added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / fs / xfs / linux-2.6 / xfs_sync.c
bloba608e72fa4054c3892bfc45b17e0343d21fd31ce
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
45 #include "xfs_rw.h"
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
51 * Sync all the inodes in the given AG according to the
52 * direction given by the flags.
54 STATIC int
55 xfs_sync_inodes_ag(
56 xfs_mount_t *mp,
57 int ag,
58 int flags)
60 xfs_perag_t *pag = &mp->m_perag[ag];
61 int nr_found;
62 uint32_t first_index = 0;
63 int error = 0;
64 int last_error = 0;
65 int fflag = XFS_B_ASYNC;
67 if (flags & SYNC_DELWRI)
68 fflag = XFS_B_DELWRI;
69 if (flags & SYNC_WAIT)
70 fflag = 0; /* synchronous overrides all */
72 do {
73 struct inode *inode;
74 xfs_inode_t *ip = NULL;
75 int lock_flags = XFS_ILOCK_SHARED;
78 * use a gang lookup to find the next inode in the tree
79 * as the tree is sparse and a gang lookup walks to find
80 * the number of objects requested.
82 read_lock(&pag->pag_ici_lock);
83 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
84 (void**)&ip, first_index, 1);
86 if (!nr_found) {
87 read_unlock(&pag->pag_ici_lock);
88 break;
92 * Update the index for the next lookup. Catch overflows
93 * into the next AG range which can occur if we have inodes
94 * in the last block of the AG and we are currently
95 * pointing to the last inode.
97 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
98 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
99 read_unlock(&pag->pag_ici_lock);
100 break;
103 /* nothing to sync during shutdown */
104 if (XFS_FORCED_SHUTDOWN(mp)) {
105 read_unlock(&pag->pag_ici_lock);
106 return 0;
110 * If we can't get a reference on the inode, it must be
111 * in reclaim. Leave it for the reclaim code to flush.
113 inode = VFS_I(ip);
114 if (!igrab(inode)) {
115 read_unlock(&pag->pag_ici_lock);
116 continue;
118 read_unlock(&pag->pag_ici_lock);
120 /* avoid new or bad inodes */
121 if (is_bad_inode(inode) ||
122 xfs_iflags_test(ip, XFS_INEW)) {
123 IRELE(ip);
124 continue;
128 * If we have to flush data or wait for I/O completion
129 * we need to hold the iolock.
131 if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) {
132 xfs_ilock(ip, XFS_IOLOCK_SHARED);
133 lock_flags |= XFS_IOLOCK_SHARED;
134 error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE);
135 if (flags & SYNC_IOWAIT)
136 xfs_ioend_wait(ip);
138 xfs_ilock(ip, XFS_ILOCK_SHARED);
140 if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
141 if (flags & SYNC_WAIT) {
142 xfs_iflock(ip);
143 if (!xfs_inode_clean(ip))
144 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
145 else
146 xfs_ifunlock(ip);
147 } else if (xfs_iflock_nowait(ip)) {
148 if (!xfs_inode_clean(ip))
149 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
150 else
151 xfs_ifunlock(ip);
154 xfs_iput(ip, lock_flags);
156 if (error)
157 last_error = error;
159 * bail out if the filesystem is corrupted.
161 if (error == EFSCORRUPTED)
162 return XFS_ERROR(error);
164 } while (nr_found);
166 return last_error;
170 xfs_sync_inodes(
171 xfs_mount_t *mp,
172 int flags)
174 int error;
175 int last_error;
176 int i;
177 int lflags = XFS_LOG_FORCE;
179 if (mp->m_flags & XFS_MOUNT_RDONLY)
180 return 0;
181 error = 0;
182 last_error = 0;
184 if (flags & SYNC_WAIT)
185 lflags |= XFS_LOG_SYNC;
187 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
188 if (!mp->m_perag[i].pag_ici_init)
189 continue;
190 error = xfs_sync_inodes_ag(mp, i, flags);
191 if (error)
192 last_error = error;
193 if (error == EFSCORRUPTED)
194 break;
196 if (flags & SYNC_DELWRI)
197 xfs_log_force(mp, 0, lflags);
199 return XFS_ERROR(last_error);
202 STATIC int
203 xfs_commit_dummy_trans(
204 struct xfs_mount *mp,
205 uint log_flags)
207 struct xfs_inode *ip = mp->m_rootip;
208 struct xfs_trans *tp;
209 int error;
212 * Put a dummy transaction in the log to tell recovery
213 * that all others are OK.
215 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
216 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
217 if (error) {
218 xfs_trans_cancel(tp, 0);
219 return error;
222 xfs_ilock(ip, XFS_ILOCK_EXCL);
224 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 xfs_trans_ihold(tp, ip);
226 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
227 /* XXX(hch): ignoring the error here.. */
228 error = xfs_trans_commit(tp, 0);
230 xfs_iunlock(ip, XFS_ILOCK_EXCL);
232 xfs_log_force(mp, 0, log_flags);
233 return 0;
237 xfs_sync_fsdata(
238 struct xfs_mount *mp,
239 int flags)
241 struct xfs_buf *bp;
242 struct xfs_buf_log_item *bip;
243 int error = 0;
246 * If this is xfssyncd() then only sync the superblock if we can
247 * lock it without sleeping and it is not pinned.
249 if (flags & SYNC_BDFLUSH) {
250 ASSERT(!(flags & SYNC_WAIT));
252 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
253 if (!bp)
254 goto out;
256 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
257 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
258 goto out_brelse;
259 } else {
260 bp = xfs_getsb(mp, 0);
263 * If the buffer is pinned then push on the log so we won't
264 * get stuck waiting in the write for someone, maybe
265 * ourselves, to flush the log.
267 * Even though we just pushed the log above, we did not have
268 * the superblock buffer locked at that point so it can
269 * become pinned in between there and here.
271 if (XFS_BUF_ISPINNED(bp))
272 xfs_log_force(mp, 0, XFS_LOG_FORCE);
276 if (flags & SYNC_WAIT)
277 XFS_BUF_UNASYNC(bp);
278 else
279 XFS_BUF_ASYNC(bp);
281 return xfs_bwrite(mp, bp);
283 out_brelse:
284 xfs_buf_relse(bp);
285 out:
286 return error;
290 * When remounting a filesystem read-only or freezing the filesystem, we have
291 * two phases to execute. This first phase is syncing the data before we
292 * quiesce the filesystem, and the second is flushing all the inodes out after
293 * we've waited for all the transactions created by the first phase to
294 * complete. The second phase ensures that the inodes are written to their
295 * location on disk rather than just existing in transactions in the log. This
296 * means after a quiesce there is no log replay required to write the inodes to
297 * disk (this is the main difference between a sync and a quiesce).
300 * First stage of freeze - no writers will make progress now we are here,
301 * so we flush delwri and delalloc buffers here, then wait for all I/O to
302 * complete. Data is frozen at that point. Metadata is not frozen,
303 * transactions can still occur here so don't bother flushing the buftarg
304 * because it'll just get dirty again.
307 xfs_quiesce_data(
308 struct xfs_mount *mp)
310 int error;
312 /* push non-blocking */
313 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
314 XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
315 xfs_filestream_flush(mp);
317 /* push and block */
318 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
319 XFS_QM_DQSYNC(mp, SYNC_WAIT);
321 /* write superblock and hoover up shutdown errors */
322 error = xfs_sync_fsdata(mp, 0);
324 /* flush data-only devices */
325 if (mp->m_rtdev_targp)
326 XFS_bflush(mp->m_rtdev_targp);
328 return error;
331 STATIC void
332 xfs_quiesce_fs(
333 struct xfs_mount *mp)
335 int count = 0, pincount;
337 xfs_flush_buftarg(mp->m_ddev_targp, 0);
338 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
341 * This loop must run at least twice. The first instance of the loop
342 * will flush most meta data but that will generate more meta data
343 * (typically directory updates). Which then must be flushed and
344 * logged before we can write the unmount record.
346 do {
347 xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
348 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
349 if (!pincount) {
350 delay(50);
351 count++;
353 } while (count < 2);
357 * Second stage of a quiesce. The data is already synced, now we have to take
358 * care of the metadata. New transactions are already blocked, so we need to
359 * wait for any remaining transactions to drain out before proceding.
361 void
362 xfs_quiesce_attr(
363 struct xfs_mount *mp)
365 int error = 0;
367 /* wait for all modifications to complete */
368 while (atomic_read(&mp->m_active_trans) > 0)
369 delay(100);
371 /* flush inodes and push all remaining buffers out to disk */
372 xfs_quiesce_fs(mp);
375 * Just warn here till VFS can correctly support
376 * read-only remount without racing.
378 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
380 /* Push the superblock and write an unmount record */
381 error = xfs_log_sbcount(mp, 1);
382 if (error)
383 xfs_fs_cmn_err(CE_WARN, mp,
384 "xfs_attr_quiesce: failed to log sb changes. "
385 "Frozen image may not be consistent.");
386 xfs_log_unmount_write(mp);
387 xfs_unmountfs_writesb(mp);
391 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
392 * Doing this has two advantages:
393 * - It saves on stack space, which is tight in certain situations
394 * - It can be used (with care) as a mechanism to avoid deadlocks.
395 * Flushing while allocating in a full filesystem requires both.
397 STATIC void
398 xfs_syncd_queue_work(
399 struct xfs_mount *mp,
400 void *data,
401 void (*syncer)(struct xfs_mount *, void *))
403 struct bhv_vfs_sync_work *work;
405 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
406 INIT_LIST_HEAD(&work->w_list);
407 work->w_syncer = syncer;
408 work->w_data = data;
409 work->w_mount = mp;
410 spin_lock(&mp->m_sync_lock);
411 list_add_tail(&work->w_list, &mp->m_sync_list);
412 spin_unlock(&mp->m_sync_lock);
413 wake_up_process(mp->m_sync_task);
417 * Flush delayed allocate data, attempting to free up reserved space
418 * from existing allocations. At this point a new allocation attempt
419 * has failed with ENOSPC and we are in the process of scratching our
420 * heads, looking about for more room...
422 STATIC void
423 xfs_flush_inode_work(
424 struct xfs_mount *mp,
425 void *arg)
427 struct inode *inode = arg;
428 filemap_flush(inode->i_mapping);
429 iput(inode);
432 void
433 xfs_flush_inode(
434 xfs_inode_t *ip)
436 struct inode *inode = VFS_I(ip);
438 igrab(inode);
439 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
440 delay(msecs_to_jiffies(500));
444 * This is the "bigger hammer" version of xfs_flush_inode_work...
445 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
447 STATIC void
448 xfs_flush_device_work(
449 struct xfs_mount *mp,
450 void *arg)
452 struct inode *inode = arg;
453 sync_blockdev(mp->m_super->s_bdev);
454 iput(inode);
457 void
458 xfs_flush_device(
459 xfs_inode_t *ip)
461 struct inode *inode = VFS_I(ip);
463 igrab(inode);
464 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
465 delay(msecs_to_jiffies(500));
466 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
470 * Every sync period we need to unpin all items, reclaim inodes, sync
471 * quota and write out the superblock. We might need to cover the log
472 * to indicate it is idle.
474 STATIC void
475 xfs_sync_worker(
476 struct xfs_mount *mp,
477 void *unused)
479 int error;
481 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
482 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
483 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
484 /* dgc: errors ignored here */
485 error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
486 error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
487 if (xfs_log_need_covered(mp))
488 error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
490 mp->m_sync_seq++;
491 wake_up(&mp->m_wait_single_sync_task);
494 STATIC int
495 xfssyncd(
496 void *arg)
498 struct xfs_mount *mp = arg;
499 long timeleft;
500 bhv_vfs_sync_work_t *work, *n;
501 LIST_HEAD (tmp);
503 set_freezable();
504 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
505 for (;;) {
506 timeleft = schedule_timeout_interruptible(timeleft);
507 /* swsusp */
508 try_to_freeze();
509 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
510 break;
512 spin_lock(&mp->m_sync_lock);
514 * We can get woken by laptop mode, to do a sync -
515 * that's the (only!) case where the list would be
516 * empty with time remaining.
518 if (!timeleft || list_empty(&mp->m_sync_list)) {
519 if (!timeleft)
520 timeleft = xfs_syncd_centisecs *
521 msecs_to_jiffies(10);
522 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
523 list_add_tail(&mp->m_sync_work.w_list,
524 &mp->m_sync_list);
526 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
527 list_move(&work->w_list, &tmp);
528 spin_unlock(&mp->m_sync_lock);
530 list_for_each_entry_safe(work, n, &tmp, w_list) {
531 (*work->w_syncer)(mp, work->w_data);
532 list_del(&work->w_list);
533 if (work == &mp->m_sync_work)
534 continue;
535 kmem_free(work);
539 return 0;
543 xfs_syncd_init(
544 struct xfs_mount *mp)
546 mp->m_sync_work.w_syncer = xfs_sync_worker;
547 mp->m_sync_work.w_mount = mp;
548 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
549 if (IS_ERR(mp->m_sync_task))
550 return -PTR_ERR(mp->m_sync_task);
551 return 0;
554 void
555 xfs_syncd_stop(
556 struct xfs_mount *mp)
558 kthread_stop(mp->m_sync_task);
562 xfs_reclaim_inode(
563 xfs_inode_t *ip,
564 int locked,
565 int sync_mode)
567 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
569 /* The hash lock here protects a thread in xfs_iget_core from
570 * racing with us on linking the inode back with a vnode.
571 * Once we have the XFS_IRECLAIM flag set it will not touch
572 * us.
574 write_lock(&pag->pag_ici_lock);
575 spin_lock(&ip->i_flags_lock);
576 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
577 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
578 spin_unlock(&ip->i_flags_lock);
579 write_unlock(&pag->pag_ici_lock);
580 if (locked) {
581 xfs_ifunlock(ip);
582 xfs_iunlock(ip, XFS_ILOCK_EXCL);
584 return 1;
586 __xfs_iflags_set(ip, XFS_IRECLAIM);
587 spin_unlock(&ip->i_flags_lock);
588 write_unlock(&pag->pag_ici_lock);
589 xfs_put_perag(ip->i_mount, pag);
592 * If the inode is still dirty, then flush it out. If the inode
593 * is not in the AIL, then it will be OK to flush it delwri as
594 * long as xfs_iflush() does not keep any references to the inode.
595 * We leave that decision up to xfs_iflush() since it has the
596 * knowledge of whether it's OK to simply do a delwri flush of
597 * the inode or whether we need to wait until the inode is
598 * pulled from the AIL.
599 * We get the flush lock regardless, though, just to make sure
600 * we don't free it while it is being flushed.
602 if (!locked) {
603 xfs_ilock(ip, XFS_ILOCK_EXCL);
604 xfs_iflock(ip);
608 * In the case of a forced shutdown we rely on xfs_iflush() to
609 * wait for the inode to be unpinned before returning an error.
611 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
612 /* synchronize with xfs_iflush_done */
613 xfs_iflock(ip);
614 xfs_ifunlock(ip);
617 xfs_iunlock(ip, XFS_ILOCK_EXCL);
618 xfs_ireclaim(ip);
619 return 0;
623 * We set the inode flag atomically with the radix tree tag.
624 * Once we get tag lookups on the radix tree, this inode flag
625 * can go away.
627 void
628 xfs_inode_set_reclaim_tag(
629 xfs_inode_t *ip)
631 xfs_mount_t *mp = ip->i_mount;
632 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
634 read_lock(&pag->pag_ici_lock);
635 spin_lock(&ip->i_flags_lock);
636 radix_tree_tag_set(&pag->pag_ici_root,
637 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
638 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
639 spin_unlock(&ip->i_flags_lock);
640 read_unlock(&pag->pag_ici_lock);
641 xfs_put_perag(mp, pag);
644 void
645 __xfs_inode_clear_reclaim_tag(
646 xfs_mount_t *mp,
647 xfs_perag_t *pag,
648 xfs_inode_t *ip)
650 radix_tree_tag_clear(&pag->pag_ici_root,
651 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
654 void
655 xfs_inode_clear_reclaim_tag(
656 xfs_inode_t *ip)
658 xfs_mount_t *mp = ip->i_mount;
659 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
661 read_lock(&pag->pag_ici_lock);
662 spin_lock(&ip->i_flags_lock);
663 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
664 spin_unlock(&ip->i_flags_lock);
665 read_unlock(&pag->pag_ici_lock);
666 xfs_put_perag(mp, pag);
670 STATIC void
671 xfs_reclaim_inodes_ag(
672 xfs_mount_t *mp,
673 int ag,
674 int noblock,
675 int mode)
677 xfs_inode_t *ip = NULL;
678 xfs_perag_t *pag = &mp->m_perag[ag];
679 int nr_found;
680 uint32_t first_index;
681 int skipped;
683 restart:
684 first_index = 0;
685 skipped = 0;
686 do {
688 * use a gang lookup to find the next inode in the tree
689 * as the tree is sparse and a gang lookup walks to find
690 * the number of objects requested.
692 read_lock(&pag->pag_ici_lock);
693 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
694 (void**)&ip, first_index, 1,
695 XFS_ICI_RECLAIM_TAG);
697 if (!nr_found) {
698 read_unlock(&pag->pag_ici_lock);
699 break;
703 * Update the index for the next lookup. Catch overflows
704 * into the next AG range which can occur if we have inodes
705 * in the last block of the AG and we are currently
706 * pointing to the last inode.
708 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
709 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
710 read_unlock(&pag->pag_ici_lock);
711 break;
714 /* ignore if already under reclaim */
715 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
716 read_unlock(&pag->pag_ici_lock);
717 continue;
720 if (noblock) {
721 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
722 read_unlock(&pag->pag_ici_lock);
723 continue;
725 if (xfs_ipincount(ip) ||
726 !xfs_iflock_nowait(ip)) {
727 xfs_iunlock(ip, XFS_ILOCK_EXCL);
728 read_unlock(&pag->pag_ici_lock);
729 continue;
732 read_unlock(&pag->pag_ici_lock);
735 * hmmm - this is an inode already in reclaim. Do
736 * we even bother catching it here?
738 if (xfs_reclaim_inode(ip, noblock, mode))
739 skipped++;
740 } while (nr_found);
742 if (skipped) {
743 delay(1);
744 goto restart;
746 return;
751 xfs_reclaim_inodes(
752 xfs_mount_t *mp,
753 int noblock,
754 int mode)
756 int i;
758 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
759 if (!mp->m_perag[i].pag_ici_init)
760 continue;
761 xfs_reclaim_inodes_ag(mp, i, noblock, mode);
763 return 0;