added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / fs / exec.c
blob8dbe56d3f0d61cccb16fad99a627fe660e59ed7e
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_counter.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/delay.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
72 int register_binfmt(struct linux_binfmt * fmt)
74 if (!fmt)
75 return -EINVAL;
76 write_lock(&binfmt_lock);
77 list_add(&fmt->lh, &formats);
78 write_unlock(&binfmt_lock);
79 return 0;
82 EXPORT_SYMBOL(register_binfmt);
84 void unregister_binfmt(struct linux_binfmt * fmt)
86 write_lock(&binfmt_lock);
87 list_del(&fmt->lh);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(unregister_binfmt);
93 static inline void put_binfmt(struct linux_binfmt * fmt)
95 module_put(fmt->module);
99 * Note that a shared library must be both readable and executable due to
100 * security reasons.
102 * Also note that we take the address to load from from the file itself.
104 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 struct file *file;
107 struct nameidata nd;
108 char *tmp = getname(library);
109 int error = PTR_ERR(tmp);
111 if (!IS_ERR(tmp)) {
112 error = path_lookup_open(AT_FDCWD, tmp,
113 LOOKUP_FOLLOW, &nd,
114 FMODE_READ|FMODE_EXEC);
115 putname(tmp);
117 if (error)
118 goto out;
120 error = -EINVAL;
121 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
122 goto exit;
124 error = -EACCES;
125 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
126 goto exit;
128 error = inode_permission(nd.path.dentry->d_inode,
129 MAY_READ | MAY_EXEC | MAY_OPEN);
130 if (error)
131 goto exit;
133 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
134 error = PTR_ERR(file);
135 if (IS_ERR(file))
136 goto out;
138 fsnotify_open(file->f_path.dentry);
140 error = -ENOEXEC;
141 if(file->f_op) {
142 struct linux_binfmt * fmt;
144 read_lock(&binfmt_lock);
145 list_for_each_entry(fmt, &formats, lh) {
146 if (!fmt->load_shlib)
147 continue;
148 if (!try_module_get(fmt->module))
149 continue;
150 read_unlock(&binfmt_lock);
151 error = fmt->load_shlib(file);
152 read_lock(&binfmt_lock);
153 put_binfmt(fmt);
154 if (error != -ENOEXEC)
155 break;
157 read_unlock(&binfmt_lock);
159 fput(file);
160 out:
161 return error;
162 exit:
163 release_open_intent(&nd);
164 path_put(&nd.path);
165 goto out;
168 #ifdef CONFIG_MMU
170 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
171 int write)
173 struct page *page;
174 int ret;
176 #ifdef CONFIG_STACK_GROWSUP
177 if (write) {
178 ret = expand_stack_downwards(bprm->vma, pos);
179 if (ret < 0)
180 return NULL;
182 #endif
183 ret = get_user_pages(current, bprm->mm, pos,
184 1, write, 1, &page, NULL);
185 if (ret <= 0)
186 return NULL;
188 if (write) {
189 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
190 struct rlimit *rlim;
193 * We've historically supported up to 32 pages (ARG_MAX)
194 * of argument strings even with small stacks
196 if (size <= ARG_MAX)
197 return page;
200 * Limit to 1/4-th the stack size for the argv+env strings.
201 * This ensures that:
202 * - the remaining binfmt code will not run out of stack space,
203 * - the program will have a reasonable amount of stack left
204 * to work from.
206 rlim = current->signal->rlim;
207 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
208 put_page(page);
209 return NULL;
213 return page;
216 static void put_arg_page(struct page *page)
218 put_page(page);
221 static void free_arg_page(struct linux_binprm *bprm, int i)
225 static void free_arg_pages(struct linux_binprm *bprm)
229 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
230 struct page *page)
232 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
235 static int __bprm_mm_init(struct linux_binprm *bprm)
237 int err;
238 struct vm_area_struct *vma = NULL;
239 struct mm_struct *mm = bprm->mm;
241 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
242 if (!vma)
243 return -ENOMEM;
245 down_write(&mm->mmap_sem);
246 vma->vm_mm = mm;
249 * Place the stack at the largest stack address the architecture
250 * supports. Later, we'll move this to an appropriate place. We don't
251 * use STACK_TOP because that can depend on attributes which aren't
252 * configured yet.
254 vma->vm_end = STACK_TOP_MAX;
255 vma->vm_start = vma->vm_end - PAGE_SIZE;
256 vma->vm_flags = VM_STACK_FLAGS;
257 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
258 err = insert_vm_struct(mm, vma);
259 if (err)
260 goto err;
262 mm->stack_vm = mm->total_vm = 1;
263 up_write(&mm->mmap_sem);
264 bprm->p = vma->vm_end - sizeof(void *);
265 return 0;
266 err:
267 up_write(&mm->mmap_sem);
268 bprm->vma = NULL;
269 kmem_cache_free(vm_area_cachep, vma);
270 return err;
273 static bool valid_arg_len(struct linux_binprm *bprm, long len)
275 return len <= MAX_ARG_STRLEN;
278 #else
280 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
281 int write)
283 struct page *page;
285 page = bprm->page[pos / PAGE_SIZE];
286 if (!page && write) {
287 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
288 if (!page)
289 return NULL;
290 bprm->page[pos / PAGE_SIZE] = page;
293 return page;
296 static void put_arg_page(struct page *page)
300 static void free_arg_page(struct linux_binprm *bprm, int i)
302 if (bprm->page[i]) {
303 __free_page(bprm->page[i]);
304 bprm->page[i] = NULL;
308 static void free_arg_pages(struct linux_binprm *bprm)
310 int i;
312 for (i = 0; i < MAX_ARG_PAGES; i++)
313 free_arg_page(bprm, i);
316 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
317 struct page *page)
321 static int __bprm_mm_init(struct linux_binprm *bprm)
323 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
324 return 0;
327 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 return len <= bprm->p;
332 #endif /* CONFIG_MMU */
335 * Create a new mm_struct and populate it with a temporary stack
336 * vm_area_struct. We don't have enough context at this point to set the stack
337 * flags, permissions, and offset, so we use temporary values. We'll update
338 * them later in setup_arg_pages().
340 int bprm_mm_init(struct linux_binprm *bprm)
342 int err;
343 struct mm_struct *mm = NULL;
345 bprm->mm = mm = mm_alloc();
346 err = -ENOMEM;
347 if (!mm)
348 goto err;
350 err = init_new_context(current, mm);
351 if (err)
352 goto err;
354 err = __bprm_mm_init(bprm);
355 if (err)
356 goto err;
358 return 0;
360 err:
361 if (mm) {
362 bprm->mm = NULL;
363 mmdrop(mm);
366 return err;
370 * count() counts the number of strings in array ARGV.
372 static int count(char __user * __user * argv, int max)
374 int i = 0;
376 if (argv != NULL) {
377 for (;;) {
378 char __user * p;
380 if (get_user(p, argv))
381 return -EFAULT;
382 if (!p)
383 break;
384 argv++;
385 if (i++ >= max)
386 return -E2BIG;
387 cond_resched();
390 return i;
394 * 'copy_strings()' copies argument/environment strings from the old
395 * processes's memory to the new process's stack. The call to get_user_pages()
396 * ensures the destination page is created and not swapped out.
398 static int copy_strings(int argc, char __user * __user * argv,
399 struct linux_binprm *bprm)
401 struct page *kmapped_page = NULL;
402 char *kaddr = NULL;
403 unsigned long kpos = 0;
404 int ret;
406 while (argc-- > 0) {
407 char __user *str;
408 int len;
409 unsigned long pos;
411 if (get_user(str, argv+argc) ||
412 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
413 ret = -EFAULT;
414 goto out;
417 if (!valid_arg_len(bprm, len)) {
418 ret = -E2BIG;
419 goto out;
422 /* We're going to work our way backwords. */
423 pos = bprm->p;
424 str += len;
425 bprm->p -= len;
427 while (len > 0) {
428 int offset, bytes_to_copy;
430 offset = pos % PAGE_SIZE;
431 if (offset == 0)
432 offset = PAGE_SIZE;
434 bytes_to_copy = offset;
435 if (bytes_to_copy > len)
436 bytes_to_copy = len;
438 offset -= bytes_to_copy;
439 pos -= bytes_to_copy;
440 str -= bytes_to_copy;
441 len -= bytes_to_copy;
443 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
444 struct page *page;
446 page = get_arg_page(bprm, pos, 1);
447 if (!page) {
448 ret = -E2BIG;
449 goto out;
452 if (kmapped_page) {
453 flush_kernel_dcache_page(kmapped_page);
454 kunmap(kmapped_page);
455 put_arg_page(kmapped_page);
457 kmapped_page = page;
458 kaddr = kmap(kmapped_page);
459 kpos = pos & PAGE_MASK;
460 flush_arg_page(bprm, kpos, kmapped_page);
462 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
463 ret = -EFAULT;
464 goto out;
468 ret = 0;
469 out:
470 if (kmapped_page) {
471 flush_kernel_dcache_page(kmapped_page);
472 kunmap(kmapped_page);
473 put_arg_page(kmapped_page);
475 return ret;
479 * Like copy_strings, but get argv and its values from kernel memory.
481 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
483 int r;
484 mm_segment_t oldfs = get_fs();
485 set_fs(KERNEL_DS);
486 r = copy_strings(argc, (char __user * __user *)argv, bprm);
487 set_fs(oldfs);
488 return r;
490 EXPORT_SYMBOL(copy_strings_kernel);
492 #ifdef CONFIG_MMU
495 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
496 * the binfmt code determines where the new stack should reside, we shift it to
497 * its final location. The process proceeds as follows:
499 * 1) Use shift to calculate the new vma endpoints.
500 * 2) Extend vma to cover both the old and new ranges. This ensures the
501 * arguments passed to subsequent functions are consistent.
502 * 3) Move vma's page tables to the new range.
503 * 4) Free up any cleared pgd range.
504 * 5) Shrink the vma to cover only the new range.
506 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
508 struct mm_struct *mm = vma->vm_mm;
509 unsigned long old_start = vma->vm_start;
510 unsigned long old_end = vma->vm_end;
511 unsigned long length = old_end - old_start;
512 unsigned long new_start = old_start - shift;
513 unsigned long new_end = old_end - shift;
514 struct mmu_gather tlb;
516 BUG_ON(new_start > new_end);
519 * ensure there are no vmas between where we want to go
520 * and where we are
522 if (vma != find_vma(mm, new_start))
523 return -EFAULT;
526 * cover the whole range: [new_start, old_end)
528 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
531 * move the page tables downwards, on failure we rely on
532 * process cleanup to remove whatever mess we made.
534 if (length != move_page_tables(vma, old_start,
535 vma, new_start, length))
536 return -ENOMEM;
538 lru_add_drain();
539 tlb_gather_mmu(&tlb, mm, 0);
540 if (new_end > old_start) {
542 * when the old and new regions overlap clear from new_end.
544 free_pgd_range(&tlb, new_end, old_end, new_end,
545 vma->vm_next ? vma->vm_next->vm_start : 0);
546 } else {
548 * otherwise, clean from old_start; this is done to not touch
549 * the address space in [new_end, old_start) some architectures
550 * have constraints on va-space that make this illegal (IA64) -
551 * for the others its just a little faster.
553 free_pgd_range(&tlb, old_start, old_end, new_end,
554 vma->vm_next ? vma->vm_next->vm_start : 0);
556 tlb_finish_mmu(&tlb, new_end, old_end);
559 * shrink the vma to just the new range.
561 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
563 return 0;
566 #define EXTRA_STACK_VM_PAGES 20 /* random */
569 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
570 * the stack is optionally relocated, and some extra space is added.
572 int setup_arg_pages(struct linux_binprm *bprm,
573 unsigned long stack_top,
574 int executable_stack)
576 unsigned long ret;
577 unsigned long stack_shift;
578 struct mm_struct *mm = current->mm;
579 struct vm_area_struct *vma = bprm->vma;
580 struct vm_area_struct *prev = NULL;
581 unsigned long vm_flags;
582 unsigned long stack_base;
584 #ifdef CONFIG_STACK_GROWSUP
585 /* Limit stack size to 1GB */
586 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
587 if (stack_base > (1 << 30))
588 stack_base = 1 << 30;
590 /* Make sure we didn't let the argument array grow too large. */
591 if (vma->vm_end - vma->vm_start > stack_base)
592 return -ENOMEM;
594 stack_base = PAGE_ALIGN(stack_top - stack_base);
596 stack_shift = vma->vm_start - stack_base;
597 mm->arg_start = bprm->p - stack_shift;
598 bprm->p = vma->vm_end - stack_shift;
599 #else
600 stack_top = arch_align_stack(stack_top);
601 stack_top = PAGE_ALIGN(stack_top);
602 stack_shift = vma->vm_end - stack_top;
604 bprm->p -= stack_shift;
605 mm->arg_start = bprm->p;
606 #endif
608 if (bprm->loader)
609 bprm->loader -= stack_shift;
610 bprm->exec -= stack_shift;
612 down_write(&mm->mmap_sem);
613 vm_flags = VM_STACK_FLAGS;
616 * Adjust stack execute permissions; explicitly enable for
617 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
618 * (arch default) otherwise.
620 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
621 vm_flags |= VM_EXEC;
622 else if (executable_stack == EXSTACK_DISABLE_X)
623 vm_flags &= ~VM_EXEC;
624 vm_flags |= mm->def_flags;
626 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
627 vm_flags);
628 if (ret)
629 goto out_unlock;
630 BUG_ON(prev != vma);
632 /* Move stack pages down in memory. */
633 if (stack_shift) {
634 ret = shift_arg_pages(vma, stack_shift);
635 if (ret) {
636 up_write(&mm->mmap_sem);
637 return ret;
641 #ifdef CONFIG_STACK_GROWSUP
642 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #else
644 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
645 #endif
646 ret = expand_stack(vma, stack_base);
647 if (ret)
648 ret = -EFAULT;
650 out_unlock:
651 up_write(&mm->mmap_sem);
652 return 0;
654 EXPORT_SYMBOL(setup_arg_pages);
656 #endif /* CONFIG_MMU */
658 struct file *open_exec(const char *name)
660 struct nameidata nd;
661 struct file *file;
662 int err;
664 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
665 FMODE_READ|FMODE_EXEC);
666 if (err)
667 goto out;
669 err = -EACCES;
670 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
671 goto out_path_put;
673 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
674 goto out_path_put;
676 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
677 if (err)
678 goto out_path_put;
680 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
681 if (IS_ERR(file))
682 return file;
684 fsnotify_open(file->f_path.dentry);
686 err = deny_write_access(file);
687 if (err) {
688 fput(file);
689 goto out;
692 return file;
694 out_path_put:
695 release_open_intent(&nd);
696 path_put(&nd.path);
697 out:
698 return ERR_PTR(err);
700 EXPORT_SYMBOL(open_exec);
702 int kernel_read(struct file *file, unsigned long offset,
703 char *addr, unsigned long count)
705 mm_segment_t old_fs;
706 loff_t pos = offset;
707 int result;
709 old_fs = get_fs();
710 set_fs(get_ds());
711 /* The cast to a user pointer is valid due to the set_fs() */
712 result = vfs_read(file, (void __user *)addr, count, &pos);
713 set_fs(old_fs);
714 return result;
717 EXPORT_SYMBOL(kernel_read);
719 static int exec_mmap(struct mm_struct *mm)
721 struct task_struct *tsk;
722 struct mm_struct * old_mm, *active_mm;
724 /* Notify parent that we're no longer interested in the old VM */
725 tsk = current;
726 old_mm = current->mm;
727 mm_release(tsk, old_mm);
729 if (old_mm) {
731 * Make sure that if there is a core dump in progress
732 * for the old mm, we get out and die instead of going
733 * through with the exec. We must hold mmap_sem around
734 * checking core_state and changing tsk->mm.
736 down_read(&old_mm->mmap_sem);
737 if (unlikely(old_mm->core_state)) {
738 up_read(&old_mm->mmap_sem);
739 return -EINTR;
742 task_lock(tsk);
743 local_irq_disable();
744 active_mm = tsk->active_mm;
745 activate_mm(active_mm, mm);
746 tsk->mm = mm;
747 tsk->active_mm = mm;
748 local_irq_enable();
749 task_unlock(tsk);
750 arch_pick_mmap_layout(mm);
751 if (old_mm) {
752 up_read(&old_mm->mmap_sem);
753 BUG_ON(active_mm != old_mm);
754 mm_update_next_owner(old_mm);
755 mmput(old_mm);
756 return 0;
758 mmdrop(active_mm);
759 return 0;
763 * This function makes sure the current process has its own signal table,
764 * so that flush_signal_handlers can later reset the handlers without
765 * disturbing other processes. (Other processes might share the signal
766 * table via the CLONE_SIGHAND option to clone().)
768 static int de_thread(struct task_struct *tsk)
770 struct signal_struct *sig = tsk->signal;
771 struct sighand_struct *oldsighand = tsk->sighand;
772 spinlock_t *lock = &oldsighand->siglock;
773 int count;
775 if (thread_group_empty(tsk))
776 goto no_thread_group;
779 * Kill all other threads in the thread group.
781 spin_lock_irq(lock);
782 if (signal_group_exit(sig)) {
784 * Another group action in progress, just
785 * return so that the signal is processed.
787 spin_unlock_irq(lock);
788 return -EAGAIN;
790 sig->group_exit_task = tsk;
791 zap_other_threads(tsk);
793 /* Account for the thread group leader hanging around: */
794 count = thread_group_leader(tsk) ? 1 : 2;
795 sig->notify_count = count;
796 while (atomic_read(&sig->count) > count) {
797 __set_current_state(TASK_UNINTERRUPTIBLE);
798 spin_unlock_irq(lock);
799 schedule();
800 spin_lock_irq(lock);
802 spin_unlock_irq(lock);
805 * At this point all other threads have exited, all we have to
806 * do is to wait for the thread group leader to become inactive,
807 * and to assume its PID:
809 if (!thread_group_leader(tsk)) {
810 struct task_struct *leader = tsk->group_leader;
812 sig->notify_count = -1; /* for exit_notify() */
813 for (;;) {
814 write_lock_irq(&tasklist_lock);
815 if (likely(leader->exit_state))
816 break;
817 __set_current_state(TASK_UNINTERRUPTIBLE);
818 write_unlock_irq(&tasklist_lock);
819 schedule();
823 * The only record we have of the real-time age of a
824 * process, regardless of execs it's done, is start_time.
825 * All the past CPU time is accumulated in signal_struct
826 * from sister threads now dead. But in this non-leader
827 * exec, nothing survives from the original leader thread,
828 * whose birth marks the true age of this process now.
829 * When we take on its identity by switching to its PID, we
830 * also take its birthdate (always earlier than our own).
832 tsk->start_time = leader->start_time;
834 BUG_ON(!same_thread_group(leader, tsk));
835 BUG_ON(has_group_leader_pid(tsk));
837 * An exec() starts a new thread group with the
838 * TGID of the previous thread group. Rehash the
839 * two threads with a switched PID, and release
840 * the former thread group leader:
843 /* Become a process group leader with the old leader's pid.
844 * The old leader becomes a thread of the this thread group.
845 * Note: The old leader also uses this pid until release_task
846 * is called. Odd but simple and correct.
848 detach_pid(tsk, PIDTYPE_PID);
849 tsk->pid = leader->pid;
850 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
851 transfer_pid(leader, tsk, PIDTYPE_PGID);
852 transfer_pid(leader, tsk, PIDTYPE_SID);
853 list_replace_rcu(&leader->tasks, &tsk->tasks);
855 tsk->group_leader = tsk;
856 leader->group_leader = tsk;
858 tsk->exit_signal = SIGCHLD;
860 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
861 leader->exit_state = EXIT_DEAD;
862 write_unlock_irq(&tasklist_lock);
864 release_task(leader);
867 sig->group_exit_task = NULL;
868 sig->notify_count = 0;
870 no_thread_group:
871 exit_itimers(sig);
872 flush_itimer_signals();
874 if (atomic_read(&oldsighand->count) != 1) {
875 struct sighand_struct *newsighand;
877 * This ->sighand is shared with the CLONE_SIGHAND
878 * but not CLONE_THREAD task, switch to the new one.
880 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
881 if (!newsighand)
882 return -ENOMEM;
884 atomic_set(&newsighand->count, 1);
885 memcpy(newsighand->action, oldsighand->action,
886 sizeof(newsighand->action));
888 write_lock_irq(&tasklist_lock);
889 spin_lock(&oldsighand->siglock);
890 rcu_assign_pointer(tsk->sighand, newsighand);
891 spin_unlock(&oldsighand->siglock);
892 write_unlock_irq(&tasklist_lock);
894 __cleanup_sighand(oldsighand);
897 BUG_ON(!thread_group_leader(tsk));
898 return 0;
902 * These functions flushes out all traces of the currently running executable
903 * so that a new one can be started
905 static void flush_old_files(struct files_struct * files)
907 long j = -1;
908 struct fdtable *fdt;
910 spin_lock(&files->file_lock);
911 for (;;) {
912 unsigned long set, i;
914 j++;
915 i = j * __NFDBITS;
916 fdt = files_fdtable(files);
917 if (i >= fdt->max_fds)
918 break;
919 set = fdt->close_on_exec->fds_bits[j];
920 if (!set)
921 continue;
922 fdt->close_on_exec->fds_bits[j] = 0;
923 spin_unlock(&files->file_lock);
924 for ( ; set ; i++,set >>= 1) {
925 if (set & 1) {
926 sys_close(i);
929 spin_lock(&files->file_lock);
932 spin_unlock(&files->file_lock);
935 char *get_task_comm(char *buf, struct task_struct *tsk)
937 /* buf must be at least sizeof(tsk->comm) in size */
938 task_lock(tsk);
939 strncpy(buf, tsk->comm, sizeof(tsk->comm));
940 task_unlock(tsk);
941 return buf;
944 void set_task_comm(struct task_struct *tsk, char *buf)
946 task_lock(tsk);
947 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
948 task_unlock(tsk);
951 int flush_old_exec(struct linux_binprm * bprm)
953 char * name;
954 int i, ch, retval;
955 char tcomm[sizeof(current->comm)];
958 * Make sure we have a private signal table and that
959 * we are unassociated from the previous thread group.
961 retval = de_thread(current);
962 if (retval)
963 goto out;
965 set_mm_exe_file(bprm->mm, bprm->file);
968 * Release all of the old mmap stuff
970 retval = exec_mmap(bprm->mm);
971 if (retval)
972 goto out;
974 bprm->mm = NULL; /* We're using it now */
976 /* This is the point of no return */
977 current->sas_ss_sp = current->sas_ss_size = 0;
979 if (current_euid() == current_uid() && current_egid() == current_gid())
980 set_dumpable(current->mm, 1);
981 else
982 set_dumpable(current->mm, suid_dumpable);
984 name = bprm->filename;
986 /* Copies the binary name from after last slash */
987 for (i=0; (ch = *(name++)) != '\0';) {
988 if (ch == '/')
989 i = 0; /* overwrite what we wrote */
990 else
991 if (i < (sizeof(tcomm) - 1))
992 tcomm[i++] = ch;
994 tcomm[i] = '\0';
995 set_task_comm(current, tcomm);
997 current->flags &= ~PF_RANDOMIZE;
998 flush_thread();
1000 /* Set the new mm task size. We have to do that late because it may
1001 * depend on TIF_32BIT which is only updated in flush_thread() on
1002 * some architectures like powerpc
1004 current->mm->task_size = TASK_SIZE;
1006 /* install the new credentials */
1007 if (bprm->cred->uid != current_euid() ||
1008 bprm->cred->gid != current_egid()) {
1009 current->pdeath_signal = 0;
1010 } else if (file_permission(bprm->file, MAY_READ) ||
1011 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1012 set_dumpable(current->mm, suid_dumpable);
1015 current->personality &= ~bprm->per_clear;
1018 * Flush performance counters when crossing a
1019 * security domain:
1021 if (!get_dumpable(current->mm))
1022 perf_counter_exit_task(current);
1024 /* An exec changes our domain. We are no longer part of the thread
1025 group */
1027 current->self_exec_id++;
1029 flush_signal_handlers(current, 0);
1030 flush_old_files(current->files);
1032 return 0;
1034 out:
1035 return retval;
1038 EXPORT_SYMBOL(flush_old_exec);
1041 * install the new credentials for this executable
1043 void install_exec_creds(struct linux_binprm *bprm)
1045 security_bprm_committing_creds(bprm);
1047 commit_creds(bprm->cred);
1048 bprm->cred = NULL;
1050 /* cred_exec_mutex must be held at least to this point to prevent
1051 * ptrace_attach() from altering our determination of the task's
1052 * credentials; any time after this it may be unlocked */
1054 security_bprm_committed_creds(bprm);
1056 EXPORT_SYMBOL(install_exec_creds);
1059 * determine how safe it is to execute the proposed program
1060 * - the caller must hold current->cred_exec_mutex to protect against
1061 * PTRACE_ATTACH
1063 int check_unsafe_exec(struct linux_binprm *bprm)
1065 struct task_struct *p = current, *t;
1066 unsigned n_fs;
1067 int res = 0;
1069 bprm->unsafe = tracehook_unsafe_exec(p);
1071 n_fs = 1;
1072 write_lock(&p->fs->lock);
1073 rcu_read_lock();
1074 for (t = next_thread(p); t != p; t = next_thread(t)) {
1075 if (t->fs == p->fs)
1076 n_fs++;
1078 rcu_read_unlock();
1080 if (p->fs->users > n_fs) {
1081 bprm->unsafe |= LSM_UNSAFE_SHARE;
1082 } else {
1083 res = -EAGAIN;
1084 if (!p->fs->in_exec) {
1085 p->fs->in_exec = 1;
1086 res = 1;
1089 write_unlock(&p->fs->lock);
1091 return res;
1095 * Fill the binprm structure from the inode.
1096 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1098 * This may be called multiple times for binary chains (scripts for example).
1100 int prepare_binprm(struct linux_binprm *bprm)
1102 umode_t mode;
1103 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1104 int retval;
1106 mode = inode->i_mode;
1107 if (bprm->file->f_op == NULL)
1108 return -EACCES;
1110 /* clear any previous set[ug]id data from a previous binary */
1111 bprm->cred->euid = current_euid();
1112 bprm->cred->egid = current_egid();
1114 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1115 /* Set-uid? */
1116 if (mode & S_ISUID) {
1117 bprm->per_clear |= PER_CLEAR_ON_SETID;
1118 bprm->cred->euid = inode->i_uid;
1121 /* Set-gid? */
1123 * If setgid is set but no group execute bit then this
1124 * is a candidate for mandatory locking, not a setgid
1125 * executable.
1127 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1128 bprm->per_clear |= PER_CLEAR_ON_SETID;
1129 bprm->cred->egid = inode->i_gid;
1133 /* fill in binprm security blob */
1134 retval = security_bprm_set_creds(bprm);
1135 if (retval)
1136 return retval;
1137 bprm->cred_prepared = 1;
1139 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1140 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1143 EXPORT_SYMBOL(prepare_binprm);
1146 * Arguments are '\0' separated strings found at the location bprm->p
1147 * points to; chop off the first by relocating brpm->p to right after
1148 * the first '\0' encountered.
1150 int remove_arg_zero(struct linux_binprm *bprm)
1152 int ret = 0;
1153 unsigned long offset;
1154 char *kaddr;
1155 struct page *page;
1157 if (!bprm->argc)
1158 return 0;
1160 do {
1161 offset = bprm->p & ~PAGE_MASK;
1162 page = get_arg_page(bprm, bprm->p, 0);
1163 if (!page) {
1164 ret = -EFAULT;
1165 goto out;
1167 kaddr = kmap_atomic(page, KM_USER0);
1169 for (; offset < PAGE_SIZE && kaddr[offset];
1170 offset++, bprm->p++)
1173 kunmap_atomic(kaddr, KM_USER0);
1174 put_arg_page(page);
1176 if (offset == PAGE_SIZE)
1177 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1178 } while (offset == PAGE_SIZE);
1180 bprm->p++;
1181 bprm->argc--;
1182 ret = 0;
1184 out:
1185 return ret;
1187 EXPORT_SYMBOL(remove_arg_zero);
1190 * cycle the list of binary formats handler, until one recognizes the image
1192 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1194 unsigned int depth = bprm->recursion_depth;
1195 int try,retval;
1196 struct linux_binfmt *fmt;
1198 retval = security_bprm_check(bprm);
1199 if (retval)
1200 return retval;
1202 /* kernel module loader fixup */
1203 /* so we don't try to load run modprobe in kernel space. */
1204 set_fs(USER_DS);
1206 retval = audit_bprm(bprm);
1207 if (retval)
1208 return retval;
1210 retval = -ENOENT;
1211 for (try=0; try<2; try++) {
1212 read_lock(&binfmt_lock);
1213 list_for_each_entry(fmt, &formats, lh) {
1214 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1215 if (!fn)
1216 continue;
1217 if (!try_module_get(fmt->module))
1218 continue;
1219 read_unlock(&binfmt_lock);
1220 retval = fn(bprm, regs);
1222 * Restore the depth counter to its starting value
1223 * in this call, so we don't have to rely on every
1224 * load_binary function to restore it on return.
1226 bprm->recursion_depth = depth;
1227 if (retval >= 0) {
1228 if (depth == 0)
1229 tracehook_report_exec(fmt, bprm, regs);
1230 put_binfmt(fmt);
1231 allow_write_access(bprm->file);
1232 if (bprm->file)
1233 fput(bprm->file);
1234 bprm->file = NULL;
1235 current->did_exec = 1;
1236 proc_exec_connector(current);
1237 return retval;
1239 read_lock(&binfmt_lock);
1240 put_binfmt(fmt);
1241 if (retval != -ENOEXEC || bprm->mm == NULL)
1242 break;
1243 if (!bprm->file) {
1244 read_unlock(&binfmt_lock);
1245 return retval;
1248 read_unlock(&binfmt_lock);
1249 if (retval != -ENOEXEC || bprm->mm == NULL) {
1250 break;
1251 #ifdef CONFIG_MODULES
1252 } else {
1253 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1254 if (printable(bprm->buf[0]) &&
1255 printable(bprm->buf[1]) &&
1256 printable(bprm->buf[2]) &&
1257 printable(bprm->buf[3]))
1258 break; /* -ENOEXEC */
1259 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1260 #endif
1263 return retval;
1266 EXPORT_SYMBOL(search_binary_handler);
1268 void free_bprm(struct linux_binprm *bprm)
1270 free_arg_pages(bprm);
1271 if (bprm->cred)
1272 abort_creds(bprm->cred);
1273 kfree(bprm);
1277 * sys_execve() executes a new program.
1279 int do_execve(char * filename,
1280 char __user *__user *argv,
1281 char __user *__user *envp,
1282 struct pt_regs * regs)
1284 struct linux_binprm *bprm;
1285 struct file *file;
1286 struct files_struct *displaced;
1287 bool clear_in_exec;
1288 int retval;
1290 retval = unshare_files(&displaced);
1291 if (retval)
1292 goto out_ret;
1294 retval = -ENOMEM;
1295 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1296 if (!bprm)
1297 goto out_files;
1299 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1300 if (retval < 0)
1301 goto out_free;
1303 retval = -ENOMEM;
1304 bprm->cred = prepare_exec_creds();
1305 if (!bprm->cred)
1306 goto out_unlock;
1308 retval = check_unsafe_exec(bprm);
1309 if (retval < 0)
1310 goto out_unlock;
1311 clear_in_exec = retval;
1313 file = open_exec(filename);
1314 retval = PTR_ERR(file);
1315 if (IS_ERR(file))
1316 goto out_unmark;
1318 sched_exec();
1320 bprm->file = file;
1321 bprm->filename = filename;
1322 bprm->interp = filename;
1324 retval = bprm_mm_init(bprm);
1325 if (retval)
1326 goto out_file;
1328 bprm->argc = count(argv, MAX_ARG_STRINGS);
1329 if ((retval = bprm->argc) < 0)
1330 goto out;
1332 bprm->envc = count(envp, MAX_ARG_STRINGS);
1333 if ((retval = bprm->envc) < 0)
1334 goto out;
1336 retval = prepare_binprm(bprm);
1337 if (retval < 0)
1338 goto out;
1340 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1341 if (retval < 0)
1342 goto out;
1344 bprm->exec = bprm->p;
1345 retval = copy_strings(bprm->envc, envp, bprm);
1346 if (retval < 0)
1347 goto out;
1349 retval = copy_strings(bprm->argc, argv, bprm);
1350 if (retval < 0)
1351 goto out;
1353 current->flags &= ~PF_KTHREAD;
1354 retval = search_binary_handler(bprm,regs);
1355 if (retval < 0)
1356 goto out;
1358 /* execve succeeded */
1359 current->fs->in_exec = 0;
1360 mutex_unlock(&current->cred_exec_mutex);
1361 acct_update_integrals(current);
1362 free_bprm(bprm);
1363 if (displaced)
1364 put_files_struct(displaced);
1365 return retval;
1367 out:
1368 if (bprm->mm)
1369 mmput (bprm->mm);
1371 out_file:
1372 if (bprm->file) {
1373 allow_write_access(bprm->file);
1374 fput(bprm->file);
1377 out_unmark:
1378 if (clear_in_exec)
1379 current->fs->in_exec = 0;
1381 out_unlock:
1382 mutex_unlock(&current->cred_exec_mutex);
1384 out_free:
1385 free_bprm(bprm);
1387 out_files:
1388 if (displaced)
1389 reset_files_struct(displaced);
1390 out_ret:
1391 return retval;
1394 int set_binfmt(struct linux_binfmt *new)
1396 struct linux_binfmt *old = current->binfmt;
1398 if (new) {
1399 if (!try_module_get(new->module))
1400 return -1;
1402 current->binfmt = new;
1403 if (old)
1404 module_put(old->module);
1405 return 0;
1408 EXPORT_SYMBOL(set_binfmt);
1410 /* format_corename will inspect the pattern parameter, and output a
1411 * name into corename, which must have space for at least
1412 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1414 static int format_corename(char *corename, long signr)
1416 const struct cred *cred = current_cred();
1417 const char *pat_ptr = core_pattern;
1418 int ispipe = (*pat_ptr == '|');
1419 char *out_ptr = corename;
1420 char *const out_end = corename + CORENAME_MAX_SIZE;
1421 int rc;
1422 int pid_in_pattern = 0;
1424 /* Repeat as long as we have more pattern to process and more output
1425 space */
1426 while (*pat_ptr) {
1427 if (*pat_ptr != '%') {
1428 if (out_ptr == out_end)
1429 goto out;
1430 *out_ptr++ = *pat_ptr++;
1431 } else {
1432 switch (*++pat_ptr) {
1433 case 0:
1434 goto out;
1435 /* Double percent, output one percent */
1436 case '%':
1437 if (out_ptr == out_end)
1438 goto out;
1439 *out_ptr++ = '%';
1440 break;
1441 /* pid */
1442 case 'p':
1443 pid_in_pattern = 1;
1444 rc = snprintf(out_ptr, out_end - out_ptr,
1445 "%d", task_tgid_vnr(current));
1446 if (rc > out_end - out_ptr)
1447 goto out;
1448 out_ptr += rc;
1449 break;
1450 /* uid */
1451 case 'u':
1452 rc = snprintf(out_ptr, out_end - out_ptr,
1453 "%d", cred->uid);
1454 if (rc > out_end - out_ptr)
1455 goto out;
1456 out_ptr += rc;
1457 break;
1458 /* gid */
1459 case 'g':
1460 rc = snprintf(out_ptr, out_end - out_ptr,
1461 "%d", cred->gid);
1462 if (rc > out_end - out_ptr)
1463 goto out;
1464 out_ptr += rc;
1465 break;
1466 /* signal that caused the coredump */
1467 case 's':
1468 rc = snprintf(out_ptr, out_end - out_ptr,
1469 "%ld", signr);
1470 if (rc > out_end - out_ptr)
1471 goto out;
1472 out_ptr += rc;
1473 break;
1474 /* UNIX time of coredump */
1475 case 't': {
1476 struct timeval tv;
1477 do_gettimeofday(&tv);
1478 rc = snprintf(out_ptr, out_end - out_ptr,
1479 "%lu", tv.tv_sec);
1480 if (rc > out_end - out_ptr)
1481 goto out;
1482 out_ptr += rc;
1483 break;
1485 /* hostname */
1486 case 'h':
1487 down_read(&uts_sem);
1488 rc = snprintf(out_ptr, out_end - out_ptr,
1489 "%s", utsname()->nodename);
1490 up_read(&uts_sem);
1491 if (rc > out_end - out_ptr)
1492 goto out;
1493 out_ptr += rc;
1494 break;
1495 /* executable */
1496 case 'e':
1497 rc = snprintf(out_ptr, out_end - out_ptr,
1498 "%s", current->comm);
1499 if (rc > out_end - out_ptr)
1500 goto out;
1501 out_ptr += rc;
1502 break;
1503 /* core limit size */
1504 case 'c':
1505 rc = snprintf(out_ptr, out_end - out_ptr,
1506 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1507 if (rc > out_end - out_ptr)
1508 goto out;
1509 out_ptr += rc;
1510 break;
1511 default:
1512 break;
1514 ++pat_ptr;
1517 /* Backward compatibility with core_uses_pid:
1519 * If core_pattern does not include a %p (as is the default)
1520 * and core_uses_pid is set, then .%pid will be appended to
1521 * the filename. Do not do this for piped commands. */
1522 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1523 rc = snprintf(out_ptr, out_end - out_ptr,
1524 ".%d", task_tgid_vnr(current));
1525 if (rc > out_end - out_ptr)
1526 goto out;
1527 out_ptr += rc;
1529 out:
1530 *out_ptr = 0;
1531 return ispipe;
1534 static int zap_process(struct task_struct *start)
1536 struct task_struct *t;
1537 int nr = 0;
1539 start->signal->flags = SIGNAL_GROUP_EXIT;
1540 start->signal->group_stop_count = 0;
1542 t = start;
1543 do {
1544 if (t != current && t->mm) {
1545 sigaddset(&t->pending.signal, SIGKILL);
1546 signal_wake_up(t, 1);
1547 nr++;
1549 } while_each_thread(start, t);
1551 return nr;
1554 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1555 struct core_state *core_state, int exit_code)
1557 struct task_struct *g, *p;
1558 unsigned long flags;
1559 int nr = -EAGAIN;
1561 spin_lock_irq(&tsk->sighand->siglock);
1562 if (!signal_group_exit(tsk->signal)) {
1563 mm->core_state = core_state;
1564 tsk->signal->group_exit_code = exit_code;
1565 nr = zap_process(tsk);
1567 spin_unlock_irq(&tsk->sighand->siglock);
1568 if (unlikely(nr < 0))
1569 return nr;
1571 if (atomic_read(&mm->mm_users) == nr + 1)
1572 goto done;
1574 * We should find and kill all tasks which use this mm, and we should
1575 * count them correctly into ->nr_threads. We don't take tasklist
1576 * lock, but this is safe wrt:
1578 * fork:
1579 * None of sub-threads can fork after zap_process(leader). All
1580 * processes which were created before this point should be
1581 * visible to zap_threads() because copy_process() adds the new
1582 * process to the tail of init_task.tasks list, and lock/unlock
1583 * of ->siglock provides a memory barrier.
1585 * do_exit:
1586 * The caller holds mm->mmap_sem. This means that the task which
1587 * uses this mm can't pass exit_mm(), so it can't exit or clear
1588 * its ->mm.
1590 * de_thread:
1591 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1592 * we must see either old or new leader, this does not matter.
1593 * However, it can change p->sighand, so lock_task_sighand(p)
1594 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1595 * it can't fail.
1597 * Note also that "g" can be the old leader with ->mm == NULL
1598 * and already unhashed and thus removed from ->thread_group.
1599 * This is OK, __unhash_process()->list_del_rcu() does not
1600 * clear the ->next pointer, we will find the new leader via
1601 * next_thread().
1603 rcu_read_lock();
1604 for_each_process(g) {
1605 if (g == tsk->group_leader)
1606 continue;
1607 if (g->flags & PF_KTHREAD)
1608 continue;
1609 p = g;
1610 do {
1611 if (p->mm) {
1612 if (unlikely(p->mm == mm)) {
1613 lock_task_sighand(p, &flags);
1614 nr += zap_process(p);
1615 unlock_task_sighand(p, &flags);
1617 break;
1619 } while_each_thread(g, p);
1621 rcu_read_unlock();
1622 done:
1623 atomic_set(&core_state->nr_threads, nr);
1624 return nr;
1627 static int coredump_wait(int exit_code, struct core_state *core_state)
1629 struct task_struct *tsk = current;
1630 struct mm_struct *mm = tsk->mm;
1631 struct completion *vfork_done;
1632 int core_waiters;
1634 init_completion(&core_state->startup);
1635 core_state->dumper.task = tsk;
1636 core_state->dumper.next = NULL;
1637 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1638 up_write(&mm->mmap_sem);
1640 if (unlikely(core_waiters < 0))
1641 goto fail;
1644 * Make sure nobody is waiting for us to release the VM,
1645 * otherwise we can deadlock when we wait on each other
1647 vfork_done = tsk->vfork_done;
1648 if (vfork_done) {
1649 tsk->vfork_done = NULL;
1650 complete(vfork_done);
1653 if (core_waiters)
1654 wait_for_completion(&core_state->startup);
1655 fail:
1656 return core_waiters;
1659 static void coredump_finish(struct mm_struct *mm)
1661 struct core_thread *curr, *next;
1662 struct task_struct *task;
1664 next = mm->core_state->dumper.next;
1665 while ((curr = next) != NULL) {
1666 next = curr->next;
1667 task = curr->task;
1669 * see exit_mm(), curr->task must not see
1670 * ->task == NULL before we read ->next.
1672 smp_mb();
1673 curr->task = NULL;
1674 wake_up_process(task);
1677 mm->core_state = NULL;
1681 * set_dumpable converts traditional three-value dumpable to two flags and
1682 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1683 * these bits are not changed atomically. So get_dumpable can observe the
1684 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1685 * return either old dumpable or new one by paying attention to the order of
1686 * modifying the bits.
1688 * dumpable | mm->flags (binary)
1689 * old new | initial interim final
1690 * ---------+-----------------------
1691 * 0 1 | 00 01 01
1692 * 0 2 | 00 10(*) 11
1693 * 1 0 | 01 00 00
1694 * 1 2 | 01 11 11
1695 * 2 0 | 11 10(*) 00
1696 * 2 1 | 11 11 01
1698 * (*) get_dumpable regards interim value of 10 as 11.
1700 void set_dumpable(struct mm_struct *mm, int value)
1702 switch (value) {
1703 case 0:
1704 clear_bit(MMF_DUMPABLE, &mm->flags);
1705 smp_wmb();
1706 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1707 break;
1708 case 1:
1709 set_bit(MMF_DUMPABLE, &mm->flags);
1710 smp_wmb();
1711 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1712 break;
1713 case 2:
1714 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1715 smp_wmb();
1716 set_bit(MMF_DUMPABLE, &mm->flags);
1717 break;
1721 int get_dumpable(struct mm_struct *mm)
1723 int ret;
1725 ret = mm->flags & 0x3;
1726 return (ret >= 2) ? 2 : ret;
1729 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1731 struct core_state core_state;
1732 char corename[CORENAME_MAX_SIZE + 1];
1733 struct mm_struct *mm = current->mm;
1734 struct linux_binfmt * binfmt;
1735 struct inode * inode;
1736 struct file * file;
1737 const struct cred *old_cred;
1738 struct cred *cred;
1739 int retval = 0;
1740 int flag = 0;
1741 int ispipe = 0;
1742 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1743 char **helper_argv = NULL;
1744 int helper_argc = 0;
1745 char *delimit;
1747 audit_core_dumps(signr);
1749 binfmt = current->binfmt;
1750 if (!binfmt || !binfmt->core_dump)
1751 goto fail;
1753 cred = prepare_creds();
1754 if (!cred) {
1755 retval = -ENOMEM;
1756 goto fail;
1759 down_write(&mm->mmap_sem);
1761 * If another thread got here first, or we are not dumpable, bail out.
1763 if (mm->core_state || !get_dumpable(mm)) {
1764 up_write(&mm->mmap_sem);
1765 put_cred(cred);
1766 goto fail;
1770 * We cannot trust fsuid as being the "true" uid of the
1771 * process nor do we know its entire history. We only know it
1772 * was tainted so we dump it as root in mode 2.
1774 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1775 flag = O_EXCL; /* Stop rewrite attacks */
1776 cred->fsuid = 0; /* Dump root private */
1779 retval = coredump_wait(exit_code, &core_state);
1780 if (retval < 0) {
1781 put_cred(cred);
1782 goto fail;
1785 old_cred = override_creds(cred);
1788 * Clear any false indication of pending signals that might
1789 * be seen by the filesystem code called to write the core file.
1791 clear_thread_flag(TIF_SIGPENDING);
1794 * lock_kernel() because format_corename() is controlled by sysctl, which
1795 * uses lock_kernel()
1797 lock_kernel();
1798 ispipe = format_corename(corename, signr);
1799 unlock_kernel();
1801 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1802 * to a pipe. Since we're not writing directly to the filesystem
1803 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1804 * created unless the pipe reader choses to write out the core file
1805 * at which point file size limits and permissions will be imposed
1806 * as it does with any other process
1808 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1809 goto fail_unlock;
1811 if (ispipe) {
1812 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1813 if (!helper_argv) {
1814 printk(KERN_WARNING "%s failed to allocate memory\n",
1815 __func__);
1816 goto fail_unlock;
1818 /* Terminate the string before the first option */
1819 delimit = strchr(corename, ' ');
1820 if (delimit)
1821 *delimit = '\0';
1822 delimit = strrchr(helper_argv[0], '/');
1823 if (delimit)
1824 delimit++;
1825 else
1826 delimit = helper_argv[0];
1827 if (!strcmp(delimit, current->comm)) {
1828 printk(KERN_NOTICE "Recursive core dump detected, "
1829 "aborting\n");
1830 goto fail_unlock;
1833 core_limit = RLIM_INFINITY;
1835 /* SIGPIPE can happen, but it's just never processed */
1836 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1837 &file)) {
1838 printk(KERN_INFO "Core dump to %s pipe failed\n",
1839 corename);
1840 goto fail_unlock;
1842 } else
1843 file = filp_open(corename,
1844 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1845 0600);
1846 if (IS_ERR(file))
1847 goto fail_unlock;
1848 inode = file->f_path.dentry->d_inode;
1849 if (inode->i_nlink > 1)
1850 goto close_fail; /* multiple links - don't dump */
1851 if (!ispipe && d_unhashed(file->f_path.dentry))
1852 goto close_fail;
1854 /* AK: actually i see no reason to not allow this for named pipes etc.,
1855 but keep the previous behaviour for now. */
1856 if (!ispipe && !S_ISREG(inode->i_mode))
1857 goto close_fail;
1859 * Dont allow local users get cute and trick others to coredump
1860 * into their pre-created files:
1862 if (inode->i_uid != current_fsuid())
1863 goto close_fail;
1864 if (!file->f_op)
1865 goto close_fail;
1866 if (!file->f_op->write)
1867 goto close_fail;
1868 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1869 goto close_fail;
1871 retval = binfmt->core_dump(signr, regs, file, core_limit);
1873 if (retval)
1874 current->signal->group_exit_code |= 0x80;
1875 close_fail:
1876 filp_close(file, NULL);
1877 fail_unlock:
1878 if (helper_argv)
1879 argv_free(helper_argv);
1881 revert_creds(old_cred);
1882 put_cred(cred);
1883 coredump_finish(mm);
1884 fail:
1885 return;