added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / staging / sxg / sxg.c
blob1e0cfcd7f0f3dc1af90e9364f0a236d286facbb1
1 /**************************************************************************
3 * Copyright (C) 2000-2008 Alacritech, Inc. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as representing
31 * official policies, either expressed or implied, of Alacritech, Inc.
33 **************************************************************************/
36 * FILENAME: sxg.c
38 * The SXG driver for Alacritech's 10Gbe products.
40 * NOTE: This is the standard, non-accelerated version of Alacritech's
41 * IS-NIC driver.
44 #include <linux/kernel.h>
45 #include <linux/string.h>
46 #include <linux/errno.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/ioport.h>
50 #include <linux/slab.h>
51 #include <linux/interrupt.h>
52 #include <linux/timer.h>
53 #include <linux/pci.h>
54 #include <linux/spinlock.h>
55 #include <linux/init.h>
56 #include <linux/netdevice.h>
57 #include <linux/etherdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
61 #include <linux/types.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/mii.h>
65 #define SLIC_DUMP_ENABLED 0
66 #define SLIC_GET_STATS_ENABLED 0
67 #define LINUX_FREES_ADAPTER_RESOURCES 1
68 #define SXG_OFFLOAD_IP_CHECKSUM 0
69 #define SXG_POWER_MANAGEMENT_ENABLED 0
70 #define VPCI 0
71 #define DBG 1
72 #define ATK_DEBUG 1
74 #include "sxg_os.h"
75 #include "sxghw.h"
76 #include "sxghif.h"
77 #include "sxg.h"
78 #include "sxgdbg.h"
80 #include "sxgphycode.h"
81 #include "saharadbgdownload.h"
83 static int sxg_allocate_buffer_memory(struct adapter_t *adapter, u32 Size,
84 enum SXG_BUFFER_TYPE BufferType);
85 static void sxg_allocate_rcvblock_complete(struct adapter_t *adapter, void *RcvBlock,
86 dma_addr_t PhysicalAddress,
87 u32 Length);
88 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
89 struct SXG_SCATTER_GATHER *SxgSgl,
90 dma_addr_t PhysicalAddress,
91 u32 Length);
93 static void sxg_mcast_init_crc32(void);
95 static int sxg_entry_open(p_net_device dev);
96 static int sxg_entry_halt(p_net_device dev);
97 static int sxg_ioctl(p_net_device dev, struct ifreq *rq, int cmd);
98 static int sxg_send_packets(struct sk_buff *skb, p_net_device dev);
99 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb);
100 static void sxg_dumb_sgl(struct SCATTER_GATHER_LIST *pSgl, struct SXG_SCATTER_GATHER *SxgSgl);
102 static void sxg_handle_interrupt(struct adapter_t *adapter);
103 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId);
104 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId);
105 static void sxg_complete_slow_send(struct adapter_t *adapter);
106 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter, struct SXG_EVENT *Event);
107 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus);
108 static bool sxg_mac_filter(struct adapter_t *adapter,
109 struct ether_header *EtherHdr, ushort length);
111 #if SLIC_GET_STATS_ENABLED
112 static struct net_device_stats *sxg_get_stats(p_net_device dev);
113 #endif
115 #define XXXTODO 0
117 #if XXXTODO
118 static int sxg_mac_set_address(p_net_device dev, void *ptr);
119 static void sxg_mcast_set_list(p_net_device dev);
120 #endif
122 static void sxg_adapter_set_hwaddr(struct adapter_t *adapter);
124 static void sxg_unmap_mmio_space(struct adapter_t *adapter);
126 static int sxg_initialize_adapter(struct adapter_t *adapter);
127 static void sxg_stock_rcv_buffers(struct adapter_t *adapter);
128 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
129 unsigned char Index);
130 static int sxg_initialize_link(struct adapter_t *adapter);
131 static int sxg_phy_init(struct adapter_t *adapter);
132 static void sxg_link_event(struct adapter_t *adapter);
133 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter);
134 static void sxg_link_state(struct adapter_t *adapter, enum SXG_LINK_STATE LinkState);
135 static int sxg_write_mdio_reg(struct adapter_t *adapter,
136 u32 DevAddr, u32 RegAddr, u32 Value);
137 static int sxg_read_mdio_reg(struct adapter_t *adapter,
138 u32 DevAddr, u32 RegAddr, u32 *pValue);
140 static unsigned int sxg_first_init = 1;
141 static char *sxg_banner =
142 "Alacritech SLIC Technology(tm) Server and Storage 10Gbe Accelerator (Non-Accelerated)\n";
144 static int sxg_debug = 1;
145 static int debug = -1;
146 static p_net_device head_netdevice = NULL;
148 static struct sxgbase_driver_t sxg_global = {
149 .dynamic_intagg = 1,
151 static int intagg_delay = 100;
152 static u32 dynamic_intagg = 0;
154 #define DRV_NAME "sxg"
155 #define DRV_VERSION "1.0.1"
156 #define DRV_AUTHOR "Alacritech, Inc. Engineering"
157 #define DRV_DESCRIPTION "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
158 #define DRV_COPYRIGHT "Copyright 2000-2008 Alacritech, Inc. All rights reserved."
160 MODULE_AUTHOR(DRV_AUTHOR);
161 MODULE_DESCRIPTION(DRV_DESCRIPTION);
162 MODULE_LICENSE("GPL");
164 module_param(dynamic_intagg, int, 0);
165 MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
166 module_param(intagg_delay, int, 0);
167 MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
169 static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
170 {PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
171 {0,}
174 MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
176 /***********************************************************************
177 ************************************************************************
178 ************************************************************************
179 ************************************************************************
180 ************************************************************************/
182 static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
184 writel(value, reg);
185 if (flush)
186 mb();
189 static inline void sxg_reg64_write(struct adapter_t *adapter, void __iomem *reg,
190 u64 value, u32 cpu)
192 u32 value_high = (u32) (value >> 32);
193 u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
194 unsigned long flags;
196 spin_lock_irqsave(&adapter->Bit64RegLock, flags);
197 writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
198 writel(value_low, reg);
199 spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
202 static void sxg_init_driver(void)
204 if (sxg_first_init) {
205 DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
206 __func__, jiffies);
207 sxg_first_init = 0;
208 spin_lock_init(&sxg_global.driver_lock);
212 static void sxg_dbg_macaddrs(struct adapter_t *adapter)
214 DBG_ERROR(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
215 adapter->netdev->name, adapter->currmacaddr[0],
216 adapter->currmacaddr[1], adapter->currmacaddr[2],
217 adapter->currmacaddr[3], adapter->currmacaddr[4],
218 adapter->currmacaddr[5]);
219 DBG_ERROR(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
220 adapter->netdev->name, adapter->macaddr[0],
221 adapter->macaddr[1], adapter->macaddr[2],
222 adapter->macaddr[3], adapter->macaddr[4],
223 adapter->macaddr[5]);
224 return;
227 /* SXG Globals */
228 static struct SXG_DRIVER SxgDriver;
230 #ifdef ATKDBG
231 static struct sxg_trace_buffer_t LSxgTraceBuffer;
232 #endif /* ATKDBG */
233 static struct sxg_trace_buffer_t *SxgTraceBuffer = NULL;
236 * sxg_download_microcode
238 * Download Microcode to Sahara adapter
240 * Arguments -
241 * adapter - A pointer to our adapter structure
242 * UcodeSel - microcode file selection
244 * Return
245 * int
247 static bool sxg_download_microcode(struct adapter_t *adapter, enum SXG_UCODE_SEL UcodeSel)
249 struct SXG_HW_REGS *HwRegs = adapter->HwRegs;
250 u32 Section;
251 u32 ThisSectionSize;
252 u32 *Instruction = NULL;
253 u32 BaseAddress, AddressOffset, Address;
254 /* u32 Failure; */
255 u32 ValueRead;
256 u32 i;
257 u32 numSections = 0;
258 u32 sectionSize[16];
259 u32 sectionStart[16];
261 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
262 adapter, 0, 0, 0);
263 DBG_ERROR("sxg: %s ENTER\n", __func__);
265 switch (UcodeSel) {
266 case SXG_UCODE_SAHARA: /* Sahara operational ucode */
267 numSections = SNumSections;
268 for (i = 0; i < numSections; i++) {
269 sectionSize[i] = SSectionSize[i];
270 sectionStart[i] = SSectionStart[i];
272 break;
273 default:
274 printk(KERN_ERR KBUILD_MODNAME
275 ": Woah, big error with the microcode!\n");
276 break;
279 DBG_ERROR("sxg: RESET THE CARD\n");
280 /* First, reset the card */
281 WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
283 /* Download each section of the microcode as specified in */
284 /* its download file. The *download.c file is generated using */
285 /* the saharaobjtoc facility which converts the metastep .obj */
286 /* file to a .c file which contains a two dimentional array. */
287 for (Section = 0; Section < numSections; Section++) {
288 DBG_ERROR("sxg: SECTION # %d\n", Section);
289 switch (UcodeSel) {
290 case SXG_UCODE_SAHARA:
291 Instruction = (u32 *) & SaharaUCode[Section][0];
292 break;
293 default:
294 ASSERT(0);
295 break;
297 BaseAddress = sectionStart[Section];
298 ThisSectionSize = sectionSize[Section] / 12; /* Size in instructions */
299 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
300 AddressOffset++) {
301 Address = BaseAddress + AddressOffset;
302 ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
303 /* Write instruction bits 31 - 0 */
304 WRITE_REG(HwRegs->UcodeDataLow, *Instruction, FLUSH);
305 /* Write instruction bits 63-32 */
306 WRITE_REG(HwRegs->UcodeDataMiddle, *(Instruction + 1),
307 FLUSH);
308 /* Write instruction bits 95-64 */
309 WRITE_REG(HwRegs->UcodeDataHigh, *(Instruction + 2),
310 FLUSH);
311 /* Write instruction address with the WRITE bit set */
312 WRITE_REG(HwRegs->UcodeAddr,
313 (Address | MICROCODE_ADDRESS_WRITE), FLUSH);
314 /* Sahara bug in the ucode download logic - the write to DataLow */
315 /* for the next instruction could get corrupted. To avoid this, */
316 /* write to DataLow again for this instruction (which may get */
317 /* corrupted, but it doesn't matter), then increment the address */
318 /* and write the data for the next instruction to DataLow. That */
319 /* write should succeed. */
320 WRITE_REG(HwRegs->UcodeDataLow, *Instruction, TRUE);
321 /* Advance 3 u32S to start of next instruction */
322 Instruction += 3;
325 /* Now repeat the entire operation reading the instruction back and */
326 /* checking for parity errors */
327 for (Section = 0; Section < numSections; Section++) {
328 DBG_ERROR("sxg: check SECTION # %d\n", Section);
329 switch (UcodeSel) {
330 case SXG_UCODE_SAHARA:
331 Instruction = (u32 *) & SaharaUCode[Section][0];
332 break;
333 default:
334 ASSERT(0);
335 break;
337 BaseAddress = sectionStart[Section];
338 ThisSectionSize = sectionSize[Section] / 12; /* Size in instructions */
339 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
340 AddressOffset++) {
341 Address = BaseAddress + AddressOffset;
342 /* Write the address with the READ bit set */
343 WRITE_REG(HwRegs->UcodeAddr,
344 (Address | MICROCODE_ADDRESS_READ), FLUSH);
345 /* Read it back and check parity bit. */
346 READ_REG(HwRegs->UcodeAddr, ValueRead);
347 if (ValueRead & MICROCODE_ADDRESS_PARITY) {
348 DBG_ERROR("sxg: %s PARITY ERROR\n",
349 __func__);
351 return (FALSE); /* Parity error */
353 ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
354 /* Read the instruction back and compare */
355 READ_REG(HwRegs->UcodeDataLow, ValueRead);
356 if (ValueRead != *Instruction) {
357 DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
358 __func__);
359 return (FALSE); /* Miscompare */
361 READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
362 if (ValueRead != *(Instruction + 1)) {
363 DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
364 __func__);
365 return (FALSE); /* Miscompare */
367 READ_REG(HwRegs->UcodeDataHigh, ValueRead);
368 if (ValueRead != *(Instruction + 2)) {
369 DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
370 __func__);
371 return (FALSE); /* Miscompare */
373 /* Advance 3 u32S to start of next instruction */
374 Instruction += 3;
378 /* Everything OK, Go. */
379 WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
381 /* Poll the CardUp register to wait for microcode to initialize */
382 /* Give up after 10,000 attemps (500ms). */
383 for (i = 0; i < 10000; i++) {
384 udelay(50);
385 READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
386 if (ValueRead == 0xCAFE) {
387 DBG_ERROR("sxg: %s BOO YA 0xCAFE\n", __func__);
388 break;
391 if (i == 10000) {
392 DBG_ERROR("sxg: %s TIMEOUT\n", __func__);
394 return (FALSE); /* Timeout */
396 /* Now write the LoadSync register. This is used to */
397 /* synchronize with the card so it can scribble on the memory */
398 /* that contained 0xCAFE from the "CardUp" step above */
399 if (UcodeSel == SXG_UCODE_SAHARA) {
400 WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
403 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
404 adapter, 0, 0, 0);
405 DBG_ERROR("sxg: %s EXIT\n", __func__);
407 return (TRUE);
411 * sxg_allocate_resources - Allocate memory and locks
413 * Arguments -
414 * adapter - A pointer to our adapter structure
416 * Return
417 * int
419 static int sxg_allocate_resources(struct adapter_t *adapter)
421 int status;
422 u32 i;
423 u32 RssIds, IsrCount;
424 /* struct SXG_XMT_RING *XmtRing; */
425 /* struct SXG_RCV_RING *RcvRing; */
427 DBG_ERROR("%s ENTER\n", __func__);
429 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
430 adapter, 0, 0, 0);
432 /* Windows tells us how many CPUs it plans to use for */
433 /* RSS */
434 RssIds = SXG_RSS_CPU_COUNT(adapter);
435 IsrCount = adapter->MsiEnabled ? RssIds : 1;
437 DBG_ERROR("%s Setup the spinlocks\n", __func__);
439 /* Allocate spinlocks and initialize listheads first. */
440 spin_lock_init(&adapter->RcvQLock);
441 spin_lock_init(&adapter->SglQLock);
442 spin_lock_init(&adapter->XmtZeroLock);
443 spin_lock_init(&adapter->Bit64RegLock);
444 spin_lock_init(&adapter->AdapterLock);
446 DBG_ERROR("%s Setup the lists\n", __func__);
448 InitializeListHead(&adapter->FreeRcvBuffers);
449 InitializeListHead(&adapter->FreeRcvBlocks);
450 InitializeListHead(&adapter->AllRcvBlocks);
451 InitializeListHead(&adapter->FreeSglBuffers);
452 InitializeListHead(&adapter->AllSglBuffers);
454 /* Mark these basic allocations done. This flags essentially */
455 /* tells the SxgFreeResources routine that it can grab spinlocks */
456 /* and reference listheads. */
457 adapter->BasicAllocations = TRUE;
458 /* Main allocation loop. Start with the maximum supported by */
459 /* the microcode and back off if memory allocation */
460 /* fails. If we hit a minimum, fail. */
462 for (;;) {
463 DBG_ERROR("%s Allocate XmtRings size[%x]\n", __func__,
464 (unsigned int)(sizeof(struct SXG_XMT_RING) * 1));
466 /* Start with big items first - receive and transmit rings. At the moment */
467 /* I'm going to keep the ring size fixed and adjust the number of */
468 /* TCBs if we fail. Later we might consider reducing the ring size as well.. */
469 adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
470 sizeof(struct SXG_XMT_RING) *
472 &adapter->PXmtRings);
473 DBG_ERROR("%s XmtRings[%p]\n", __func__, adapter->XmtRings);
475 if (!adapter->XmtRings) {
476 goto per_tcb_allocation_failed;
478 memset(adapter->XmtRings, 0, sizeof(struct SXG_XMT_RING) * 1);
480 DBG_ERROR("%s Allocate RcvRings size[%x]\n", __func__,
481 (unsigned int)(sizeof(struct SXG_RCV_RING) * 1));
482 adapter->RcvRings =
483 pci_alloc_consistent(adapter->pcidev,
484 sizeof(struct SXG_RCV_RING) * 1,
485 &adapter->PRcvRings);
486 DBG_ERROR("%s RcvRings[%p]\n", __func__, adapter->RcvRings);
487 if (!adapter->RcvRings) {
488 goto per_tcb_allocation_failed;
490 memset(adapter->RcvRings, 0, sizeof(struct SXG_RCV_RING) * 1);
491 break;
493 per_tcb_allocation_failed:
494 /* an allocation failed. Free any successful allocations. */
495 if (adapter->XmtRings) {
496 pci_free_consistent(adapter->pcidev,
497 sizeof(struct SXG_XMT_RING) * 4096,
498 adapter->XmtRings,
499 adapter->PXmtRings);
500 adapter->XmtRings = NULL;
502 if (adapter->RcvRings) {
503 pci_free_consistent(adapter->pcidev,
504 sizeof(struct SXG_RCV_RING) * 4096,
505 adapter->RcvRings,
506 adapter->PRcvRings);
507 adapter->RcvRings = NULL;
509 /* Loop around and try again.... */
512 DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
513 /* Initialize rcv zero and xmt zero rings */
514 SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
515 SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
517 /* Sanity check receive data structure format */
518 ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
519 (adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
520 ASSERT(sizeof(struct SXG_RCV_DESCRIPTOR_BLOCK) ==
521 SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
523 /* Allocate receive data buffers. We allocate a block of buffers and */
524 /* a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK */
525 for (i = 0; i < SXG_INITIAL_RCV_DATA_BUFFERS;
526 i += SXG_RCV_DESCRIPTORS_PER_BLOCK) {
527 sxg_allocate_buffer_memory(adapter,
528 SXG_RCV_BLOCK_SIZE(adapter->
529 ReceiveBufferSize),
530 SXG_BUFFER_TYPE_RCV);
532 /* NBL resource allocation can fail in the 'AllocateComplete' routine, which */
533 /* doesn't return status. Make sure we got the number of buffers we requested */
534 if (adapter->FreeRcvBufferCount < SXG_INITIAL_RCV_DATA_BUFFERS) {
535 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
536 adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
538 return (STATUS_RESOURCES);
541 DBG_ERROR("%s Allocate EventRings size[%x]\n", __func__,
542 (unsigned int)(sizeof(struct SXG_EVENT_RING) * RssIds));
544 /* Allocate event queues. */
545 adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
546 sizeof(struct SXG_EVENT_RING) *
547 RssIds,
548 &adapter->PEventRings);
550 if (!adapter->EventRings) {
551 /* Caller will call SxgFreeAdapter to clean up above allocations */
552 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
553 adapter, SXG_MAX_ENTRIES, 0, 0);
554 status = STATUS_RESOURCES;
555 goto per_tcb_allocation_failed;
557 memset(adapter->EventRings, 0, sizeof(struct SXG_EVENT_RING) * RssIds);
559 DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
560 /* Allocate ISR */
561 adapter->Isr = pci_alloc_consistent(adapter->pcidev,
562 IsrCount, &adapter->PIsr);
563 if (!adapter->Isr) {
564 /* Caller will call SxgFreeAdapter to clean up above allocations */
565 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
566 adapter, SXG_MAX_ENTRIES, 0, 0);
567 status = STATUS_RESOURCES;
568 goto per_tcb_allocation_failed;
570 memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
572 DBG_ERROR("%s Allocate shared XMT ring zero index location size[%x]\n",
573 __func__, (unsigned int)sizeof(u32));
575 /* Allocate shared XMT ring zero index location */
576 adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
577 sizeof(u32),
578 &adapter->
579 PXmtRingZeroIndex);
580 if (!adapter->XmtRingZeroIndex) {
581 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
582 adapter, SXG_MAX_ENTRIES, 0, 0);
583 status = STATUS_RESOURCES;
584 goto per_tcb_allocation_failed;
586 memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
588 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
589 adapter, SXG_MAX_ENTRIES, 0, 0);
591 DBG_ERROR("%s EXIT\n", __func__);
592 return (STATUS_SUCCESS);
596 * sxg_config_pci -
598 * Set up PCI Configuration space
600 * Arguments -
601 * pcidev - A pointer to our adapter structure
604 static void sxg_config_pci(struct pci_dev *pcidev)
606 u16 pci_command;
607 u16 new_command;
609 pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
610 DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __func__, pci_command);
611 /* Set the command register */
612 new_command = pci_command | (PCI_COMMAND_MEMORY | /* Memory Space Enable */
613 PCI_COMMAND_MASTER | /* Bus master enable */
614 PCI_COMMAND_INVALIDATE | /* Memory write and invalidate */
615 PCI_COMMAND_PARITY | /* Parity error response */
616 PCI_COMMAND_SERR | /* System ERR */
617 PCI_COMMAND_FAST_BACK); /* Fast back-to-back */
618 if (pci_command != new_command) {
619 DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
620 __func__, pci_command, new_command);
621 pci_write_config_word(pcidev, PCI_COMMAND, new_command);
625 static int sxg_entry_probe(struct pci_dev *pcidev,
626 const struct pci_device_id *pci_tbl_entry)
628 static int did_version = 0;
629 int err;
630 struct net_device *netdev;
631 struct adapter_t *adapter;
632 void __iomem *memmapped_ioaddr;
633 u32 status = 0;
634 ulong mmio_start = 0;
635 ulong mmio_len = 0;
637 DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
638 __func__, jiffies, smp_processor_id());
640 /* Initialize trace buffer */
641 #ifdef ATKDBG
642 SxgTraceBuffer = &LSxgTraceBuffer;
643 SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
644 #endif
646 sxg_global.dynamic_intagg = dynamic_intagg;
648 err = pci_enable_device(pcidev);
650 DBG_ERROR("Call pci_enable_device(%p) status[%x]\n", pcidev, err);
651 if (err) {
652 return err;
655 if (sxg_debug > 0 && did_version++ == 0) {
656 printk(KERN_INFO "%s\n", sxg_banner);
657 printk(KERN_INFO "%s\n", DRV_VERSION);
660 if (!(err = pci_set_dma_mask(pcidev, DMA_64BIT_MASK))) {
661 DBG_ERROR("pci_set_dma_mask(DMA_64BIT_MASK) successful\n");
662 } else {
663 if ((err = pci_set_dma_mask(pcidev, DMA_32BIT_MASK))) {
664 DBG_ERROR
665 ("No usable DMA configuration, aborting err[%x]\n",
666 err);
667 return err;
669 DBG_ERROR("pci_set_dma_mask(DMA_32BIT_MASK) successful\n");
672 DBG_ERROR("Call pci_request_regions\n");
674 err = pci_request_regions(pcidev, DRV_NAME);
675 if (err) {
676 DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
677 return err;
680 DBG_ERROR("call pci_set_master\n");
681 pci_set_master(pcidev);
683 DBG_ERROR("call alloc_etherdev\n");
684 netdev = alloc_etherdev(sizeof(struct adapter_t));
685 if (!netdev) {
686 err = -ENOMEM;
687 goto err_out_exit_sxg_probe;
689 DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
691 SET_NETDEV_DEV(netdev, &pcidev->dev);
693 pci_set_drvdata(pcidev, netdev);
694 adapter = netdev_priv(netdev);
695 adapter->netdev = netdev;
696 adapter->pcidev = pcidev;
698 mmio_start = pci_resource_start(pcidev, 0);
699 mmio_len = pci_resource_len(pcidev, 0);
701 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
702 mmio_start, mmio_len);
704 memmapped_ioaddr = ioremap(mmio_start, mmio_len);
705 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
706 memmapped_ioaddr);
707 if (!memmapped_ioaddr) {
708 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
709 __func__, mmio_len, mmio_start);
710 goto err_out_free_mmio_region;
713 DBG_ERROR
714 ("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] len[%lx], IRQ %d.\n",
715 __func__, memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
717 adapter->HwRegs = (void *)memmapped_ioaddr;
718 adapter->base_addr = memmapped_ioaddr;
720 mmio_start = pci_resource_start(pcidev, 2);
721 mmio_len = pci_resource_len(pcidev, 2);
723 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
724 mmio_start, mmio_len);
726 memmapped_ioaddr = ioremap(mmio_start, mmio_len);
727 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
728 memmapped_ioaddr);
729 if (!memmapped_ioaddr) {
730 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
731 __func__, mmio_len, mmio_start);
732 goto err_out_free_mmio_region;
735 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
736 "start[%lx] len[%lx], IRQ %d.\n", __func__,
737 memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
739 adapter->UcodeRegs = (void *)memmapped_ioaddr;
741 adapter->State = SXG_STATE_INITIALIZING;
742 /* Maintain a list of all adapters anchored by */
743 /* the global SxgDriver structure. */
744 adapter->Next = SxgDriver.Adapters;
745 SxgDriver.Adapters = adapter;
746 adapter->AdapterID = ++SxgDriver.AdapterID;
748 /* Initialize CRC table used to determine multicast hash */
749 sxg_mcast_init_crc32();
751 adapter->JumboEnabled = FALSE;
752 adapter->RssEnabled = FALSE;
753 if (adapter->JumboEnabled) {
754 adapter->FrameSize = JUMBOMAXFRAME;
755 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
756 } else {
757 adapter->FrameSize = ETHERMAXFRAME;
758 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
761 /* status = SXG_READ_EEPROM(adapter); */
762 /* if (!status) { */
763 /* goto sxg_init_bad; */
764 /* } */
766 DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
767 sxg_config_pci(pcidev);
768 DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __func__);
770 DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __func__);
771 sxg_init_driver();
772 DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __func__);
774 adapter->vendid = pci_tbl_entry->vendor;
775 adapter->devid = pci_tbl_entry->device;
776 adapter->subsysid = pci_tbl_entry->subdevice;
777 adapter->busnumber = pcidev->bus->number;
778 adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
779 adapter->functionnumber = (pcidev->devfn & 0x7);
780 adapter->memorylength = pci_resource_len(pcidev, 0);
781 adapter->irq = pcidev->irq;
782 adapter->next_netdevice = head_netdevice;
783 head_netdevice = netdev;
784 /* adapter->chipid = chip_idx; */
785 adapter->port = 0; /*adapter->functionnumber; */
786 adapter->cardindex = adapter->port;
788 /* Allocate memory and other resources */
789 DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
790 status = sxg_allocate_resources(adapter);
791 DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
792 __func__, status);
793 if (status != STATUS_SUCCESS) {
794 goto err_out_unmap;
797 DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
798 if (sxg_download_microcode(adapter, SXG_UCODE_SAHARA)) {
799 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
800 __func__);
801 sxg_adapter_set_hwaddr(adapter);
802 } else {
803 adapter->state = ADAPT_FAIL;
804 adapter->linkstate = LINK_DOWN;
805 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
808 netdev->base_addr = (unsigned long)adapter->base_addr;
809 netdev->irq = adapter->irq;
810 netdev->open = sxg_entry_open;
811 netdev->stop = sxg_entry_halt;
812 netdev->hard_start_xmit = sxg_send_packets;
813 netdev->do_ioctl = sxg_ioctl;
814 #if XXXTODO
815 netdev->set_mac_address = sxg_mac_set_address;
816 #if SLIC_GET_STATS_ENABLED
817 netdev->get_stats = sxg_get_stats;
818 #endif
819 netdev->set_multicast_list = sxg_mcast_set_list;
820 #endif
822 strcpy(netdev->name, "eth%d");
823 /* strcpy(netdev->name, pci_name(pcidev)); */
824 if ((err = register_netdev(netdev))) {
825 DBG_ERROR("Cannot register net device, aborting. %s\n",
826 netdev->name);
827 goto err_out_unmap;
830 DBG_ERROR
831 ("sxg: %s addr 0x%lx, irq %d, MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
832 netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
833 netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
834 netdev->dev_addr[4], netdev->dev_addr[5]);
836 /*sxg_init_bad: */
837 ASSERT(status == FALSE);
838 /* sxg_free_adapter(adapter); */
840 DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
841 status, jiffies, smp_processor_id());
842 return status;
844 err_out_unmap:
845 iounmap((void *)memmapped_ioaddr);
847 err_out_free_mmio_region:
848 release_mem_region(mmio_start, mmio_len);
850 err_out_exit_sxg_probe:
852 DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies,
853 smp_processor_id());
855 return -ENODEV;
858 /***********************************************************************
859 * LINE BASE Interrupt routines..
860 ***********************************************************************/
863 * sxg_disable_interrupt
865 * DisableInterrupt Handler
867 * Arguments:
869 * adapter: Our adapter structure
871 * Return Value:
872 * None.
874 static void sxg_disable_interrupt(struct adapter_t *adapter)
876 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
877 adapter, adapter->InterruptsEnabled, 0, 0);
878 /* For now, RSS is disabled with line based interrupts */
879 ASSERT(adapter->RssEnabled == FALSE);
880 ASSERT(adapter->MsiEnabled == FALSE);
881 /* */
882 /* Turn off interrupts by writing to the icr register. */
883 /* */
884 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
886 adapter->InterruptsEnabled = 0;
888 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
889 adapter, adapter->InterruptsEnabled, 0, 0);
894 * sxg_enable_interrupt
896 * EnableInterrupt Handler
898 * Arguments:
900 * adapter: Our adapter structure
902 * Return Value:
903 * None.
905 static void sxg_enable_interrupt(struct adapter_t *adapter)
907 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
908 adapter, adapter->InterruptsEnabled, 0, 0);
909 /* For now, RSS is disabled with line based interrupts */
910 ASSERT(adapter->RssEnabled == FALSE);
911 ASSERT(adapter->MsiEnabled == FALSE);
912 /* */
913 /* Turn on interrupts by writing to the icr register. */
914 /* */
915 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
917 adapter->InterruptsEnabled = 1;
919 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
920 adapter, 0, 0, 0);
925 * sxg_isr - Process an line-based interrupt
927 * Arguments:
928 * Context - Our adapter structure
929 * QueueDefault - Output parameter to queue to default CPU
930 * TargetCpus - Output bitmap to schedule DPC's
932 * Return Value:
933 * TRUE if our interrupt
935 static irqreturn_t sxg_isr(int irq, void *dev_id)
937 p_net_device dev = (p_net_device) dev_id;
938 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
939 /* u32 CpuMask = 0, i; */
941 adapter->Stats.NumInts++;
942 if (adapter->Isr[0] == 0) {
943 /* The SLIC driver used to experience a number of spurious interrupts */
944 /* due to the delay associated with the masking of the interrupt */
945 /* (we'd bounce back in here). If we see that again with Sahara, */
946 /* add a READ_REG of the Icr register after the WRITE_REG below. */
947 adapter->Stats.FalseInts++;
948 return IRQ_NONE;
950 /* */
951 /* Move the Isr contents and clear the value in */
952 /* shared memory, and mask interrupts */
953 /* */
954 adapter->IsrCopy[0] = adapter->Isr[0];
955 adapter->Isr[0] = 0;
956 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
957 /* ASSERT(adapter->IsrDpcsPending == 0); */
958 #if XXXTODO /* RSS Stuff */
959 /* If RSS is enabled and the ISR specifies */
960 /* SXG_ISR_EVENT, then schedule DPC's */
961 /* based on event queues. */
962 if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
963 for (i = 0;
964 i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
965 i++) {
966 struct XG_EVENT_RING *EventRing = &adapter->EventRings[i];
967 struct SXG_EVENT *Event =
968 &EventRing->Ring[adapter->NextEvent[i]];
969 unsigned char Cpu =
970 adapter->RssSystemInfo->RssIdToCpu[i];
971 if (Event->Status & EVENT_STATUS_VALID) {
972 adapter->IsrDpcsPending++;
973 CpuMask |= (1 << Cpu);
977 /* Now, either schedule the CPUs specified by the CpuMask, */
978 /* or queue default */
979 if (CpuMask) {
980 *QueueDefault = FALSE;
981 } else {
982 adapter->IsrDpcsPending = 1;
983 *QueueDefault = TRUE;
985 *TargetCpus = CpuMask;
986 #endif
987 /* */
988 /* There are no DPCs in Linux, so call the handler now */
989 /* */
990 sxg_handle_interrupt(adapter);
992 return IRQ_HANDLED;
995 static void sxg_handle_interrupt(struct adapter_t *adapter)
997 /* unsigned char RssId = 0; */
998 u32 NewIsr;
1000 if (adapter->Stats.RcvNoBuffer < 5) {
1001 DBG_ERROR("Enter sxg_handle_interrupt ISR[%x]\n",
1002 adapter->IsrCopy[0]);
1004 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
1005 adapter, adapter->IsrCopy[0], 0, 0);
1006 /* For now, RSS is disabled with line based interrupts */
1007 ASSERT(adapter->RssEnabled == FALSE);
1008 ASSERT(adapter->MsiEnabled == FALSE);
1009 ASSERT(adapter->IsrCopy[0]);
1010 /*/////////////////////////// */
1012 /* Always process the event queue. */
1013 sxg_process_event_queue(adapter,
1014 (adapter->RssEnabled ? /*RssId */ 0 : 0));
1016 #if XXXTODO /* RSS stuff */
1017 if (--adapter->IsrDpcsPending) {
1018 /* We're done. */
1019 ASSERT(adapter->RssEnabled);
1020 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
1021 adapter, 0, 0, 0);
1022 return;
1024 #endif
1025 /* */
1026 /* Last (or only) DPC processes the ISR and clears the interrupt. */
1027 /* */
1028 NewIsr = sxg_process_isr(adapter, 0);
1029 /* */
1030 /* Reenable interrupts */
1031 /* */
1032 adapter->IsrCopy[0] = 0;
1033 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
1034 adapter, NewIsr, 0, 0);
1036 if (adapter->Stats.RcvNoBuffer < 5) {
1037 DBG_ERROR
1038 ("Exit sxg_handle_interrupt2 after enabling interrupt\n");
1041 WRITE_REG(adapter->UcodeRegs[0].Isr, NewIsr, TRUE);
1043 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
1044 adapter, 0, 0, 0);
1049 * sxg_process_isr - Process an interrupt. Called from the line-based and
1050 * message based interrupt DPC routines
1052 * Arguments:
1053 * adapter - Our adapter structure
1054 * Queue - The ISR that needs processing
1056 * Return Value:
1057 * None
1059 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId)
1061 u32 Isr = adapter->IsrCopy[MessageId];
1062 u32 NewIsr = 0;
1064 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
1065 adapter, Isr, 0, 0);
1067 /* Error */
1068 if (Isr & SXG_ISR_ERR) {
1069 if (Isr & SXG_ISR_PDQF) {
1070 adapter->Stats.PdqFull++;
1071 DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __func__);
1073 /* No host buffer */
1074 if (Isr & SXG_ISR_RMISS) {
1075 /* There is a bunch of code in the SLIC driver which */
1076 /* attempts to process more receive events per DPC */
1077 /* if we start to fall behind. We'll probably */
1078 /* need to do something similar here, but hold */
1079 /* off for now. I don't want to make the code more */
1080 /* complicated than strictly needed. */
1081 adapter->Stats.RcvNoBuffer++;
1082 if (adapter->Stats.RcvNoBuffer < 5) {
1083 DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
1084 __func__);
1087 /* Card crash */
1088 if (Isr & SXG_ISR_DEAD) {
1089 /* Set aside the crash info and set the adapter state to RESET */
1090 adapter->CrashCpu =
1091 (unsigned char)((Isr & SXG_ISR_CPU) >>
1092 SXG_ISR_CPU_SHIFT);
1093 adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
1094 adapter->Dead = TRUE;
1095 DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
1096 adapter->CrashLocation, adapter->CrashCpu);
1098 /* Event ring full */
1099 if (Isr & SXG_ISR_ERFULL) {
1100 /* Same issue as RMISS, really. This means the */
1101 /* host is falling behind the card. Need to increase */
1102 /* event ring size, process more events per interrupt, */
1103 /* and/or reduce/remove interrupt aggregation. */
1104 adapter->Stats.EventRingFull++;
1105 DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
1106 __func__);
1108 /* Transmit drop - no DRAM buffers or XMT error */
1109 if (Isr & SXG_ISR_XDROP) {
1110 adapter->Stats.XmtDrops++;
1111 adapter->Stats.XmtErrors++;
1112 DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __func__);
1115 /* Slowpath send completions */
1116 if (Isr & SXG_ISR_SPSEND) {
1117 sxg_complete_slow_send(adapter);
1119 /* Dump */
1120 if (Isr & SXG_ISR_UPC) {
1121 ASSERT(adapter->DumpCmdRunning); /* Maybe change when debug is added.. */
1122 adapter->DumpCmdRunning = FALSE;
1124 /* Link event */
1125 if (Isr & SXG_ISR_LINK) {
1126 sxg_link_event(adapter);
1128 /* Debug - breakpoint hit */
1129 if (Isr & SXG_ISR_BREAK) {
1130 /* At the moment AGDB isn't written to support interactive */
1131 /* debug sessions. When it is, this interrupt will be used */
1132 /* to signal AGDB that it has hit a breakpoint. For now, ASSERT. */
1133 ASSERT(0);
1135 /* Heartbeat response */
1136 if (Isr & SXG_ISR_PING) {
1137 adapter->PingOutstanding = FALSE;
1139 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
1140 adapter, Isr, NewIsr, 0);
1142 return (NewIsr);
1147 * sxg_process_event_queue - Process our event queue
1149 * Arguments:
1150 * - adapter - Adapter structure
1151 * - RssId - The event queue requiring processing
1153 * Return Value:
1154 * None.
1156 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId)
1158 struct SXG_EVENT_RING *EventRing = &adapter->EventRings[RssId];
1159 struct SXG_EVENT *Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1160 u32 EventsProcessed = 0, Batches = 0;
1161 u32 num_skbs = 0;
1162 struct sk_buff *skb;
1163 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1164 struct sk_buff *prev_skb = NULL;
1165 struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
1166 u32 Index;
1167 struct SXG_RCV_DATA_BUFFER_HDR *RcvDataBufferHdr;
1168 #endif
1169 u32 ReturnStatus = 0;
1171 ASSERT((adapter->State == SXG_STATE_RUNNING) ||
1172 (adapter->State == SXG_STATE_PAUSING) ||
1173 (adapter->State == SXG_STATE_PAUSED) ||
1174 (adapter->State == SXG_STATE_HALTING));
1175 /* We may still have unprocessed events on the queue if */
1176 /* the card crashed. Don't process them. */
1177 if (adapter->Dead) {
1178 return (0);
1180 /* In theory there should only be a single processor that */
1181 /* accesses this queue, and only at interrupt-DPC time. So */
1182 /* we shouldn't need a lock for any of this. */
1183 while (Event->Status & EVENT_STATUS_VALID) {
1184 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
1185 Event, Event->Code, Event->Status,
1186 adapter->NextEvent);
1187 switch (Event->Code) {
1188 case EVENT_CODE_BUFFERS:
1189 ASSERT(!(Event->CommandIndex & 0xFF00)); /* SXG_RING_INFO Head & Tail == unsigned char */
1190 /* */
1191 sxg_complete_descriptor_blocks(adapter,
1192 Event->CommandIndex);
1193 /* */
1194 break;
1195 case EVENT_CODE_SLOWRCV:
1196 --adapter->RcvBuffersOnCard;
1197 if ((skb = sxg_slow_receive(adapter, Event))) {
1198 u32 rx_bytes;
1199 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1200 /* Add it to our indication list */
1201 SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
1202 IndicationList, num_skbs);
1203 /* In Linux, we just pass up each skb to the protocol above at this point, */
1204 /* there is no capability of an indication list. */
1205 #else
1206 /* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
1207 rx_bytes = Event->Length; /* (rcvbuf->length & IRHDDR_FLEN_MSK); */
1208 skb_put(skb, rx_bytes);
1209 adapter->stats.rx_packets++;
1210 adapter->stats.rx_bytes += rx_bytes;
1211 #if SXG_OFFLOAD_IP_CHECKSUM
1212 skb->ip_summed = CHECKSUM_UNNECESSARY;
1213 #endif
1214 skb->dev = adapter->netdev;
1215 skb->protocol = eth_type_trans(skb, skb->dev);
1216 netif_rx(skb);
1217 #endif
1219 break;
1220 default:
1221 DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
1222 __func__, Event->Code);
1223 /* ASSERT(0); */
1225 /* See if we need to restock card receive buffers. */
1226 /* There are two things to note here: */
1227 /* First - This test is not SMP safe. The */
1228 /* adapter->BuffersOnCard field is protected via atomic interlocked calls, but */
1229 /* we do not protect it with respect to these tests. The only way to do that */
1230 /* is with a lock, and I don't want to grab a lock every time we adjust the */
1231 /* BuffersOnCard count. Instead, we allow the buffer replenishment to be off */
1232 /* once in a while. The worst that can happen is the card is given one */
1233 /* more-or-less descriptor block than the arbitrary value we've chosen. */
1234 /* No big deal */
1235 /* In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard is adjusted. */
1236 /* Second - We expect this test to rarely evaluate to true. We attempt to */
1237 /* refill descriptor blocks as they are returned to us */
1238 /* (sxg_complete_descriptor_blocks), so The only time this should evaluate */
1239 /* to true is when sxg_complete_descriptor_blocks failed to allocate */
1240 /* receive buffers. */
1241 if (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
1242 sxg_stock_rcv_buffers(adapter);
1244 /* It's more efficient to just set this to zero. */
1245 /* But clearing the top bit saves potential debug info... */
1246 Event->Status &= ~EVENT_STATUS_VALID;
1247 /* Advanct to the next event */
1248 SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
1249 Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1250 EventsProcessed++;
1251 if (EventsProcessed == EVENT_RING_BATCH) {
1252 /* Release a batch of events back to the card */
1253 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1254 EVENT_RING_BATCH, FALSE);
1255 EventsProcessed = 0;
1256 /* If we've processed our batch limit, break out of the */
1257 /* loop and return SXG_ISR_EVENT to arrange for us to */
1258 /* be called again */
1259 if (Batches++ == EVENT_BATCH_LIMIT) {
1260 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1261 TRACE_NOISY, "EvtLimit", Batches,
1262 adapter->NextEvent, 0, 0);
1263 ReturnStatus = SXG_ISR_EVENT;
1264 break;
1268 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1269 /* */
1270 /* Indicate any received dumb-nic frames */
1271 /* */
1272 SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
1273 #endif
1274 /* */
1275 /* Release events back to the card. */
1276 /* */
1277 if (EventsProcessed) {
1278 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1279 EventsProcessed, FALSE);
1281 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
1282 Batches, EventsProcessed, adapter->NextEvent, num_skbs);
1284 return (ReturnStatus);
1288 * sxg_complete_slow_send - Complete slowpath or dumb-nic sends
1290 * Arguments -
1291 * adapter - A pointer to our adapter structure
1293 * Return
1294 * None
1296 static void sxg_complete_slow_send(struct adapter_t *adapter)
1298 struct SXG_XMT_RING *XmtRing = &adapter->XmtRings[0];
1299 struct SXG_RING_INFO *XmtRingInfo = &adapter->XmtRingZeroInfo;
1300 u32 *ContextType;
1301 struct SXG_CMD *XmtCmd;
1303 /* NOTE - This lock is dropped and regrabbed in this loop. */
1304 /* This means two different processors can both be running */
1305 /* through this loop. Be *very* careful. */
1306 spin_lock(&adapter->XmtZeroLock);
1307 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
1308 adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1310 while (XmtRingInfo->Tail != *adapter->XmtRingZeroIndex) {
1311 /* Locate the current Cmd (ring descriptor entry), and */
1312 /* associated SGL, and advance the tail */
1313 SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
1314 ASSERT(ContextType);
1315 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1316 XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
1317 /* Clear the SGL field. */
1318 XmtCmd->Sgl = 0;
1320 switch (*ContextType) {
1321 case SXG_SGL_DUMB:
1323 struct sk_buff *skb;
1324 /* Dumb-nic send. Command context is the dumb-nic SGL */
1325 skb = (struct sk_buff *)ContextType;
1326 /* Complete the send */
1327 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1328 TRACE_IMPORTANT, "DmSndCmp", skb, 0,
1329 0, 0);
1330 ASSERT(adapter->Stats.XmtQLen);
1331 adapter->Stats.XmtQLen--; /* within XmtZeroLock */
1332 adapter->Stats.XmtOk++;
1333 /* Now drop the lock and complete the send back to */
1334 /* Microsoft. We need to drop the lock because */
1335 /* Microsoft can come back with a chimney send, which */
1336 /* results in a double trip in SxgTcpOuput */
1337 spin_unlock(&adapter->XmtZeroLock);
1338 SXG_COMPLETE_DUMB_SEND(adapter, skb);
1339 /* and reacquire.. */
1340 spin_lock(&adapter->XmtZeroLock);
1342 break;
1343 default:
1344 ASSERT(0);
1347 spin_unlock(&adapter->XmtZeroLock);
1348 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1349 adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1353 * sxg_slow_receive
1355 * Arguments -
1356 * adapter - A pointer to our adapter structure
1357 * Event - Receive event
1359 * Return
1360 * skb
1362 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter, struct SXG_EVENT *Event)
1364 struct SXG_RCV_DATA_BUFFER_HDR *RcvDataBufferHdr;
1365 struct sk_buff *Packet;
1367 RcvDataBufferHdr = (struct SXG_RCV_DATA_BUFFER_HDR*) Event->HostHandle;
1368 ASSERT(RcvDataBufferHdr);
1369 ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
1370 ASSERT(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr) ==
1371 RcvDataBufferHdr->VirtualAddress);
1372 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
1373 RcvDataBufferHdr, RcvDataBufferHdr->State,
1374 RcvDataBufferHdr->VirtualAddress);
1375 /* Drop rcv frames in non-running state */
1376 switch (adapter->State) {
1377 case SXG_STATE_RUNNING:
1378 break;
1379 case SXG_STATE_PAUSING:
1380 case SXG_STATE_PAUSED:
1381 case SXG_STATE_HALTING:
1382 goto drop;
1383 default:
1384 ASSERT(0);
1385 goto drop;
1388 /* Change buffer state to UPSTREAM */
1389 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
1390 if (Event->Status & EVENT_STATUS_RCVERR) {
1391 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
1392 Event, Event->Status, Event->HostHandle, 0);
1393 /* XXXTODO - Remove this print later */
1394 DBG_ERROR("SXG: Receive error %x\n", *(u32 *)
1395 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr));
1396 sxg_process_rcv_error(adapter, *(u32 *)
1397 SXG_RECEIVE_DATA_LOCATION
1398 (RcvDataBufferHdr));
1399 goto drop;
1401 #if XXXTODO /* VLAN stuff */
1402 /* If there's a VLAN tag, extract it and validate it */
1403 if (((struct ether_header*) (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->
1404 EtherType == ETHERTYPE_VLAN) {
1405 if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
1406 STATUS_SUCCESS) {
1407 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
1408 "BadVlan", Event,
1409 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1410 Event->Length, 0);
1411 goto drop;
1414 #endif
1415 /* */
1416 /* Dumb-nic frame. See if it passes our mac filter and update stats */
1417 /* */
1418 if (!sxg_mac_filter(adapter, (struct ether_header*)
1419 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1420 Event->Length)) {
1421 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
1422 Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1423 Event->Length, 0);
1424 goto drop;
1427 Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
1429 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
1430 RcvDataBufferHdr, Packet, Event->Length, 0);
1431 /* */
1432 /* Lastly adjust the receive packet length. */
1433 /* */
1434 SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
1436 return (Packet);
1438 drop:
1439 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
1440 RcvDataBufferHdr, Event->Length, 0, 0);
1441 adapter->Stats.RcvDiscards++;
1442 spin_lock(&adapter->RcvQLock);
1443 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1444 spin_unlock(&adapter->RcvQLock);
1445 return (NULL);
1449 * sxg_process_rcv_error - process receive error and update
1450 * stats
1452 * Arguments:
1453 * adapter - Adapter structure
1454 * ErrorStatus - 4-byte receive error status
1456 * Return Value:
1457 * None
1459 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus)
1461 u32 Error;
1463 adapter->Stats.RcvErrors++;
1465 if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
1466 Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
1467 switch (Error) {
1468 case SXG_RCV_STATUS_TRANSPORT_CSUM:
1469 adapter->Stats.TransportCsum++;
1470 break;
1471 case SXG_RCV_STATUS_TRANSPORT_UFLOW:
1472 adapter->Stats.TransportUflow++;
1473 break;
1474 case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
1475 adapter->Stats.TransportHdrLen++;
1476 break;
1479 if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
1480 Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
1481 switch (Error) {
1482 case SXG_RCV_STATUS_NETWORK_CSUM:
1483 adapter->Stats.NetworkCsum++;
1484 break;
1485 case SXG_RCV_STATUS_NETWORK_UFLOW:
1486 adapter->Stats.NetworkUflow++;
1487 break;
1488 case SXG_RCV_STATUS_NETWORK_HDRLEN:
1489 adapter->Stats.NetworkHdrLen++;
1490 break;
1493 if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
1494 adapter->Stats.Parity++;
1496 if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
1497 Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
1498 switch (Error) {
1499 case SXG_RCV_STATUS_LINK_PARITY:
1500 adapter->Stats.LinkParity++;
1501 break;
1502 case SXG_RCV_STATUS_LINK_EARLY:
1503 adapter->Stats.LinkEarly++;
1504 break;
1505 case SXG_RCV_STATUS_LINK_BUFOFLOW:
1506 adapter->Stats.LinkBufOflow++;
1507 break;
1508 case SXG_RCV_STATUS_LINK_CODE:
1509 adapter->Stats.LinkCode++;
1510 break;
1511 case SXG_RCV_STATUS_LINK_DRIBBLE:
1512 adapter->Stats.LinkDribble++;
1513 break;
1514 case SXG_RCV_STATUS_LINK_CRC:
1515 adapter->Stats.LinkCrc++;
1516 break;
1517 case SXG_RCV_STATUS_LINK_OFLOW:
1518 adapter->Stats.LinkOflow++;
1519 break;
1520 case SXG_RCV_STATUS_LINK_UFLOW:
1521 adapter->Stats.LinkUflow++;
1522 break;
1528 * sxg_mac_filter
1530 * Arguments:
1531 * adapter - Adapter structure
1532 * pether - Ethernet header
1533 * length - Frame length
1535 * Return Value:
1536 * TRUE if the frame is to be allowed
1538 static bool sxg_mac_filter(struct adapter_t *adapter, struct ether_header *EtherHdr,
1539 ushort length)
1541 bool EqualAddr;
1543 if (SXG_MULTICAST_PACKET(EtherHdr)) {
1544 if (SXG_BROADCAST_PACKET(EtherHdr)) {
1545 /* broadcast */
1546 if (adapter->MacFilter & MAC_BCAST) {
1547 adapter->Stats.DumbRcvBcastPkts++;
1548 adapter->Stats.DumbRcvBcastBytes += length;
1549 adapter->Stats.DumbRcvPkts++;
1550 adapter->Stats.DumbRcvBytes += length;
1551 return (TRUE);
1553 } else {
1554 /* multicast */
1555 if (adapter->MacFilter & MAC_ALLMCAST) {
1556 adapter->Stats.DumbRcvMcastPkts++;
1557 adapter->Stats.DumbRcvMcastBytes += length;
1558 adapter->Stats.DumbRcvPkts++;
1559 adapter->Stats.DumbRcvBytes += length;
1560 return (TRUE);
1562 if (adapter->MacFilter & MAC_MCAST) {
1563 struct SXG_MULTICAST_ADDRESS *MulticastAddrs =
1564 adapter->MulticastAddrs;
1565 while (MulticastAddrs) {
1566 ETHER_EQ_ADDR(MulticastAddrs->Address,
1567 EtherHdr->ether_dhost,
1568 EqualAddr);
1569 if (EqualAddr) {
1570 adapter->Stats.
1571 DumbRcvMcastPkts++;
1572 adapter->Stats.
1573 DumbRcvMcastBytes += length;
1574 adapter->Stats.DumbRcvPkts++;
1575 adapter->Stats.DumbRcvBytes +=
1576 length;
1577 return (TRUE);
1579 MulticastAddrs = MulticastAddrs->Next;
1583 } else if (adapter->MacFilter & MAC_DIRECTED) {
1584 /* Not broadcast or multicast. Must be directed at us or */
1585 /* the card is in promiscuous mode. Either way, consider it */
1586 /* ours if MAC_DIRECTED is set */
1587 adapter->Stats.DumbRcvUcastPkts++;
1588 adapter->Stats.DumbRcvUcastBytes += length;
1589 adapter->Stats.DumbRcvPkts++;
1590 adapter->Stats.DumbRcvBytes += length;
1591 return (TRUE);
1593 if (adapter->MacFilter & MAC_PROMISC) {
1594 /* Whatever it is, keep it. */
1595 adapter->Stats.DumbRcvPkts++;
1596 adapter->Stats.DumbRcvBytes += length;
1597 return (TRUE);
1599 adapter->Stats.RcvDiscards++;
1600 return (FALSE);
1603 static int sxg_register_interrupt(struct adapter_t *adapter)
1605 if (!adapter->intrregistered) {
1606 int retval;
1608 DBG_ERROR
1609 ("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
1610 __func__, adapter, adapter->netdev->irq, NR_IRQS);
1612 spin_unlock_irqrestore(&sxg_global.driver_lock,
1613 sxg_global.flags);
1615 retval = request_irq(adapter->netdev->irq,
1616 &sxg_isr,
1617 IRQF_SHARED,
1618 adapter->netdev->name, adapter->netdev);
1620 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1622 if (retval) {
1623 DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
1624 adapter->netdev->name, retval);
1625 return (retval);
1627 adapter->intrregistered = 1;
1628 adapter->IntRegistered = TRUE;
1629 /* Disable RSS with line-based interrupts */
1630 adapter->MsiEnabled = FALSE;
1631 adapter->RssEnabled = FALSE;
1632 DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
1633 __func__, adapter, adapter->netdev->irq);
1635 return (STATUS_SUCCESS);
1638 static void sxg_deregister_interrupt(struct adapter_t *adapter)
1640 DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __func__, adapter);
1641 #if XXXTODO
1642 slic_init_cleanup(adapter);
1643 #endif
1644 memset(&adapter->stats, 0, sizeof(struct net_device_stats));
1645 adapter->error_interrupts = 0;
1646 adapter->rcv_interrupts = 0;
1647 adapter->xmit_interrupts = 0;
1648 adapter->linkevent_interrupts = 0;
1649 adapter->upr_interrupts = 0;
1650 adapter->num_isrs = 0;
1651 adapter->xmit_completes = 0;
1652 adapter->rcv_broadcasts = 0;
1653 adapter->rcv_multicasts = 0;
1654 adapter->rcv_unicasts = 0;
1655 DBG_ERROR("sxg: %s EXIT\n", __func__);
1659 * sxg_if_init
1661 * Perform initialization of our slic interface.
1664 static int sxg_if_init(struct adapter_t *adapter)
1666 p_net_device dev = adapter->netdev;
1667 int status = 0;
1669 DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d:%d] flags[%x]\n",
1670 __func__, adapter->netdev->name,
1671 adapter->queues_initialized, adapter->state,
1672 adapter->linkstate, dev->flags);
1674 /* adapter should be down at this point */
1675 if (adapter->state != ADAPT_DOWN) {
1676 DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
1677 return (-EIO);
1679 ASSERT(adapter->linkstate == LINK_DOWN);
1681 adapter->devflags_prev = dev->flags;
1682 adapter->macopts = MAC_DIRECTED;
1683 if (dev->flags) {
1684 DBG_ERROR("sxg: %s (%s) Set MAC options: ", __func__,
1685 adapter->netdev->name);
1686 if (dev->flags & IFF_BROADCAST) {
1687 adapter->macopts |= MAC_BCAST;
1688 DBG_ERROR("BCAST ");
1690 if (dev->flags & IFF_PROMISC) {
1691 adapter->macopts |= MAC_PROMISC;
1692 DBG_ERROR("PROMISC ");
1694 if (dev->flags & IFF_ALLMULTI) {
1695 adapter->macopts |= MAC_ALLMCAST;
1696 DBG_ERROR("ALL_MCAST ");
1698 if (dev->flags & IFF_MULTICAST) {
1699 adapter->macopts |= MAC_MCAST;
1700 DBG_ERROR("MCAST ");
1702 DBG_ERROR("\n");
1704 status = sxg_register_interrupt(adapter);
1705 if (status != STATUS_SUCCESS) {
1706 DBG_ERROR("sxg_if_init: sxg_register_interrupt FAILED %x\n",
1707 status);
1708 sxg_deregister_interrupt(adapter);
1709 return (status);
1712 adapter->state = ADAPT_UP;
1715 * clear any pending events, then enable interrupts
1717 DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __func__);
1719 return (STATUS_SUCCESS);
1722 static int sxg_entry_open(p_net_device dev)
1724 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1725 int status;
1727 ASSERT(adapter);
1728 DBG_ERROR("sxg: %s adapter->activated[%d]\n", __func__,
1729 adapter->activated);
1730 DBG_ERROR
1731 ("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
1732 __func__, adapter->netdev->name, jiffies, smp_processor_id(),
1733 adapter->netdev, adapter, adapter->port);
1735 netif_stop_queue(adapter->netdev);
1737 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1738 if (!adapter->activated) {
1739 sxg_global.num_sxg_ports_active++;
1740 adapter->activated = 1;
1742 /* Initialize the adapter */
1743 DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
1744 status = sxg_initialize_adapter(adapter);
1745 DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
1746 __func__, status);
1748 if (status == STATUS_SUCCESS) {
1749 DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __func__);
1750 status = sxg_if_init(adapter);
1751 DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __func__,
1752 status);
1755 if (status != STATUS_SUCCESS) {
1756 if (adapter->activated) {
1757 sxg_global.num_sxg_ports_active--;
1758 adapter->activated = 0;
1760 spin_unlock_irqrestore(&sxg_global.driver_lock,
1761 sxg_global.flags);
1762 return (status);
1764 DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
1766 /* Enable interrupts */
1767 SXG_ENABLE_ALL_INTERRUPTS(adapter);
1769 DBG_ERROR("sxg: %s EXIT\n", __func__);
1771 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
1772 return STATUS_SUCCESS;
1775 static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
1777 p_net_device dev = pci_get_drvdata(pcidev);
1778 u32 mmio_start = 0;
1779 unsigned int mmio_len = 0;
1780 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1782 ASSERT(adapter);
1783 DBG_ERROR("sxg: %s ENTER dev[%p] adapter[%p]\n", __func__, dev,
1784 adapter);
1785 sxg_deregister_interrupt(adapter);
1786 sxg_unmap_mmio_space(adapter);
1787 DBG_ERROR("sxg: %s unregister_netdev\n", __func__);
1788 unregister_netdev(dev);
1790 mmio_start = pci_resource_start(pcidev, 0);
1791 mmio_len = pci_resource_len(pcidev, 0);
1793 DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __func__,
1794 mmio_start, mmio_len);
1795 release_mem_region(mmio_start, mmio_len);
1797 DBG_ERROR("sxg: %s iounmap dev->base_addr[%x]\n", __func__,
1798 (unsigned int)dev->base_addr);
1799 iounmap((char *)dev->base_addr);
1801 DBG_ERROR("sxg: %s deallocate device\n", __func__);
1802 kfree(dev);
1803 DBG_ERROR("sxg: %s EXIT\n", __func__);
1806 static int sxg_entry_halt(p_net_device dev)
1808 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1810 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1811 DBG_ERROR("sxg: %s (%s) ENTER\n", __func__, dev->name);
1813 netif_stop_queue(adapter->netdev);
1814 adapter->state = ADAPT_DOWN;
1815 adapter->linkstate = LINK_DOWN;
1816 adapter->devflags_prev = 0;
1817 DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
1818 __func__, dev->name, adapter, adapter->state);
1820 DBG_ERROR("sxg: %s (%s) EXIT\n", __func__, dev->name);
1821 DBG_ERROR("sxg: %s EXIT\n", __func__);
1822 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
1823 return (STATUS_SUCCESS);
1826 static int sxg_ioctl(p_net_device dev, struct ifreq *rq, int cmd)
1828 ASSERT(rq);
1829 /* DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev); */
1830 switch (cmd) {
1831 case SIOCSLICSETINTAGG:
1833 /* struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev); */
1834 u32 data[7];
1835 u32 intagg;
1837 if (copy_from_user(data, rq->ifr_data, 28)) {
1838 DBG_ERROR
1839 ("copy_from_user FAILED getting initial params\n");
1840 return -EFAULT;
1842 intagg = data[0];
1843 printk(KERN_EMERG
1844 "%s: set interrupt aggregation to %d\n",
1845 __func__, intagg);
1846 return 0;
1849 default:
1850 /* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
1851 return -EOPNOTSUPP;
1853 return 0;
1856 #define NORMAL_ETHFRAME 0
1860 * sxg_send_packets - Send a skb packet
1862 * Arguments:
1863 * skb - The packet to send
1864 * dev - Our linux net device that refs our adapter
1866 * Return:
1867 * 0 regardless of outcome XXXTODO refer to e1000 driver
1869 static int sxg_send_packets(struct sk_buff *skb, p_net_device dev)
1871 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1872 u32 status = STATUS_SUCCESS;
1874 DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __func__,
1875 skb);
1876 /* Check the adapter state */
1877 switch (adapter->State) {
1878 case SXG_STATE_INITIALIZING:
1879 case SXG_STATE_HALTED:
1880 case SXG_STATE_SHUTDOWN:
1881 ASSERT(0); /* unexpected */
1882 /* fall through */
1883 case SXG_STATE_RESETTING:
1884 case SXG_STATE_SLEEP:
1885 case SXG_STATE_BOOTDIAG:
1886 case SXG_STATE_DIAG:
1887 case SXG_STATE_HALTING:
1888 status = STATUS_FAILURE;
1889 break;
1890 case SXG_STATE_RUNNING:
1891 if (adapter->LinkState != SXG_LINK_UP) {
1892 status = STATUS_FAILURE;
1894 break;
1895 default:
1896 ASSERT(0);
1897 status = STATUS_FAILURE;
1899 if (status != STATUS_SUCCESS) {
1900 goto xmit_fail;
1902 /* send a packet */
1903 status = sxg_transmit_packet(adapter, skb);
1904 if (status == STATUS_SUCCESS) {
1905 goto xmit_done;
1908 xmit_fail:
1909 /* reject & complete all the packets if they cant be sent */
1910 if (status != STATUS_SUCCESS) {
1911 #if XXXTODO
1912 /* sxg_send_packets_fail(adapter, skb, status); */
1913 #else
1914 SXG_DROP_DUMB_SEND(adapter, skb);
1915 adapter->stats.tx_dropped++;
1916 #endif
1918 DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __func__,
1919 status);
1921 xmit_done:
1922 return 0;
1926 * sxg_transmit_packet
1928 * This function transmits a single packet.
1930 * Arguments -
1931 * adapter - Pointer to our adapter structure
1932 * skb - The packet to be sent
1934 * Return -
1935 * STATUS of send
1937 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb)
1939 struct SCATTER_GATHER_LIST *pSgl;
1940 struct SXG_SCATTER_GATHER *SxgSgl;
1941 void *SglBuffer;
1942 u32 SglBufferLength;
1944 /* The vast majority of work is done in the shared */
1945 /* sxg_dumb_sgl routine. */
1946 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
1947 adapter, skb, 0, 0);
1949 /* Allocate a SGL buffer */
1950 SXG_GET_SGL_BUFFER(adapter, SxgSgl);
1951 if (!SxgSgl) {
1952 adapter->Stats.NoSglBuf++;
1953 adapter->Stats.XmtErrors++;
1954 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
1955 adapter, skb, 0, 0);
1956 return (STATUS_RESOURCES);
1958 ASSERT(SxgSgl->adapter == adapter);
1959 SglBuffer = SXG_SGL_BUFFER(SxgSgl);
1960 SglBufferLength = SXG_SGL_BUF_SIZE;
1961 SxgSgl->VlanTag.VlanTci = 0;
1962 SxgSgl->VlanTag.VlanTpid = 0;
1963 SxgSgl->Type = SXG_SGL_DUMB;
1964 SxgSgl->DumbPacket = skb;
1965 pSgl = NULL;
1967 /* Call the common sxg_dumb_sgl routine to complete the send. */
1968 sxg_dumb_sgl(pSgl, SxgSgl);
1969 /* Return success sxg_dumb_sgl (or something later) will complete it. */
1970 return (STATUS_SUCCESS);
1974 * sxg_dumb_sgl
1976 * Arguments:
1977 * pSgl -
1978 * SxgSgl - SXG_SCATTER_GATHER
1980 * Return Value:
1981 * None.
1983 static void sxg_dumb_sgl(struct SCATTER_GATHER_LIST *pSgl, struct SXG_SCATTER_GATHER *SxgSgl)
1985 struct adapter_t *adapter = SxgSgl->adapter;
1986 struct sk_buff *skb = SxgSgl->DumbPacket;
1987 /* For now, all dumb-nic sends go on RSS queue zero */
1988 struct SXG_XMT_RING *XmtRing = &adapter->XmtRings[0];
1989 struct SXG_RING_INFO *XmtRingInfo = &adapter->XmtRingZeroInfo;
1990 struct SXG_CMD *XmtCmd = NULL;
1991 /* u32 Index = 0; */
1992 u32 DataLength = skb->len;
1993 /* unsigned int BufLen; */
1994 /* u32 SglOffset; */
1995 u64 phys_addr;
1997 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
1998 pSgl, SxgSgl, 0, 0);
2000 /* Set aside a pointer to the sgl */
2001 SxgSgl->pSgl = pSgl;
2003 /* Sanity check that our SGL format is as we expect. */
2004 ASSERT(sizeof(SXG_X64_SGE) == sizeof(SCATTER_GATHER_ELEMENT));
2005 /* Shouldn't be a vlan tag on this frame */
2006 ASSERT(SxgSgl->VlanTag.VlanTci == 0);
2007 ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
2009 /* From here below we work with the SGL placed in our */
2010 /* buffer. */
2012 SxgSgl->Sgl.NumberOfElements = 1;
2014 /* Grab the spinlock and acquire a command */
2015 spin_lock(&adapter->XmtZeroLock);
2016 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2017 if (XmtCmd == NULL) {
2018 /* Call sxg_complete_slow_send to see if we can */
2019 /* free up any XmtRingZero entries and then try again */
2020 spin_unlock(&adapter->XmtZeroLock);
2021 sxg_complete_slow_send(adapter);
2022 spin_lock(&adapter->XmtZeroLock);
2023 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2024 if (XmtCmd == NULL) {
2025 adapter->Stats.XmtZeroFull++;
2026 goto abortcmd;
2029 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
2030 XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
2031 /* Update stats */
2032 adapter->Stats.DumbXmtPkts++;
2033 adapter->Stats.DumbXmtBytes += DataLength;
2034 #if XXXTODO /* Stats stuff */
2035 if (SXG_MULTICAST_PACKET(EtherHdr)) {
2036 if (SXG_BROADCAST_PACKET(EtherHdr)) {
2037 adapter->Stats.DumbXmtBcastPkts++;
2038 adapter->Stats.DumbXmtBcastBytes += DataLength;
2039 } else {
2040 adapter->Stats.DumbXmtMcastPkts++;
2041 adapter->Stats.DumbXmtMcastBytes += DataLength;
2043 } else {
2044 adapter->Stats.DumbXmtUcastPkts++;
2045 adapter->Stats.DumbXmtUcastBytes += DataLength;
2047 #endif
2048 /* Fill in the command */
2049 /* Copy out the first SGE to the command and adjust for offset */
2050 phys_addr =
2051 pci_map_single(adapter->pcidev, skb->data, skb->len,
2052 PCI_DMA_TODEVICE);
2053 XmtCmd->Buffer.FirstSgeAddress = SXG_GET_ADDR_HIGH(phys_addr);
2054 XmtCmd->Buffer.FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress << 32;
2055 XmtCmd->Buffer.FirstSgeAddress =
2056 XmtCmd->Buffer.FirstSgeAddress | SXG_GET_ADDR_LOW(phys_addr);
2057 /* XmtCmd->Buffer.FirstSgeAddress = SxgSgl->Sgl.Elements[Index].Address; */
2058 /* XmtCmd->Buffer.FirstSgeAddress.LowPart += MdlOffset; */
2059 XmtCmd->Buffer.FirstSgeLength = DataLength;
2060 /* Set a pointer to the remaining SGL entries */
2061 /* XmtCmd->Sgl = SxgSgl->PhysicalAddress; */
2062 /* Advance the physical address of the SxgSgl structure to */
2063 /* the second SGE */
2064 /* SglOffset = (u32)((u32 *)(&SxgSgl->Sgl.Elements[Index+1]) - */
2065 /* (u32 *)SxgSgl); */
2066 /* XmtCmd->Sgl.LowPart += SglOffset; */
2067 XmtCmd->Buffer.SgeOffset = 0;
2068 /* Note - TotalLength might be overwritten with MSS below.. */
2069 XmtCmd->Buffer.TotalLength = DataLength;
2070 XmtCmd->SgEntries = 1; /*(ushort)(SxgSgl->Sgl.NumberOfElements - Index); */
2071 XmtCmd->Flags = 0;
2072 /* */
2073 /* Advance transmit cmd descripter by 1. */
2074 /* NOTE - See comments in SxgTcpOutput where we write */
2075 /* to the XmtCmd register regarding CPU ID values and/or */
2076 /* multiple commands. */
2077 /* */
2078 /* */
2079 WRITE_REG(adapter->UcodeRegs[0].XmtCmd, 1, TRUE);
2080 /* */
2081 /* */
2082 adapter->Stats.XmtQLen++; /* Stats within lock */
2083 spin_unlock(&adapter->XmtZeroLock);
2084 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
2085 XmtCmd, pSgl, SxgSgl, 0);
2086 return;
2088 abortcmd:
2089 /* NOTE - Only jump to this label AFTER grabbing the */
2090 /* XmtZeroLock, and DO NOT DROP IT between the */
2091 /* command allocation and the following abort. */
2092 if (XmtCmd) {
2093 SXG_ABORT_CMD(XmtRingInfo);
2095 spin_unlock(&adapter->XmtZeroLock);
2097 /* failsgl: */
2098 /* Jump to this label if failure occurs before the */
2099 /* XmtZeroLock is grabbed */
2100 adapter->Stats.XmtErrors++;
2101 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
2102 pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
2104 SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket); /* SxgSgl->DumbPacket is the skb */
2107 /***************************************************************
2108 * Link management functions
2109 ***************************************************************/
2112 * sxg_initialize_link - Initialize the link stuff
2114 * Arguments -
2115 * adapter - A pointer to our adapter structure
2117 * Return
2118 * status
2120 static int sxg_initialize_link(struct adapter_t *adapter)
2122 struct SXG_HW_REGS *HwRegs = adapter->HwRegs;
2123 u32 Value;
2124 u32 ConfigData;
2125 u32 MaxFrame;
2126 int status;
2128 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
2129 adapter, 0, 0, 0);
2131 /* Reset PHY and XGXS module */
2132 WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
2134 /* Reset transmit configuration register */
2135 WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
2137 /* Reset receive configuration register */
2138 WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
2140 /* Reset all MAC modules */
2141 WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
2143 /* Link address 0 */
2144 /* XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f) */
2145 /* is stored with the first nibble (0a) in the byte 0 */
2146 /* of the Mac address. Possibly reverse? */
2147 Value = *(u32 *) adapter->MacAddr;
2148 WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
2149 /* also write the MAC address to the MAC. Endian is reversed. */
2150 WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
2151 Value = (*(u16 *) & adapter->MacAddr[4] & 0x0000FFFF);
2152 WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
2153 /* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
2154 Value = ntohl(Value);
2155 WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
2156 /* Link address 1 */
2157 WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
2158 WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
2159 /* Link address 2 */
2160 WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
2161 WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
2162 /* Link address 3 */
2163 WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
2164 WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
2166 /* Enable MAC modules */
2167 WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
2169 /* Configure MAC */
2170 WRITE_REG(HwRegs->MacConfig1, (AXGMAC_CFG1_XMT_PAUSE | /* Allow sending of pause */
2171 AXGMAC_CFG1_XMT_EN | /* Enable XMT */
2172 AXGMAC_CFG1_RCV_PAUSE | /* Enable detection of pause */
2173 AXGMAC_CFG1_RCV_EN | /* Enable receive */
2174 AXGMAC_CFG1_SHORT_ASSERT | /* short frame detection */
2175 AXGMAC_CFG1_CHECK_LEN | /* Verify frame length */
2176 AXGMAC_CFG1_GEN_FCS | /* Generate FCS */
2177 AXGMAC_CFG1_PAD_64), /* Pad frames to 64 bytes */
2178 TRUE);
2180 /* Set AXGMAC max frame length if jumbo. Not needed for standard MTU */
2181 if (adapter->JumboEnabled) {
2182 WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
2184 /* AMIIM Configuration Register - */
2185 /* The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion */
2186 /* (bottom bits) of this register is used to determine the */
2187 /* MDC frequency as specified in the A-XGMAC Design Document. */
2188 /* This value must not be zero. The following value (62 or 0x3E) */
2189 /* is based on our MAC transmit clock frequency (MTCLK) of 312.5 MHz. */
2190 /* Given a maximum MDIO clock frequency of 2.5 MHz (see the PHY spec), */
2191 /* we get: 312.5/(2*(X+1)) < 2.5 ==> X = 62. */
2192 /* This value happens to be the default value for this register, */
2193 /* so we really don't have to do this. */
2194 WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
2196 /* Power up and enable PHY and XAUI/XGXS/Serdes logic */
2197 WRITE_REG(HwRegs->LinkStatus,
2198 (LS_PHY_CLR_RESET |
2199 LS_XGXS_ENABLE |
2200 LS_XGXS_CTL | LS_PHY_CLK_EN | LS_ATTN_ALARM), TRUE);
2201 DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
2203 /* Per information given by Aeluros, wait 100 ms after removing reset. */
2204 /* It's not enough to wait for the self-clearing reset bit in reg 0 to clear. */
2205 mdelay(100);
2207 /* Verify the PHY has come up by checking that the Reset bit has cleared. */
2208 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2209 PHY_PMA_CONTROL1, /* PMA/PMD control register */
2210 &Value);
2211 if (status != STATUS_SUCCESS)
2212 return (STATUS_FAILURE);
2213 if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
2214 return (STATUS_FAILURE);
2216 /* The SERDES should be initialized by now - confirm */
2217 READ_REG(HwRegs->LinkStatus, Value);
2218 if (Value & LS_SERDES_DOWN) /* verify SERDES is initialized */
2219 return (STATUS_FAILURE);
2221 /* The XAUI link should also be up - confirm */
2222 if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
2223 return (STATUS_FAILURE);
2225 /* Initialize the PHY */
2226 status = sxg_phy_init(adapter);
2227 if (status != STATUS_SUCCESS)
2228 return (STATUS_FAILURE);
2230 /* Enable the Link Alarm */
2231 status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2232 LASI_CONTROL, /* LASI control register */
2233 LASI_CTL_LS_ALARM_ENABLE); /* enable link alarm bit */
2234 if (status != STATUS_SUCCESS)
2235 return (STATUS_FAILURE);
2237 /* XXXTODO - temporary - verify bit is set */
2238 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2239 LASI_CONTROL, /* LASI control register */
2240 &Value);
2241 if (status != STATUS_SUCCESS)
2242 return (STATUS_FAILURE);
2243 if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
2244 DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
2246 /* Enable receive */
2247 MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
2248 ConfigData = (RCV_CONFIG_ENABLE |
2249 RCV_CONFIG_ENPARSE |
2250 RCV_CONFIG_RCVBAD |
2251 RCV_CONFIG_RCVPAUSE |
2252 RCV_CONFIG_TZIPV6 |
2253 RCV_CONFIG_TZIPV4 |
2254 RCV_CONFIG_HASH_16 |
2255 RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
2256 WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
2258 WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
2260 /* Mark the link as down. We'll get a link event when it comes up. */
2261 sxg_link_state(adapter, SXG_LINK_DOWN);
2263 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
2264 adapter, 0, 0, 0);
2265 return (STATUS_SUCCESS);
2269 * sxg_phy_init - Initialize the PHY
2271 * Arguments -
2272 * adapter - A pointer to our adapter structure
2274 * Return
2275 * status
2277 static int sxg_phy_init(struct adapter_t *adapter)
2279 u32 Value;
2280 struct PHY_UCODE *p;
2281 int status;
2283 DBG_ERROR("ENTER %s\n", __func__);
2285 /* Read a register to identify the PHY type */
2286 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2287 0xC205, /* PHY ID register (?) */
2288 &Value); /* XXXTODO - add def */
2289 if (status != STATUS_SUCCESS)
2290 return (STATUS_FAILURE);
2292 if (Value == 0x0012) { /* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
2293 DBG_ERROR
2294 ("AEL2005C PHY detected. Downloading PHY microcode.\n");
2296 /* Initialize AEL2005C PHY and download PHY microcode */
2297 for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
2298 if (p->Addr == 0) {
2299 /* if address == 0, data == sleep time in ms */
2300 mdelay(p->Data);
2301 } else {
2302 /* write the given data to the specified address */
2303 status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2304 p->Addr, /* PHY address */
2305 p->Data); /* PHY data */
2306 if (status != STATUS_SUCCESS)
2307 return (STATUS_FAILURE);
2311 DBG_ERROR("EXIT %s\n", __func__);
2313 return (STATUS_SUCCESS);
2317 * sxg_link_event - Process a link event notification from the card
2319 * Arguments -
2320 * adapter - A pointer to our adapter structure
2322 * Return
2323 * None
2325 static void sxg_link_event(struct adapter_t *adapter)
2327 struct SXG_HW_REGS *HwRegs = adapter->HwRegs;
2328 enum SXG_LINK_STATE LinkState;
2329 int status;
2330 u32 Value;
2332 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
2333 adapter, 0, 0, 0);
2334 DBG_ERROR("ENTER %s\n", __func__);
2336 /* Check the Link Status register. We should have a Link Alarm. */
2337 READ_REG(HwRegs->LinkStatus, Value);
2338 if (Value & LS_LINK_ALARM) {
2339 /* We got a Link Status alarm. First, pause to let the */
2340 /* link state settle (it can bounce a number of times) */
2341 mdelay(10);
2343 /* Now clear the alarm by reading the LASI status register. */
2344 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2345 LASI_STATUS, /* LASI status register */
2346 &Value);
2347 if (status != STATUS_SUCCESS) {
2348 DBG_ERROR("Error reading LASI Status MDIO register!\n");
2349 sxg_link_state(adapter, SXG_LINK_DOWN);
2350 /* ASSERT(0); */
2352 ASSERT(Value & LASI_STATUS_LS_ALARM);
2354 /* Now get and set the link state */
2355 LinkState = sxg_get_link_state(adapter);
2356 sxg_link_state(adapter, LinkState);
2357 DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
2358 ((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
2359 } else {
2360 /* XXXTODO - Assuming Link Attention is only being generated for the */
2361 /* Link Alarm pin (and not for a XAUI Link Status change), then it's */
2362 /* impossible to get here. Yet we've gotten here twice (under extreme */
2363 /* conditions - bouncing the link up and down many times a second). */
2364 /* Needs further investigation. */
2365 DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
2366 DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
2367 /* ASSERT(0); */
2369 DBG_ERROR("EXIT %s\n", __func__);
2374 * sxg_get_link_state - Determine if the link is up or down
2376 * Arguments -
2377 * adapter - A pointer to our adapter structure
2379 * Return
2380 * Link State
2382 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter)
2384 int status;
2385 u32 Value;
2387 DBG_ERROR("ENTER %s\n", __func__);
2389 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
2390 adapter, 0, 0, 0);
2392 /* Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if */
2393 /* the following 3 bits (from 3 different MDIO registers) are all true. */
2394 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2395 PHY_PMA_RCV_DET, /* PMA/PMD Receive Signal Detect register */
2396 &Value);
2397 if (status != STATUS_SUCCESS)
2398 goto bad;
2400 /* If PMA/PMD receive signal detect is 0, then the link is down */
2401 if (!(Value & PMA_RCV_DETECT))
2402 return (SXG_LINK_DOWN);
2404 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS, /* PHY PCS module */
2405 PHY_PCS_10G_STATUS1, /* PCS 10GBASE-R Status 1 register */
2406 &Value);
2407 if (status != STATUS_SUCCESS)
2408 goto bad;
2410 /* If PCS is not locked to receive blocks, then the link is down */
2411 if (!(Value & PCS_10B_BLOCK_LOCK))
2412 return (SXG_LINK_DOWN);
2414 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS, /* PHY XS module */
2415 PHY_XS_LANE_STATUS, /* XS Lane Status register */
2416 &Value);
2417 if (status != STATUS_SUCCESS)
2418 goto bad;
2420 /* If XS transmit lanes are not aligned, then the link is down */
2421 if (!(Value & XS_LANE_ALIGN))
2422 return (SXG_LINK_DOWN);
2424 /* All 3 bits are true, so the link is up */
2425 DBG_ERROR("EXIT %s\n", __func__);
2427 return (SXG_LINK_UP);
2429 bad:
2430 /* An error occurred reading an MDIO register. This shouldn't happen. */
2431 DBG_ERROR("Error reading an MDIO register!\n");
2432 ASSERT(0);
2433 return (SXG_LINK_DOWN);
2436 static void sxg_indicate_link_state(struct adapter_t *adapter,
2437 enum SXG_LINK_STATE LinkState)
2439 if (adapter->LinkState == SXG_LINK_UP) {
2440 DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
2441 __func__);
2442 netif_start_queue(adapter->netdev);
2443 } else {
2444 DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
2445 __func__);
2446 netif_stop_queue(adapter->netdev);
2451 * sxg_link_state - Set the link state and if necessary, indicate.
2452 * This routine the central point of processing for all link state changes.
2453 * Nothing else in the driver should alter the link state or perform
2454 * link state indications
2456 * Arguments -
2457 * adapter - A pointer to our adapter structure
2458 * LinkState - The link state
2460 * Return
2461 * None
2463 static void sxg_link_state(struct adapter_t *adapter, enum SXG_LINK_STATE LinkState)
2465 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
2466 adapter, LinkState, adapter->LinkState, adapter->State);
2468 DBG_ERROR("ENTER %s\n", __func__);
2470 /* Hold the adapter lock during this routine. Maybe move */
2471 /* the lock to the caller. */
2472 spin_lock(&adapter->AdapterLock);
2473 if (LinkState == adapter->LinkState) {
2474 /* Nothing changed.. */
2475 spin_unlock(&adapter->AdapterLock);
2476 DBG_ERROR("EXIT #0 %s\n", __func__);
2477 return;
2479 /* Save the adapter state */
2480 adapter->LinkState = LinkState;
2482 /* Drop the lock and indicate link state */
2483 spin_unlock(&adapter->AdapterLock);
2484 DBG_ERROR("EXIT #1 %s\n", __func__);
2486 sxg_indicate_link_state(adapter, LinkState);
2490 * sxg_write_mdio_reg - Write to a register on the MDIO bus
2492 * Arguments -
2493 * adapter - A pointer to our adapter structure
2494 * DevAddr - MDIO device number being addressed
2495 * RegAddr - register address for the specified MDIO device
2496 * Value - value to write to the MDIO register
2498 * Return
2499 * status
2501 static int sxg_write_mdio_reg(struct adapter_t *adapter,
2502 u32 DevAddr, u32 RegAddr, u32 Value)
2504 struct SXG_HW_REGS *HwRegs = adapter->HwRegs;
2505 u32 AddrOp; /* Address operation (written to MIIM field reg) */
2506 u32 WriteOp; /* Write operation (written to MIIM field reg) */
2507 u32 Cmd; /* Command (written to MIIM command reg) */
2508 u32 ValueRead;
2509 u32 Timeout;
2511 /* DBG_ERROR("ENTER %s\n", __func__); */
2513 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
2514 adapter, 0, 0, 0);
2516 /* Ensure values don't exceed field width */
2517 DevAddr &= 0x001F; /* 5-bit field */
2518 RegAddr &= 0xFFFF; /* 16-bit field */
2519 Value &= 0xFFFF; /* 16-bit field */
2521 /* Set MIIM field register bits for an MIIM address operation */
2522 AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2523 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2524 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2525 (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
2527 /* Set MIIM field register bits for an MIIM write operation */
2528 WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2529 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2530 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2531 (MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
2533 /* Set MIIM command register bits to execute an MIIM command */
2534 Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
2536 /* Reset the command register command bit (in case it's not 0) */
2537 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2539 /* MIIM write to set the address of the specified MDIO register */
2540 WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
2542 /* Write to MIIM Command Register to execute to address operation */
2543 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2545 /* Poll AMIIM Indicator register to wait for completion */
2546 Timeout = SXG_LINK_TIMEOUT;
2547 do {
2548 udelay(100); /* Timeout in 100us units */
2549 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2550 if (--Timeout == 0) {
2551 return (STATUS_FAILURE);
2553 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2555 /* Reset the command register command bit */
2556 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2558 /* MIIM write to set up an MDIO write operation */
2559 WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
2561 /* Write to MIIM Command Register to execute the write operation */
2562 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2564 /* Poll AMIIM Indicator register to wait for completion */
2565 Timeout = SXG_LINK_TIMEOUT;
2566 do {
2567 udelay(100); /* Timeout in 100us units */
2568 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2569 if (--Timeout == 0) {
2570 return (STATUS_FAILURE);
2572 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2574 /* DBG_ERROR("EXIT %s\n", __func__); */
2576 return (STATUS_SUCCESS);
2580 * sxg_read_mdio_reg - Read a register on the MDIO bus
2582 * Arguments -
2583 * adapter - A pointer to our adapter structure
2584 * DevAddr - MDIO device number being addressed
2585 * RegAddr - register address for the specified MDIO device
2586 * pValue - pointer to where to put data read from the MDIO register
2588 * Return
2589 * status
2591 static int sxg_read_mdio_reg(struct adapter_t *adapter,
2592 u32 DevAddr, u32 RegAddr, u32 *pValue)
2594 struct SXG_HW_REGS *HwRegs = adapter->HwRegs;
2595 u32 AddrOp; /* Address operation (written to MIIM field reg) */
2596 u32 ReadOp; /* Read operation (written to MIIM field reg) */
2597 u32 Cmd; /* Command (written to MIIM command reg) */
2598 u32 ValueRead;
2599 u32 Timeout;
2601 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
2602 adapter, 0, 0, 0);
2603 /* DBG_ERROR("ENTER %s\n", __func__); */
2605 /* Ensure values don't exceed field width */
2606 DevAddr &= 0x001F; /* 5-bit field */
2607 RegAddr &= 0xFFFF; /* 16-bit field */
2609 /* Set MIIM field register bits for an MIIM address operation */
2610 AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2611 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2612 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2613 (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
2615 /* Set MIIM field register bits for an MIIM read operation */
2616 ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2617 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2618 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2619 (MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
2621 /* Set MIIM command register bits to execute an MIIM command */
2622 Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
2624 /* Reset the command register command bit (in case it's not 0) */
2625 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2627 /* MIIM write to set the address of the specified MDIO register */
2628 WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
2630 /* Write to MIIM Command Register to execute to address operation */
2631 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2633 /* Poll AMIIM Indicator register to wait for completion */
2634 Timeout = SXG_LINK_TIMEOUT;
2635 do {
2636 udelay(100); /* Timeout in 100us units */
2637 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2638 if (--Timeout == 0) {
2639 return (STATUS_FAILURE);
2641 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2643 /* Reset the command register command bit */
2644 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2646 /* MIIM write to set up an MDIO register read operation */
2647 WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
2649 /* Write to MIIM Command Register to execute the read operation */
2650 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2652 /* Poll AMIIM Indicator register to wait for completion */
2653 Timeout = SXG_LINK_TIMEOUT;
2654 do {
2655 udelay(100); /* Timeout in 100us units */
2656 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2657 if (--Timeout == 0) {
2658 return (STATUS_FAILURE);
2660 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2662 /* Read the MDIO register data back from the field register */
2663 READ_REG(HwRegs->MacAmiimField, *pValue);
2664 *pValue &= 0xFFFF; /* data is in the lower 16 bits */
2666 /* DBG_ERROR("EXIT %s\n", __func__); */
2668 return (STATUS_SUCCESS);
2672 * Functions to obtain the CRC corresponding to the destination mac address.
2673 * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
2674 * the polynomial:
2675 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1.
2677 * After the CRC for the 6 bytes is generated (but before the value is complemented),
2678 * we must then transpose the value and return bits 30-23.
2681 static u32 sxg_crc_table[256]; /* Table of CRC's for all possible byte values */
2684 * Contruct the CRC32 table
2686 static void sxg_mcast_init_crc32(void)
2688 u32 c; /* CRC shit reg */
2689 u32 e = 0; /* Poly X-or pattern */
2690 int i; /* counter */
2691 int k; /* byte being shifted into crc */
2693 static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
2695 for (i = 0; i < sizeof(p) / sizeof(int); i++) {
2696 e |= 1L << (31 - p[i]);
2699 for (i = 1; i < 256; i++) {
2700 c = i;
2701 for (k = 8; k; k--) {
2702 c = c & 1 ? (c >> 1) ^ e : c >> 1;
2704 sxg_crc_table[i] = c;
2708 #if XXXTODO
2709 static u32 sxg_crc_init; /* Is table initialized */
2711 * Return the MAC hast as described above.
2713 static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
2715 u32 crc;
2716 char *p;
2717 int i;
2718 unsigned char machash = 0;
2720 if (!sxg_crc_init) {
2721 sxg_mcast_init_crc32();
2722 sxg_crc_init = 1;
2725 crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
2726 for (i = 0, p = macaddr; i < 6; ++p, ++i) {
2727 crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
2730 /* Return bits 1-8, transposed */
2731 for (i = 1; i < 9; i++) {
2732 machash |= (((crc >> i) & 1) << (8 - i));
2735 return (machash);
2738 static void sxg_mcast_set_mask(struct adapter_t *adapter)
2740 struct SXG_UCODE_REGS *sxg_regs = adapter->UcodeRegs;
2742 DBG_ERROR("%s ENTER (%s) macopts[%x] mask[%llx]\n", __func__,
2743 adapter->netdev->name, (unsigned int)adapter->MacFilter,
2744 adapter->MulticastMask);
2746 if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
2747 /* Turn on all multicast addresses. We have to do this for promiscuous
2748 * mode as well as ALLMCAST mode. It saves the Microcode from having
2749 * to keep state about the MAC configuration.
2751 /* DBG_ERROR("sxg: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n SLUT MODE!!!\n",__func__); */
2752 WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
2753 WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
2754 /* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high 0xFFFFFFFF\n",__func__, adapter->netdev->name); */
2756 } else {
2757 /* Commit our multicast mast to the SLIC by writing to the multicast
2758 * address mask registers
2760 DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
2761 __func__, adapter->netdev->name,
2762 ((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
2763 ((ulong)
2764 ((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
2766 WRITE_REG(sxg_regs->McastLow,
2767 (u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
2768 WRITE_REG(sxg_regs->McastHigh,
2769 (u32) ((adapter->
2770 MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
2775 * Allocate a mcast_address structure to hold the multicast address.
2776 * Link it in.
2778 static int sxg_mcast_add_list(struct adapter_t *adapter, char *address)
2780 p_mcast_address_t mcaddr, mlist;
2781 bool equaladdr;
2783 /* Check to see if it already exists */
2784 mlist = adapter->mcastaddrs;
2785 while (mlist) {
2786 ETHER_EQ_ADDR(mlist->address, address, equaladdr);
2787 if (equaladdr) {
2788 return (STATUS_SUCCESS);
2790 mlist = mlist->next;
2793 /* Doesn't already exist. Allocate a structure to hold it */
2794 mcaddr = kmalloc(sizeof(mcast_address_t), GFP_ATOMIC);
2795 if (mcaddr == NULL)
2796 return 1;
2798 memcpy(mcaddr->address, address, 6);
2800 mcaddr->next = adapter->mcastaddrs;
2801 adapter->mcastaddrs = mcaddr;
2803 return (STATUS_SUCCESS);
2806 static void sxg_mcast_set_bit(struct adapter_t *adapter, char *address)
2808 unsigned char crcpoly;
2810 /* Get the CRC polynomial for the mac address */
2811 crcpoly = sxg_mcast_get_mac_hash(address);
2813 /* We only have space on the SLIC for 64 entries. Lop
2814 * off the top two bits. (2^6 = 64)
2816 crcpoly &= 0x3F;
2818 /* OR in the new bit into our 64 bit mask. */
2819 adapter->MulticastMask |= (u64) 1 << crcpoly;
2822 static void sxg_mcast_set_list(p_net_device dev)
2824 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2825 int status = STATUS_SUCCESS;
2826 int i;
2827 char *addresses;
2828 struct dev_mc_list *mc_list = dev->mc_list;
2829 int mc_count = dev->mc_count;
2831 ASSERT(adapter);
2833 for (i = 1; i <= mc_count; i++) {
2834 addresses = (char *)&mc_list->dmi_addr;
2835 if (mc_list->dmi_addrlen == 6) {
2836 status = sxg_mcast_add_list(adapter, addresses);
2837 if (status != STATUS_SUCCESS) {
2838 break;
2840 } else {
2841 status = -EINVAL;
2842 break;
2844 sxg_mcast_set_bit(adapter, addresses);
2845 mc_list = mc_list->next;
2848 DBG_ERROR("%s a->devflags_prev[%x] dev->flags[%x] status[%x]\n",
2849 __func__, adapter->devflags_prev, dev->flags, status);
2850 if (adapter->devflags_prev != dev->flags) {
2851 adapter->macopts = MAC_DIRECTED;
2852 if (dev->flags) {
2853 if (dev->flags & IFF_BROADCAST) {
2854 adapter->macopts |= MAC_BCAST;
2856 if (dev->flags & IFF_PROMISC) {
2857 adapter->macopts |= MAC_PROMISC;
2859 if (dev->flags & IFF_ALLMULTI) {
2860 adapter->macopts |= MAC_ALLMCAST;
2862 if (dev->flags & IFF_MULTICAST) {
2863 adapter->macopts |= MAC_MCAST;
2866 adapter->devflags_prev = dev->flags;
2867 DBG_ERROR("%s call sxg_config_set adapter->macopts[%x]\n",
2868 __func__, adapter->macopts);
2869 sxg_config_set(adapter, TRUE);
2870 } else {
2871 if (status == STATUS_SUCCESS) {
2872 sxg_mcast_set_mask(adapter);
2875 return;
2877 #endif
2879 static void sxg_unmap_mmio_space(struct adapter_t *adapter)
2881 #if LINUX_FREES_ADAPTER_RESOURCES
2882 /* if (adapter->Regs) { */
2883 /* iounmap(adapter->Regs); */
2884 /* } */
2885 /* adapter->slic_regs = NULL; */
2886 #endif
2889 #if XXXTODO
2891 * SxgFreeResources - Free everything allocated in SxgAllocateResources
2893 * Arguments -
2894 * adapter - A pointer to our adapter structure
2896 * Return
2897 * none
2899 void SxgFreeResources(struct adapter_t *adapter)
2901 u32 RssIds, IsrCount;
2902 PTCP_OBJECT TcpObject;
2903 u32 i;
2904 BOOLEAN TimerCancelled;
2906 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FreeRes",
2907 adapter, adapter->MaxTcbs, 0, 0);
2909 RssIds = SXG_RSS_CPU_COUNT(adapter);
2910 IsrCount = adapter->MsiEnabled ? RssIds : 1;
2912 if (adapter->BasicAllocations == FALSE) {
2913 /* No allocations have been made, including spinlocks, */
2914 /* or listhead initializations. Return. */
2915 return;
2918 if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
2919 SxgFreeRcvBlocks(adapter);
2921 if (!(IsListEmpty(&adapter->AllSglBuffers))) {
2922 SxgFreeSglBuffers(adapter);
2924 /* Free event queues. */
2925 if (adapter->EventRings) {
2926 pci_free_consistent(adapter->pcidev,
2927 sizeof(struct SXG_EVENT_RING) * RssIds,
2928 adapter->EventRings, adapter->PEventRings);
2930 if (adapter->Isr) {
2931 pci_free_consistent(adapter->pcidev,
2932 sizeof(u32) * IsrCount,
2933 adapter->Isr, adapter->PIsr);
2935 if (adapter->XmtRingZeroIndex) {
2936 pci_free_consistent(adapter->pcidev,
2937 sizeof(u32),
2938 adapter->XmtRingZeroIndex,
2939 adapter->PXmtRingZeroIndex);
2941 if (adapter->IndirectionTable) {
2942 pci_free_consistent(adapter->pcidev,
2943 SXG_MAX_RSS_TABLE_SIZE,
2944 adapter->IndirectionTable,
2945 adapter->PIndirectionTable);
2948 SXG_FREE_PACKET_POOL(adapter->PacketPoolHandle);
2949 SXG_FREE_BUFFER_POOL(adapter->BufferPoolHandle);
2951 /* Unmap register spaces */
2952 SxgUnmapResources(adapter);
2954 /* Deregister DMA */
2955 if (adapter->DmaHandle) {
2956 SXG_DEREGISTER_DMA(adapter->DmaHandle);
2958 /* Deregister interrupt */
2959 SxgDeregisterInterrupt(adapter);
2961 /* Possibly free system info (5.2 only) */
2962 SXG_RELEASE_SYSTEM_INFO(adapter);
2964 SxgDiagFreeResources(adapter);
2966 SxgFreeMCastAddrs(adapter);
2968 if (SXG_TIMER_ALLOCATED(adapter->ResetTimer)) {
2969 SXG_CANCEL_TIMER(adapter->ResetTimer, TimerCancelled);
2970 SXG_FREE_TIMER(adapter->ResetTimer);
2972 if (SXG_TIMER_ALLOCATED(adapter->RssTimer)) {
2973 SXG_CANCEL_TIMER(adapter->RssTimer, TimerCancelled);
2974 SXG_FREE_TIMER(adapter->RssTimer);
2976 if (SXG_TIMER_ALLOCATED(adapter->OffloadTimer)) {
2977 SXG_CANCEL_TIMER(adapter->OffloadTimer, TimerCancelled);
2978 SXG_FREE_TIMER(adapter->OffloadTimer);
2981 adapter->BasicAllocations = FALSE;
2983 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFreeRes",
2984 adapter, adapter->MaxTcbs, 0, 0);
2986 #endif
2989 * sxg_allocate_complete -
2991 * This routine is called when a memory allocation has completed.
2993 * Arguments -
2994 * struct adapter_t * - Our adapter structure
2995 * VirtualAddress - Memory virtual address
2996 * PhysicalAddress - Memory physical address
2997 * Length - Length of memory allocated (or 0)
2998 * Context - The type of buffer allocated
3000 * Return
3001 * None.
3003 static void sxg_allocate_complete(struct adapter_t *adapter,
3004 void *VirtualAddress,
3005 dma_addr_t PhysicalAddress,
3006 u32 Length, enum SXG_BUFFER_TYPE Context)
3008 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
3009 adapter, VirtualAddress, Length, Context);
3010 ASSERT(adapter->AllocationsPending);
3011 --adapter->AllocationsPending;
3013 switch (Context) {
3015 case SXG_BUFFER_TYPE_RCV:
3016 sxg_allocate_rcvblock_complete(adapter,
3017 VirtualAddress,
3018 PhysicalAddress, Length);
3019 break;
3020 case SXG_BUFFER_TYPE_SGL:
3021 sxg_allocate_sgl_buffer_complete(adapter, (struct SXG_SCATTER_GATHER*)
3022 VirtualAddress,
3023 PhysicalAddress, Length);
3024 break;
3026 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
3027 adapter, VirtualAddress, Length, Context);
3031 * sxg_allocate_buffer_memory - Shared memory allocation routine used for
3032 * synchronous and asynchronous buffer allocations
3034 * Arguments -
3035 * adapter - A pointer to our adapter structure
3036 * Size - block size to allocate
3037 * BufferType - Type of buffer to allocate
3039 * Return
3040 * int
3042 static int sxg_allocate_buffer_memory(struct adapter_t *adapter,
3043 u32 Size, enum SXG_BUFFER_TYPE BufferType)
3045 int status;
3046 void *Buffer;
3047 dma_addr_t pBuffer;
3049 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
3050 adapter, Size, BufferType, 0);
3051 /* Grab the adapter lock and check the state. */
3052 /* If we're in anything other than INITIALIZING or */
3053 /* RUNNING state, fail. This is to prevent */
3054 /* allocations in an improper driver state */
3055 spin_lock(&adapter->AdapterLock);
3057 /* Increment the AllocationsPending count while holding */
3058 /* the lock. Pause processing relies on this */
3059 ++adapter->AllocationsPending;
3060 spin_unlock(&adapter->AdapterLock);
3062 /* At initialization time allocate resources synchronously. */
3063 Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
3064 if (Buffer == NULL) {
3065 spin_lock(&adapter->AdapterLock);
3066 /* Decrement the AllocationsPending count while holding */
3067 /* the lock. Pause processing relies on this */
3068 --adapter->AllocationsPending;
3069 spin_unlock(&adapter->AdapterLock);
3070 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
3071 adapter, Size, BufferType, 0);
3072 return (STATUS_RESOURCES);
3074 sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
3075 status = STATUS_SUCCESS;
3077 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
3078 adapter, Size, BufferType, status);
3079 return (status);
3083 * sxg_allocate_rcvblock_complete - Complete a receive descriptor block allocation
3085 * Arguments -
3086 * adapter - A pointer to our adapter structure
3087 * RcvBlock - receive block virtual address
3088 * PhysicalAddress - Physical address
3089 * Length - Memory length
3091 * Return
3094 static void sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
3095 void *RcvBlock,
3096 dma_addr_t PhysicalAddress,
3097 u32 Length)
3099 u32 i;
3100 u32 BufferSize = adapter->ReceiveBufferSize;
3101 u64 Paddr;
3102 struct SXG_RCV_BLOCK_HDR *RcvBlockHdr;
3103 unsigned char *RcvDataBuffer;
3104 struct SXG_RCV_DATA_BUFFER_HDR *RcvDataBufferHdr;
3105 struct SXG_RCV_DESCRIPTOR_BLOCK *RcvDescriptorBlock;
3106 struct SXG_RCV_DESCRIPTOR_BLOCK_HDR *RcvDescriptorBlockHdr;
3108 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
3109 adapter, RcvBlock, Length, 0);
3110 if (RcvBlock == NULL) {
3111 goto fail;
3113 memset(RcvBlock, 0, Length);
3114 ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
3115 (BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
3116 ASSERT(Length == SXG_RCV_BLOCK_SIZE(BufferSize));
3117 /* First, initialize the contained pool of receive data */
3118 /* buffers. This initialization requires NBL/NB/MDL allocations, */
3119 /* If any of them fail, free the block and return without */
3120 /* queueing the shared memory */
3121 RcvDataBuffer = RcvBlock;
3122 #if 0
3123 for (i = 0, Paddr = *PhysicalAddress;
3124 i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3125 i++, Paddr.LowPart += BufferSize, RcvDataBuffer += BufferSize)
3126 #endif
3127 for (i = 0, Paddr = PhysicalAddress;
3128 i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3129 i++, Paddr += BufferSize, RcvDataBuffer += BufferSize) {
3130 /* */
3131 RcvDataBufferHdr =
3132 (struct SXG_RCV_DATA_BUFFER_HDR*) (RcvDataBuffer +
3133 SXG_RCV_DATA_BUFFER_HDR_OFFSET
3134 (BufferSize));
3135 RcvDataBufferHdr->VirtualAddress = RcvDataBuffer;
3136 RcvDataBufferHdr->PhysicalAddress = Paddr;
3137 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM; /* For FREE macro assertion */
3138 RcvDataBufferHdr->Size =
3139 SXG_RCV_BUFFER_DATA_SIZE(BufferSize);
3141 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr);
3142 if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
3143 goto fail;
3147 /* Place this entire block of memory on the AllRcvBlocks queue so it can be */
3148 /* free later */
3149 RcvBlockHdr =
3150 (struct SXG_RCV_BLOCK_HDR*) ((unsigned char *)RcvBlock +
3151 SXG_RCV_BLOCK_HDR_OFFSET(BufferSize));
3152 RcvBlockHdr->VirtualAddress = RcvBlock;
3153 RcvBlockHdr->PhysicalAddress = PhysicalAddress;
3154 spin_lock(&adapter->RcvQLock);
3155 adapter->AllRcvBlockCount++;
3156 InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
3157 spin_unlock(&adapter->RcvQLock);
3159 /* Now free the contained receive data buffers that we initialized above */
3160 RcvDataBuffer = RcvBlock;
3161 for (i = 0, Paddr = PhysicalAddress;
3162 i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3163 i++, Paddr += BufferSize, RcvDataBuffer += BufferSize) {
3164 RcvDataBufferHdr = (struct SXG_RCV_DATA_BUFFER_HDR*) (RcvDataBuffer +
3165 SXG_RCV_DATA_BUFFER_HDR_OFFSET
3166 (BufferSize));
3167 spin_lock(&adapter->RcvQLock);
3168 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3169 spin_unlock(&adapter->RcvQLock);
3172 /* Locate the descriptor block and put it on a separate free queue */
3173 RcvDescriptorBlock =
3174 (struct SXG_RCV_DESCRIPTOR_BLOCK*) ((unsigned char *)RcvBlock +
3175 SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
3176 (BufferSize));
3177 RcvDescriptorBlockHdr =
3178 (struct SXG_RCV_DESCRIPTOR_BLOCK_HDR*) ((unsigned char *)RcvBlock +
3179 SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
3180 (BufferSize));
3181 RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
3182 RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
3183 spin_lock(&adapter->RcvQLock);
3184 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
3185 spin_unlock(&adapter->RcvQLock);
3186 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
3187 adapter, RcvBlock, Length, 0);
3188 return;
3189 fail:
3190 /* Free any allocated resources */
3191 if (RcvBlock) {
3192 RcvDataBuffer = RcvBlock;
3193 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3194 i++, RcvDataBuffer += BufferSize) {
3195 RcvDataBufferHdr =
3196 (struct SXG_RCV_DATA_BUFFER_HDR*) (RcvDataBuffer +
3197 SXG_RCV_DATA_BUFFER_HDR_OFFSET
3198 (BufferSize));
3199 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3201 pci_free_consistent(adapter->pcidev,
3202 Length, RcvBlock, PhysicalAddress);
3204 DBG_ERROR("%s: OUT OF RESOURCES\n", __func__);
3205 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
3206 adapter, adapter->FreeRcvBufferCount,
3207 adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
3208 adapter->Stats.NoMem++;
3212 * sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
3214 * Arguments -
3215 * adapter - A pointer to our adapter structure
3216 * SxgSgl - SXG_SCATTER_GATHER buffer
3217 * PhysicalAddress - Physical address
3218 * Length - Memory length
3220 * Return
3223 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
3224 struct SXG_SCATTER_GATHER *SxgSgl,
3225 dma_addr_t PhysicalAddress,
3226 u32 Length)
3228 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
3229 adapter, SxgSgl, Length, 0);
3230 spin_lock(&adapter->SglQLock);
3231 adapter->AllSglBufferCount++;
3232 memset(SxgSgl, 0, sizeof(struct SXG_SCATTER_GATHER*));
3233 SxgSgl->PhysicalAddress = PhysicalAddress; /* *PhysicalAddress; */
3234 SxgSgl->adapter = adapter; /* Initialize backpointer once */
3235 InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
3236 spin_unlock(&adapter->SglQLock);
3237 SxgSgl->State = SXG_BUFFER_BUSY;
3238 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
3239 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
3240 adapter, SxgSgl, Length, 0);
3243 static unsigned char temp_mac_address[6] =
3244 { 0x00, 0xab, 0xcd, 0xef, 0x12, 0x69 };
3246 static void sxg_adapter_set_hwaddr(struct adapter_t *adapter)
3248 /* DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] funct#[%d]\n", __func__, */
3249 /* card->config_set, adapter->port, adapter->physport, adapter->functionnumber); */
3250 /* */
3251 /* sxg_dbg_macaddrs(adapter); */
3253 memcpy(adapter->macaddr, temp_mac_address, sizeof(struct SXG_CONFIG_MAC));
3254 /* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n", __func__); */
3255 /* sxg_dbg_macaddrs(adapter); */
3256 if (!(adapter->currmacaddr[0] ||
3257 adapter->currmacaddr[1] ||
3258 adapter->currmacaddr[2] ||
3259 adapter->currmacaddr[3] ||
3260 adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
3261 memcpy(adapter->currmacaddr, adapter->macaddr, 6);
3263 if (adapter->netdev) {
3264 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
3266 /* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
3267 sxg_dbg_macaddrs(adapter);
3271 #if XXXTODO
3272 static int sxg_mac_set_address(p_net_device dev, void *ptr)
3274 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3275 struct sockaddr *addr = ptr;
3277 DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
3279 if (netif_running(dev)) {
3280 return -EBUSY;
3282 if (!adapter) {
3283 return -EBUSY;
3285 DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3286 __func__, adapter->netdev->name, adapter->currmacaddr[0],
3287 adapter->currmacaddr[1], adapter->currmacaddr[2],
3288 adapter->currmacaddr[3], adapter->currmacaddr[4],
3289 adapter->currmacaddr[5]);
3290 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3291 memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
3292 DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3293 __func__, adapter->netdev->name, adapter->currmacaddr[0],
3294 adapter->currmacaddr[1], adapter->currmacaddr[2],
3295 adapter->currmacaddr[3], adapter->currmacaddr[4],
3296 adapter->currmacaddr[5]);
3298 sxg_config_set(adapter, TRUE);
3299 return 0;
3301 #endif
3303 /*****************************************************************************/
3304 /************* SXG DRIVER FUNCTIONS (below) ********************************/
3305 /*****************************************************************************/
3308 * sxg_initialize_adapter - Initialize adapter
3310 * Arguments -
3311 * adapter - A pointer to our adapter structure
3313 * Return
3314 * int
3316 static int sxg_initialize_adapter(struct adapter_t *adapter)
3318 u32 RssIds, IsrCount;
3319 u32 i;
3320 int status;
3322 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
3323 adapter, 0, 0, 0);
3325 RssIds = 1; /* XXXTODO SXG_RSS_CPU_COUNT(adapter); */
3326 IsrCount = adapter->MsiEnabled ? RssIds : 1;
3328 /* Sanity check SXG_UCODE_REGS structure definition to */
3329 /* make sure the length is correct */
3330 ASSERT(sizeof(struct SXG_UCODE_REGS) == SXG_REGISTER_SIZE_PER_CPU);
3332 /* Disable interrupts */
3333 SXG_DISABLE_ALL_INTERRUPTS(adapter);
3335 /* Set MTU */
3336 ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
3337 (adapter->FrameSize == JUMBOMAXFRAME));
3338 WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
3340 /* Set event ring base address and size */
3341 WRITE_REG64(adapter,
3342 adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
3343 WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
3345 /* Per-ISR initialization */
3346 for (i = 0; i < IsrCount; i++) {
3347 u64 Addr;
3348 /* Set interrupt status pointer */
3349 Addr = adapter->PIsr + (i * sizeof(u32));
3350 WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
3353 /* XMT ring zero index */
3354 WRITE_REG64(adapter,
3355 adapter->UcodeRegs[0].SPSendIndex,
3356 adapter->PXmtRingZeroIndex, 0);
3358 /* Per-RSS initialization */
3359 for (i = 0; i < RssIds; i++) {
3360 /* Release all event ring entries to the Microcode */
3361 WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
3362 TRUE);
3365 /* Transmit ring base and size */
3366 WRITE_REG64(adapter,
3367 adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
3368 WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
3370 /* Receive ring base and size */
3371 WRITE_REG64(adapter,
3372 adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
3373 WRITE_REG(adapter->UcodeRegs[0].RcvSize, SXG_RCV_RING_SIZE, TRUE);
3375 /* Populate the card with receive buffers */
3376 sxg_stock_rcv_buffers(adapter);
3378 /* Initialize checksum offload capabilities. At the moment */
3379 /* we always enable IP and TCP receive checksums on the card. */
3380 /* Depending on the checksum configuration specified by the */
3381 /* user, we can choose to report or ignore the checksum */
3382 /* information provided by the card. */
3383 WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
3384 SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
3386 /* Initialize the MAC, XAUI */
3387 DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
3388 status = sxg_initialize_link(adapter);
3389 DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
3390 status);
3391 if (status != STATUS_SUCCESS) {
3392 return (status);
3394 /* Initialize Dead to FALSE. */
3395 /* SlicCheckForHang or SlicDumpThread will take it from here. */
3396 adapter->Dead = FALSE;
3397 adapter->PingOutstanding = FALSE;
3399 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
3400 adapter, 0, 0, 0);
3401 return (STATUS_SUCCESS);
3405 * sxg_fill_descriptor_block - Populate a descriptor block and give it to
3406 * the card. The caller should hold the RcvQLock
3408 * Arguments -
3409 * adapter - A pointer to our adapter structure
3410 * RcvDescriptorBlockHdr - Descriptor block to fill
3412 * Return
3413 * status
3415 static int sxg_fill_descriptor_block(struct adapter_t *adapter,
3416 struct SXG_RCV_DESCRIPTOR_BLOCK_HDR
3417 *RcvDescriptorBlockHdr)
3419 u32 i;
3420 struct SXG_RING_INFO *RcvRingInfo = &adapter->RcvRingZeroInfo;
3421 struct SXG_RCV_DATA_BUFFER_HDR *RcvDataBufferHdr;
3422 struct SXG_RCV_DESCRIPTOR_BLOCK *RcvDescriptorBlock;
3423 struct SXG_CMD *RingDescriptorCmd;
3424 struct SXG_RCV_RING *RingZero = &adapter->RcvRings[0];
3426 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
3427 adapter, adapter->RcvBuffersOnCard,
3428 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3430 ASSERT(RcvDescriptorBlockHdr);
3432 /* If we don't have the resources to fill the descriptor block, */
3433 /* return failure */
3434 if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
3435 SXG_RING_FULL(RcvRingInfo)) {
3436 adapter->Stats.NoMem++;
3437 return (STATUS_FAILURE);
3439 /* Get a ring descriptor command */
3440 SXG_GET_CMD(RingZero,
3441 RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
3442 ASSERT(RingDescriptorCmd);
3443 RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
3444 RcvDescriptorBlock =
3445 (struct SXG_RCV_DESCRIPTOR_BLOCK*) RcvDescriptorBlockHdr->VirtualAddress;
3447 /* Fill in the descriptor block */
3448 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
3449 SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3450 ASSERT(RcvDataBufferHdr);
3451 SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
3452 RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
3453 RcvDescriptorBlock->Descriptors[i].VirtualAddress =
3454 (void *)RcvDataBufferHdr;
3455 RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
3456 RcvDataBufferHdr->PhysicalAddress;
3458 /* Add the descriptor block to receive descriptor ring 0 */
3459 RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
3461 /* RcvBuffersOnCard is not protected via the receive lock (see */
3462 /* sxg_process_event_queue) We don't want to grap a lock every time a */
3463 /* buffer is returned to us, so we use atomic interlocked functions */
3464 /* instead. */
3465 adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
3467 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
3468 RcvDescriptorBlockHdr,
3469 RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
3471 WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
3472 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
3473 adapter, adapter->RcvBuffersOnCard,
3474 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3475 return (STATUS_SUCCESS);
3479 * sxg_stock_rcv_buffers - Stock the card with receive buffers
3481 * Arguments -
3482 * adapter - A pointer to our adapter structure
3484 * Return
3485 * None
3487 static void sxg_stock_rcv_buffers(struct adapter_t *adapter)
3489 struct SXG_RCV_DESCRIPTOR_BLOCK_HDR *RcvDescriptorBlockHdr;
3491 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
3492 adapter, adapter->RcvBuffersOnCard,
3493 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3494 /* First, see if we've got less than our minimum threshold of */
3495 /* receive buffers, there isn't an allocation in progress, and */
3496 /* we haven't exceeded our maximum.. get another block of buffers */
3497 /* None of this needs to be SMP safe. It's round numbers. */
3498 if ((adapter->FreeRcvBufferCount < SXG_MIN_RCV_DATA_BUFFERS) &&
3499 (adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
3500 (adapter->AllocationsPending == 0)) {
3501 sxg_allocate_buffer_memory(adapter,
3502 SXG_RCV_BLOCK_SIZE(adapter->
3503 ReceiveBufferSize),
3504 SXG_BUFFER_TYPE_RCV);
3506 /* Now grab the RcvQLock lock and proceed */
3507 spin_lock(&adapter->RcvQLock);
3508 while (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
3509 struct LIST_ENTRY *_ple;
3511 /* Get a descriptor block */
3512 RcvDescriptorBlockHdr = NULL;
3513 if (adapter->FreeRcvBlockCount) {
3514 _ple = RemoveHeadList(&adapter->FreeRcvBlocks);
3515 RcvDescriptorBlockHdr =
3516 container_of(_ple, struct SXG_RCV_DESCRIPTOR_BLOCK_HDR,
3517 FreeList);
3518 adapter->FreeRcvBlockCount--;
3519 RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
3522 if (RcvDescriptorBlockHdr == NULL) {
3523 /* Bail out.. */
3524 adapter->Stats.NoMem++;
3525 break;
3527 /* Fill in the descriptor block and give it to the card */
3528 if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
3529 STATUS_FAILURE) {
3530 /* Free the descriptor block */
3531 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
3532 RcvDescriptorBlockHdr);
3533 break;
3536 spin_unlock(&adapter->RcvQLock);
3537 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
3538 adapter, adapter->RcvBuffersOnCard,
3539 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3543 * sxg_complete_descriptor_blocks - Return descriptor blocks that have been
3544 * completed by the microcode
3546 * Arguments -
3547 * adapter - A pointer to our adapter structure
3548 * Index - Where the microcode is up to
3550 * Return
3551 * None
3553 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
3554 unsigned char Index)
3556 struct SXG_RCV_RING *RingZero = &adapter->RcvRings[0];
3557 struct SXG_RING_INFO *RcvRingInfo = &adapter->RcvRingZeroInfo;
3558 struct SXG_RCV_DESCRIPTOR_BLOCK_HDR *RcvDescriptorBlockHdr;
3559 struct SXG_CMD *RingDescriptorCmd;
3561 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
3562 adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
3564 /* Now grab the RcvQLock lock and proceed */
3565 spin_lock(&adapter->RcvQLock);
3566 ASSERT(Index != RcvRingInfo->Tail);
3567 while (RcvRingInfo->Tail != Index) {
3568 /* */
3569 /* Locate the current Cmd (ring descriptor entry), and */
3570 /* associated receive descriptor block, and advance */
3571 /* the tail */
3572 /* */
3573 SXG_RETURN_CMD(RingZero,
3574 RcvRingInfo,
3575 RingDescriptorCmd, RcvDescriptorBlockHdr);
3576 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
3577 RcvRingInfo->Head, RcvRingInfo->Tail,
3578 RingDescriptorCmd, RcvDescriptorBlockHdr);
3580 /* Clear the SGL field */
3581 RingDescriptorCmd->Sgl = 0;
3582 /* Attempt to refill it and hand it right back to the */
3583 /* card. If we fail to refill it, free the descriptor block */
3584 /* header. The card will be restocked later via the */
3585 /* RcvBuffersOnCard test */
3586 if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
3587 STATUS_FAILURE) {
3588 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
3589 RcvDescriptorBlockHdr);
3592 spin_unlock(&adapter->RcvQLock);
3593 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
3594 adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
3597 static struct pci_driver sxg_driver = {
3598 .name = DRV_NAME,
3599 .id_table = sxg_pci_tbl,
3600 .probe = sxg_entry_probe,
3601 .remove = sxg_entry_remove,
3602 #if SXG_POWER_MANAGEMENT_ENABLED
3603 .suspend = sxgpm_suspend,
3604 .resume = sxgpm_resume,
3605 #endif
3606 /* .shutdown = slic_shutdown, MOOK_INVESTIGATE */
3609 static int __init sxg_module_init(void)
3611 sxg_init_driver();
3613 if (debug >= 0)
3614 sxg_debug = debug;
3616 return pci_register_driver(&sxg_driver);
3619 static void __exit sxg_module_cleanup(void)
3621 pci_unregister_driver(&sxg_driver);
3624 module_init(sxg_module_init);
3625 module_exit(sxg_module_cleanup);