added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / fs / xfs / xfs_iget.c
blob478e587087feddcd975e6ab62fa5e1655136b59e
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_bmap.h"
44 #include "xfs_btree_trace.h"
45 #include "xfs_dir2_trace.h"
49 * Allocate and initialise an xfs_inode.
51 STATIC struct xfs_inode *
52 xfs_inode_alloc(
53 struct xfs_mount *mp,
54 xfs_ino_t ino)
56 struct xfs_inode *ip;
59 * if this didn't occur in transactions, we could use
60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
61 * code up to do this anyway.
63 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
64 if (!ip)
65 return NULL;
67 ASSERT(atomic_read(&ip->i_iocount) == 0);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 ASSERT(completion_done(&ip->i_flush));
73 * initialise the VFS inode here to get failures
74 * out of the way early.
76 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
77 kmem_zone_free(xfs_inode_zone, ip);
78 return NULL;
81 /* initialise the xfs inode */
82 ip->i_ino = ino;
83 ip->i_mount = mp;
84 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
85 ip->i_afp = NULL;
86 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
87 ip->i_flags = 0;
88 ip->i_update_core = 0;
89 ip->i_update_size = 0;
90 ip->i_delayed_blks = 0;
91 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
92 ip->i_size = 0;
93 ip->i_new_size = 0;
96 * Initialize inode's trace buffers.
98 #ifdef XFS_INODE_TRACE
99 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
100 #endif
101 #ifdef XFS_BMAP_TRACE
102 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
103 #endif
104 #ifdef XFS_BTREE_TRACE
105 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
106 #endif
107 #ifdef XFS_RW_TRACE
108 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
109 #endif
110 #ifdef XFS_ILOCK_TRACE
111 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
112 #endif
113 #ifdef XFS_DIR2_TRACE
114 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
115 #endif
117 return ip;
121 * Check the validity of the inode we just found it the cache
123 static int
124 xfs_iget_cache_hit(
125 struct xfs_perag *pag,
126 struct xfs_inode *ip,
127 int flags,
128 int lock_flags) __releases(pag->pag_ici_lock)
130 struct xfs_mount *mp = ip->i_mount;
131 int error = EAGAIN;
134 * If INEW is set this inode is being set up
135 * If IRECLAIM is set this inode is being torn down
136 * Pause and try again.
138 if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) {
139 XFS_STATS_INC(xs_ig_frecycle);
140 goto out_error;
143 /* If IRECLAIMABLE is set, we've torn down the vfs inode part */
144 if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
147 * If lookup is racing with unlink, then we should return an
148 * error immediately so we don't remove it from the reclaim
149 * list and potentially leak the inode.
151 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
152 error = ENOENT;
153 goto out_error;
156 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
159 * We need to re-initialise the VFS inode as it has been
160 * 'freed' by the VFS. Do this here so we can deal with
161 * errors cleanly, then tag it so it can be set up correctly
162 * later.
164 if (!inode_init_always(mp->m_super, VFS_I(ip))) {
165 error = ENOMEM;
166 goto out_error;
170 * We must set the XFS_INEW flag before clearing the
171 * XFS_IRECLAIMABLE flag so that if a racing lookup does
172 * not find the XFS_IRECLAIMABLE above but has the igrab()
173 * below succeed we can safely check XFS_INEW to detect
174 * that this inode is still being initialised.
176 xfs_iflags_set(ip, XFS_INEW);
177 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
179 /* clear the radix tree reclaim flag as well. */
180 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
181 } else if (!igrab(VFS_I(ip))) {
182 /* If the VFS inode is being torn down, pause and try again. */
183 XFS_STATS_INC(xs_ig_frecycle);
184 goto out_error;
185 } else if (xfs_iflags_test(ip, XFS_INEW)) {
187 * We are racing with another cache hit that is
188 * currently recycling this inode out of the XFS_IRECLAIMABLE
189 * state. Wait for the initialisation to complete before
190 * continuing.
192 wait_on_inode(VFS_I(ip));
195 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
196 error = ENOENT;
197 iput(VFS_I(ip));
198 goto out_error;
201 /* We've got a live one. */
202 read_unlock(&pag->pag_ici_lock);
204 if (lock_flags != 0)
205 xfs_ilock(ip, lock_flags);
207 xfs_iflags_clear(ip, XFS_ISTALE);
208 xfs_itrace_exit_tag(ip, "xfs_iget.found");
209 XFS_STATS_INC(xs_ig_found);
210 return 0;
212 out_error:
213 read_unlock(&pag->pag_ici_lock);
214 return error;
218 static int
219 xfs_iget_cache_miss(
220 struct xfs_mount *mp,
221 struct xfs_perag *pag,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 struct xfs_inode **ipp,
225 xfs_daddr_t bno,
226 int flags,
227 int lock_flags) __releases(pag->pag_ici_lock)
229 struct xfs_inode *ip;
230 int error;
231 unsigned long first_index, mask;
232 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
234 ip = xfs_inode_alloc(mp, ino);
235 if (!ip)
236 return ENOMEM;
238 error = xfs_iread(mp, tp, ip, bno, flags);
239 if (error)
240 goto out_destroy;
242 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
244 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
245 error = ENOENT;
246 goto out_destroy;
250 * Preload the radix tree so we can insert safely under the
251 * write spinlock. Note that we cannot sleep inside the preload
252 * region.
254 if (radix_tree_preload(GFP_KERNEL)) {
255 error = EAGAIN;
256 goto out_destroy;
260 * Because the inode hasn't been added to the radix-tree yet it can't
261 * be found by another thread, so we can do the non-sleeping lock here.
263 if (lock_flags) {
264 if (!xfs_ilock_nowait(ip, lock_flags))
265 BUG();
268 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
269 first_index = agino & mask;
270 write_lock(&pag->pag_ici_lock);
272 /* insert the new inode */
273 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
274 if (unlikely(error)) {
275 WARN_ON(error != -EEXIST);
276 XFS_STATS_INC(xs_ig_dup);
277 error = EAGAIN;
278 goto out_preload_end;
281 /* These values _must_ be set before releasing the radix tree lock! */
282 ip->i_udquot = ip->i_gdquot = NULL;
283 xfs_iflags_set(ip, XFS_INEW);
285 write_unlock(&pag->pag_ici_lock);
286 radix_tree_preload_end();
287 *ipp = ip;
288 return 0;
290 out_preload_end:
291 write_unlock(&pag->pag_ici_lock);
292 radix_tree_preload_end();
293 if (lock_flags)
294 xfs_iunlock(ip, lock_flags);
295 out_destroy:
296 xfs_destroy_inode(ip);
297 return error;
301 * Look up an inode by number in the given file system.
302 * The inode is looked up in the cache held in each AG.
303 * If the inode is found in the cache, initialise the vfs inode
304 * if necessary.
306 * If it is not in core, read it in from the file system's device,
307 * add it to the cache and initialise the vfs inode.
309 * The inode is locked according to the value of the lock_flags parameter.
310 * This flag parameter indicates how and if the inode's IO lock and inode lock
311 * should be taken.
313 * mp -- the mount point structure for the current file system. It points
314 * to the inode hash table.
315 * tp -- a pointer to the current transaction if there is one. This is
316 * simply passed through to the xfs_iread() call.
317 * ino -- the number of the inode desired. This is the unique identifier
318 * within the file system for the inode being requested.
319 * lock_flags -- flags indicating how to lock the inode. See the comment
320 * for xfs_ilock() for a list of valid values.
321 * bno -- the block number starting the buffer containing the inode,
322 * if known (as by bulkstat), else 0.
325 xfs_iget(
326 xfs_mount_t *mp,
327 xfs_trans_t *tp,
328 xfs_ino_t ino,
329 uint flags,
330 uint lock_flags,
331 xfs_inode_t **ipp,
332 xfs_daddr_t bno)
334 xfs_inode_t *ip;
335 int error;
336 xfs_perag_t *pag;
337 xfs_agino_t agino;
339 /* the radix tree exists only in inode capable AGs */
340 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
341 return EINVAL;
343 /* get the perag structure and ensure that it's inode capable */
344 pag = xfs_get_perag(mp, ino);
345 if (!pag->pagi_inodeok)
346 return EINVAL;
347 ASSERT(pag->pag_ici_init);
348 agino = XFS_INO_TO_AGINO(mp, ino);
350 again:
351 error = 0;
352 read_lock(&pag->pag_ici_lock);
353 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
355 if (ip) {
356 error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
357 if (error)
358 goto out_error_or_again;
359 } else {
360 read_unlock(&pag->pag_ici_lock);
361 XFS_STATS_INC(xs_ig_missed);
363 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
364 flags, lock_flags);
365 if (error)
366 goto out_error_or_again;
368 xfs_put_perag(mp, pag);
370 *ipp = ip;
372 ASSERT(ip->i_df.if_ext_max ==
373 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
375 * If we have a real type for an on-disk inode, we can set ops(&unlock)
376 * now. If it's a new inode being created, xfs_ialloc will handle it.
378 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
379 xfs_setup_inode(ip);
380 return 0;
382 out_error_or_again:
383 if (error == EAGAIN) {
384 delay(1);
385 goto again;
387 xfs_put_perag(mp, pag);
388 return error;
393 * Look for the inode corresponding to the given ino in the hash table.
394 * If it is there and its i_transp pointer matches tp, return it.
395 * Otherwise, return NULL.
397 xfs_inode_t *
398 xfs_inode_incore(xfs_mount_t *mp,
399 xfs_ino_t ino,
400 xfs_trans_t *tp)
402 xfs_inode_t *ip;
403 xfs_perag_t *pag;
405 pag = xfs_get_perag(mp, ino);
406 read_lock(&pag->pag_ici_lock);
407 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
408 read_unlock(&pag->pag_ici_lock);
409 xfs_put_perag(mp, pag);
411 /* the returned inode must match the transaction */
412 if (ip && (ip->i_transp != tp))
413 return NULL;
414 return ip;
418 * Decrement reference count of an inode structure and unlock it.
420 * ip -- the inode being released
421 * lock_flags -- this parameter indicates the inode's locks to be
422 * to be released. See the comment on xfs_iunlock() for a list
423 * of valid values.
425 void
426 xfs_iput(xfs_inode_t *ip,
427 uint lock_flags)
429 xfs_itrace_entry(ip);
430 xfs_iunlock(ip, lock_flags);
431 IRELE(ip);
435 * Special iput for brand-new inodes that are still locked
437 void
438 xfs_iput_new(
439 xfs_inode_t *ip,
440 uint lock_flags)
442 struct inode *inode = VFS_I(ip);
444 xfs_itrace_entry(ip);
446 if ((ip->i_d.di_mode == 0)) {
447 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
448 make_bad_inode(inode);
450 if (inode->i_state & I_NEW)
451 unlock_new_inode(inode);
452 if (lock_flags)
453 xfs_iunlock(ip, lock_flags);
454 IRELE(ip);
458 * This is called free all the memory associated with an inode.
459 * It must free the inode itself and any buffers allocated for
460 * if_extents/if_data and if_broot. It must also free the lock
461 * associated with the inode.
463 * Note: because we don't initialise everything on reallocation out
464 * of the zone, we must ensure we nullify everything correctly before
465 * freeing the structure.
467 void
468 xfs_ireclaim(
469 struct xfs_inode *ip)
471 struct xfs_mount *mp = ip->i_mount;
472 struct xfs_perag *pag;
474 XFS_STATS_INC(xs_ig_reclaims);
477 * Remove the inode from the per-AG radix tree. It doesn't matter
478 * if it was never added to it because radix_tree_delete can deal
479 * with that case just fine.
481 pag = xfs_get_perag(mp, ip->i_ino);
482 write_lock(&pag->pag_ici_lock);
483 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
484 write_unlock(&pag->pag_ici_lock);
485 xfs_put_perag(mp, pag);
488 * Here we do an (almost) spurious inode lock in order to coordinate
489 * with inode cache radix tree lookups. This is because the lookup
490 * can reference the inodes in the cache without taking references.
492 * We make that OK here by ensuring that we wait until the inode is
493 * unlocked after the lookup before we go ahead and free it. We get
494 * both the ilock and the iolock because the code may need to drop the
495 * ilock one but will still hold the iolock.
497 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
499 * Release dquots (and their references) if any.
501 XFS_QM_DQDETACH(ip->i_mount, ip);
502 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
504 switch (ip->i_d.di_mode & S_IFMT) {
505 case S_IFREG:
506 case S_IFDIR:
507 case S_IFLNK:
508 xfs_idestroy_fork(ip, XFS_DATA_FORK);
509 break;
512 if (ip->i_afp)
513 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
515 #ifdef XFS_INODE_TRACE
516 ktrace_free(ip->i_trace);
517 #endif
518 #ifdef XFS_BMAP_TRACE
519 ktrace_free(ip->i_xtrace);
520 #endif
521 #ifdef XFS_BTREE_TRACE
522 ktrace_free(ip->i_btrace);
523 #endif
524 #ifdef XFS_RW_TRACE
525 ktrace_free(ip->i_rwtrace);
526 #endif
527 #ifdef XFS_ILOCK_TRACE
528 ktrace_free(ip->i_lock_trace);
529 #endif
530 #ifdef XFS_DIR2_TRACE
531 ktrace_free(ip->i_dir_trace);
532 #endif
533 if (ip->i_itemp) {
535 * Only if we are shutting down the fs will we see an
536 * inode still in the AIL. If it is there, we should remove
537 * it to prevent a use-after-free from occurring.
539 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
540 struct xfs_ail *ailp = lip->li_ailp;
542 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
543 XFS_FORCED_SHUTDOWN(ip->i_mount));
544 if (lip->li_flags & XFS_LI_IN_AIL) {
545 spin_lock(&ailp->xa_lock);
546 if (lip->li_flags & XFS_LI_IN_AIL)
547 xfs_trans_ail_delete(ailp, lip);
548 else
549 spin_unlock(&ailp->xa_lock);
551 xfs_inode_item_destroy(ip);
552 ip->i_itemp = NULL;
554 /* asserts to verify all state is correct here */
555 ASSERT(atomic_read(&ip->i_iocount) == 0);
556 ASSERT(atomic_read(&ip->i_pincount) == 0);
557 ASSERT(!spin_is_locked(&ip->i_flags_lock));
558 ASSERT(completion_done(&ip->i_flush));
559 kmem_zone_free(xfs_inode_zone, ip);
563 * This is a wrapper routine around the xfs_ilock() routine
564 * used to centralize some grungy code. It is used in places
565 * that wish to lock the inode solely for reading the extents.
566 * The reason these places can't just call xfs_ilock(SHARED)
567 * is that the inode lock also guards to bringing in of the
568 * extents from disk for a file in b-tree format. If the inode
569 * is in b-tree format, then we need to lock the inode exclusively
570 * until the extents are read in. Locking it exclusively all
571 * the time would limit our parallelism unnecessarily, though.
572 * What we do instead is check to see if the extents have been
573 * read in yet, and only lock the inode exclusively if they
574 * have not.
576 * The function returns a value which should be given to the
577 * corresponding xfs_iunlock_map_shared(). This value is
578 * the mode in which the lock was actually taken.
580 uint
581 xfs_ilock_map_shared(
582 xfs_inode_t *ip)
584 uint lock_mode;
586 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
587 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
588 lock_mode = XFS_ILOCK_EXCL;
589 } else {
590 lock_mode = XFS_ILOCK_SHARED;
593 xfs_ilock(ip, lock_mode);
595 return lock_mode;
599 * This is simply the unlock routine to go with xfs_ilock_map_shared().
600 * All it does is call xfs_iunlock() with the given lock_mode.
602 void
603 xfs_iunlock_map_shared(
604 xfs_inode_t *ip,
605 unsigned int lock_mode)
607 xfs_iunlock(ip, lock_mode);
611 * The xfs inode contains 2 locks: a multi-reader lock called the
612 * i_iolock and a multi-reader lock called the i_lock. This routine
613 * allows either or both of the locks to be obtained.
615 * The 2 locks should always be ordered so that the IO lock is
616 * obtained first in order to prevent deadlock.
618 * ip -- the inode being locked
619 * lock_flags -- this parameter indicates the inode's locks
620 * to be locked. It can be:
621 * XFS_IOLOCK_SHARED,
622 * XFS_IOLOCK_EXCL,
623 * XFS_ILOCK_SHARED,
624 * XFS_ILOCK_EXCL,
625 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
626 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
627 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
628 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
630 void
631 xfs_ilock(
632 xfs_inode_t *ip,
633 uint lock_flags)
636 * You can't set both SHARED and EXCL for the same lock,
637 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
638 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
640 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
641 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
642 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
643 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
644 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
646 if (lock_flags & XFS_IOLOCK_EXCL)
647 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
648 else if (lock_flags & XFS_IOLOCK_SHARED)
649 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
651 if (lock_flags & XFS_ILOCK_EXCL)
652 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
653 else if (lock_flags & XFS_ILOCK_SHARED)
654 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
656 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
660 * This is just like xfs_ilock(), except that the caller
661 * is guaranteed not to sleep. It returns 1 if it gets
662 * the requested locks and 0 otherwise. If the IO lock is
663 * obtained but the inode lock cannot be, then the IO lock
664 * is dropped before returning.
666 * ip -- the inode being locked
667 * lock_flags -- this parameter indicates the inode's locks to be
668 * to be locked. See the comment for xfs_ilock() for a list
669 * of valid values.
672 xfs_ilock_nowait(
673 xfs_inode_t *ip,
674 uint lock_flags)
677 * You can't set both SHARED and EXCL for the same lock,
678 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
679 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
681 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
682 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
683 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
684 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
685 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
687 if (lock_flags & XFS_IOLOCK_EXCL) {
688 if (!mrtryupdate(&ip->i_iolock))
689 goto out;
690 } else if (lock_flags & XFS_IOLOCK_SHARED) {
691 if (!mrtryaccess(&ip->i_iolock))
692 goto out;
694 if (lock_flags & XFS_ILOCK_EXCL) {
695 if (!mrtryupdate(&ip->i_lock))
696 goto out_undo_iolock;
697 } else if (lock_flags & XFS_ILOCK_SHARED) {
698 if (!mrtryaccess(&ip->i_lock))
699 goto out_undo_iolock;
701 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
702 return 1;
704 out_undo_iolock:
705 if (lock_flags & XFS_IOLOCK_EXCL)
706 mrunlock_excl(&ip->i_iolock);
707 else if (lock_flags & XFS_IOLOCK_SHARED)
708 mrunlock_shared(&ip->i_iolock);
709 out:
710 return 0;
714 * xfs_iunlock() is used to drop the inode locks acquired with
715 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
716 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
717 * that we know which locks to drop.
719 * ip -- the inode being unlocked
720 * lock_flags -- this parameter indicates the inode's locks to be
721 * to be unlocked. See the comment for xfs_ilock() for a list
722 * of valid values for this parameter.
725 void
726 xfs_iunlock(
727 xfs_inode_t *ip,
728 uint lock_flags)
731 * You can't set both SHARED and EXCL for the same lock,
732 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
733 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
735 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
736 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
737 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
738 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
739 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
740 XFS_LOCK_DEP_MASK)) == 0);
741 ASSERT(lock_flags != 0);
743 if (lock_flags & XFS_IOLOCK_EXCL)
744 mrunlock_excl(&ip->i_iolock);
745 else if (lock_flags & XFS_IOLOCK_SHARED)
746 mrunlock_shared(&ip->i_iolock);
748 if (lock_flags & XFS_ILOCK_EXCL)
749 mrunlock_excl(&ip->i_lock);
750 else if (lock_flags & XFS_ILOCK_SHARED)
751 mrunlock_shared(&ip->i_lock);
753 if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
754 !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
756 * Let the AIL know that this item has been unlocked in case
757 * it is in the AIL and anyone is waiting on it. Don't do
758 * this if the caller has asked us not to.
760 xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
761 (xfs_log_item_t*)(ip->i_itemp));
763 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
767 * give up write locks. the i/o lock cannot be held nested
768 * if it is being demoted.
770 void
771 xfs_ilock_demote(
772 xfs_inode_t *ip,
773 uint lock_flags)
775 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
776 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
778 if (lock_flags & XFS_ILOCK_EXCL)
779 mrdemote(&ip->i_lock);
780 if (lock_flags & XFS_IOLOCK_EXCL)
781 mrdemote(&ip->i_iolock);
784 #ifdef DEBUG
786 * Debug-only routine, without additional rw_semaphore APIs, we can
787 * now only answer requests regarding whether we hold the lock for write
788 * (reader state is outside our visibility, we only track writer state).
790 * Note: this means !xfs_isilocked would give false positives, so don't do that.
793 xfs_isilocked(
794 xfs_inode_t *ip,
795 uint lock_flags)
797 if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
798 XFS_ILOCK_EXCL) {
799 if (!ip->i_lock.mr_writer)
800 return 0;
803 if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
804 XFS_IOLOCK_EXCL) {
805 if (!ip->i_iolock.mr_writer)
806 return 0;
809 return 1;
811 #endif
813 #ifdef XFS_INODE_TRACE
815 #define KTRACE_ENTER(ip, vk, s, line, ra) \
816 ktrace_enter((ip)->i_trace, \
817 /* 0 */ (void *)(__psint_t)(vk), \
818 /* 1 */ (void *)(s), \
819 /* 2 */ (void *)(__psint_t) line, \
820 /* 3 */ (void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
821 /* 4 */ (void *)(ra), \
822 /* 5 */ NULL, \
823 /* 6 */ (void *)(__psint_t)current_cpu(), \
824 /* 7 */ (void *)(__psint_t)current_pid(), \
825 /* 8 */ (void *)__return_address, \
826 /* 9 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL)
829 * Vnode tracing code.
831 void
832 _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
834 KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
837 void
838 _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
840 KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
843 void
844 xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
846 KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
849 void
850 _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
852 KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
855 void
856 xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
858 KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
860 #endif /* XFS_INODE_TRACE */