added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / usb / core / message.c
blob83f8d0ff8fe3361a93f8e6880b95b0f02fd2daf6
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <asm/byteorder.h>
18 #include "hcd.h" /* for usbcore internals */
19 #include "usb.h"
21 static void cancel_async_set_config(struct usb_device *udev);
23 struct api_context {
24 struct completion done;
25 int status;
28 static void usb_api_blocking_completion(struct urb *urb)
30 struct api_context *ctx = urb->context;
32 ctx->status = urb->status;
33 complete(&ctx->done);
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%d/%d\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
74 usb_free_urb(urb);
75 return retval;
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
85 struct urb *urb;
86 int retv;
87 int length;
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
116 * Context: !in_interrupt ()
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
121 * If successful, it returns the number of bytes transferred, otherwise a
122 * negative error number.
124 * Don't use this function from within an interrupt context, like a bottom half
125 * handler. If you need an asynchronous message, or need to send a message
126 * from within interrupt context, use usb_submit_urb().
127 * If a thread in your driver uses this call, make sure your disconnect()
128 * method can wait for it to complete. Since you don't have a handle on the
129 * URB used, you can't cancel the request.
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
135 struct usb_ctrlrequest *dr;
136 int ret;
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
148 /* dbg("usb_control_msg"); */
150 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 kfree(dr);
154 return ret;
156 EXPORT_SYMBOL_GPL(usb_control_msg);
159 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
160 * @usb_dev: pointer to the usb device to send the message to
161 * @pipe: endpoint "pipe" to send the message to
162 * @data: pointer to the data to send
163 * @len: length in bytes of the data to send
164 * @actual_length: pointer to a location to put the actual length transferred
165 * in bytes
166 * @timeout: time in msecs to wait for the message to complete before
167 * timing out (if 0 the wait is forever)
169 * Context: !in_interrupt ()
171 * This function sends a simple interrupt message to a specified endpoint and
172 * waits for the message to complete, or timeout.
174 * If successful, it returns 0, otherwise a negative error number. The number
175 * of actual bytes transferred will be stored in the actual_length paramater.
177 * Don't use this function from within an interrupt context, like a bottom half
178 * handler. If you need an asynchronous message, or need to send a message
179 * from within interrupt context, use usb_submit_urb() If a thread in your
180 * driver uses this call, make sure your disconnect() method can wait for it to
181 * complete. Since you don't have a handle on the URB used, you can't cancel
182 * the request.
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 void *data, int len, int *actual_length, int timeout)
187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 * @usb_dev: pointer to the usb device to send the message to
194 * @pipe: endpoint "pipe" to send the message to
195 * @data: pointer to the data to send
196 * @len: length in bytes of the data to send
197 * @actual_length: pointer to a location to put the actual length transferred
198 * in bytes
199 * @timeout: time in msecs to wait for the message to complete before
200 * timing out (if 0 the wait is forever)
202 * Context: !in_interrupt ()
204 * This function sends a simple bulk message to a specified endpoint
205 * and waits for the message to complete, or timeout.
207 * If successful, it returns 0, otherwise a negative error number. The number
208 * of actual bytes transferred will be stored in the actual_length paramater.
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
223 void *data, int len, int *actual_length, int timeout)
225 struct urb *urb;
226 struct usb_host_endpoint *ep;
228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
229 [usb_pipeendpoint(pipe)];
230 if (!ep || len < 0)
231 return -EINVAL;
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
247 return usb_start_wait_urb(urb, timeout, actual_length);
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 /*-------------------------------------------------------------------*/
253 static void sg_clean(struct usb_sg_request *io)
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
261 if (io->dev->dev.dma_mask != NULL)
262 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
263 io->sg, io->nents);
264 io->dev = NULL;
267 static void sg_complete(struct urb *urb)
269 struct usb_sg_request *io = urb->context;
270 int status = urb->status;
271 unsigned long flags;
273 spin_lock_irqsave (&io->lock, flags);
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
285 if (io->status
286 && (io->status != -ECONNRESET
287 || status != -ECONNRESET)
288 && urb->actual_length) {
289 dev_err(io->dev->bus->controller,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
291 io->dev->devpath,
292 usb_endpoint_num(&urb->ep->desc),
293 usb_urb_dir_in(urb) ? "in" : "out",
294 status, io->status);
295 /* BUG (); */
298 if (io->status == 0 && status && status != -ECONNRESET) {
299 int i, found, retval;
301 io->status = status;
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
307 spin_unlock_irqrestore (&io->lock, flags);
308 for (i = 0, found = 0; i < io->entries; i++) {
309 if (!io->urbs [i] || !io->urbs [i]->dev)
310 continue;
311 if (found) {
312 retval = usb_unlink_urb(io->urbs [i]);
313 if (retval != -EINPROGRESS &&
314 retval != -ENODEV &&
315 retval != -EBUSY)
316 dev_err(&io->dev->dev,
317 "%s, unlink --> %d\n",
318 __func__, retval);
319 } else if (urb == io->urbs [i])
320 found = 1;
322 spin_lock_irqsave (&io->lock, flags);
324 urb->dev = NULL;
326 /* on the last completion, signal usb_sg_wait() */
327 io->bytes += urb->actual_length;
328 io->count--;
329 if (!io->count)
330 complete(&io->complete);
332 spin_unlock_irqrestore (&io->lock, flags);
337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338 * @io: request block being initialized. until usb_sg_wait() returns,
339 * treat this as a pointer to an opaque block of memory,
340 * @dev: the usb device that will send or receive the data
341 * @pipe: endpoint "pipe" used to transfer the data
342 * @period: polling rate for interrupt endpoints, in frames or
343 * (for high speed endpoints) microframes; ignored for bulk
344 * @sg: scatterlist entries
345 * @nents: how many entries in the scatterlist
346 * @length: how many bytes to send from the scatterlist, or zero to
347 * send every byte identified in the list.
348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 * Returns zero for success, else a negative errno value. This initializes a
351 * scatter/gather request, allocating resources such as I/O mappings and urb
352 * memory (except maybe memory used by USB controller drivers).
354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
355 * complete (or to be canceled) and then cleans up all resources allocated by
356 * usb_sg_init().
358 * The request may be canceled with usb_sg_cancel(), either before or after
359 * usb_sg_wait() is called.
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 unsigned pipe, unsigned period, struct scatterlist *sg,
363 int nents, size_t length, gfp_t mem_flags)
365 int i;
366 int urb_flags;
367 int dma;
369 if (!io || !dev || !sg
370 || usb_pipecontrol(pipe)
371 || usb_pipeisoc(pipe)
372 || nents <= 0)
373 return -EINVAL;
375 spin_lock_init(&io->lock);
376 io->dev = dev;
377 io->pipe = pipe;
378 io->sg = sg;
379 io->nents = nents;
381 /* not all host controllers use DMA (like the mainstream pci ones);
382 * they can use PIO (sl811) or be software over another transport.
384 dma = (dev->dev.dma_mask != NULL);
385 if (dma)
386 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
387 sg, nents);
388 else
389 io->entries = nents;
391 /* initialize all the urbs we'll use */
392 if (io->entries <= 0)
393 return io->entries;
395 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
396 if (!io->urbs)
397 goto nomem;
399 urb_flags = URB_NO_INTERRUPT;
400 if (dma)
401 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
402 if (usb_pipein(pipe))
403 urb_flags |= URB_SHORT_NOT_OK;
405 for_each_sg(sg, sg, io->entries, i) {
406 unsigned len;
408 io->urbs[i] = usb_alloc_urb(0, mem_flags);
409 if (!io->urbs[i]) {
410 io->entries = i;
411 goto nomem;
414 io->urbs[i]->dev = NULL;
415 io->urbs[i]->pipe = pipe;
416 io->urbs[i]->interval = period;
417 io->urbs[i]->transfer_flags = urb_flags;
419 io->urbs[i]->complete = sg_complete;
420 io->urbs[i]->context = io;
423 * Some systems need to revert to PIO when DMA is temporarily
424 * unavailable. For their sakes, both transfer_buffer and
425 * transfer_dma are set when possible. However this can only
426 * work on systems without:
428 * - HIGHMEM, since DMA buffers located in high memory are
429 * not directly addressable by the CPU for PIO;
431 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
432 * make virtually discontiguous buffers be "dma-contiguous"
433 * so that PIO and DMA need diferent numbers of URBs.
435 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
436 * to prevent stale pointers and to help spot bugs.
438 if (dma) {
439 io->urbs[i]->transfer_dma = sg_dma_address(sg);
440 len = sg_dma_len(sg);
441 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
442 io->urbs[i]->transfer_buffer = NULL;
443 #else
444 io->urbs[i]->transfer_buffer = sg_virt(sg);
445 #endif
446 } else {
447 /* hc may use _only_ transfer_buffer */
448 io->urbs[i]->transfer_buffer = sg_virt(sg);
449 len = sg->length;
452 if (length) {
453 len = min_t(unsigned, len, length);
454 length -= len;
455 if (length == 0)
456 io->entries = i + 1;
458 io->urbs[i]->transfer_buffer_length = len;
460 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
462 /* transaction state */
463 io->count = io->entries;
464 io->status = 0;
465 io->bytes = 0;
466 init_completion(&io->complete);
467 return 0;
469 nomem:
470 sg_clean(io);
471 return -ENOMEM;
473 EXPORT_SYMBOL_GPL(usb_sg_init);
476 * usb_sg_wait - synchronously execute scatter/gather request
477 * @io: request block handle, as initialized with usb_sg_init().
478 * some fields become accessible when this call returns.
479 * Context: !in_interrupt ()
481 * This function blocks until the specified I/O operation completes. It
482 * leverages the grouping of the related I/O requests to get good transfer
483 * rates, by queueing the requests. At higher speeds, such queuing can
484 * significantly improve USB throughput.
486 * There are three kinds of completion for this function.
487 * (1) success, where io->status is zero. The number of io->bytes
488 * transferred is as requested.
489 * (2) error, where io->status is a negative errno value. The number
490 * of io->bytes transferred before the error is usually less
491 * than requested, and can be nonzero.
492 * (3) cancellation, a type of error with status -ECONNRESET that
493 * is initiated by usb_sg_cancel().
495 * When this function returns, all memory allocated through usb_sg_init() or
496 * this call will have been freed. The request block parameter may still be
497 * passed to usb_sg_cancel(), or it may be freed. It could also be
498 * reinitialized and then reused.
500 * Data Transfer Rates:
502 * Bulk transfers are valid for full or high speed endpoints.
503 * The best full speed data rate is 19 packets of 64 bytes each
504 * per frame, or 1216 bytes per millisecond.
505 * The best high speed data rate is 13 packets of 512 bytes each
506 * per microframe, or 52 KBytes per millisecond.
508 * The reason to use interrupt transfers through this API would most likely
509 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
510 * could be transferred. That capability is less useful for low or full
511 * speed interrupt endpoints, which allow at most one packet per millisecond,
512 * of at most 8 or 64 bytes (respectively).
514 void usb_sg_wait(struct usb_sg_request *io)
516 int i;
517 int entries = io->entries;
519 /* queue the urbs. */
520 spin_lock_irq(&io->lock);
521 i = 0;
522 while (i < entries && !io->status) {
523 int retval;
525 io->urbs[i]->dev = io->dev;
526 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
528 /* after we submit, let completions or cancelations fire;
529 * we handshake using io->status.
531 spin_unlock_irq(&io->lock);
532 switch (retval) {
533 /* maybe we retrying will recover */
534 case -ENXIO: /* hc didn't queue this one */
535 case -EAGAIN:
536 case -ENOMEM:
537 io->urbs[i]->dev = NULL;
538 retval = 0;
539 yield();
540 break;
542 /* no error? continue immediately.
544 * NOTE: to work better with UHCI (4K I/O buffer may
545 * need 3K of TDs) it may be good to limit how many
546 * URBs are queued at once; N milliseconds?
548 case 0:
549 ++i;
550 cpu_relax();
551 break;
553 /* fail any uncompleted urbs */
554 default:
555 io->urbs[i]->dev = NULL;
556 io->urbs[i]->status = retval;
557 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
558 __func__, retval);
559 usb_sg_cancel(io);
561 spin_lock_irq(&io->lock);
562 if (retval && (io->status == 0 || io->status == -ECONNRESET))
563 io->status = retval;
565 io->count -= entries - i;
566 if (io->count == 0)
567 complete(&io->complete);
568 spin_unlock_irq(&io->lock);
570 /* OK, yes, this could be packaged as non-blocking.
571 * So could the submit loop above ... but it's easier to
572 * solve neither problem than to solve both!
574 wait_for_completion(&io->complete);
576 sg_clean(io);
578 EXPORT_SYMBOL_GPL(usb_sg_wait);
581 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
582 * @io: request block, initialized with usb_sg_init()
584 * This stops a request after it has been started by usb_sg_wait().
585 * It can also prevents one initialized by usb_sg_init() from starting,
586 * so that call just frees resources allocated to the request.
588 void usb_sg_cancel(struct usb_sg_request *io)
590 unsigned long flags;
592 spin_lock_irqsave(&io->lock, flags);
594 /* shut everything down, if it didn't already */
595 if (!io->status) {
596 int i;
598 io->status = -ECONNRESET;
599 spin_unlock_irqrestore(&io->lock, flags);
600 for (i = 0; i < io->entries; i++) {
601 int retval;
603 if (!io->urbs [i]->dev)
604 continue;
605 retval = usb_unlink_urb(io->urbs [i]);
606 if (retval != -EINPROGRESS && retval != -EBUSY)
607 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
608 __func__, retval);
610 spin_lock_irqsave(&io->lock, flags);
612 spin_unlock_irqrestore(&io->lock, flags);
614 EXPORT_SYMBOL_GPL(usb_sg_cancel);
616 /*-------------------------------------------------------------------*/
619 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
620 * @dev: the device whose descriptor is being retrieved
621 * @type: the descriptor type (USB_DT_*)
622 * @index: the number of the descriptor
623 * @buf: where to put the descriptor
624 * @size: how big is "buf"?
625 * Context: !in_interrupt ()
627 * Gets a USB descriptor. Convenience functions exist to simplify
628 * getting some types of descriptors. Use
629 * usb_get_string() or usb_string() for USB_DT_STRING.
630 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
631 * are part of the device structure.
632 * In addition to a number of USB-standard descriptors, some
633 * devices also use class-specific or vendor-specific descriptors.
635 * This call is synchronous, and may not be used in an interrupt context.
637 * Returns the number of bytes received on success, or else the status code
638 * returned by the underlying usb_control_msg() call.
640 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
641 unsigned char index, void *buf, int size)
643 int i;
644 int result;
646 memset(buf, 0, size); /* Make sure we parse really received data */
648 for (i = 0; i < 3; ++i) {
649 /* retry on length 0 or error; some devices are flakey */
650 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
651 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
652 (type << 8) + index, 0, buf, size,
653 USB_CTRL_GET_TIMEOUT);
654 if (result <= 0 && result != -ETIMEDOUT)
655 continue;
656 if (result > 1 && ((u8 *)buf)[1] != type) {
657 result = -ENODATA;
658 continue;
660 break;
662 return result;
664 EXPORT_SYMBOL_GPL(usb_get_descriptor);
667 * usb_get_string - gets a string descriptor
668 * @dev: the device whose string descriptor is being retrieved
669 * @langid: code for language chosen (from string descriptor zero)
670 * @index: the number of the descriptor
671 * @buf: where to put the string
672 * @size: how big is "buf"?
673 * Context: !in_interrupt ()
675 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
676 * in little-endian byte order).
677 * The usb_string() function will often be a convenient way to turn
678 * these strings into kernel-printable form.
680 * Strings may be referenced in device, configuration, interface, or other
681 * descriptors, and could also be used in vendor-specific ways.
683 * This call is synchronous, and may not be used in an interrupt context.
685 * Returns the number of bytes received on success, or else the status code
686 * returned by the underlying usb_control_msg() call.
688 static int usb_get_string(struct usb_device *dev, unsigned short langid,
689 unsigned char index, void *buf, int size)
691 int i;
692 int result;
694 for (i = 0; i < 3; ++i) {
695 /* retry on length 0 or stall; some devices are flakey */
696 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
697 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
698 (USB_DT_STRING << 8) + index, langid, buf, size,
699 USB_CTRL_GET_TIMEOUT);
700 if (result == 0 || result == -EPIPE)
701 continue;
702 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
703 result = -ENODATA;
704 continue;
706 break;
708 return result;
711 static void usb_try_string_workarounds(unsigned char *buf, int *length)
713 int newlength, oldlength = *length;
715 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
716 if (!isprint(buf[newlength]) || buf[newlength + 1])
717 break;
719 if (newlength > 2) {
720 buf[0] = newlength;
721 *length = newlength;
725 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
726 unsigned int index, unsigned char *buf)
728 int rc;
730 /* Try to read the string descriptor by asking for the maximum
731 * possible number of bytes */
732 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
733 rc = -EIO;
734 else
735 rc = usb_get_string(dev, langid, index, buf, 255);
737 /* If that failed try to read the descriptor length, then
738 * ask for just that many bytes */
739 if (rc < 2) {
740 rc = usb_get_string(dev, langid, index, buf, 2);
741 if (rc == 2)
742 rc = usb_get_string(dev, langid, index, buf, buf[0]);
745 if (rc >= 2) {
746 if (!buf[0] && !buf[1])
747 usb_try_string_workarounds(buf, &rc);
749 /* There might be extra junk at the end of the descriptor */
750 if (buf[0] < rc)
751 rc = buf[0];
753 rc = rc - (rc & 1); /* force a multiple of two */
756 if (rc < 2)
757 rc = (rc < 0 ? rc : -EINVAL);
759 return rc;
763 * usb_string - returns ISO 8859-1 version of a string descriptor
764 * @dev: the device whose string descriptor is being retrieved
765 * @index: the number of the descriptor
766 * @buf: where to put the string
767 * @size: how big is "buf"?
768 * Context: !in_interrupt ()
770 * This converts the UTF-16LE encoded strings returned by devices, from
771 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
772 * that are more usable in most kernel contexts. Note that all characters
773 * in the chosen descriptor that can't be encoded using ISO-8859-1
774 * are converted to the question mark ("?") character, and this function
775 * chooses strings in the first language supported by the device.
777 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
778 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
779 * and is appropriate for use many uses of English and several other
780 * Western European languages. (But it doesn't include the "Euro" symbol.)
782 * This call is synchronous, and may not be used in an interrupt context.
784 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
786 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
788 unsigned char *tbuf;
789 int err;
790 unsigned int u, idx;
792 if (dev->state == USB_STATE_SUSPENDED)
793 return -EHOSTUNREACH;
794 if (size <= 0 || !buf || !index)
795 return -EINVAL;
796 buf[0] = 0;
797 tbuf = kmalloc(256, GFP_NOIO);
798 if (!tbuf)
799 return -ENOMEM;
801 /* get langid for strings if it's not yet known */
802 if (!dev->have_langid) {
803 err = usb_string_sub(dev, 0, 0, tbuf);
804 if (err < 0) {
805 dev_err(&dev->dev,
806 "string descriptor 0 read error: %d\n",
807 err);
808 goto errout;
809 } else if (err < 4) {
810 dev_err(&dev->dev, "string descriptor 0 too short\n");
811 err = -EINVAL;
812 goto errout;
813 } else {
814 dev->have_langid = 1;
815 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
816 /* always use the first langid listed */
817 dev_dbg(&dev->dev, "default language 0x%04x\n",
818 dev->string_langid);
822 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
823 if (err < 0)
824 goto errout;
826 size--; /* leave room for trailing NULL char in output buffer */
827 for (idx = 0, u = 2; u < err; u += 2) {
828 if (idx >= size)
829 break;
830 if (tbuf[u+1]) /* high byte */
831 buf[idx++] = '?'; /* non ISO-8859-1 character */
832 else
833 buf[idx++] = tbuf[u];
835 buf[idx] = 0;
836 err = idx;
838 if (tbuf[1] != USB_DT_STRING)
839 dev_dbg(&dev->dev,
840 "wrong descriptor type %02x for string %d (\"%s\")\n",
841 tbuf[1], index, buf);
843 errout:
844 kfree(tbuf);
845 return err;
847 EXPORT_SYMBOL_GPL(usb_string);
850 * usb_cache_string - read a string descriptor and cache it for later use
851 * @udev: the device whose string descriptor is being read
852 * @index: the descriptor index
854 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
855 * or NULL if the index is 0 or the string could not be read.
857 char *usb_cache_string(struct usb_device *udev, int index)
859 char *buf;
860 char *smallbuf = NULL;
861 int len;
863 if (index <= 0)
864 return NULL;
866 buf = kmalloc(256, GFP_KERNEL);
867 if (buf) {
868 len = usb_string(udev, index, buf, 256);
869 if (len > 0) {
870 smallbuf = kmalloc(++len, GFP_KERNEL);
871 if (!smallbuf)
872 return buf;
873 memcpy(smallbuf, buf, len);
875 kfree(buf);
877 return smallbuf;
881 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
882 * @dev: the device whose device descriptor is being updated
883 * @size: how much of the descriptor to read
884 * Context: !in_interrupt ()
886 * Updates the copy of the device descriptor stored in the device structure,
887 * which dedicates space for this purpose.
889 * Not exported, only for use by the core. If drivers really want to read
890 * the device descriptor directly, they can call usb_get_descriptor() with
891 * type = USB_DT_DEVICE and index = 0.
893 * This call is synchronous, and may not be used in an interrupt context.
895 * Returns the number of bytes received on success, or else the status code
896 * returned by the underlying usb_control_msg() call.
898 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
900 struct usb_device_descriptor *desc;
901 int ret;
903 if (size > sizeof(*desc))
904 return -EINVAL;
905 desc = kmalloc(sizeof(*desc), GFP_NOIO);
906 if (!desc)
907 return -ENOMEM;
909 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
910 if (ret >= 0)
911 memcpy(&dev->descriptor, desc, size);
912 kfree(desc);
913 return ret;
917 * usb_get_status - issues a GET_STATUS call
918 * @dev: the device whose status is being checked
919 * @type: USB_RECIP_*; for device, interface, or endpoint
920 * @target: zero (for device), else interface or endpoint number
921 * @data: pointer to two bytes of bitmap data
922 * Context: !in_interrupt ()
924 * Returns device, interface, or endpoint status. Normally only of
925 * interest to see if the device is self powered, or has enabled the
926 * remote wakeup facility; or whether a bulk or interrupt endpoint
927 * is halted ("stalled").
929 * Bits in these status bitmaps are set using the SET_FEATURE request,
930 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
931 * function should be used to clear halt ("stall") status.
933 * This call is synchronous, and may not be used in an interrupt context.
935 * Returns the number of bytes received on success, or else the status code
936 * returned by the underlying usb_control_msg() call.
938 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
940 int ret;
941 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
943 if (!status)
944 return -ENOMEM;
946 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
947 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
948 sizeof(*status), USB_CTRL_GET_TIMEOUT);
950 *(u16 *)data = *status;
951 kfree(status);
952 return ret;
954 EXPORT_SYMBOL_GPL(usb_get_status);
957 * usb_clear_halt - tells device to clear endpoint halt/stall condition
958 * @dev: device whose endpoint is halted
959 * @pipe: endpoint "pipe" being cleared
960 * Context: !in_interrupt ()
962 * This is used to clear halt conditions for bulk and interrupt endpoints,
963 * as reported by URB completion status. Endpoints that are halted are
964 * sometimes referred to as being "stalled". Such endpoints are unable
965 * to transmit or receive data until the halt status is cleared. Any URBs
966 * queued for such an endpoint should normally be unlinked by the driver
967 * before clearing the halt condition, as described in sections 5.7.5
968 * and 5.8.5 of the USB 2.0 spec.
970 * Note that control and isochronous endpoints don't halt, although control
971 * endpoints report "protocol stall" (for unsupported requests) using the
972 * same status code used to report a true stall.
974 * This call is synchronous, and may not be used in an interrupt context.
976 * Returns zero on success, or else the status code returned by the
977 * underlying usb_control_msg() call.
979 int usb_clear_halt(struct usb_device *dev, int pipe)
981 int result;
982 int endp = usb_pipeendpoint(pipe);
984 if (usb_pipein(pipe))
985 endp |= USB_DIR_IN;
987 /* we don't care if it wasn't halted first. in fact some devices
988 * (like some ibmcam model 1 units) seem to expect hosts to make
989 * this request for iso endpoints, which can't halt!
991 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
992 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
993 USB_ENDPOINT_HALT, endp, NULL, 0,
994 USB_CTRL_SET_TIMEOUT);
996 /* don't un-halt or force to DATA0 except on success */
997 if (result < 0)
998 return result;
1000 /* NOTE: seems like Microsoft and Apple don't bother verifying
1001 * the clear "took", so some devices could lock up if you check...
1002 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1004 * NOTE: make sure the logic here doesn't diverge much from
1005 * the copy in usb-storage, for as long as we need two copies.
1008 /* toggle was reset by the clear */
1009 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
1011 return 0;
1013 EXPORT_SYMBOL_GPL(usb_clear_halt);
1015 static int create_intf_ep_devs(struct usb_interface *intf)
1017 struct usb_device *udev = interface_to_usbdev(intf);
1018 struct usb_host_interface *alt = intf->cur_altsetting;
1019 int i;
1021 if (intf->ep_devs_created || intf->unregistering)
1022 return 0;
1024 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1025 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1026 intf->ep_devs_created = 1;
1027 return 0;
1030 static void remove_intf_ep_devs(struct usb_interface *intf)
1032 struct usb_host_interface *alt = intf->cur_altsetting;
1033 int i;
1035 if (!intf->ep_devs_created)
1036 return;
1038 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1039 usb_remove_ep_devs(&alt->endpoint[i]);
1040 intf->ep_devs_created = 0;
1044 * usb_disable_endpoint -- Disable an endpoint by address
1045 * @dev: the device whose endpoint is being disabled
1046 * @epaddr: the endpoint's address. Endpoint number for output,
1047 * endpoint number + USB_DIR_IN for input
1048 * @reset_hardware: flag to erase any endpoint state stored in the
1049 * controller hardware
1051 * Disables the endpoint for URB submission and nukes all pending URBs.
1052 * If @reset_hardware is set then also deallocates hcd/hardware state
1053 * for the endpoint.
1055 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1056 bool reset_hardware)
1058 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1059 struct usb_host_endpoint *ep;
1061 if (!dev)
1062 return;
1064 if (usb_endpoint_out(epaddr)) {
1065 ep = dev->ep_out[epnum];
1066 if (reset_hardware)
1067 dev->ep_out[epnum] = NULL;
1068 } else {
1069 ep = dev->ep_in[epnum];
1070 if (reset_hardware)
1071 dev->ep_in[epnum] = NULL;
1073 if (ep) {
1074 ep->enabled = 0;
1075 usb_hcd_flush_endpoint(dev, ep);
1076 if (reset_hardware)
1077 usb_hcd_disable_endpoint(dev, ep);
1082 * usb_disable_interface -- Disable all endpoints for an interface
1083 * @dev: the device whose interface is being disabled
1084 * @intf: pointer to the interface descriptor
1085 * @reset_hardware: flag to erase any endpoint state stored in the
1086 * controller hardware
1088 * Disables all the endpoints for the interface's current altsetting.
1090 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1091 bool reset_hardware)
1093 struct usb_host_interface *alt = intf->cur_altsetting;
1094 int i;
1096 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1097 usb_disable_endpoint(dev,
1098 alt->endpoint[i].desc.bEndpointAddress,
1099 reset_hardware);
1104 * usb_disable_device - Disable all the endpoints for a USB device
1105 * @dev: the device whose endpoints are being disabled
1106 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1108 * Disables all the device's endpoints, potentially including endpoint 0.
1109 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1110 * pending urbs) and usbcore state for the interfaces, so that usbcore
1111 * must usb_set_configuration() before any interfaces could be used.
1113 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1115 int i;
1117 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1118 skip_ep0 ? "non-ep0" : "all");
1119 for (i = skip_ep0; i < 16; ++i) {
1120 usb_disable_endpoint(dev, i, true);
1121 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1123 dev->toggle[0] = dev->toggle[1] = 0;
1125 /* getting rid of interfaces will disconnect
1126 * any drivers bound to them (a key side effect)
1128 if (dev->actconfig) {
1129 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1130 struct usb_interface *interface;
1132 /* remove this interface if it has been registered */
1133 interface = dev->actconfig->interface[i];
1134 if (!device_is_registered(&interface->dev))
1135 continue;
1136 dev_dbg(&dev->dev, "unregistering interface %s\n",
1137 dev_name(&interface->dev));
1138 interface->unregistering = 1;
1139 remove_intf_ep_devs(interface);
1140 device_del(&interface->dev);
1143 /* Now that the interfaces are unbound, nobody should
1144 * try to access them.
1146 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1147 put_device(&dev->actconfig->interface[i]->dev);
1148 dev->actconfig->interface[i] = NULL;
1150 dev->actconfig = NULL;
1151 if (dev->state == USB_STATE_CONFIGURED)
1152 usb_set_device_state(dev, USB_STATE_ADDRESS);
1157 * usb_enable_endpoint - Enable an endpoint for USB communications
1158 * @dev: the device whose interface is being enabled
1159 * @ep: the endpoint
1160 * @reset_toggle: flag to set the endpoint's toggle back to 0
1162 * Resets the endpoint toggle if asked, and sets dev->ep_{in,out} pointers.
1163 * For control endpoints, both the input and output sides are handled.
1165 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1166 bool reset_toggle)
1168 int epnum = usb_endpoint_num(&ep->desc);
1169 int is_out = usb_endpoint_dir_out(&ep->desc);
1170 int is_control = usb_endpoint_xfer_control(&ep->desc);
1172 if (is_out || is_control) {
1173 if (reset_toggle)
1174 usb_settoggle(dev, epnum, 1, 0);
1175 dev->ep_out[epnum] = ep;
1177 if (!is_out || is_control) {
1178 if (reset_toggle)
1179 usb_settoggle(dev, epnum, 0, 0);
1180 dev->ep_in[epnum] = ep;
1182 ep->enabled = 1;
1186 * usb_enable_interface - Enable all the endpoints for an interface
1187 * @dev: the device whose interface is being enabled
1188 * @intf: pointer to the interface descriptor
1189 * @reset_toggles: flag to set the endpoints' toggles back to 0
1191 * Enables all the endpoints for the interface's current altsetting.
1193 void usb_enable_interface(struct usb_device *dev,
1194 struct usb_interface *intf, bool reset_toggles)
1196 struct usb_host_interface *alt = intf->cur_altsetting;
1197 int i;
1199 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1200 usb_enable_endpoint(dev, &alt->endpoint[i], reset_toggles);
1204 * usb_set_interface - Makes a particular alternate setting be current
1205 * @dev: the device whose interface is being updated
1206 * @interface: the interface being updated
1207 * @alternate: the setting being chosen.
1208 * Context: !in_interrupt ()
1210 * This is used to enable data transfers on interfaces that may not
1211 * be enabled by default. Not all devices support such configurability.
1212 * Only the driver bound to an interface may change its setting.
1214 * Within any given configuration, each interface may have several
1215 * alternative settings. These are often used to control levels of
1216 * bandwidth consumption. For example, the default setting for a high
1217 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1218 * while interrupt transfers of up to 3KBytes per microframe are legal.
1219 * Also, isochronous endpoints may never be part of an
1220 * interface's default setting. To access such bandwidth, alternate
1221 * interface settings must be made current.
1223 * Note that in the Linux USB subsystem, bandwidth associated with
1224 * an endpoint in a given alternate setting is not reserved until an URB
1225 * is submitted that needs that bandwidth. Some other operating systems
1226 * allocate bandwidth early, when a configuration is chosen.
1228 * This call is synchronous, and may not be used in an interrupt context.
1229 * Also, drivers must not change altsettings while urbs are scheduled for
1230 * endpoints in that interface; all such urbs must first be completed
1231 * (perhaps forced by unlinking).
1233 * Returns zero on success, or else the status code returned by the
1234 * underlying usb_control_msg() call.
1236 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1238 struct usb_interface *iface;
1239 struct usb_host_interface *alt;
1240 int ret;
1241 int manual = 0;
1242 unsigned int epaddr;
1243 unsigned int pipe;
1245 if (dev->state == USB_STATE_SUSPENDED)
1246 return -EHOSTUNREACH;
1248 iface = usb_ifnum_to_if(dev, interface);
1249 if (!iface) {
1250 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1251 interface);
1252 return -EINVAL;
1255 alt = usb_altnum_to_altsetting(iface, alternate);
1256 if (!alt) {
1257 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1258 alternate);
1259 return -EINVAL;
1262 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1263 ret = -EPIPE;
1264 else
1265 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1266 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1267 alternate, interface, NULL, 0, 5000);
1269 /* 9.4.10 says devices don't need this and are free to STALL the
1270 * request if the interface only has one alternate setting.
1272 if (ret == -EPIPE && iface->num_altsetting == 1) {
1273 dev_dbg(&dev->dev,
1274 "manual set_interface for iface %d, alt %d\n",
1275 interface, alternate);
1276 manual = 1;
1277 } else if (ret < 0)
1278 return ret;
1280 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1281 * when they implement async or easily-killable versions of this or
1282 * other "should-be-internal" functions (like clear_halt).
1283 * should hcd+usbcore postprocess control requests?
1286 /* prevent submissions using previous endpoint settings */
1287 if (iface->cur_altsetting != alt) {
1288 remove_intf_ep_devs(iface);
1289 usb_remove_sysfs_intf_files(iface);
1291 usb_disable_interface(dev, iface, true);
1293 iface->cur_altsetting = alt;
1295 /* If the interface only has one altsetting and the device didn't
1296 * accept the request, we attempt to carry out the equivalent action
1297 * by manually clearing the HALT feature for each endpoint in the
1298 * new altsetting.
1300 if (manual) {
1301 int i;
1303 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1304 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1305 pipe = __create_pipe(dev,
1306 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1307 (usb_endpoint_out(epaddr) ?
1308 USB_DIR_OUT : USB_DIR_IN);
1310 usb_clear_halt(dev, pipe);
1314 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1316 * Note:
1317 * Despite EP0 is always present in all interfaces/AS, the list of
1318 * endpoints from the descriptor does not contain EP0. Due to its
1319 * omnipresence one might expect EP0 being considered "affected" by
1320 * any SetInterface request and hence assume toggles need to be reset.
1321 * However, EP0 toggles are re-synced for every individual transfer
1322 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1323 * (Likewise, EP0 never "halts" on well designed devices.)
1325 usb_enable_interface(dev, iface, true);
1326 if (device_is_registered(&iface->dev)) {
1327 usb_create_sysfs_intf_files(iface);
1328 create_intf_ep_devs(iface);
1330 return 0;
1332 EXPORT_SYMBOL_GPL(usb_set_interface);
1335 * usb_reset_configuration - lightweight device reset
1336 * @dev: the device whose configuration is being reset
1338 * This issues a standard SET_CONFIGURATION request to the device using
1339 * the current configuration. The effect is to reset most USB-related
1340 * state in the device, including interface altsettings (reset to zero),
1341 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1342 * endpoints). Other usbcore state is unchanged, including bindings of
1343 * usb device drivers to interfaces.
1345 * Because this affects multiple interfaces, avoid using this with composite
1346 * (multi-interface) devices. Instead, the driver for each interface may
1347 * use usb_set_interface() on the interfaces it claims. Be careful though;
1348 * some devices don't support the SET_INTERFACE request, and others won't
1349 * reset all the interface state (notably data toggles). Resetting the whole
1350 * configuration would affect other drivers' interfaces.
1352 * The caller must own the device lock.
1354 * Returns zero on success, else a negative error code.
1356 int usb_reset_configuration(struct usb_device *dev)
1358 int i, retval;
1359 struct usb_host_config *config;
1361 if (dev->state == USB_STATE_SUSPENDED)
1362 return -EHOSTUNREACH;
1364 /* caller must have locked the device and must own
1365 * the usb bus readlock (so driver bindings are stable);
1366 * calls during probe() are fine
1369 for (i = 1; i < 16; ++i) {
1370 usb_disable_endpoint(dev, i, true);
1371 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1374 config = dev->actconfig;
1375 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1376 USB_REQ_SET_CONFIGURATION, 0,
1377 config->desc.bConfigurationValue, 0,
1378 NULL, 0, USB_CTRL_SET_TIMEOUT);
1379 if (retval < 0)
1380 return retval;
1382 dev->toggle[0] = dev->toggle[1] = 0;
1384 /* re-init hc/hcd interface/endpoint state */
1385 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1386 struct usb_interface *intf = config->interface[i];
1387 struct usb_host_interface *alt;
1389 alt = usb_altnum_to_altsetting(intf, 0);
1391 /* No altsetting 0? We'll assume the first altsetting.
1392 * We could use a GetInterface call, but if a device is
1393 * so non-compliant that it doesn't have altsetting 0
1394 * then I wouldn't trust its reply anyway.
1396 if (!alt)
1397 alt = &intf->altsetting[0];
1399 if (alt != intf->cur_altsetting) {
1400 remove_intf_ep_devs(intf);
1401 usb_remove_sysfs_intf_files(intf);
1403 intf->cur_altsetting = alt;
1404 usb_enable_interface(dev, intf, true);
1405 if (device_is_registered(&intf->dev)) {
1406 usb_create_sysfs_intf_files(intf);
1407 create_intf_ep_devs(intf);
1410 return 0;
1412 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1414 static void usb_release_interface(struct device *dev)
1416 struct usb_interface *intf = to_usb_interface(dev);
1417 struct usb_interface_cache *intfc =
1418 altsetting_to_usb_interface_cache(intf->altsetting);
1420 kref_put(&intfc->ref, usb_release_interface_cache);
1421 kfree(intf);
1424 #ifdef CONFIG_HOTPLUG
1425 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1427 struct usb_device *usb_dev;
1428 struct usb_interface *intf;
1429 struct usb_host_interface *alt;
1431 intf = to_usb_interface(dev);
1432 usb_dev = interface_to_usbdev(intf);
1433 alt = intf->cur_altsetting;
1435 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1436 alt->desc.bInterfaceClass,
1437 alt->desc.bInterfaceSubClass,
1438 alt->desc.bInterfaceProtocol))
1439 return -ENOMEM;
1441 if (add_uevent_var(env,
1442 "MODALIAS=usb:"
1443 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1444 le16_to_cpu(usb_dev->descriptor.idVendor),
1445 le16_to_cpu(usb_dev->descriptor.idProduct),
1446 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1447 usb_dev->descriptor.bDeviceClass,
1448 usb_dev->descriptor.bDeviceSubClass,
1449 usb_dev->descriptor.bDeviceProtocol,
1450 alt->desc.bInterfaceClass,
1451 alt->desc.bInterfaceSubClass,
1452 alt->desc.bInterfaceProtocol))
1453 return -ENOMEM;
1455 return 0;
1458 #else
1460 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1462 return -ENODEV;
1464 #endif /* CONFIG_HOTPLUG */
1466 struct device_type usb_if_device_type = {
1467 .name = "usb_interface",
1468 .release = usb_release_interface,
1469 .uevent = usb_if_uevent,
1472 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1473 struct usb_host_config *config,
1474 u8 inum)
1476 struct usb_interface_assoc_descriptor *retval = NULL;
1477 struct usb_interface_assoc_descriptor *intf_assoc;
1478 int first_intf;
1479 int last_intf;
1480 int i;
1482 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1483 intf_assoc = config->intf_assoc[i];
1484 if (intf_assoc->bInterfaceCount == 0)
1485 continue;
1487 first_intf = intf_assoc->bFirstInterface;
1488 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1489 if (inum >= first_intf && inum <= last_intf) {
1490 if (!retval)
1491 retval = intf_assoc;
1492 else
1493 dev_err(&dev->dev, "Interface #%d referenced"
1494 " by multiple IADs\n", inum);
1498 return retval;
1503 * Internal function to queue a device reset
1505 * This is initialized into the workstruct in 'struct
1506 * usb_device->reset_ws' that is launched by
1507 * message.c:usb_set_configuration() when initializing each 'struct
1508 * usb_interface'.
1510 * It is safe to get the USB device without reference counts because
1511 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1512 * this function will be ran only if @iface is alive (and before
1513 * freeing it any scheduled instances of it will have been cancelled).
1515 * We need to set a flag (usb_dev->reset_running) because when we call
1516 * the reset, the interfaces might be unbound. The current interface
1517 * cannot try to remove the queued work as it would cause a deadlock
1518 * (you cannot remove your work from within your executing
1519 * workqueue). This flag lets it know, so that
1520 * usb_cancel_queued_reset() doesn't try to do it.
1522 * See usb_queue_reset_device() for more details
1524 void __usb_queue_reset_device(struct work_struct *ws)
1526 int rc;
1527 struct usb_interface *iface =
1528 container_of(ws, struct usb_interface, reset_ws);
1529 struct usb_device *udev = interface_to_usbdev(iface);
1531 rc = usb_lock_device_for_reset(udev, iface);
1532 if (rc >= 0) {
1533 iface->reset_running = 1;
1534 usb_reset_device(udev);
1535 iface->reset_running = 0;
1536 usb_unlock_device(udev);
1542 * usb_set_configuration - Makes a particular device setting be current
1543 * @dev: the device whose configuration is being updated
1544 * @configuration: the configuration being chosen.
1545 * Context: !in_interrupt(), caller owns the device lock
1547 * This is used to enable non-default device modes. Not all devices
1548 * use this kind of configurability; many devices only have one
1549 * configuration.
1551 * @configuration is the value of the configuration to be installed.
1552 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1553 * must be non-zero; a value of zero indicates that the device in
1554 * unconfigured. However some devices erroneously use 0 as one of their
1555 * configuration values. To help manage such devices, this routine will
1556 * accept @configuration = -1 as indicating the device should be put in
1557 * an unconfigured state.
1559 * USB device configurations may affect Linux interoperability,
1560 * power consumption and the functionality available. For example,
1561 * the default configuration is limited to using 100mA of bus power,
1562 * so that when certain device functionality requires more power,
1563 * and the device is bus powered, that functionality should be in some
1564 * non-default device configuration. Other device modes may also be
1565 * reflected as configuration options, such as whether two ISDN
1566 * channels are available independently; and choosing between open
1567 * standard device protocols (like CDC) or proprietary ones.
1569 * Note that a non-authorized device (dev->authorized == 0) will only
1570 * be put in unconfigured mode.
1572 * Note that USB has an additional level of device configurability,
1573 * associated with interfaces. That configurability is accessed using
1574 * usb_set_interface().
1576 * This call is synchronous. The calling context must be able to sleep,
1577 * must own the device lock, and must not hold the driver model's USB
1578 * bus mutex; usb interface driver probe() methods cannot use this routine.
1580 * Returns zero on success, or else the status code returned by the
1581 * underlying call that failed. On successful completion, each interface
1582 * in the original device configuration has been destroyed, and each one
1583 * in the new configuration has been probed by all relevant usb device
1584 * drivers currently known to the kernel.
1586 int usb_set_configuration(struct usb_device *dev, int configuration)
1588 int i, ret;
1589 struct usb_host_config *cp = NULL;
1590 struct usb_interface **new_interfaces = NULL;
1591 int n, nintf;
1593 if (dev->authorized == 0 || configuration == -1)
1594 configuration = 0;
1595 else {
1596 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1597 if (dev->config[i].desc.bConfigurationValue ==
1598 configuration) {
1599 cp = &dev->config[i];
1600 break;
1604 if ((!cp && configuration != 0))
1605 return -EINVAL;
1607 /* The USB spec says configuration 0 means unconfigured.
1608 * But if a device includes a configuration numbered 0,
1609 * we will accept it as a correctly configured state.
1610 * Use -1 if you really want to unconfigure the device.
1612 if (cp && configuration == 0)
1613 dev_warn(&dev->dev, "config 0 descriptor??\n");
1615 /* Allocate memory for new interfaces before doing anything else,
1616 * so that if we run out then nothing will have changed. */
1617 n = nintf = 0;
1618 if (cp) {
1619 nintf = cp->desc.bNumInterfaces;
1620 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1621 GFP_KERNEL);
1622 if (!new_interfaces) {
1623 dev_err(&dev->dev, "Out of memory\n");
1624 return -ENOMEM;
1627 for (; n < nintf; ++n) {
1628 new_interfaces[n] = kzalloc(
1629 sizeof(struct usb_interface),
1630 GFP_KERNEL);
1631 if (!new_interfaces[n]) {
1632 dev_err(&dev->dev, "Out of memory\n");
1633 ret = -ENOMEM;
1634 free_interfaces:
1635 while (--n >= 0)
1636 kfree(new_interfaces[n]);
1637 kfree(new_interfaces);
1638 return ret;
1642 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1643 if (i < 0)
1644 dev_warn(&dev->dev, "new config #%d exceeds power "
1645 "limit by %dmA\n",
1646 configuration, -i);
1649 /* Wake up the device so we can send it the Set-Config request */
1650 ret = usb_autoresume_device(dev);
1651 if (ret)
1652 goto free_interfaces;
1654 /* if it's already configured, clear out old state first.
1655 * getting rid of old interfaces means unbinding their drivers.
1657 if (dev->state != USB_STATE_ADDRESS)
1658 usb_disable_device(dev, 1); /* Skip ep0 */
1660 /* Get rid of pending async Set-Config requests for this device */
1661 cancel_async_set_config(dev);
1663 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1664 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1665 NULL, 0, USB_CTRL_SET_TIMEOUT);
1666 if (ret < 0) {
1667 /* All the old state is gone, so what else can we do?
1668 * The device is probably useless now anyway.
1670 cp = NULL;
1673 dev->actconfig = cp;
1674 if (!cp) {
1675 usb_set_device_state(dev, USB_STATE_ADDRESS);
1676 usb_autosuspend_device(dev);
1677 goto free_interfaces;
1679 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1681 /* Initialize the new interface structures and the
1682 * hc/hcd/usbcore interface/endpoint state.
1684 for (i = 0; i < nintf; ++i) {
1685 struct usb_interface_cache *intfc;
1686 struct usb_interface *intf;
1687 struct usb_host_interface *alt;
1689 cp->interface[i] = intf = new_interfaces[i];
1690 intfc = cp->intf_cache[i];
1691 intf->altsetting = intfc->altsetting;
1692 intf->num_altsetting = intfc->num_altsetting;
1693 intf->intf_assoc = find_iad(dev, cp, i);
1694 kref_get(&intfc->ref);
1696 alt = usb_altnum_to_altsetting(intf, 0);
1698 /* No altsetting 0? We'll assume the first altsetting.
1699 * We could use a GetInterface call, but if a device is
1700 * so non-compliant that it doesn't have altsetting 0
1701 * then I wouldn't trust its reply anyway.
1703 if (!alt)
1704 alt = &intf->altsetting[0];
1706 intf->cur_altsetting = alt;
1707 usb_enable_interface(dev, intf, true);
1708 intf->dev.parent = &dev->dev;
1709 intf->dev.driver = NULL;
1710 intf->dev.bus = &usb_bus_type;
1711 intf->dev.type = &usb_if_device_type;
1712 intf->dev.groups = usb_interface_groups;
1713 intf->dev.dma_mask = dev->dev.dma_mask;
1714 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1715 device_initialize(&intf->dev);
1716 mark_quiesced(intf);
1717 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1718 dev->bus->busnum, dev->devpath,
1719 configuration, alt->desc.bInterfaceNumber);
1721 kfree(new_interfaces);
1723 if (cp->string == NULL &&
1724 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1725 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1727 /* Now that all the interfaces are set up, register them
1728 * to trigger binding of drivers to interfaces. probe()
1729 * routines may install different altsettings and may
1730 * claim() any interfaces not yet bound. Many class drivers
1731 * need that: CDC, audio, video, etc.
1733 for (i = 0; i < nintf; ++i) {
1734 struct usb_interface *intf = cp->interface[i];
1736 dev_dbg(&dev->dev,
1737 "adding %s (config #%d, interface %d)\n",
1738 dev_name(&intf->dev), configuration,
1739 intf->cur_altsetting->desc.bInterfaceNumber);
1740 ret = device_add(&intf->dev);
1741 if (ret != 0) {
1742 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1743 dev_name(&intf->dev), ret);
1744 continue;
1746 create_intf_ep_devs(intf);
1749 usb_autosuspend_device(dev);
1750 return 0;
1753 static LIST_HEAD(set_config_list);
1754 static DEFINE_SPINLOCK(set_config_lock);
1756 struct set_config_request {
1757 struct usb_device *udev;
1758 int config;
1759 struct work_struct work;
1760 struct list_head node;
1763 /* Worker routine for usb_driver_set_configuration() */
1764 static void driver_set_config_work(struct work_struct *work)
1766 struct set_config_request *req =
1767 container_of(work, struct set_config_request, work);
1768 struct usb_device *udev = req->udev;
1770 usb_lock_device(udev);
1771 spin_lock(&set_config_lock);
1772 list_del(&req->node);
1773 spin_unlock(&set_config_lock);
1775 if (req->config >= -1) /* Is req still valid? */
1776 usb_set_configuration(udev, req->config);
1777 usb_unlock_device(udev);
1778 usb_put_dev(udev);
1779 kfree(req);
1782 /* Cancel pending Set-Config requests for a device whose configuration
1783 * was just changed
1785 static void cancel_async_set_config(struct usb_device *udev)
1787 struct set_config_request *req;
1789 spin_lock(&set_config_lock);
1790 list_for_each_entry(req, &set_config_list, node) {
1791 if (req->udev == udev)
1792 req->config = -999; /* Mark as cancelled */
1794 spin_unlock(&set_config_lock);
1798 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1799 * @udev: the device whose configuration is being updated
1800 * @config: the configuration being chosen.
1801 * Context: In process context, must be able to sleep
1803 * Device interface drivers are not allowed to change device configurations.
1804 * This is because changing configurations will destroy the interface the
1805 * driver is bound to and create new ones; it would be like a floppy-disk
1806 * driver telling the computer to replace the floppy-disk drive with a
1807 * tape drive!
1809 * Still, in certain specialized circumstances the need may arise. This
1810 * routine gets around the normal restrictions by using a work thread to
1811 * submit the change-config request.
1813 * Returns 0 if the request was succesfully queued, error code otherwise.
1814 * The caller has no way to know whether the queued request will eventually
1815 * succeed.
1817 int usb_driver_set_configuration(struct usb_device *udev, int config)
1819 struct set_config_request *req;
1821 req = kmalloc(sizeof(*req), GFP_KERNEL);
1822 if (!req)
1823 return -ENOMEM;
1824 req->udev = udev;
1825 req->config = config;
1826 INIT_WORK(&req->work, driver_set_config_work);
1828 spin_lock(&set_config_lock);
1829 list_add(&req->node, &set_config_list);
1830 spin_unlock(&set_config_lock);
1832 usb_get_dev(udev);
1833 schedule_work(&req->work);
1834 return 0;
1836 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);