added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / net / wireless / rt2x00 / rt2400pci.c
blob6a977679124d549a954eb78a27b89b9cf7c304c3
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
60 u32 reg;
62 mutex_lock(&rt2x00dev->csr_mutex);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
78 mutex_unlock(&rt2x00dev->csr_mutex);
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
84 u32 reg;
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, &reg);
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
115 u32 reg;
117 if (!word)
118 return;
120 mutex_lock(&rt2x00dev->csr_mutex);
123 * Wait until the RF becomes available, afterwards we
124 * can safely write the new data into the register.
126 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
127 reg = 0;
128 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
129 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
130 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
131 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
133 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
134 rt2x00_rf_write(rt2x00dev, word, value);
137 mutex_unlock(&rt2x00dev->csr_mutex);
140 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
142 struct rt2x00_dev *rt2x00dev = eeprom->data;
143 u32 reg;
145 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
147 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
148 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
149 eeprom->reg_data_clock =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
151 eeprom->reg_chip_select =
152 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
155 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
157 struct rt2x00_dev *rt2x00dev = eeprom->data;
158 u32 reg = 0;
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
163 !!eeprom->reg_data_clock);
164 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
165 !!eeprom->reg_chip_select);
167 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
170 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
171 static const struct rt2x00debug rt2400pci_rt2x00debug = {
172 .owner = THIS_MODULE,
173 .csr = {
174 .read = rt2x00pci_register_read,
175 .write = rt2x00pci_register_write,
176 .flags = RT2X00DEBUGFS_OFFSET,
177 .word_base = CSR_REG_BASE,
178 .word_size = sizeof(u32),
179 .word_count = CSR_REG_SIZE / sizeof(u32),
181 .eeprom = {
182 .read = rt2x00_eeprom_read,
183 .write = rt2x00_eeprom_write,
184 .word_base = EEPROM_BASE,
185 .word_size = sizeof(u16),
186 .word_count = EEPROM_SIZE / sizeof(u16),
188 .bbp = {
189 .read = rt2400pci_bbp_read,
190 .write = rt2400pci_bbp_write,
191 .word_base = BBP_BASE,
192 .word_size = sizeof(u8),
193 .word_count = BBP_SIZE / sizeof(u8),
195 .rf = {
196 .read = rt2x00_rf_read,
197 .write = rt2400pci_rf_write,
198 .word_base = RF_BASE,
199 .word_size = sizeof(u32),
200 .word_count = RF_SIZE / sizeof(u32),
203 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
205 #ifdef CONFIG_RT2X00_LIB_RFKILL
206 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
208 u32 reg;
210 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
211 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
213 #else
214 #define rt2400pci_rfkill_poll NULL
215 #endif /* CONFIG_RT2X00_LIB_RFKILL */
217 #ifdef CONFIG_RT2X00_LIB_LEDS
218 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
219 enum led_brightness brightness)
221 struct rt2x00_led *led =
222 container_of(led_cdev, struct rt2x00_led, led_dev);
223 unsigned int enabled = brightness != LED_OFF;
224 u32 reg;
226 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
228 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
229 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
230 else if (led->type == LED_TYPE_ACTIVITY)
231 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
233 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
236 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
244 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
245 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
247 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
249 return 0;
252 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt2400pci_brightness_set;
259 led->led_dev.blink_set = rt2400pci_blink_set;
260 led->flags = LED_INITIALIZED;
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 * Configuration handlers.
267 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
268 const unsigned int filter_flags)
270 u32 reg;
273 * Start configuration steps.
274 * Note that the version error will always be dropped
275 * since there is no filter for it at this time.
277 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
278 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
279 !(filter_flags & FIF_FCSFAIL));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
281 !(filter_flags & FIF_PLCPFAIL));
282 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
283 !(filter_flags & FIF_CONTROL));
284 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
285 !(filter_flags & FIF_PROMISC_IN_BSS));
286 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
287 !(filter_flags & FIF_PROMISC_IN_BSS) &&
288 !rt2x00dev->intf_ap_count);
289 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
290 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
293 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
294 struct rt2x00_intf *intf,
295 struct rt2x00intf_conf *conf,
296 const unsigned int flags)
298 unsigned int bcn_preload;
299 u32 reg;
301 if (flags & CONFIG_UPDATE_TYPE) {
303 * Enable beacon config
305 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
306 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
307 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
308 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
311 * Enable synchronisation.
313 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
320 if (flags & CONFIG_UPDATE_MAC)
321 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322 conf->mac, sizeof(conf->mac));
324 if (flags & CONFIG_UPDATE_BSSID)
325 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326 conf->bssid, sizeof(conf->bssid));
329 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
330 struct rt2x00lib_erp *erp)
332 int preamble_mask;
333 u32 reg;
336 * When short preamble is enabled, we should set bit 0x08
338 preamble_mask = erp->short_preamble << 3;
340 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
342 erp->ack_timeout);
343 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
344 erp->ack_consume_time);
345 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
347 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
353 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
354 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
356 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
359 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
360 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
365 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
366 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
368 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
371 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
373 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
374 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
375 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
377 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
378 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
379 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
380 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
382 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
383 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
384 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
385 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
388 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
389 struct antenna_setup *ant)
391 u8 r1;
392 u8 r4;
395 * We should never come here because rt2x00lib is supposed
396 * to catch this and send us the correct antenna explicitely.
398 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
399 ant->tx == ANTENNA_SW_DIVERSITY);
401 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
402 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
405 * Configure the TX antenna.
407 switch (ant->tx) {
408 case ANTENNA_HW_DIVERSITY:
409 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
410 break;
411 case ANTENNA_A:
412 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
413 break;
414 case ANTENNA_B:
415 default:
416 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
417 break;
421 * Configure the RX antenna.
423 switch (ant->rx) {
424 case ANTENNA_HW_DIVERSITY:
425 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
426 break;
427 case ANTENNA_A:
428 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
429 break;
430 case ANTENNA_B:
431 default:
432 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
433 break;
436 rt2400pci_bbp_write(rt2x00dev, 4, r4);
437 rt2400pci_bbp_write(rt2x00dev, 1, r1);
440 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
441 struct rf_channel *rf)
444 * Switch on tuning bits.
446 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
447 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
449 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
450 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
451 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
454 * RF2420 chipset don't need any additional actions.
456 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
457 return;
460 * For the RT2421 chipsets we need to write an invalid
461 * reference clock rate to activate auto_tune.
462 * After that we set the value back to the correct channel.
464 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
465 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
466 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
468 msleep(1);
470 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
471 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
472 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
474 msleep(1);
477 * Switch off tuning bits.
479 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
480 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
482 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
483 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486 * Clear false CRC during channel switch.
488 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
491 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
493 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
496 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
497 struct rt2x00lib_conf *libconf)
499 u32 reg;
501 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
502 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
503 libconf->conf->long_frame_max_tx_count);
504 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
505 libconf->conf->short_frame_max_tx_count);
506 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
509 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
510 struct rt2x00lib_conf *libconf)
512 u32 reg;
514 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
515 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
516 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
517 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
519 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
520 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
521 libconf->conf->beacon_int * 16);
522 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
523 libconf->conf->beacon_int * 16);
524 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
527 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
528 struct rt2x00lib_conf *libconf,
529 const unsigned int flags)
531 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
532 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
533 if (flags & IEEE80211_CONF_CHANGE_POWER)
534 rt2400pci_config_txpower(rt2x00dev,
535 libconf->conf->power_level);
536 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
537 rt2400pci_config_retry_limit(rt2x00dev, libconf);
538 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
539 rt2400pci_config_duration(rt2x00dev, libconf);
542 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
543 const int cw_min, const int cw_max)
545 u32 reg;
547 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
548 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
549 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
550 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
554 * Link tuning
556 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
557 struct link_qual *qual)
559 u32 reg;
560 u8 bbp;
563 * Update FCS error count from register.
565 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
566 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
569 * Update False CCA count from register.
571 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
572 qual->false_cca = bbp;
575 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
577 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
578 rt2x00dev->link.vgc_level = 0x08;
581 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
583 u8 reg;
586 * The link tuner should not run longer then 60 seconds,
587 * and should run once every 2 seconds.
589 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
590 return;
593 * Base r13 link tuning on the false cca count.
595 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
597 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
598 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
599 rt2x00dev->link.vgc_level = reg;
600 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
601 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
602 rt2x00dev->link.vgc_level = reg;
607 * Initialization functions.
609 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
611 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
612 u32 word;
614 if (entry->queue->qid == QID_RX) {
615 rt2x00_desc_read(entry_priv->desc, 0, &word);
617 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
618 } else {
619 rt2x00_desc_read(entry_priv->desc, 0, &word);
621 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
622 rt2x00_get_field32(word, TXD_W0_VALID));
626 static void rt2400pci_clear_entry(struct queue_entry *entry)
628 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
629 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
630 u32 word;
632 if (entry->queue->qid == QID_RX) {
633 rt2x00_desc_read(entry_priv->desc, 2, &word);
634 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
635 rt2x00_desc_write(entry_priv->desc, 2, word);
637 rt2x00_desc_read(entry_priv->desc, 1, &word);
638 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
639 rt2x00_desc_write(entry_priv->desc, 1, word);
641 rt2x00_desc_read(entry_priv->desc, 0, &word);
642 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
643 rt2x00_desc_write(entry_priv->desc, 0, word);
644 } else {
645 rt2x00_desc_read(entry_priv->desc, 0, &word);
646 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
647 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
648 rt2x00_desc_write(entry_priv->desc, 0, word);
652 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
654 struct queue_entry_priv_pci *entry_priv;
655 u32 reg;
658 * Initialize registers.
660 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
661 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
662 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
663 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
664 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
665 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
667 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
668 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
669 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
670 entry_priv->desc_dma);
671 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
673 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
674 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
675 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
676 entry_priv->desc_dma);
677 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
679 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
680 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
681 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
682 entry_priv->desc_dma);
683 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
685 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
686 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
687 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
688 entry_priv->desc_dma);
689 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
691 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
692 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
693 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
694 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
696 entry_priv = rt2x00dev->rx->entries[0].priv_data;
697 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
698 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
699 entry_priv->desc_dma);
700 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
702 return 0;
705 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
707 u32 reg;
709 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
710 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
711 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
712 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
714 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
715 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
716 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
717 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
718 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
720 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
721 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
722 (rt2x00dev->rx->data_size / 128));
723 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
725 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
726 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
727 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
728 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
729 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
730 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
731 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
732 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
733 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
734 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
736 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
738 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
739 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
740 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
741 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
742 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
743 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
745 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
746 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
747 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
748 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
749 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
750 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
751 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
752 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
754 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
756 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
757 return -EBUSY;
759 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
760 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
762 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
763 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
764 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
766 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
767 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
768 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
769 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
770 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
771 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
773 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
774 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
775 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
776 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
777 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
779 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
780 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
781 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
782 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
785 * We must clear the FCS and FIFO error count.
786 * These registers are cleared on read,
787 * so we may pass a useless variable to store the value.
789 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
790 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
792 return 0;
795 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
797 unsigned int i;
798 u8 value;
800 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
801 rt2400pci_bbp_read(rt2x00dev, 0, &value);
802 if ((value != 0xff) && (value != 0x00))
803 return 0;
804 udelay(REGISTER_BUSY_DELAY);
807 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
808 return -EACCES;
811 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
813 unsigned int i;
814 u16 eeprom;
815 u8 reg_id;
816 u8 value;
818 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
819 return -EACCES;
821 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
822 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
823 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
824 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
825 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
826 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
827 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
828 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
829 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
830 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
831 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
832 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
833 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
834 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
836 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
837 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
839 if (eeprom != 0xffff && eeprom != 0x0000) {
840 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
841 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
842 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
846 return 0;
850 * Device state switch handlers.
852 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
853 enum dev_state state)
855 u32 reg;
857 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
858 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
859 (state == STATE_RADIO_RX_OFF) ||
860 (state == STATE_RADIO_RX_OFF_LINK));
861 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
864 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
865 enum dev_state state)
867 int mask = (state == STATE_RADIO_IRQ_OFF);
868 u32 reg;
871 * When interrupts are being enabled, the interrupt registers
872 * should clear the register to assure a clean state.
874 if (state == STATE_RADIO_IRQ_ON) {
875 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
876 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
880 * Only toggle the interrupts bits we are going to use.
881 * Non-checked interrupt bits are disabled by default.
883 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
884 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
885 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
886 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
887 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
888 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
889 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
892 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
895 * Initialize all registers.
897 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
898 rt2400pci_init_registers(rt2x00dev) ||
899 rt2400pci_init_bbp(rt2x00dev)))
900 return -EIO;
902 return 0;
905 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
907 u32 reg;
909 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
912 * Disable synchronisation.
914 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
917 * Cancel RX and TX.
919 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
920 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
921 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
924 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
925 enum dev_state state)
927 u32 reg;
928 unsigned int i;
929 char put_to_sleep;
930 char bbp_state;
931 char rf_state;
933 put_to_sleep = (state != STATE_AWAKE);
935 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
936 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
937 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
938 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
939 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
940 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
943 * Device is not guaranteed to be in the requested state yet.
944 * We must wait until the register indicates that the
945 * device has entered the correct state.
947 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
948 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
949 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
950 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
951 if (bbp_state == state && rf_state == state)
952 return 0;
953 msleep(10);
956 return -EBUSY;
959 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
960 enum dev_state state)
962 int retval = 0;
964 switch (state) {
965 case STATE_RADIO_ON:
966 retval = rt2400pci_enable_radio(rt2x00dev);
967 break;
968 case STATE_RADIO_OFF:
969 rt2400pci_disable_radio(rt2x00dev);
970 break;
971 case STATE_RADIO_RX_ON:
972 case STATE_RADIO_RX_ON_LINK:
973 case STATE_RADIO_RX_OFF:
974 case STATE_RADIO_RX_OFF_LINK:
975 rt2400pci_toggle_rx(rt2x00dev, state);
976 break;
977 case STATE_RADIO_IRQ_ON:
978 case STATE_RADIO_IRQ_OFF:
979 rt2400pci_toggle_irq(rt2x00dev, state);
980 break;
981 case STATE_DEEP_SLEEP:
982 case STATE_SLEEP:
983 case STATE_STANDBY:
984 case STATE_AWAKE:
985 retval = rt2400pci_set_state(rt2x00dev, state);
986 break;
987 default:
988 retval = -ENOTSUPP;
989 break;
992 if (unlikely(retval))
993 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
994 state, retval);
996 return retval;
1000 * TX descriptor initialization
1002 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1003 struct sk_buff *skb,
1004 struct txentry_desc *txdesc)
1006 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1007 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1008 __le32 *txd = skbdesc->desc;
1009 u32 word;
1012 * Start writing the descriptor words.
1014 rt2x00_desc_read(entry_priv->desc, 1, &word);
1015 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1016 rt2x00_desc_write(entry_priv->desc, 1, word);
1018 rt2x00_desc_read(txd, 2, &word);
1019 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1020 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1021 rt2x00_desc_write(txd, 2, word);
1023 rt2x00_desc_read(txd, 3, &word);
1024 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1025 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1026 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1027 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1028 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1029 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1030 rt2x00_desc_write(txd, 3, word);
1032 rt2x00_desc_read(txd, 4, &word);
1033 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1034 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1035 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1036 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1037 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1038 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1039 rt2x00_desc_write(txd, 4, word);
1041 rt2x00_desc_read(txd, 0, &word);
1042 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1043 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1044 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1045 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1046 rt2x00_set_field32(&word, TXD_W0_ACK,
1047 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1048 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1049 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1050 rt2x00_set_field32(&word, TXD_W0_RTS,
1051 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1052 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1053 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1054 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1055 rt2x00_desc_write(txd, 0, word);
1059 * TX data initialization
1061 static void rt2400pci_write_beacon(struct queue_entry *entry)
1063 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1064 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1065 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1066 u32 word;
1067 u32 reg;
1070 * Disable beaconing while we are reloading the beacon data,
1071 * otherwise we might be sending out invalid data.
1073 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1074 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1075 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1076 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1077 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1080 * Replace rt2x00lib allocated descriptor with the
1081 * pointer to the _real_ hardware descriptor.
1082 * After that, map the beacon to DMA and update the
1083 * descriptor.
1085 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1086 skbdesc->desc = entry_priv->desc;
1088 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1090 rt2x00_desc_read(entry_priv->desc, 1, &word);
1091 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1092 rt2x00_desc_write(entry_priv->desc, 1, word);
1095 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1096 const enum data_queue_qid queue)
1098 u32 reg;
1100 if (queue == QID_BEACON) {
1101 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1102 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1103 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1104 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1105 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1106 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1108 return;
1111 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1112 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1113 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1114 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1115 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1119 * RX control handlers
1121 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1122 struct rxdone_entry_desc *rxdesc)
1124 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1125 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1126 u32 word0;
1127 u32 word2;
1128 u32 word3;
1129 u32 word4;
1130 u64 tsf;
1131 u32 rx_low;
1132 u32 rx_high;
1134 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1135 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1136 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1137 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1139 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1140 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1141 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1142 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1145 * We only get the lower 32bits from the timestamp,
1146 * to get the full 64bits we must complement it with
1147 * the timestamp from get_tsf().
1148 * Note that when a wraparound of the lower 32bits
1149 * has occurred between the frame arrival and the get_tsf()
1150 * call, we must decrease the higher 32bits with 1 to get
1151 * to correct value.
1153 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1154 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1155 rx_high = upper_32_bits(tsf);
1157 if ((u32)tsf <= rx_low)
1158 rx_high--;
1161 * Obtain the status about this packet.
1162 * The signal is the PLCP value, and needs to be stripped
1163 * of the preamble bit (0x08).
1165 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1166 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1167 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1168 entry->queue->rt2x00dev->rssi_offset;
1169 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1171 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1172 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1173 rxdesc->dev_flags |= RXDONE_MY_BSS;
1177 * Interrupt functions.
1179 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1180 const enum data_queue_qid queue_idx)
1182 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1183 struct queue_entry_priv_pci *entry_priv;
1184 struct queue_entry *entry;
1185 struct txdone_entry_desc txdesc;
1186 u32 word;
1188 while (!rt2x00queue_empty(queue)) {
1189 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1190 entry_priv = entry->priv_data;
1191 rt2x00_desc_read(entry_priv->desc, 0, &word);
1193 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1194 !rt2x00_get_field32(word, TXD_W0_VALID))
1195 break;
1198 * Obtain the status about this packet.
1200 txdesc.flags = 0;
1201 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1202 case 0: /* Success */
1203 case 1: /* Success with retry */
1204 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1205 break;
1206 case 2: /* Failure, excessive retries */
1207 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1208 /* Don't break, this is a failed frame! */
1209 default: /* Failure */
1210 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1212 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1214 rt2x00lib_txdone(entry, &txdesc);
1218 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1220 struct rt2x00_dev *rt2x00dev = dev_instance;
1221 u32 reg;
1224 * Get the interrupt sources & saved to local variable.
1225 * Write register value back to clear pending interrupts.
1227 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1228 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1230 if (!reg)
1231 return IRQ_NONE;
1233 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1234 return IRQ_HANDLED;
1237 * Handle interrupts, walk through all bits
1238 * and run the tasks, the bits are checked in order of
1239 * priority.
1243 * 1 - Beacon timer expired interrupt.
1245 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1246 rt2x00lib_beacondone(rt2x00dev);
1249 * 2 - Rx ring done interrupt.
1251 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1252 rt2x00pci_rxdone(rt2x00dev);
1255 * 3 - Atim ring transmit done interrupt.
1257 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1258 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1261 * 4 - Priority ring transmit done interrupt.
1263 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1264 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1267 * 5 - Tx ring transmit done interrupt.
1269 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1270 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1272 return IRQ_HANDLED;
1276 * Device probe functions.
1278 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1280 struct eeprom_93cx6 eeprom;
1281 u32 reg;
1282 u16 word;
1283 u8 *mac;
1285 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1287 eeprom.data = rt2x00dev;
1288 eeprom.register_read = rt2400pci_eepromregister_read;
1289 eeprom.register_write = rt2400pci_eepromregister_write;
1290 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1291 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1292 eeprom.reg_data_in = 0;
1293 eeprom.reg_data_out = 0;
1294 eeprom.reg_data_clock = 0;
1295 eeprom.reg_chip_select = 0;
1297 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1298 EEPROM_SIZE / sizeof(u16));
1301 * Start validation of the data that has been read.
1303 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1304 if (!is_valid_ether_addr(mac)) {
1305 random_ether_addr(mac);
1306 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1309 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1310 if (word == 0xffff) {
1311 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1312 return -EINVAL;
1315 return 0;
1318 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1320 u32 reg;
1321 u16 value;
1322 u16 eeprom;
1325 * Read EEPROM word for configuration.
1327 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1330 * Identify RF chipset.
1332 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1333 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1334 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1336 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1337 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1338 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1339 return -ENODEV;
1343 * Identify default antenna configuration.
1345 rt2x00dev->default_ant.tx =
1346 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1347 rt2x00dev->default_ant.rx =
1348 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1351 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1352 * I am not 100% sure about this, but the legacy drivers do not
1353 * indicate antenna swapping in software is required when
1354 * diversity is enabled.
1356 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1357 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1358 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1359 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1362 * Store led mode, for correct led behaviour.
1364 #ifdef CONFIG_RT2X00_LIB_LEDS
1365 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1367 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1368 if (value == LED_MODE_TXRX_ACTIVITY)
1369 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1370 LED_TYPE_ACTIVITY);
1371 #endif /* CONFIG_RT2X00_LIB_LEDS */
1374 * Detect if this device has an hardware controlled radio.
1376 #ifdef CONFIG_RT2X00_LIB_RFKILL
1377 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1378 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1379 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1382 * Check if the BBP tuning should be enabled.
1384 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1385 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1387 return 0;
1391 * RF value list for RF2420 & RF2421
1392 * Supports: 2.4 GHz
1394 static const struct rf_channel rf_vals_b[] = {
1395 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1396 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1397 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1398 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1399 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1400 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1401 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1402 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1403 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1404 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1405 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1406 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1407 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1408 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1411 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1413 struct hw_mode_spec *spec = &rt2x00dev->spec;
1414 struct channel_info *info;
1415 char *tx_power;
1416 unsigned int i;
1419 * Initialize all hw fields.
1421 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1422 IEEE80211_HW_SIGNAL_DBM;
1423 rt2x00dev->hw->extra_tx_headroom = 0;
1425 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1426 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1427 rt2x00_eeprom_addr(rt2x00dev,
1428 EEPROM_MAC_ADDR_0));
1431 * Initialize hw_mode information.
1433 spec->supported_bands = SUPPORT_BAND_2GHZ;
1434 spec->supported_rates = SUPPORT_RATE_CCK;
1436 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1437 spec->channels = rf_vals_b;
1440 * Create channel information array
1442 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1443 if (!info)
1444 return -ENOMEM;
1446 spec->channels_info = info;
1448 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1449 for (i = 0; i < 14; i++)
1450 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1452 return 0;
1455 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1457 int retval;
1460 * Allocate eeprom data.
1462 retval = rt2400pci_validate_eeprom(rt2x00dev);
1463 if (retval)
1464 return retval;
1466 retval = rt2400pci_init_eeprom(rt2x00dev);
1467 if (retval)
1468 return retval;
1471 * Initialize hw specifications.
1473 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1474 if (retval)
1475 return retval;
1478 * This device requires the atim queue and DMA-mapped skbs.
1480 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1481 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1484 * Set the rssi offset.
1486 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1488 return 0;
1492 * IEEE80211 stack callback functions.
1494 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1495 const struct ieee80211_tx_queue_params *params)
1497 struct rt2x00_dev *rt2x00dev = hw->priv;
1500 * We don't support variating cw_min and cw_max variables
1501 * per queue. So by default we only configure the TX queue,
1502 * and ignore all other configurations.
1504 if (queue != 0)
1505 return -EINVAL;
1507 if (rt2x00mac_conf_tx(hw, queue, params))
1508 return -EINVAL;
1511 * Write configuration to register.
1513 rt2400pci_config_cw(rt2x00dev,
1514 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1516 return 0;
1519 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1521 struct rt2x00_dev *rt2x00dev = hw->priv;
1522 u64 tsf;
1523 u32 reg;
1525 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1526 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1527 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1528 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1530 return tsf;
1533 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1535 struct rt2x00_dev *rt2x00dev = hw->priv;
1536 u32 reg;
1538 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1539 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1542 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1543 .tx = rt2x00mac_tx,
1544 .start = rt2x00mac_start,
1545 .stop = rt2x00mac_stop,
1546 .add_interface = rt2x00mac_add_interface,
1547 .remove_interface = rt2x00mac_remove_interface,
1548 .config = rt2x00mac_config,
1549 .config_interface = rt2x00mac_config_interface,
1550 .configure_filter = rt2x00mac_configure_filter,
1551 .get_stats = rt2x00mac_get_stats,
1552 .bss_info_changed = rt2x00mac_bss_info_changed,
1553 .conf_tx = rt2400pci_conf_tx,
1554 .get_tx_stats = rt2x00mac_get_tx_stats,
1555 .get_tsf = rt2400pci_get_tsf,
1556 .tx_last_beacon = rt2400pci_tx_last_beacon,
1559 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1560 .irq_handler = rt2400pci_interrupt,
1561 .probe_hw = rt2400pci_probe_hw,
1562 .initialize = rt2x00pci_initialize,
1563 .uninitialize = rt2x00pci_uninitialize,
1564 .get_entry_state = rt2400pci_get_entry_state,
1565 .clear_entry = rt2400pci_clear_entry,
1566 .set_device_state = rt2400pci_set_device_state,
1567 .rfkill_poll = rt2400pci_rfkill_poll,
1568 .link_stats = rt2400pci_link_stats,
1569 .reset_tuner = rt2400pci_reset_tuner,
1570 .link_tuner = rt2400pci_link_tuner,
1571 .write_tx_desc = rt2400pci_write_tx_desc,
1572 .write_tx_data = rt2x00pci_write_tx_data,
1573 .write_beacon = rt2400pci_write_beacon,
1574 .kick_tx_queue = rt2400pci_kick_tx_queue,
1575 .fill_rxdone = rt2400pci_fill_rxdone,
1576 .config_filter = rt2400pci_config_filter,
1577 .config_intf = rt2400pci_config_intf,
1578 .config_erp = rt2400pci_config_erp,
1579 .config_ant = rt2400pci_config_ant,
1580 .config = rt2400pci_config,
1583 static const struct data_queue_desc rt2400pci_queue_rx = {
1584 .entry_num = RX_ENTRIES,
1585 .data_size = DATA_FRAME_SIZE,
1586 .desc_size = RXD_DESC_SIZE,
1587 .priv_size = sizeof(struct queue_entry_priv_pci),
1590 static const struct data_queue_desc rt2400pci_queue_tx = {
1591 .entry_num = TX_ENTRIES,
1592 .data_size = DATA_FRAME_SIZE,
1593 .desc_size = TXD_DESC_SIZE,
1594 .priv_size = sizeof(struct queue_entry_priv_pci),
1597 static const struct data_queue_desc rt2400pci_queue_bcn = {
1598 .entry_num = BEACON_ENTRIES,
1599 .data_size = MGMT_FRAME_SIZE,
1600 .desc_size = TXD_DESC_SIZE,
1601 .priv_size = sizeof(struct queue_entry_priv_pci),
1604 static const struct data_queue_desc rt2400pci_queue_atim = {
1605 .entry_num = ATIM_ENTRIES,
1606 .data_size = DATA_FRAME_SIZE,
1607 .desc_size = TXD_DESC_SIZE,
1608 .priv_size = sizeof(struct queue_entry_priv_pci),
1611 static const struct rt2x00_ops rt2400pci_ops = {
1612 .name = KBUILD_MODNAME,
1613 .max_sta_intf = 1,
1614 .max_ap_intf = 1,
1615 .eeprom_size = EEPROM_SIZE,
1616 .rf_size = RF_SIZE,
1617 .tx_queues = NUM_TX_QUEUES,
1618 .rx = &rt2400pci_queue_rx,
1619 .tx = &rt2400pci_queue_tx,
1620 .bcn = &rt2400pci_queue_bcn,
1621 .atim = &rt2400pci_queue_atim,
1622 .lib = &rt2400pci_rt2x00_ops,
1623 .hw = &rt2400pci_mac80211_ops,
1624 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1625 .debugfs = &rt2400pci_rt2x00debug,
1626 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1630 * RT2400pci module information.
1632 static struct pci_device_id rt2400pci_device_table[] = {
1633 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1634 { 0, }
1637 MODULE_AUTHOR(DRV_PROJECT);
1638 MODULE_VERSION(DRV_VERSION);
1639 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1640 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1641 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1642 MODULE_LICENSE("GPL");
1644 static struct pci_driver rt2400pci_driver = {
1645 .name = KBUILD_MODNAME,
1646 .id_table = rt2400pci_device_table,
1647 .probe = rt2x00pci_probe,
1648 .remove = __devexit_p(rt2x00pci_remove),
1649 .suspend = rt2x00pci_suspend,
1650 .resume = rt2x00pci_resume,
1653 static int __init rt2400pci_init(void)
1655 return pci_register_driver(&rt2400pci_driver);
1658 static void __exit rt2400pci_exit(void)
1660 pci_unregister_driver(&rt2400pci_driver);
1663 module_init(rt2400pci_init);
1664 module_exit(rt2400pci_exit);