added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / staging / altpciechdma / altpciechdma.c
blobf516140ca976a97a915cca23d6048a711aa60121
1 /**
2 * Driver for Altera PCIe core chaining DMA reference design.
4 * Copyright (C) 2008 Leon Woestenberg <leon.woestenberg@axon.tv>
5 * Copyright (C) 2008 Nickolas Heppermann <heppermannwdt@gmail.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 * Rationale: This driver exercises the chaining DMA read and write engine
23 * in the reference design. It is meant as a complementary reference
24 * driver that can be used for testing early designs as well as a basis to
25 * write your custom driver.
27 * Status: Test results from Leon Woestenberg <leon.woestenberg@axon.tv>:
29 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
30 * Dell Precision 370 PC, x86, kernel 2.6.20 from Ubuntu 7.04.
32 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
33 * Freescale MPC8313E-RDB board, PowerPC, 2.6.24 w/ Freescale patches.
35 * Driver tests passed with PCIe Compiler 8.1. With PCIe 8.0 the DMA
36 * loopback test had reproducable compare errors. I assume a change
37 * in the compiler or reference design, but could not find evidence nor
38 * documentation on a change or fix in that direction.
40 * The reference design does not have readable locations and thus a
41 * dummy read, used to flush PCI posted writes, cannot be performed.
45 #include <linux/kernel.h>
46 #include <linux/cdev.h>
47 #include <linux/delay.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/delay.h>
50 #include <linux/init.h>
51 #include <linux/interrupt.h>
52 #include <linux/io.h>
53 #include <linux/jiffies.h>
54 #include <linux/module.h>
55 #include <linux/pci.h>
58 /* by default do not build the character device interface */
59 /* XXX It is non-functional yet */
60 #ifndef ALTPCIECHDMA_CDEV
61 # define ALTPCIECHDMA_CDEV 0
62 #endif
64 /* build the character device interface? */
65 #if ALTPCIECHDMA_CDEV
66 # define MAX_CHDMA_SIZE (8 * 1024 * 1024)
67 # include "mapper_user_to_sg.h"
68 #endif
70 /** driver name, mimicks Altera naming of the reference design */
71 #define DRV_NAME "altpciechdma"
72 /** number of BARs on the device */
73 #define APE_BAR_NUM (6)
74 /** BAR number where the RCSLAVE memory sits */
75 #define APE_BAR_RCSLAVE (0)
76 /** BAR number where the Descriptor Header sits */
77 #define APE_BAR_HEADER (2)
79 /** maximum size in bytes of the descriptor table, chdma logic limit */
80 #define APE_CHDMA_TABLE_SIZE (4096)
81 /* single transfer must not exceed 255 table entries. worst case this can be
82 * achieved by 255 scattered pages, with only a single byte in the head and
83 * tail pages. 253 * PAGE_SIZE is a safe upper bound for the transfer size.
85 #define APE_CHDMA_MAX_TRANSFER_LEN (253 * PAGE_SIZE)
87 /**
88 * Specifies those BARs to be mapped and the length of each mapping.
90 * Zero (0) means do not map, otherwise specifies the BAR lengths to be mapped.
91 * If the actual BAR length is less, this is considered an error; then
92 * reconfigure your PCIe core.
94 * @see ug_pci_express 8.0, table 7-2 at page 7-13.
96 static const unsigned long bar_min_len[APE_BAR_NUM] =
97 { 32768, 0, 256, 0, 32768, 0 };
99 /**
100 * Descriptor Header, controls the DMA read engine or write engine.
102 * The descriptor header is the main data structure for starting DMA transfers.
104 * It sits in End Point (FPGA) memory BAR[2] for 32-bit or BAR[3:2] for 64-bit.
105 * It references a descriptor table which exists in Root Complex (PC) memory.
106 * Writing the rclast field starts the DMA operation, thus all other structures
107 * and fields must be setup before doing so.
109 * @see ug_pci_express 8.0, tables 7-3, 7-4 and 7-5 at page 7-14.
110 * @note This header must be written in four 32-bit (PCI DWORD) writes.
112 struct ape_chdma_header {
114 * w0 consists of two 16-bit fields:
115 * lsb u16 number; number of descriptors in ape_chdma_table
116 * msb u16 control; global control flags
118 u32 w0;
119 /* bus address to ape_chdma_table in Root Complex memory */
120 u32 bdt_addr_h;
121 u32 bdt_addr_l;
123 * w3 consists of two 16-bit fields:
124 * - lsb u16 rclast; last descriptor number available in Root Complex
125 * - zero (0) means the first descriptor is ready,
126 * - one (1) means two descriptors are ready, etc.
127 * - msb u16 reserved;
129 * @note writing to this memory location starts the DMA operation!
131 u32 w3;
132 } __attribute__ ((packed));
135 * Descriptor Entry, describing a (non-scattered) single memory block transfer.
137 * There is one descriptor for each memory block involved in the transfer, a
138 * block being a contiguous address range on the bus.
140 * Multiple descriptors are chained by means of the ape_chdma_table data
141 * structure.
143 * @see ug_pci_express 8.0, tables 7-6, 7-7 and 7-8 at page 7-14 and page 7-15.
145 struct ape_chdma_desc {
147 * w0 consists of two 16-bit fields:
148 * number of DWORDS to transfer
149 * - lsb u16 length;
150 * global control
151 * - msb u16 control;
153 u32 w0;
154 /* address of memory in the End Point */
155 u32 ep_addr;
156 /* bus address of source or destination memory in the Root Complex */
157 u32 rc_addr_h;
158 u32 rc_addr_l;
159 } __attribute__ ((packed));
162 * Descriptor Table, an array of descriptors describing a chained transfer.
164 * An array of descriptors, preceded by workspace for the End Point.
165 * It exists in Root Complex memory.
167 * The End Point can update its last completed descriptor number in the
168 * eplast field if requested by setting the EPLAST_ENA bit either
169 * globally in the header's or locally in any descriptor's control field.
171 * @note this structure may not exceed 4096 bytes. This results in a
172 * maximum of 4096 / (4 * 4) - 1 = 255 descriptors per chained transfer.
174 * @see ug_pci_express 8.0, tables 7-9, 7-10 and 7-11 at page 7-17 and page 7-18.
176 struct ape_chdma_table {
177 /* workspace 0x00-0x0b, reserved */
178 u32 reserved1[3];
179 /* workspace 0x0c-0x0f, last descriptor handled by End Point */
180 u32 w3;
181 /* the actual array of descriptors
182 * 0x10-0x1f, 0x20-0x2f, ... 0xff0-0xfff (255 entries)
184 struct ape_chdma_desc desc[255];
185 } __attribute__ ((packed));
188 * Altera PCI Express ('ape') board specific book keeping data
190 * Keeps state of the PCIe core and the Chaining DMA controller
191 * application.
193 struct ape_dev {
194 /** the kernel pci device data structure provided by probe() */
195 struct pci_dev *pci_dev;
197 * kernel virtual address of the mapped BAR memory and IO regions of
198 * the End Point. Used by map_bars()/unmap_bars().
200 void * __iomem bar[APE_BAR_NUM];
201 /** kernel virtual address for Descriptor Table in Root Complex memory */
202 struct ape_chdma_table *table_virt;
204 * bus address for the Descriptor Table in Root Complex memory, in
205 * CPU-native endianess
207 dma_addr_t table_bus;
208 /* if the device regions could not be allocated, assume and remember it
209 * is in use by another driver; this driver must not disable the device.
211 int in_use;
212 /* whether this driver enabled msi for the device */
213 int msi_enabled;
214 /* whether this driver could obtain the regions */
215 int got_regions;
216 /* irq line succesfully requested by this driver, -1 otherwise */
217 int irq_line;
218 /* board revision */
219 u8 revision;
220 /* interrupt count, incremented by the interrupt handler */
221 int irq_count;
222 #if ALTPCIECHDMA_CDEV
223 /* character device */
224 dev_t cdevno;
225 struct cdev cdev;
226 /* user space scatter gather mapper */
227 struct sg_mapping_t *sgm;
228 #endif
232 * Using the subsystem vendor id and subsystem id, it is possible to
233 * distinguish between different cards bases around the same
234 * (third-party) logic core.
236 * Default Altera vendor and device ID's, and some (non-reserved)
237 * ID's are now used here that are used amongst the testers/developers.
239 static const struct pci_device_id ids[] = {
240 { PCI_DEVICE(0x1172, 0xE001), },
241 { PCI_DEVICE(0x2071, 0x2071), },
242 { 0, }
244 MODULE_DEVICE_TABLE(pci, ids);
246 #if ALTPCIECHDMA_CDEV
247 /* prototypes for character device */
248 static int sg_init(struct ape_dev *ape);
249 static void sg_exit(struct ape_dev *ape);
250 #endif
253 * altpciechdma_isr() - Interrupt handler
256 static irqreturn_t altpciechdma_isr(int irq, void *dev_id)
258 struct ape_dev *ape = (struct ape_dev *)dev_id;
259 if (!ape)
260 return IRQ_NONE;
261 ape->irq_count++;
262 return IRQ_HANDLED;
265 static int __devinit scan_bars(struct ape_dev *ape, struct pci_dev *dev)
267 int i;
268 for (i = 0; i < APE_BAR_NUM; i++) {
269 unsigned long bar_start = pci_resource_start(dev, i);
270 if (bar_start) {
271 unsigned long bar_end = pci_resource_end(dev, i);
272 unsigned long bar_flags = pci_resource_flags(dev, i);
273 printk(KERN_DEBUG "BAR%d 0x%08lx-0x%08lx flags 0x%08lx\n",
274 i, bar_start, bar_end, bar_flags);
277 return 0;
281 * Unmap the BAR regions that had been mapped earlier using map_bars()
283 static void unmap_bars(struct ape_dev *ape, struct pci_dev *dev)
285 int i;
286 for (i = 0; i < APE_BAR_NUM; i++) {
287 /* is this BAR mapped? */
288 if (ape->bar[i]) {
289 /* unmap BAR */
290 pci_iounmap(dev, ape->bar[i]);
291 ape->bar[i] = NULL;
297 * Map the device memory regions into kernel virtual address space after
298 * verifying their sizes respect the minimum sizes needed, given by the
299 * bar_min_len[] array.
301 static int __devinit map_bars(struct ape_dev *ape, struct pci_dev *dev)
303 int rc;
304 int i;
305 /* iterate through all the BARs */
306 for (i = 0; i < APE_BAR_NUM; i++) {
307 unsigned long bar_start = pci_resource_start(dev, i);
308 unsigned long bar_end = pci_resource_end(dev, i);
309 unsigned long bar_length = bar_end - bar_start + 1;
310 ape->bar[i] = NULL;
311 /* do not map, and skip, BARs with length 0 */
312 if (!bar_min_len[i])
313 continue;
314 /* do not map BARs with address 0 */
315 if (!bar_start || !bar_end) {
316 printk(KERN_DEBUG "BAR #%d is not present?!\n", i);
317 rc = -1;
318 goto fail;
320 bar_length = bar_end - bar_start + 1;
321 /* BAR length is less than driver requires? */
322 if (bar_length < bar_min_len[i]) {
323 printk(KERN_DEBUG "BAR #%d length = %lu bytes but driver "
324 "requires at least %lu bytes\n", i, bar_length, bar_min_len[i]);
325 rc = -1;
326 goto fail;
328 /* map the device memory or IO region into kernel virtual
329 * address space */
330 ape->bar[i] = pci_iomap(dev, i, bar_min_len[i]);
331 if (!ape->bar[i]) {
332 printk(KERN_DEBUG "Could not map BAR #%d.\n", i);
333 rc = -1;
334 goto fail;
336 printk(KERN_DEBUG "BAR[%d] mapped at 0x%p with length %lu(/%lu).\n", i,
337 ape->bar[i], bar_min_len[i], bar_length);
339 /* succesfully mapped all required BAR regions */
340 rc = 0;
341 goto success;
342 fail:
343 /* unmap any BARs that we did map */
344 unmap_bars(ape, dev);
345 success:
346 return rc;
349 #if 0 /* not yet implemented fully FIXME add opcode */
350 static void __devinit rcslave_test(struct ape_dev *ape, struct pci_dev *dev)
352 u32 *rcslave_mem = (u32 *)ape->bar[APE_BAR_RCSLAVE];
353 u32 result = 0;
354 /** this number is assumed to be different each time this test runs */
355 u32 seed = (u32)jiffies;
356 u32 value = seed;
357 int i;
359 /* write loop */
360 value = seed;
361 for (i = 1024; i < 32768 / 4 ; i++) {
362 printk(KERN_DEBUG "Writing 0x%08x to 0x%p.\n",
363 (u32)value, (void *)rcslave_mem + i);
364 iowrite32(value, rcslave_mem + i);
365 value++;
367 /* read-back loop */
368 value = seed;
369 for (i = 1024; i < 32768 / 4; i++) {
370 result = ioread32(rcslave_mem + i);
371 if (result != value) {
372 printk(KERN_DEBUG "Wrote 0x%08x to 0x%p, but read back 0x%08x.\n",
373 (u32)value, (void *)rcslave_mem + i, (u32)result);
374 break;
376 value++;
379 #endif
381 /* obtain the 32 most significant (high) bits of a 32-bit or 64-bit address */
382 #define pci_dma_h(addr) ((addr >> 16) >> 16)
383 /* obtain the 32 least significant (low) bits of a 32-bit or 64-bit address */
384 #define pci_dma_l(addr) (addr & 0xffffffffUL)
386 /* ape_fill_chdma_desc() - Fill a Altera PCI Express Chaining DMA descriptor
388 * @desc pointer to descriptor to be filled
389 * @addr root complex address
390 * @ep_addr end point address
391 * @len number of bytes, must be a multiple of 4.
393 static inline void ape_chdma_desc_set(struct ape_chdma_desc *desc, dma_addr_t addr, u32 ep_addr, int len)
395 BUG_ON(len & 3);
396 desc->w0 = cpu_to_le32(len / 4);
397 desc->ep_addr = cpu_to_le32(ep_addr);
398 desc->rc_addr_h = cpu_to_le32(pci_dma_h(addr));
399 desc->rc_addr_l = cpu_to_le32(pci_dma_l(addr));
403 * ape_sg_to_chdma_table() - Create a device descriptor table from a scatterlist.
405 * The scatterlist must have been mapped by pci_map_sg(sgm->sgl).
407 * @sgl scatterlist.
408 * @nents Number of entries in the scatterlist.
409 * @first Start index in the scatterlist sgm->sgl.
410 * @ep_addr End Point address for the scatter/gather transfer.
411 * @desc pointer to first descriptor
413 * Returns Number of entries in the table on success, -1 on error.
415 static int ape_sg_to_chdma_table(struct scatterlist *sgl, int nents, int first, struct ape_chdma_desc *desc, u32 ep_addr)
417 int i = first, j = 0;
418 /* inspect first entry */
419 dma_addr_t addr = sg_dma_address(&sgl[i]);
420 unsigned int len = sg_dma_len(&sgl[i]);
421 /* contiguous block */
422 dma_addr_t cont_addr = addr;
423 unsigned int cont_len = len;
424 /* iterate over remaining entries */
425 for (; j < 25 && i < nents - 1; i++) {
426 /* bus address of next entry i + 1 */
427 dma_addr_t next = sg_dma_address(&sgl[i + 1]);
428 /* length of this entry i */
429 len = sg_dma_len(&sgl[i]);
430 printk(KERN_DEBUG "%04d: addr=0x%08x length=0x%08x\n", i, addr, len);
431 /* entry i + 1 is non-contiguous with entry i? */
432 if (next != addr + len) {
433 /* TODO create entry here (we could overwrite i) */
434 printk(KERN_DEBUG "%4d: cont_addr=0x%08x cont_len=0x%08x\n", j, cont_addr, cont_len);
435 /* set descriptor for contiguous transfer */
436 ape_chdma_desc_set(&desc[j], cont_addr, ep_addr, cont_len);
437 /* next end point memory address */
438 ep_addr += cont_len;
439 /* start new contiguous block */
440 cont_addr = next;
441 cont_len = 0;
442 j++;
444 /* add entry i + 1 to current contiguous block */
445 cont_len += len;
446 /* goto entry i + 1 */
447 addr = next;
449 /* TODO create entry here (we could overwrite i) */
450 printk(KERN_DEBUG "%04d: addr=0x%08x length=0x%08x\n", i, addr, len);
451 printk(KERN_DEBUG "%4d: cont_addr=0x%08x length=0x%08x\n", j, cont_addr, cont_len);
452 j++;
453 return j;
456 /* compare buffers */
457 static inline int compare(u32 *p, u32 *q, int len)
459 int result = -1;
460 int fail = 0;
461 int i;
462 for (i = 0; i < len / 4; i++) {
463 if (*p == *q) {
464 /* every so many u32 words, show equals */
465 if ((i & 255) == 0)
466 printk(KERN_DEBUG "[%p] = 0x%08x [%p] = 0x%08x\n", p, *p, q, *q);
467 } else {
468 fail++;
469 /* show the first few miscompares */
470 if (fail < 10) {
471 printk(KERN_DEBUG "[%p] = 0x%08x != [%p] = 0x%08x ?!\n", p, *p, q, *q);
472 /* but stop after a while */
473 } else if (fail == 10) {
474 printk(KERN_DEBUG "---more errors follow! not printed---\n");
475 } else {
476 /* stop compare after this many errors */
477 break;
480 p++;
481 q++;
483 if (!fail)
484 result = 0;
485 return result;
488 /* dma_test() - Perform DMA loop back test to end point and back to root complex.
490 * Allocate a cache-coherent buffer in host memory, consisting of four pages.
492 * Fill the four memory pages such that each 32-bit word contains its own address.
494 * Now perform a loop back test, have the end point device copy the first buffer
495 * half to end point memory, then have it copy back into the second half.
497 * Create a descriptor table to copy the first buffer half into End Point
498 * memory. Instruct the End Point to do a DMA read using that table.
500 * Create a descriptor table to copy End Point memory to the second buffer
501 * half. Instruct the End Point to do a DMA write using that table.
503 * Compare results, fail or pass.
506 static int __devinit dma_test(struct ape_dev *ape, struct pci_dev *dev)
508 /* test result; guilty until proven innocent */
509 int result = -1;
510 /* the DMA read header sits at address 0x00 of the DMA engine BAR */
511 struct ape_chdma_header *write_header = (struct ape_chdma_header *)ape->bar[APE_BAR_HEADER];
512 /* the write DMA header sits after the read header at address 0x10 */
513 struct ape_chdma_header *read_header = write_header + 1;
514 /* virtual address of the allocated buffer */
515 u8 *buffer_virt = 0;
516 /* bus address of the allocated buffer */
517 dma_addr_t buffer_bus = 0;
518 int i, n = 0, irq_count;
520 /* temporary value used to construct 32-bit data words */
521 u32 w;
523 printk(KERN_DEBUG "bar_tests(), PAGE_SIZE = 0x%0x\n", (int)PAGE_SIZE);
524 printk(KERN_DEBUG "write_header = 0x%p.\n", write_header);
525 printk(KERN_DEBUG "read_header = 0x%p.\n", read_header);
526 printk(KERN_DEBUG "&write_header->w3 = 0x%p\n", &write_header->w3);
527 printk(KERN_DEBUG "&read_header->w3 = 0x%p\n", &read_header->w3);
528 printk(KERN_DEBUG "ape->table_virt = 0x%p.\n", ape->table_virt);
530 if (!write_header || !read_header || !ape->table_virt)
531 goto fail;
533 /* allocate and map coherently-cached memory for a DMA-able buffer */
534 /* @see Documentation/PCI/PCI-DMA-mapping.txt, near line 318 */
535 buffer_virt = (u8 *)pci_alloc_consistent(dev, PAGE_SIZE * 4, &buffer_bus);
536 if (!buffer_virt) {
537 printk(KERN_DEBUG "Could not allocate coherent DMA buffer.\n");
538 goto fail;
540 printk(KERN_DEBUG "Allocated cache-coherent DMA buffer (virtual address = 0x%016llx, bus address = 0x%016llx).\n",
541 (u64)buffer_virt, (u64)buffer_bus);
543 /* fill first half of buffer with its virtual address as data */
544 for (i = 0; i < 4 * PAGE_SIZE; i += 4)
545 #if 0
546 *(u32 *)(buffer_virt + i) = i / PAGE_SIZE + 1;
547 #else
548 *(u32 *)(buffer_virt + i) = (buffer_virt + i);
549 #endif
550 #if 0
551 compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
552 #endif
554 #if 0
555 /* fill second half of buffer with zeroes */
556 for (i = 2 * PAGE_SIZE; i < 4 * PAGE_SIZE; i += 4)
557 *(u32 *)(buffer_virt + i) = 0;
558 #endif
560 /* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
561 ape->table_virt->w3 = cpu_to_le32(0x0000FADE);
563 /* fill in first descriptor */
564 n = 0;
565 /* read 8192 bytes from RC buffer to EP address 4096 */
566 ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus, 4096, 2 * PAGE_SIZE);
567 #if 1
568 for (i = 0; i < 255; i++) {
569 ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus, 4096, 2 * PAGE_SIZE);
571 /* index of last descriptor */
572 n = i - 1;
573 #endif
574 #if 0
575 /* fill in next descriptor */
576 n++;
577 /* read 1024 bytes from RC buffer to EP address 4096 + 1024 */
578 ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 1024, 4096 + 1024, 1024);
579 #endif
581 #if 1
582 /* enable MSI after the last descriptor is completed */
583 if (ape->msi_enabled)
584 ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
585 #endif
586 #if 0
587 /* dump descriptor table for debugging */
588 printk(KERN_DEBUG "Descriptor Table (Read, in Root Complex Memory, # = %d)\n", n + 1);
589 for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
590 u32 *p = (u32 *)ape->table_virt;
591 p += i;
592 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
593 p++;
594 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
595 p++;
596 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
597 p++;
598 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
600 #endif
601 /* set available number of descriptors in table */
602 w = (u32)(n + 1);
603 w |= (1UL << 18)/*global EPLAST_EN*/;
604 #if 0
605 if (ape->msi_enabled)
606 w |= (1UL << 17)/*global MSI*/;
607 #endif
608 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", w, (void *)&read_header->w0);
609 iowrite32(w, &read_header->w0);
611 /* write table address (higher 32-bits) */
612 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)((ape->table_bus >> 16) >> 16), (void *)&read_header->bdt_addr_h);
613 iowrite32(pci_dma_h(ape->table_bus), &read_header->bdt_addr_h);
615 /* write table address (lower 32-bits) */
616 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)(ape->table_bus & 0xffffffffUL), (void *)&read_header->bdt_addr_l);
617 iowrite32(pci_dma_l(ape->table_bus), &read_header->bdt_addr_l);
619 /* memory write barrier */
620 wmb();
621 printk(KERN_DEBUG "Flush posted writes\n");
622 /** FIXME Add dummy read to flush posted writes but need a readable location! */
623 #if 0
624 (void)ioread32();
625 #endif
627 /* remember IRQ count before the transfer */
628 irq_count = ape->irq_count;
629 /* write number of descriptors - this starts the DMA */
630 printk(KERN_DEBUG "\nStart DMA read\n");
631 printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)n, (void *)&read_header->w3);
632 iowrite32(n, &read_header->w3);
633 printk(KERN_DEBUG "EPLAST = %lu\n", le32_to_cpu(*(u32 *)&ape->table_virt->w3) & 0xffffUL);
635 /** memory write barrier */
636 wmb();
637 /* dummy read to flush posted writes */
638 /* FIXME Need a readable location! */
639 #if 0
640 (void)ioread32();
641 #endif
642 printk(KERN_DEBUG "POLL FOR READ:\n");
643 /* poll for chain completion, 1000 times 1 millisecond */
644 for (i = 0; i < 100; i++) {
645 volatile u32 *p = &ape->table_virt->w3;
646 u32 eplast = le32_to_cpu(*p) & 0xffffUL;
647 printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
648 if (eplast == n) {
649 printk(KERN_DEBUG "DONE\n");
650 /* print IRQ count before the transfer */
651 printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
652 break;
654 udelay(100);
657 /* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
658 ape->table_virt->w3 = cpu_to_le32(0x0000FADE);
660 /* setup first descriptor */
661 n = 0;
662 ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
663 #if 1
664 for (i = 0; i < 255; i++) {
665 ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
667 /* index of last descriptor */
668 n = i - 1;
669 #endif
670 #if 1 /* test variable, make a module option later */
671 if (ape->msi_enabled)
672 ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
673 #endif
674 #if 0
675 /* dump descriptor table for debugging */
676 printk(KERN_DEBUG "Descriptor Table (Write, in Root Complex Memory, # = %d)\n", n + 1);
677 for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
678 u32 *p = (u32 *)ape->table_virt;
679 p += i;
680 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
681 p++;
682 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
683 p++;
684 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
685 p++;
686 printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
688 #endif
690 /* set number of available descriptors in the table */
691 w = (u32)(n + 1);
692 /* enable updates of eplast for each descriptor completion */
693 w |= (u32)(1UL << 18)/*global EPLAST_EN*/;
694 #if 0 // test variable, make a module option later
695 /* enable MSI for each descriptor completion */
696 if (ape->msi_enabled)
697 w |= (1UL << 17)/*global MSI*/;
698 #endif
699 iowrite32(w, &write_header->w0);
700 iowrite32(pci_dma_h(ape->table_bus), &write_header->bdt_addr_h);
701 iowrite32(pci_dma_l(ape->table_bus), &write_header->bdt_addr_l);
703 /** memory write barrier and flush posted writes */
704 wmb();
705 /* dummy read to flush posted writes */
706 /* FIXME Need a readable location! */
707 #if 0
708 (void)ioread32();
709 #endif
710 irq_count = ape->irq_count;
712 printk(KERN_DEBUG "\nStart DMA write\n");
713 iowrite32(n, &write_header->w3);
715 /** memory write barrier */
716 wmb();
717 /** dummy read to flush posted writes */
718 //(void)ioread32();
720 printk(KERN_DEBUG "POLL FOR WRITE:\n");
721 /* poll for completion, 1000 times 1 millisecond */
722 for (i = 0; i < 100; i++) {
723 volatile u32 *p = &ape->table_virt->w3;
724 u32 eplast = le32_to_cpu(*p) & 0xffffUL;
725 printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
726 if (eplast == n) {
727 printk(KERN_DEBUG "DONE\n");
728 /* print IRQ count before the transfer */
729 printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
730 break;
732 udelay(100);
734 /* soft-reset DMA write engine */
735 iowrite32(0x0000ffffUL, &write_header->w0);
736 /* soft-reset DMA read engine */
737 iowrite32(0x0000ffffUL, &read_header->w0);
739 /** memory write barrier */
740 wmb();
741 /* dummy read to flush posted writes */
742 /* FIXME Need a readable location! */
743 #if 0
744 (void)ioread32();
745 #endif
746 /* compare first half of buffer with second half, should be identical */
747 result = compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
748 printk(KERN_DEBUG "DMA loop back test %s.\n", result ? "FAILED" : "PASSED");
750 pci_free_consistent(dev, 4 * PAGE_SIZE, buffer_virt, buffer_bus);
751 fail:
752 printk(KERN_DEBUG "bar_tests() end, result %d\n", result);
753 return result;
756 /* Called when the PCI sub system thinks we can control the given device.
757 * Inspect if we can support the device and if so take control of it.
759 * Return 0 when we have taken control of the given device.
761 * - allocate board specific bookkeeping
762 * - allocate coherently-mapped memory for the descriptor table
763 * - enable the board
764 * - verify board revision
765 * - request regions
766 * - query DMA mask
767 * - obtain and request irq
768 * - map regions into kernel address space
770 static int __devinit probe(struct pci_dev *dev, const struct pci_device_id *id)
772 int rc = 0;
773 struct ape_dev *ape = NULL;
774 u8 irq_pin, irq_line;
775 printk(KERN_DEBUG "probe(dev = 0x%p, pciid = 0x%p)\n", dev, id);
777 /* allocate memory for per-board book keeping */
778 ape = kzalloc(sizeof(struct ape_dev), GFP_KERNEL);
779 if (!ape) {
780 printk(KERN_DEBUG "Could not kzalloc()ate memory.\n");
781 goto err_ape;
783 ape->pci_dev = dev;
784 dev->dev.driver_data = (void *)ape;
785 printk(KERN_DEBUG "probe() ape = 0x%p\n", ape);
787 printk(KERN_DEBUG "sizeof(struct ape_chdma_table) = %d.\n",
788 (int)sizeof(struct ape_chdma_table));
789 /* the reference design has a size restriction on the table size */
790 BUG_ON(sizeof(struct ape_chdma_table) > APE_CHDMA_TABLE_SIZE);
792 /* allocate and map coherently-cached memory for a descriptor table */
793 /* @see LDD3 page 446 */
794 ape->table_virt = (struct ape_chdma_table *)pci_alloc_consistent(dev,
795 APE_CHDMA_TABLE_SIZE, &ape->table_bus);
796 /* could not allocate table? */
797 if (!ape->table_virt) {
798 printk(KERN_DEBUG "Could not dma_alloc()ate_coherent memory.\n");
799 goto err_table;
802 printk(KERN_DEBUG "table_virt = 0x%16llx, table_bus = 0x%16llx.\n",
803 (u64)ape->table_virt, (u64)ape->table_bus);
805 /* enable device */
806 rc = pci_enable_device(dev);
807 if (rc) {
808 printk(KERN_DEBUG "pci_enable_device() failed\n");
809 goto err_enable;
812 /* enable bus master capability on device */
813 pci_set_master(dev);
814 /* enable message signaled interrupts */
815 rc = pci_enable_msi(dev);
816 /* could not use MSI? */
817 if (rc) {
818 /* resort to legacy interrupts */
819 printk(KERN_DEBUG "Could not enable MSI interrupting.\n");
820 ape->msi_enabled = 0;
821 /* MSI enabled, remember for cleanup */
822 } else {
823 printk(KERN_DEBUG "Enabled MSI interrupting.\n");
824 ape->msi_enabled = 1;
827 pci_read_config_byte(dev, PCI_REVISION_ID, &ape->revision);
828 #if 0 /* example */
829 /* (for example) this driver does not support revision 0x42 */
830 if (ape->revision == 0x42) {
831 printk(KERN_DEBUG "Revision 0x42 is not supported by this driver.\n");
832 rc = -ENODEV;
833 goto err_rev;
835 #endif
836 /** XXX check for native or legacy PCIe endpoint? */
838 rc = pci_request_regions(dev, DRV_NAME);
839 /* could not request all regions? */
840 if (rc) {
841 /* assume device is in use (and do not disable it later!) */
842 ape->in_use = 1;
843 goto err_regions;
845 ape->got_regions = 1;
847 #if 1 // @todo For now, disable 64-bit, because I do not understand the implications (DAC!)
848 /* query for DMA transfer */
849 /* @see Documentation/PCI/PCI-DMA-mapping.txt */
850 if (!pci_set_dma_mask(dev, DMA_64BIT_MASK)) {
851 pci_set_consistent_dma_mask(dev, DMA_64BIT_MASK);
852 /* use 64-bit DMA */
853 printk(KERN_DEBUG "Using a 64-bit DMA mask.\n");
854 } else
855 #endif
856 if (!pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
857 printk(KERN_DEBUG "Could not set 64-bit DMA mask.\n");
858 pci_set_consistent_dma_mask(dev, DMA_32BIT_MASK);
859 /* use 32-bit DMA */
860 printk(KERN_DEBUG "Using a 32-bit DMA mask.\n");
861 } else {
862 printk(KERN_DEBUG "No suitable DMA possible.\n");
863 /** @todo Choose proper error return code */
864 rc = -1;
865 goto err_mask;
868 rc = pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq_pin);
869 /* could not read? */
870 if (rc)
871 goto err_irq;
872 printk(KERN_DEBUG "IRQ pin #%d (0=none, 1=INTA#...4=INTD#).\n", irq_pin);
874 /* @see LDD3, page 318 */
875 rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_line);
876 /* could not read? */
877 if (rc) {
878 printk(KERN_DEBUG "Could not query PCI_INTERRUPT_LINE, error %d\n", rc);
879 goto err_irq;
881 printk(KERN_DEBUG "IRQ line #%d.\n", irq_line);
882 #if 1
883 irq_line = dev->irq;
884 /* @see LDD3, page 259 */
885 rc = request_irq(irq_line, altpciechdma_isr, IRQF_SHARED, DRV_NAME, (void *)ape);
886 if (rc) {
887 printk(KERN_DEBUG "Could not request IRQ #%d, error %d\n", irq_line, rc);
888 ape->irq_line = -1;
889 goto err_irq;
891 /* remember which irq we allocated */
892 ape->irq_line = (int)irq_line;
893 printk(KERN_DEBUG "Succesfully requested IRQ #%d with dev_id 0x%p\n", irq_line, ape);
894 #endif
895 /* show BARs */
896 scan_bars(ape, dev);
897 /* map BARs */
898 rc = map_bars(ape, dev);
899 if (rc)
900 goto err_map;
901 #if ALTPCIECHDMA_CDEV
902 /* initialize character device */
903 rc = sg_init(ape);
904 if (rc)
905 goto err_cdev;
906 #endif
907 /* perform DMA engines loop back test */
908 rc = dma_test(ape, dev);
909 (void)rc;
910 /* succesfully took the device */
911 rc = 0;
912 printk(KERN_DEBUG "probe() successful.\n");
913 goto end;
914 err_cdev:
915 /* unmap the BARs */
916 unmap_bars(ape, dev);
917 err_map:
918 /* free allocated irq */
919 if (ape->irq_line >= 0)
920 free_irq(ape->irq_line, (void *)ape);
921 err_irq:
922 if (ape->msi_enabled)
923 pci_disable_msi(dev);
924 /* disable the device iff it is not in use */
925 if (!ape->in_use)
926 pci_disable_device(dev);
927 if (ape->got_regions)
928 pci_release_regions(dev);
929 err_mask:
930 err_regions:
931 err_rev:
932 /* clean up everything before device enable() */
933 err_enable:
934 if (ape->table_virt)
935 pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
936 /* clean up everything before allocating descriptor table */
937 err_table:
938 if (ape)
939 kfree(ape);
940 err_ape:
941 end:
942 return rc;
945 static void __devexit remove(struct pci_dev *dev)
947 struct ape_dev *ape;
948 printk(KERN_DEBUG "remove(0x%p)\n", dev);
949 if ((dev == 0) || (dev->dev.driver_data == 0)) {
950 printk(KERN_DEBUG "remove(dev = 0x%p) dev->dev.driver_data = 0x%p\n", dev, dev->dev.driver_data);
951 return;
953 ape = (struct ape_dev *)dev->dev.driver_data;
954 printk(KERN_DEBUG "remove(dev = 0x%p) where dev->dev.driver_data = 0x%p\n", dev, ape);
955 if (ape->pci_dev != dev) {
956 printk(KERN_DEBUG "dev->dev.driver_data->pci_dev (0x%08lx) != dev (0x%08lx)\n",
957 (unsigned long)ape->pci_dev, (unsigned long)dev);
959 /* remove character device */
960 #if ALTPCIECHDMA_CDEV
961 sg_exit(ape);
962 #endif
964 if (ape->table_virt)
965 pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
967 /* free IRQ
968 * @see LDD3 page 279
970 if (ape->irq_line >= 0) {
971 printk(KERN_DEBUG "Freeing IRQ #%d for dev_id 0x%08lx.\n",
972 ape->irq_line, (unsigned long)ape);
973 free_irq(ape->irq_line, (void *)ape);
975 /* MSI was enabled? */
976 if (ape->msi_enabled) {
977 /* Disable MSI @see Documentation/MSI-HOWTO.txt */
978 pci_disable_msi(dev);
979 ape->msi_enabled = 0;
981 /* unmap the BARs */
982 unmap_bars(ape, dev);
983 if (!ape->in_use)
984 pci_disable_device(dev);
985 if (ape->got_regions)
986 /* to be called after device disable */
987 pci_release_regions(dev);
990 #if ALTPCIECHDMA_CDEV
993 * Called when the device goes from unused to used.
995 static int sg_open(struct inode *inode, struct file *file)
997 struct ape_dev *ape;
998 printk(KERN_DEBUG DRV_NAME "_open()\n");
999 /* pointer to containing data structure of the character device inode */
1000 ape = container_of(inode->i_cdev, struct ape_dev, cdev);
1001 /* create a reference to our device state in the opened file */
1002 file->private_data = ape;
1003 /* create virtual memory mapper */
1004 ape->sgm = sg_create_mapper(MAX_CHDMA_SIZE);
1005 return 0;
1009 * Called when the device goes from used to unused.
1011 static int sg_close(struct inode *inode, struct file *file)
1013 /* fetch device specific data stored earlier during open */
1014 struct ape_dev *ape = (struct ape_dev *)file->private_data;
1015 printk(KERN_DEBUG DRV_NAME "_close()\n");
1016 /* destroy virtual memory mapper */
1017 sg_destroy_mapper(ape->sgm);
1018 return 0;
1021 static ssize_t sg_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
1023 /* fetch device specific data stored earlier during open */
1024 struct ape_dev *ape = (struct ape_dev *)file->private_data;
1025 (void)ape;
1026 printk(KERN_DEBUG DRV_NAME "_read(buf=0x%p, count=%lld, pos=%llu)\n", buf, (s64)count, (u64)*pos);
1027 return count;
1030 /* sg_write() - Write to the device
1032 * @buf userspace buffer
1033 * @count number of bytes in the userspace buffer
1035 * Iterate over the userspace buffer, taking at most 255 * PAGE_SIZE bytes for
1036 * each DMA transfer.
1037 * For each transfer, get the user pages, build a sglist, map, build a
1038 * descriptor table. submit the transfer. wait for the interrupt handler
1039 * to wake us on completion.
1041 static ssize_t sg_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
1043 int hwnents, tents;
1044 size_t transfer_len, remaining = count, done = 0;
1045 u64 transfer_addr = (u64)buf;
1046 /* fetch device specific data stored earlier during open */
1047 struct ape_dev *ape = (struct ape_dev *)file->private_data;
1048 printk(KERN_DEBUG DRV_NAME "_write(buf=0x%p, count=%lld, pos=%llu)\n",
1049 buf, (s64)count, (u64)*pos);
1050 /* TODO transfer boundaries at PAGE_SIZE granularity */
1051 while (remaining > 0)
1053 /* limit DMA transfer size */
1054 transfer_len = (remaining < APE_CHDMA_MAX_TRANSFER_LEN)? remaining:
1055 APE_CHDMA_MAX_TRANSFER_LEN;
1056 /* get all user space buffer pages and create a scattergather list */
1057 sgm_map_user_pages(ape->sgm, transfer_addr, transfer_len, 0/*read from userspace*/);
1058 printk(KERN_DEBUG DRV_NAME "mapped_pages=%d\n", ape->sgm->mapped_pages);
1059 /* map all entries in the scattergather list */
1060 hwnents = pci_map_sg(ape->pci_dev, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
1061 printk(KERN_DEBUG DRV_NAME "hwnents=%d\n", hwnents);
1062 /* build device descriptor tables and submit them to the DMA engine */
1063 tents = ape_sg_to_chdma_table(ape->sgm->sgl, hwnents, 0, &ape->table_virt->desc[0], 4096);
1064 printk(KERN_DEBUG DRV_NAME "tents=%d\n", hwnents);
1065 #if 0
1066 while (tables) {
1067 /* TODO build table */
1068 /* TODO submit table to the device */
1069 /* if engine stopped and unfinished work then start engine */
1071 put ourselves on wait queue
1072 #endif
1074 dma_unmap_sg(NULL, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
1075 /* dirty and free the pages */
1076 sgm_unmap_user_pages(ape->sgm, 1/*dirtied*/);
1077 /* book keeping */
1078 transfer_addr += transfer_len;
1079 remaining -= transfer_len;
1080 done += transfer_len;
1082 return done;
1086 * character device file operations
1088 static struct file_operations sg_fops = {
1089 .owner = THIS_MODULE,
1090 .open = sg_open,
1091 .release = sg_close,
1092 .read = sg_read,
1093 .write = sg_write,
1096 /* sg_init() - Initialize character device
1098 * XXX Should ideally be tied to the device, on device probe, not module init.
1100 static int sg_init(struct ape_dev *ape)
1102 int rc;
1103 printk(KERN_DEBUG DRV_NAME " sg_init()\n");
1104 /* allocate a dynamically allocated character device node */
1105 rc = alloc_chrdev_region(&ape->cdevno, 0/*requested minor*/, 1/*count*/, DRV_NAME);
1106 /* allocation failed? */
1107 if (rc < 0) {
1108 printk("alloc_chrdev_region() = %d\n", rc);
1109 goto fail_alloc;
1111 /* couple the device file operations to the character device */
1112 cdev_init(&ape->cdev, &sg_fops);
1113 ape->cdev.owner = THIS_MODULE;
1114 /* bring character device live */
1115 rc = cdev_add(&ape->cdev, ape->cdevno, 1/*count*/);
1116 if (rc < 0) {
1117 printk("cdev_add() = %d\n", rc);
1118 goto fail_add;
1120 printk(KERN_DEBUG "altpciechdma = %d:%d\n", MAJOR(ape->cdevno), MINOR(ape->cdevno));
1121 return 0;
1122 fail_add:
1123 /* free the dynamically allocated character device node */
1124 unregister_chrdev_region(ape->cdevno, 1/*count*/);
1125 fail_alloc:
1126 return -1;
1129 /* sg_exit() - Cleanup character device
1131 * XXX Should ideally be tied to the device, on device remove, not module exit.
1134 static void sg_exit(struct ape_dev *ape)
1136 printk(KERN_DEBUG DRV_NAME " sg_exit()\n");
1137 /* remove the character device */
1138 cdev_del(&ape->cdev);
1139 /* free the dynamically allocated character device node */
1140 unregister_chrdev_region(ape->cdevno, 1/*count*/);
1143 #endif /* ALTPCIECHDMA_CDEV */
1145 /* used to register the driver with the PCI kernel sub system
1146 * @see LDD3 page 311
1148 static struct pci_driver pci_driver = {
1149 .name = DRV_NAME,
1150 .id_table = ids,
1151 .probe = probe,
1152 .remove = remove,
1153 /* resume, suspend are optional */
1157 * alterapciechdma_init() - Module initialization, registers devices.
1159 static int __init alterapciechdma_init(void)
1161 int rc = 0;
1162 printk(KERN_DEBUG DRV_NAME " init(), built at " __DATE__ " " __TIME__ "\n");
1163 /* register this driver with the PCI bus driver */
1164 rc = pci_register_driver(&pci_driver);
1165 if (rc < 0)
1166 return rc;
1167 return 0;
1171 * alterapciechdma_init() - Module cleanup, unregisters devices.
1173 static void __exit alterapciechdma_exit(void)
1175 printk(KERN_DEBUG DRV_NAME " exit(), built at " __DATE__ " " __TIME__ "\n");
1176 /* unregister this driver from the PCI bus driver */
1177 pci_unregister_driver(&pci_driver);
1180 MODULE_LICENSE("GPL");
1182 module_init(alterapciechdma_init);
1183 module_exit(alterapciechdma_exit);