt_iif =
2163 rth->fl.iif = dev->ifindex;
2164 rth->u.dst.dev = net->loopback_dev;
2165 dev_hold(rth->u.dst.dev);
2166 rth->idev = in_dev_get(rth->u.dst.dev);
2167 rth->rt_gateway = daddr;
2168 rth->rt_spec_dst= spec_dst;
2169 rth->u.dst.input= ip_local_deliver;
2170 rth->rt_flags = flags|RTCF_LOCAL;
2171 if (res.type == RTN_UNREACHABLE) {
2172 rth->u.dst.input= ip_error;
2173 rth->u.dst.error= -err;
2174 rth->rt_flags &= ~RTCF_LOCAL;
2176 rth->rt_type = res.type;
2177 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2178 err = rt_intern_hash(hash, rth, &skb->rtable);
2179 goto done;
2181 no_route:
2182 RT_CACHE_STAT_INC(in_no_route);
2183 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2184 res.type = RTN_UNREACHABLE;
2185 if (err == -ESRCH)
2186 err = -ENETUNREACH;
2187 goto local_input;
2190 * Do not cache martian addresses: they should be logged (RFC1812)
2192 martian_destination:
2193 RT_CACHE_STAT_INC(in_martian_dst);
2194 #ifdef CONFIG_IP_ROUTE_VERBOSE
2195 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2196 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2197 &daddr, &saddr, dev->name);
2198 #endif
2200 e_hostunreach:
2201 err = -EHOSTUNREACH;
2202 goto done;
2204 e_inval:
2205 err = -EINVAL;
2206 goto done;
2208 e_nobufs:
2209 err = -ENOBUFS;
2210 goto done;
2212 martian_source:
2213 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2214 goto e_inval;
2217 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2218 u8 tos, struct net_device *dev)
2220 struct rtable * rth;
2221 unsigned hash;
2222 int iif = dev->ifindex;
2223 struct net *net;
2225 net = dev_net(dev);
2227 if (!rt_caching(net))
2228 goto skip_cache;
2230 tos &= IPTOS_RT_MASK;
2231 hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2233 rcu_read_lock();
2234 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2235 rth = rcu_dereference(rth->u.dst.rt_next)) {
2236 if (((rth->fl.fl4_dst ^ daddr) |
2237 (rth->fl.fl4_src ^ saddr) |
2238 (rth->fl.iif ^ iif) |
2239 rth->fl.oif |
2240 (rth->fl.fl4_tos ^ tos)) == 0 &&
2241 rth->fl.mark == skb->mark &&
2242 net_eq(dev_net(rth->u.dst.dev), net) &&
2243 !rt_is_expired(rth)) {
2244 dst_use(&rth->u.dst, jiffies);
2245 RT_CACHE_STAT_INC(in_hit);
2246 rcu_read_unlock();
2247 skb->rtable = rth;
2248 return 0;
2250 RT_CACHE_STAT_INC(in_hlist_search);
2252 rcu_read_unlock();
2254 skip_cache:
2255 /* Multicast recognition logic is moved from route cache to here.
2256 The problem was that too many Ethernet cards have broken/missing
2257 hardware multicast filters :-( As result the host on multicasting
2258 network acquires a lot of useless route cache entries, sort of
2259 SDR messages from all the world. Now we try to get rid of them.
2260 Really, provided software IP multicast filter is organized
2261 reasonably (at least, hashed), it does not result in a slowdown
2262 comparing with route cache reject entries.
2263 Note, that multicast routers are not affected, because
2264 route cache entry is created eventually.
2266 if (ipv4_is_multicast(daddr)) {
2267 struct in_device *in_dev;
2269 rcu_read_lock();
2270 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2271 int our = ip_check_mc(in_dev, daddr, saddr,
2272 ip_hdr(skb)->protocol);
2273 if (our
2274 #ifdef CONFIG_IP_MROUTE
2275 || (!ipv4_is_local_multicast(daddr) &&
2276 IN_DEV_MFORWARD(in_dev))
2277 #endif
2279 rcu_read_unlock();
2280 return ip_route_input_mc(skb, daddr, saddr,
2281 tos, dev, our);
2284 rcu_read_unlock();
2285 return -EINVAL;
2287 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2290 static int __mkroute_output(struct rtable **result,
2291 struct fib_result *res,
2292 const struct flowi *fl,
2293 const struct flowi *oldflp,
2294 struct net_device *dev_out,
2295 unsigned flags)
2297 struct rtable *rth;
2298 struct in_device *in_dev;
2299 u32 tos = RT_FL_TOS(oldflp);
2300 int err = 0;
2302 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2303 return -EINVAL;
2305 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2306 res->type = RTN_BROADCAST;
2307 else if (ipv4_is_multicast(fl->fl4_dst))
2308 res->type = RTN_MULTICAST;
2309 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2310 return -EINVAL;
2312 if (dev_out->flags & IFF_LOOPBACK)
2313 flags |= RTCF_LOCAL;
2315 /* get work reference to inet device */
2316 in_dev = in_dev_get(dev_out);
2317 if (!in_dev)
2318 return -EINVAL;
2320 if (res->type == RTN_BROADCAST) {
2321 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2322 if (res->fi) {
2323 fib_info_put(res->fi);
2324 res->fi = NULL;
2326 } else if (res->type == RTN_MULTICAST) {
2327 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2328 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2329 oldflp->proto))
2330 flags &= ~RTCF_LOCAL;
2331 /* If multicast route do not exist use
2332 default one, but do not gateway in this case.
2333 Yes, it is hack.
2335 if (res->fi && res->prefixlen < 4) {
2336 fib_info_put(res->fi);
2337 res->fi = NULL;
2342 rth = dst_alloc(&ipv4_dst_ops);
2343 if (!rth) {
2344 err = -ENOBUFS;
2345 goto cleanup;
2348 atomic_set(&rth->u.dst.__refcnt, 1);
2349 rth->u.dst.flags= DST_HOST;
2350 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2351 rth->u.dst.flags |= DST_NOXFRM;
2352 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2353 rth->u.dst.flags |= DST_NOPOLICY;
2355 rth->fl.fl4_dst = oldflp->fl4_dst;
2356 rth->fl.fl4_tos = tos;
2357 rth->fl.fl4_src = oldflp->fl4_src;
2358 rth->fl.oif = oldflp->oif;
2359 rth->fl.mark = oldflp->mark;
2360 rth->rt_dst = fl->fl4_dst;
2361 rth->rt_src = fl->fl4_src;
2362 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2363 /* get references to the devices that are to be hold by the routing
2364 cache entry */
2365 rth->u.dst.dev = dev_out;
2366 dev_hold(dev_out);
2367 rth->idev = in_dev_get(dev_out);
2368 rth->rt_gateway = fl->fl4_dst;
2369 rth->rt_spec_dst= fl->fl4_src;
2371 rth->u.dst.output=ip_output;
2372 rth->rt_genid = rt_genid(dev_net(dev_out));
2374 RT_CACHE_STAT_INC(out_slow_tot);
2376 if (flags & RTCF_LOCAL) {
2377 rth->u.dst.input = ip_local_deliver;
2378 rth->rt_spec_dst = fl->fl4_dst;
2380 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2381 rth->rt_spec_dst = fl->fl4_src;
2382 if (flags & RTCF_LOCAL &&
2383 !(dev_out->flags & IFF_LOOPBACK)) {
2384 rth->u.dst.output = ip_mc_output;
2385 RT_CACHE_STAT_INC(out_slow_mc);
2387 #ifdef CONFIG_IP_MROUTE
2388 if (res->type == RTN_MULTICAST) {
2389 if (IN_DEV_MFORWARD(in_dev) &&
2390 !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2391 rth->u.dst.input = ip_mr_input;
2392 rth->u.dst.output = ip_mc_output;
2395 #endif
2398 rt_set_nexthop(rth, res, 0);
2400 rth->rt_flags = flags;
2402 *result = rth;
2403 cleanup:
2404 /* release work reference to inet device */
2405 in_dev_put(in_dev);
2407 return err;
2410 static int ip_mkroute_output(struct rtable **rp,
2411 struct fib_result *res,
2412 const struct flowi *fl,
2413 const struct flowi *oldflp,
2414 struct net_device *dev_out,
2415 unsigned flags)
2417 struct rtable *rth = NULL;
2418 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2419 unsigned hash;
2420 if (err == 0) {
2421 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2422 rt_genid(dev_net(dev_out)));
2423 err = rt_intern_hash(hash, rth, rp);
2426 return err;
2430 * Major route resolver routine.
2433 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2434 const struct flowi *oldflp)
2436 u32 tos = RT_FL_TOS(oldflp);
2437 struct flowi fl = { .nl_u = { .ip4_u =
2438 { .daddr = oldflp->fl4_dst,
2439 .saddr = oldflp->fl4_src,
2440 .tos = tos & IPTOS_RT_MASK,
2441 .scope = ((tos & RTO_ONLINK) ?
2442 RT_SCOPE_LINK :
2443 RT_SCOPE_UNIVERSE),
2444 } },
2445 .mark = oldflp->mark,
2446 .iif = net->loopback_dev->ifindex,
2447 .oif = oldflp->oif };
2448 struct fib_result res;
2449 unsigned flags = 0;
2450 struct net_device *dev_out = NULL;
2451 int free_res = 0;
2452 int err;
2455 res.fi = NULL;
2456 #ifdef CONFIG_IP_MULTIPLE_TABLES
2457 res.r = NULL;
2458 #endif
2460 if (oldflp->fl4_src) {
2461 err = -EINVAL;
2462 if (ipv4_is_multicast(oldflp->fl4_src) ||
2463 ipv4_is_lbcast(oldflp->fl4_src) ||
2464 ipv4_is_zeronet(oldflp->fl4_src))
2465 goto out;
2467 /* I removed check for oif == dev_out->oif here.
2468 It was wrong for two reasons:
2469 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2470 is assigned to multiple interfaces.
2471 2. Moreover, we are allowed to send packets with saddr
2472 of another iface. --ANK
2475 if (oldflp->oif == 0
2476 && (ipv4_is_multicast(oldflp->fl4_dst) ||
2477 oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2478 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2479 dev_out = ip_dev_find(net, oldflp->fl4_src);
2480 if (dev_out == NULL)
2481 goto out;
2483 /* Special hack: user can direct multicasts
2484 and limited broadcast via necessary interface
2485 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2486 This hack is not just for fun, it allows
2487 vic,vat and friends to work.
2488 They bind socket to loopback, set ttl to zero
2489 and expect that it will work.
2490 From the viewpoint of routing cache they are broken,
2491 because we are not allowed to build multicast path
2492 with loopback source addr (look, routing cache
2493 cannot know, that ttl is zero, so that packet
2494 will not leave this host and route is valid).
2495 Luckily, this hack is good workaround.
2498 fl.oif = dev_out->ifindex;
2499 goto make_route;
2502 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2503 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2504 dev_out = ip_dev_find(net, oldflp->fl4_src);
2505 if (dev_out == NULL)
2506 goto out;
2507 dev_put(dev_out);
2508 dev_out = NULL;
2513 if (oldflp->oif) {
2514 dev_out = dev_get_by_index(net, oldflp->oif);
2515 err = -ENODEV;
2516 if (dev_out == NULL)
2517 goto out;
2519 /* RACE: Check return value of inet_select_addr instead. */
2520 if (__in_dev_get_rtnl(dev_out) == NULL) {
2521 dev_put(dev_out);
2522 goto out; /* Wrong error code */
2525 if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2526 oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2527 if (!fl.fl4_src)
2528 fl.fl4_src = inet_select_addr(dev_out, 0,
2529 RT_SCOPE_LINK);
2530 goto make_route;
2532 if (!fl.fl4_src) {
2533 if (ipv4_is_multicast(oldflp->fl4_dst))
2534 fl.fl4_src = inet_select_addr(dev_out, 0,
2535 fl.fl4_scope);
2536 else if (!oldflp->fl4_dst)
2537 fl.fl4_src = inet_select_addr(dev_out, 0,
2538 RT_SCOPE_HOST);
2542 if (!fl.fl4_dst) {
2543 fl.fl4_dst = fl.fl4_src;
2544 if (!fl.fl4_dst)
2545 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2546 if (dev_out)
2547 dev_put(dev_out);
2548 dev_out = net->loopback_dev;
2549 dev_hold(dev_out);
2550 fl.oif = net->loopback_dev->ifindex;
2551 res.type = RTN_LOCAL;
2552 flags |= RTCF_LOCAL;
2553 goto make_route;
2556 if (fib_lookup(net, &fl, &res)) {
2557 res.fi = NULL;
2558 if (oldflp->oif) {
2559 /* Apparently, routing tables are wrong. Assume,
2560 that the destination is on link.
2562 WHY? DW.
2563 Because we are allowed to send to iface
2564 even if it has NO routes and NO assigned
2565 addresses. When oif is specified, routing
2566 tables are looked up with only one purpose:
2567 to catch if destination is gatewayed, rather than
2568 direct. Moreover, if MSG_DONTROUTE is set,
2569 we send packet, ignoring both routing tables
2570 and ifaddr state. --ANK
2573 We could make it even if oif is unknown,
2574 likely IPv6, but we do not.
2577 if (fl.fl4_src == 0)
2578 fl.fl4_src = inet_select_addr(dev_out, 0,
2579 RT_SCOPE_LINK);
2580 res.type = RTN_UNICAST;
2581 goto make_route;
2583 if (dev_out)
2584 dev_put(dev_out);
2585 err = -ENETUNREACH;
2586 goto out;
2588 free_res = 1;
2590 if (res.type == RTN_LOCAL) {
2591 if (!fl.fl4_src)
2592 fl.fl4_src = fl.fl4_dst;
2593 if (dev_out)
2594 dev_put(dev_out);
2595 dev_out = net->loopback_dev;
2596 dev_hold(dev_out);
2597 fl.oif = dev_out->ifindex;
2598 if (res.fi)
2599 fib_info_put(res.fi);
2600 res.fi = NULL;
2601 flags |= RTCF_LOCAL;
2602 goto make_route;
2605 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2606 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2607 fib_select_multipath(&fl, &res);
2608 else
2609 #endif
2610 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2611 fib_select_default(net, &fl, &res);
2613 if (!fl.fl4_src)
2614 fl.fl4_src = FIB_RES_PREFSRC(res);
2616 if (dev_out)
2617 dev_put(dev_out);
2618 dev_out = FIB_RES_DEV(res);
2619 dev_hold(dev_out);
2620 fl.oif = dev_out->ifindex;
2623 make_route:
2624 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2627 if (free_res)
2628 fib_res_put(&res);
2629 if (dev_out)
2630 dev_put(dev_out);
2631 out: return err;
2634 int __ip_route_output_key(struct net *net, struct rtable **rp,
2635 const struct flowi *flp)
2637 unsigned hash;
2638 struct rtable *rth;
2640 if (!rt_caching(net))
2641 goto slow_output;
2643 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2645 rcu_read_lock_bh();
2646 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2647 rth = rcu_dereference(rth->u.dst.rt_next)) {
2648 if (rth->fl.fl4_dst == flp->fl4_dst &&
2649 rth->fl.fl4_src == flp->fl4_src &&
2650 rth->fl.iif == 0 &&
2651 rth->fl.oif == flp->oif &&
2652 rth->fl.mark == flp->mark &&
2653 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2654 (IPTOS_RT_MASK | RTO_ONLINK)) &&
2655 net_eq(dev_net(rth->u.dst.dev), net) &&
2656 !rt_is_expired(rth)) {
2657 dst_use(&rth->u.dst, jiffies);
2658 RT_CACHE_STAT_INC(out_hit);
2659 rcu_read_unlock_bh();
2660 *rp = rth;
2661 return 0;
2663 RT_CACHE_STAT_INC(out_hlist_search);
2665 rcu_read_unlock_bh();
2667 slow_output:
2668 return ip_route_output_slow(net, rp, flp);
2671 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2673 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2677 static struct dst_ops ipv4_dst_blackhole_ops = {
2678 .family = AF_INET,
2679 .protocol = __constant_htons(ETH_P_IP),
2680 .destroy = ipv4_dst_destroy,
2681 .check = ipv4_dst_check,
2682 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2683 .entries = ATOMIC_INIT(0),
2687 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2689 struct rtable *ort = *rp;
2690 struct rtable *rt = (struct rtable *)
2691 dst_alloc(&ipv4_dst_blackhole_ops);
2693 if (rt) {
2694 struct dst_entry *new = &rt->u.dst;
2696 atomic_set(&new->__refcnt, 1);
2697 new->__use = 1;
2698 new->input = dst_discard;
2699 new->output = dst_discard;
2700 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2702 new->dev = ort->u.dst.dev;
2703 if (new->dev)
2704 dev_hold(new->dev);
2706 rt->fl = ort->fl;
2708 rt->idev = ort->idev;
2709 if (rt->idev)
2710 in_dev_hold(rt->idev);
2711 rt->rt_genid = rt_genid(net);
2712 rt->rt_flags = ort->rt_flags;
2713 rt->rt_type = ort->rt_type;
2714 rt->rt_dst = ort->rt_dst;
2715 rt->rt_src = ort->rt_src;
2716 rt->rt_iif = ort->rt_iif;
2717 rt->rt_gateway = ort->rt_gateway;
2718 rt->rt_spec_dst = ort->rt_spec_dst;
2719 rt->peer = ort->peer;
2720 if (rt->peer)
2721 atomic_inc(&rt->peer->refcnt);
2723 dst_free(new);
2726 dst_release(&(*rp)->u.dst);
2727 *rp = rt;
2728 return (rt ? 0 : -ENOMEM);
2731 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2732 struct sock *sk, int flags)
2734 int err;
2736 if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2737 return err;
2739 if (flp->proto) {
2740 if (!flp->fl4_src)
2741 flp->fl4_src = (*rp)->rt_src;
2742 if (!flp->fl4_dst)
2743 flp->fl4_dst = (*rp)->rt_dst;
2744 err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk,
2745 flags ? XFRM_LOOKUP_WAIT : 0);
2746 if (err == -EREMOTE)
2747 err = ipv4_dst_blackhole(net, rp, flp);
2749 return err;
2752 return 0;
2755 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2757 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2759 return ip_route_output_flow(net, rp, flp, NULL, 0);
2762 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2763 int nowait, unsigned int flags)
2765 struct rtable *rt = skb->rtable;
2766 struct rtmsg *r;
2767 struct nlmsghdr *nlh;
2768 long expires;
2769 u32 id = 0, ts = 0, tsage = 0, error;
2771 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2772 if (nlh == NULL)
2773 return -EMSGSIZE;
2775 r = nlmsg_data(nlh);
2776 r->rtm_family = AF_INET;
2777 r->rtm_dst_len = 32;
2778 r->rtm_src_len = 0;
2779 r->rtm_tos = rt->fl.fl4_tos;
2780 r->rtm_table = RT_TABLE_MAIN;
2781 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2782 r->rtm_type = rt->rt_type;
2783 r->rtm_scope = RT_SCOPE_UNIVERSE;
2784 r->rtm_protocol = RTPROT_UNSPEC;
2785 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2786 if (rt->rt_flags & RTCF_NOTIFY)
2787 r->rtm_flags |= RTM_F_NOTIFY;
2789 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2791 if (rt->fl.fl4_src) {
2792 r->rtm_src_len = 32;
2793 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2795 if (rt->u.dst.dev)
2796 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2797 #ifdef CONFIG_NET_CLS_ROUTE
2798 if (rt->u.dst.tclassid)
2799 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2800 #endif
2801 if (rt->fl.iif)
2802 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2803 else if (rt->rt_src != rt->fl.fl4_src)
2804 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2806 if (rt->rt_dst != rt->rt_gateway)
2807 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2809 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2810 goto nla_put_failure;
2812 error = rt->u.dst.error;
2813 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2814 if (rt->peer) {
2815 id = rt->peer->ip_id_count;
2816 if (rt->peer->tcp_ts_stamp) {
2817 ts = rt->peer->tcp_ts;
2818 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2822 if (rt->fl.iif) {
2823 #ifdef CONFIG_IP_MROUTE
2824 __be32 dst = rt->rt_dst;
2826 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2827 IPV4_DEVCONF_ALL(&init_net, MC_FORWARDING)) {
2828 int err = ipmr_get_route(skb, r, nowait);
2829 if (err <= 0) {
2830 if (!nowait) {
2831 if (err == 0)
2832 return 0;
2833 goto nla_put_failure;
2834 } else {
2835 if (err == -EMSGSIZE)
2836 goto nla_put_failure;
2837 error = err;
2840 } else
2841 #endif
2842 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2845 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2846 expires, error) < 0)
2847 goto nla_put_failure;
2849 return nlmsg_end(skb, nlh);
2851 nla_put_failure:
2852 nlmsg_cancel(skb, nlh);
2853 return -EMSGSIZE;
2856 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2858 struct net *net = sock_net(in_skb->sk);
2859 struct rtmsg *rtm;
2860 struct nlattr *tb[RTA_MAX+1];
2861 struct rtable *rt = NULL;
2862 __be32 dst = 0;
2863 __be32 src = 0;
2864 u32 iif;
2865 int err;
2866 struct sk_buff *skb;
2868 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2869 if (err < 0)
2870 goto errout;
2872 rtm = nlmsg_data(nlh);
2874 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2875 if (skb == NULL) {
2876 err = -ENOBUFS;
2877 goto errout;
2880 /* Reserve room for dummy headers, this skb can pass
2881 through good chunk of routing engine.
2883 skb_reset_mac_header(skb);
2884 skb_reset_network_header(skb);
2886 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2887 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2888 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2890 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2891 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2892 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2894 if (iif) {
2895 struct net_device *dev;
2897 dev = __dev_get_by_index(net, iif);
2898 if (dev == NULL) {
2899 err = -ENODEV;
2900 goto errout_free;
2903 skb->protocol = htons(ETH_P_IP);
2904 skb->dev = dev;
2905 local_bh_disable();
2906 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2907 local_bh_enable();
2909 rt = skb->rtable;
2910 if (err == 0 && rt->u.dst.error)
2911 err = -rt->u.dst.error;
2912 } else {
2913 struct flowi fl = {
2914 .nl_u = {
2915 .ip4_u = {
2916 .daddr = dst,
2917 .saddr = src,
2918 .tos = rtm->rtm_tos,
2921 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2923 err = ip_route_output_key(net, &rt, &fl);
2926 if (err)
2927 goto errout_free;
2929 skb->rtable = rt;
2930 if (rtm->rtm_flags & RTM_F_NOTIFY)
2931 rt->rt_flags |= RTCF_NOTIFY;
2933 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2934 RTM_NEWROUTE, 0, 0);
2935 if (err <= 0)
2936 goto errout_free;
2938 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2939 errout:
2940 return err;
2942 errout_free:
2943 kfree_skb(skb);
2944 goto errout;
2947 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2949 struct rtable *rt;
2950 int h, s_h;
2951 int idx, s_idx;
2952 struct net *net;
2954 net = sock_net(skb->sk);
2956 s_h = cb->args[0];
2957 if (s_h < 0)
2958 s_h = 0;
2959 s_idx = idx = cb->args[1];
2960 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
2961 if (!rt_hash_table[h].chain)
2962 continue;
2963 rcu_read_lock_bh();
2964 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2965 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2966 if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
2967 continue;
2968 if (rt_is_expired(rt))
2969 continue;
2970 skb->dst = dst_clone(&rt->u.dst);
2971 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2972 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2973 1, NLM_F_MULTI) <= 0) {
2974 dst_release(xchg(&skb->dst, NULL));
2975 rcu_read_unlock_bh();
2976 goto done;
2978 dst_release(xchg(&skb->dst, NULL));
2980 rcu_read_unlock_bh();
2983 done:
2984 cb->args[0] = h;
2985 cb->args[1] = idx;
2986 return skb->len;
2989 void ip_rt_multicast_event(struct in_device *in_dev)
2991 rt_cache_flush(dev_net(in_dev->dev), 0);
2994 #ifdef CONFIG_SYSCTL
2995 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
2996 struct file *filp, void __user *buffer,
2997 size_t *lenp, loff_t *ppos)
2999 if (write) {
3000 int flush_delay;
3001 ctl_table ctl;
3002 struct net *net;
3004 memcpy(&ctl, __ctl, sizeof(ctl));
3005 ctl.data = &flush_delay;
3006 proc_dointvec(&ctl, write, filp, buffer, lenp, ppos);
3008 net = (struct net *)__ctl->extra1;
3009 rt_cache_flush(net, flush_delay);
3010 return 0;
3013 return -EINVAL;
3016 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
3017 void __user *oldval,
3018 size_t __user *oldlenp,
3019 void __user *newval,
3020 size_t newlen)
3022 int delay;
3023 struct net *net;
3024 if (newlen != sizeof(int))
3025 return -EINVAL;
3026 if (get_user(delay, (int __user *)newval))
3027 return -EFAULT;
3028 net = (struct net *)table->extra1;
3029 rt_cache_flush(net, delay);
3030 return 0;
3033 static void rt_secret_reschedule(int old)
3035 struct net *net;
3036 int new = ip_rt_secret_interval;
3037 int diff = new - old;
3039 if (!diff)
3040 return;
3042 rtnl_lock();
3043 for_each_net(net) {
3044 int deleted = del_timer_sync(&net->ipv4.rt_secret_timer);
3046 if (!new)
3047 continue;
3049 if (deleted) {
3050 long time = net->ipv4.rt_secret_timer.expires - jiffies;
3052 if (time <= 0 || (time += diff) <= 0)
3053 time = 0;
3055 net->ipv4.rt_secret_timer.expires = time;
3056 } else
3057 net->ipv4.rt_secret_timer.expires = new;
3059 net->ipv4.rt_secret_timer.expires += jiffies;
3060 add_timer(&net->ipv4.rt_secret_timer);
3062 rtnl_unlock();
3065 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write,
3066 struct file *filp,
3067 void __user *buffer, size_t *lenp,
3068 loff_t *ppos)
3070 int old = ip_rt_secret_interval;
3071 int ret = proc_dointvec_jiffies(ctl, write, filp, buffer, lenp, ppos);
3073 rt_secret_reschedule(old);
3075 return ret;
3078 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table *table,
3079 void __user *oldval,
3080 size_t __user *oldlenp,
3081 void __user *newval,
3082 size_t newlen)
3084 int old = ip_rt_secret_interval;
3085 int ret = sysctl_jiffies(table, oldval, oldlenp, newval, newlen);
3087 rt_secret_reschedule(old);
3089 return ret;
3092 static ctl_table ipv4_route_table[] = {
3094 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
3095 .procname = "gc_thresh",
3096 .data = &ipv4_dst_ops.gc_thresh,
3097 .maxlen = sizeof(int),
3098 .mode = 0644,
3099 .proc_handler = proc_dointvec,
3102 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
3103 .procname = "max_size",
3104 .data = &ip_rt_max_size,
3105 .maxlen = sizeof(int),
3106 .mode = 0644,
3107 .proc_handler = proc_dointvec,
3110 /* Deprecated. Use gc_min_interval_ms */
3112 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
3113 .procname = "gc_min_interval",
3114 .data = &ip_rt_gc_min_interval,
3115 .maxlen = sizeof(int),
3116 .mode = 0644,
3117 .proc_handler = proc_dointvec_jiffies,
3118 .strategy = sysctl_jiffies,
3121 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
3122 .procname = "gc_min_interval_ms",
3123 .data = &ip_rt_gc_min_interval,
3124 .maxlen = sizeof(int),
3125 .mode = 0644,
3126 .proc_handler = proc_dointvec_ms_jiffies,
3127 .strategy = sysctl_ms_jiffies,
3130 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
3131 .procname = "gc_timeout",
3132 .data = &ip_rt_gc_timeout,
3133 .maxlen = sizeof(int),
3134 .mode = 0644,
3135 .proc_handler = proc_dointvec_jiffies,
3136 .strategy = sysctl_jiffies,
3139 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
3140 .procname = "gc_interval",
3141 .data = &ip_rt_gc_interval,
3142 .maxlen = sizeof(int),
3143 .mode = 0644,
3144 .proc_handler = proc_dointvec_jiffies,
3145 .strategy = sysctl_jiffies,
3148 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
3149 .procname = "redirect_load",
3150 .data = &ip_rt_redirect_load,
3151 .maxlen = sizeof(int),
3152 .mode = 0644,
3153 .proc_handler = proc_dointvec,
3156 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
3157 .procname = "redirect_number",
3158 .data = &ip_rt_redirect_number,
3159 .maxlen = sizeof(int),
3160 .mode = 0644,
3161 .proc_handler = proc_dointvec,
3164 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
3165 .procname = "redirect_silence",
3166 .data = &ip_rt_redirect_silence,
3167 .maxlen = sizeof(int),
3168 .mode = 0644,
3169 .proc_handler = proc_dointvec,
3172 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
3173 .procname = "error_cost",
3174 .data = &ip_rt_error_cost,
3175 .maxlen = sizeof(int),
3176 .mode = 0644,
3177 .proc_handler = proc_dointvec,
3180 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
3181 .procname = "error_burst",
3182 .data = &ip_rt_error_burst,
3183 .maxlen = sizeof(int),
3184 .mode = 0644,
3185 .proc_handler = proc_dointvec,
3188 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
3189 .procname = "gc_elasticity",
3190 .data = &ip_rt_gc_elasticity,
3191 .maxlen = sizeof(int),
3192 .mode = 0644,
3193 .proc_handler = proc_dointvec,
3196 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
3197 .procname = "mtu_expires",
3198 .data = &ip_rt_mtu_expires,
3199 .maxlen = sizeof(int),
3200 .mode = 0644,
3201 .proc_handler = proc_dointvec_jiffies,
3202 .strategy = sysctl_jiffies,
3205 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
3206 .procname = "min_pmtu",
3207 .data = &ip_rt_min_pmtu,
3208 .maxlen = sizeof(int),
3209 .mode = 0644,
3210 .proc_handler = proc_dointvec,
3213 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
3214 .procname = "min_adv_mss",
3215 .data = &ip_rt_min_advmss,
3216 .maxlen = sizeof(int),
3217 .mode = 0644,
3218 .proc_handler = proc_dointvec,
3221 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
3222 .procname = "secret_interval",
3223 .data = &ip_rt_secret_interval,
3224 .maxlen = sizeof(int),
3225 .mode = 0644,
3226 .proc_handler = ipv4_sysctl_rt_secret_interval,
3227 .strategy = ipv4_sysctl_rt_secret_interval_strategy,
3229 { .ctl_name = 0 }
3232 static struct ctl_table empty[1];
3234 static struct ctl_table ipv4_skeleton[] =
3236 { .procname = "route", .ctl_name = NET_IPV4_ROUTE,
3237 .mode = 0555, .child = ipv4_route_table},
3238 { .procname = "neigh", .ctl_name = NET_IPV4_NEIGH,
3239 .mode = 0555, .child = empty},
3243 static __net_initdata struct ctl_path ipv4_path[] = {
3244 { .procname = "net", .ctl_name = CTL_NET, },
3245 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3246 { },
3249 static struct ctl_table ipv4_route_flush_table[] = {
3251 .ctl_name = NET_IPV4_ROUTE_FLUSH,
3252 .procname = "flush",
3253 .maxlen = sizeof(int),
3254 .mode = 0200,
3255 .proc_handler = ipv4_sysctl_rtcache_flush,
3256 .strategy = ipv4_sysctl_rtcache_flush_strategy,
3258 { .ctl_name = 0 },
3261 static __net_initdata struct ctl_path ipv4_route_path[] = {
3262 { .procname = "net", .ctl_name = CTL_NET, },
3263 { .procname = "ipv4", .ctl_name = NET_IPV4, },
3264 { .procname = "route", .ctl_name = NET_IPV4_ROUTE, },
3265 { },
3268 static __net_init int sysctl_route_net_init(struct net *net)
3270 struct ctl_table *tbl;
3272 tbl = ipv4_route_flush_table;
3273 if (net != &init_net) {
3274 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3275 if (tbl == NULL)
3276 goto err_dup;
3278 tbl[0].extra1 = net;
3280 net->ipv4.route_hdr =
3281 register_net_sysctl_table(net, ipv4_route_path, tbl);
3282 if (net->ipv4.route_hdr == NULL)
3283 goto err_reg;
3284 return 0;
3286 err_reg:
3287 if (tbl != ipv4_route_flush_table)
3288 kfree(tbl);
3289 err_dup:
3290 return -ENOMEM;
3293 static __net_exit void sysctl_route_net_exit(struct net *net)
3295 struct ctl_table *tbl;
3297 tbl = net->ipv4.route_hdr->ctl_table_arg;
3298 unregister_net_sysctl_table(net->ipv4.route_hdr);
3299 BUG_ON(tbl == ipv4_route_flush_table);
3300 kfree(tbl);
3303 static __net_initdata struct pernet_operations sysctl_route_ops = {
3304 .init = sysctl_route_net_init,
3305 .exit = sysctl_route_net_exit,
3307 #endif
3310 static __net_init int rt_secret_timer_init(struct net *net)
3312 atomic_set(&net->ipv4.rt_genid,
3313 (int) ((num_physpages ^ (num_physpages>>8)) ^
3314 (jiffies ^ (jiffies >> 7))));
3316 net->ipv4.rt_secret_timer.function = rt_secret_rebuild;
3317 net->ipv4.rt_secret_timer.data = (unsigned long)net;
3318 init_timer_deferrable(&net->ipv4.rt_secret_timer);
3320 if (ip_rt_secret_interval) {
3321 net->ipv4.rt_secret_timer.expires =
3322 jiffies + net_random() % ip_rt_secret_interval +
3323 ip_rt_secret_interval;
3324 add_timer(&net->ipv4.rt_secret_timer);
3326 return 0;
3329 static __net_exit void rt_secret_timer_exit(struct net *net)
3331 del_timer_sync(&net->ipv4.rt_secret_timer);
3334 static __net_initdata struct pernet_operations rt_secret_timer_ops = {
3335 .init = rt_secret_timer_init,
3336 .exit = rt_secret_timer_exit,
3340 #ifdef CONFIG_NET_CLS_ROUTE
3341 struct ip_rt_acct *ip_rt_acct __read_mostly;
3342 #endif /* CONFIG_NET_CLS_ROUTE */
3344 static __initdata unsigned long rhash_entries;
3345 static int __init set_rhash_entries(char *str)
3347 if (!str)
3348 return 0;
3349 rhash_entries = simple_strtoul(str, &str, 0);
3350 return 1;
3352 __setup("rhash_entries=", set_rhash_entries);
3354 int __init ip_rt_init(void)
3356 int rc = 0;
3358 #ifdef CONFIG_NET_CLS_ROUTE
3359 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3360 if (!ip_rt_acct)
3361 panic("IP: failed to allocate ip_rt_acct\n");
3362 #endif
3364 ipv4_dst_ops.kmem_cachep =
3365 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3366 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3368 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3370 rt_hash_table = (struct rt_hash_bucket *)
3371 alloc_large_system_hash("IP route cache",
3372 sizeof(struct rt_hash_bucket),
3373 rhash_entries,
3374 (num_physpages >= 128 * 1024) ?
3375 15 : 17,
3377 &rt_hash_log,
3378 &rt_hash_mask,
3380 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3381 rt_hash_lock_init();
3383 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3384 ip_rt_max_size = (rt_hash_mask + 1) * 16;
3386 devinet_init();
3387 ip_fib_init();
3389 /* All the timers, started at system startup tend
3390 to synchronize. Perturb it a bit.
3392 schedule_delayed_work(&expires_work,
3393 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3395 if (register_pernet_subsys(&rt_secret_timer_ops))
3396 printk(KERN_ERR "Unable to setup rt_secret_timer\n");
3398 if (ip_rt_proc_init())
3399 printk(KERN_ERR "Unable to create route proc files\n");
3400 #ifdef CONFIG_XFRM
3401 xfrm_init();
3402 xfrm4_init();
3403 #endif
3404 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3406 #ifdef CONFIG_SYSCTL
3407 register_pernet_subsys(&sysctl_route_ops);
3408 #endif
3409 return rc;
3412 #ifdef CONFIG_SYSCTL
3414 * We really need to sanitize the damn ipv4 init order, then all
3415 * this nonsense will go away.
3417 void __init ip_static_sysctl_init(void)
3419 register_sysctl_paths(ipv4_path, ipv4_skeleton);
3421 #endif
3423 EXPORT_SYMBOL(__ip_select_ident);
3424 EXPORT_SYMBOL(ip_route_input);
3425 EXPORT_SYMBOL(ip_route_output_key);