added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / net / rrunner.c
blobd890829a9acc61f678e06c273a031976603f010f
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
55 #include "rrunner.h"
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 static const struct net_device_ops rr_netdev_ops = {
68 .ndo_open = rr_open,
69 .ndo_stop = rr_close,
70 .ndo_do_ioctl = rr_ioctl,
71 .ndo_start_xmit = rr_start_xmit,
72 .ndo_change_mtu = hippi_change_mtu,
73 .ndo_set_mac_address = hippi_mac_addr,
77 * Implementation notes:
79 * The DMA engine only allows for DMA within physical 64KB chunks of
80 * memory. The current approach of the driver (and stack) is to use
81 * linear blocks of memory for the skbuffs. However, as the data block
82 * is always the first part of the skb and skbs are 2^n aligned so we
83 * are guarantted to get the whole block within one 64KB align 64KB
84 * chunk.
86 * On the long term, relying on being able to allocate 64KB linear
87 * chunks of memory is not feasible and the skb handling code and the
88 * stack will need to know about I/O vectors or something similar.
91 static int __devinit rr_init_one(struct pci_dev *pdev,
92 const struct pci_device_id *ent)
94 struct net_device *dev;
95 static int version_disp;
96 u8 pci_latency;
97 struct rr_private *rrpriv;
98 void *tmpptr;
99 dma_addr_t ring_dma;
100 int ret = -ENOMEM;
102 dev = alloc_hippi_dev(sizeof(struct rr_private));
103 if (!dev)
104 goto out3;
106 ret = pci_enable_device(pdev);
107 if (ret) {
108 ret = -ENODEV;
109 goto out2;
112 rrpriv = netdev_priv(dev);
114 SET_NETDEV_DEV(dev, &pdev->dev);
116 if (pci_request_regions(pdev, "rrunner")) {
117 ret = -EIO;
118 goto out;
121 pci_set_drvdata(pdev, dev);
123 rrpriv->pci_dev = pdev;
125 spin_lock_init(&rrpriv->lock);
127 dev->irq = pdev->irq;
128 dev->netdev_ops = &rr_netdev_ops;
130 dev->base_addr = pci_resource_start(pdev, 0);
132 /* display version info if adapter is found */
133 if (!version_disp) {
134 /* set display flag to TRUE so that */
135 /* we only display this string ONCE */
136 version_disp = 1;
137 printk(version);
140 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
141 if (pci_latency <= 0x58){
142 pci_latency = 0x58;
143 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
146 pci_set_master(pdev);
148 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
149 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
150 dev->base_addr, dev->irq, pci_latency);
153 * Remap the regs into kernel space.
156 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
158 if (!rrpriv->regs){
159 printk(KERN_ERR "%s: Unable to map I/O register, "
160 "RoadRunner will be disabled.\n", dev->name);
161 ret = -EIO;
162 goto out;
165 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
166 rrpriv->tx_ring = tmpptr;
167 rrpriv->tx_ring_dma = ring_dma;
169 if (!tmpptr) {
170 ret = -ENOMEM;
171 goto out;
174 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
175 rrpriv->rx_ring = tmpptr;
176 rrpriv->rx_ring_dma = ring_dma;
178 if (!tmpptr) {
179 ret = -ENOMEM;
180 goto out;
183 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
184 rrpriv->evt_ring = tmpptr;
185 rrpriv->evt_ring_dma = ring_dma;
187 if (!tmpptr) {
188 ret = -ENOMEM;
189 goto out;
193 * Don't access any register before this point!
195 #ifdef __BIG_ENDIAN
196 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
197 &rrpriv->regs->HostCtrl);
198 #endif
200 * Need to add a case for little-endian 64-bit hosts here.
203 rr_init(dev);
205 dev->base_addr = 0;
207 ret = register_netdev(dev);
208 if (ret)
209 goto out;
210 return 0;
212 out:
213 if (rrpriv->rx_ring)
214 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
215 rrpriv->rx_ring_dma);
216 if (rrpriv->tx_ring)
217 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
218 rrpriv->tx_ring_dma);
219 if (rrpriv->regs)
220 iounmap(rrpriv->regs);
221 if (pdev) {
222 pci_release_regions(pdev);
223 pci_set_drvdata(pdev, NULL);
225 out2:
226 free_netdev(dev);
227 out3:
228 return ret;
231 static void __devexit rr_remove_one (struct pci_dev *pdev)
233 struct net_device *dev = pci_get_drvdata(pdev);
235 if (dev) {
236 struct rr_private *rr = netdev_priv(dev);
238 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
239 printk(KERN_ERR "%s: trying to unload running NIC\n",
240 dev->name);
241 writel(HALT_NIC, &rr->regs->HostCtrl);
244 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
245 rr->evt_ring_dma);
246 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
247 rr->rx_ring_dma);
248 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
249 rr->tx_ring_dma);
250 unregister_netdev(dev);
251 iounmap(rr->regs);
252 free_netdev(dev);
253 pci_release_regions(pdev);
254 pci_disable_device(pdev);
255 pci_set_drvdata(pdev, NULL);
261 * Commands are considered to be slow, thus there is no reason to
262 * inline this.
264 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
266 struct rr_regs __iomem *regs;
267 u32 idx;
269 regs = rrpriv->regs;
271 * This is temporary - it will go away in the final version.
272 * We probably also want to make this function inline.
274 if (readl(&regs->HostCtrl) & NIC_HALTED){
275 printk("issuing command for halted NIC, code 0x%x, "
276 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
277 if (readl(&regs->Mode) & FATAL_ERR)
278 printk("error codes Fail1 %02x, Fail2 %02x\n",
279 readl(&regs->Fail1), readl(&regs->Fail2));
282 idx = rrpriv->info->cmd_ctrl.pi;
284 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
285 wmb();
287 idx = (idx - 1) % CMD_RING_ENTRIES;
288 rrpriv->info->cmd_ctrl.pi = idx;
289 wmb();
291 if (readl(&regs->Mode) & FATAL_ERR)
292 printk("error code %02x\n", readl(&regs->Fail1));
297 * Reset the board in a sensible manner. The NIC is already halted
298 * when we get here and a spin-lock is held.
300 static int rr_reset(struct net_device *dev)
302 struct rr_private *rrpriv;
303 struct rr_regs __iomem *regs;
304 u32 start_pc;
305 int i;
307 rrpriv = netdev_priv(dev);
308 regs = rrpriv->regs;
310 rr_load_firmware(dev);
312 writel(0x01000000, &regs->TX_state);
313 writel(0xff800000, &regs->RX_state);
314 writel(0, &regs->AssistState);
315 writel(CLEAR_INTA, &regs->LocalCtrl);
316 writel(0x01, &regs->BrkPt);
317 writel(0, &regs->Timer);
318 writel(0, &regs->TimerRef);
319 writel(RESET_DMA, &regs->DmaReadState);
320 writel(RESET_DMA, &regs->DmaWriteState);
321 writel(0, &regs->DmaWriteHostHi);
322 writel(0, &regs->DmaWriteHostLo);
323 writel(0, &regs->DmaReadHostHi);
324 writel(0, &regs->DmaReadHostLo);
325 writel(0, &regs->DmaReadLen);
326 writel(0, &regs->DmaWriteLen);
327 writel(0, &regs->DmaWriteLcl);
328 writel(0, &regs->DmaWriteIPchecksum);
329 writel(0, &regs->DmaReadLcl);
330 writel(0, &regs->DmaReadIPchecksum);
331 writel(0, &regs->PciState);
332 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
333 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
334 #elif (BITS_PER_LONG == 64)
335 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
336 #else
337 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
338 #endif
340 #if 0
342 * Don't worry, this is just black magic.
344 writel(0xdf000, &regs->RxBase);
345 writel(0xdf000, &regs->RxPrd);
346 writel(0xdf000, &regs->RxCon);
347 writel(0xce000, &regs->TxBase);
348 writel(0xce000, &regs->TxPrd);
349 writel(0xce000, &regs->TxCon);
350 writel(0, &regs->RxIndPro);
351 writel(0, &regs->RxIndCon);
352 writel(0, &regs->RxIndRef);
353 writel(0, &regs->TxIndPro);
354 writel(0, &regs->TxIndCon);
355 writel(0, &regs->TxIndRef);
356 writel(0xcc000, &regs->pad10[0]);
357 writel(0, &regs->DrCmndPro);
358 writel(0, &regs->DrCmndCon);
359 writel(0, &regs->DwCmndPro);
360 writel(0, &regs->DwCmndCon);
361 writel(0, &regs->DwCmndRef);
362 writel(0, &regs->DrDataPro);
363 writel(0, &regs->DrDataCon);
364 writel(0, &regs->DrDataRef);
365 writel(0, &regs->DwDataPro);
366 writel(0, &regs->DwDataCon);
367 writel(0, &regs->DwDataRef);
368 #endif
370 writel(0xffffffff, &regs->MbEvent);
371 writel(0, &regs->Event);
373 writel(0, &regs->TxPi);
374 writel(0, &regs->IpRxPi);
376 writel(0, &regs->EvtCon);
377 writel(0, &regs->EvtPrd);
379 rrpriv->info->evt_ctrl.pi = 0;
381 for (i = 0; i < CMD_RING_ENTRIES; i++)
382 writel(0, &regs->CmdRing[i]);
385 * Why 32 ? is this not cache line size dependent?
387 writel(RBURST_64|WBURST_64, &regs->PciState);
388 wmb();
390 start_pc = rr_read_eeprom_word(rrpriv,
391 offsetof(struct eeprom, rncd_info.FwStart));
393 #if (DEBUG > 1)
394 printk("%s: Executing firmware at address 0x%06x\n",
395 dev->name, start_pc);
396 #endif
398 writel(start_pc + 0x800, &regs->Pc);
399 wmb();
400 udelay(5);
402 writel(start_pc, &regs->Pc);
403 wmb();
405 return 0;
410 * Read a string from the EEPROM.
412 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
413 unsigned long offset,
414 unsigned char *buf,
415 unsigned long length)
417 struct rr_regs __iomem *regs = rrpriv->regs;
418 u32 misc, io, host, i;
420 io = readl(&regs->ExtIo);
421 writel(0, &regs->ExtIo);
422 misc = readl(&regs->LocalCtrl);
423 writel(0, &regs->LocalCtrl);
424 host = readl(&regs->HostCtrl);
425 writel(host | HALT_NIC, &regs->HostCtrl);
426 mb();
428 for (i = 0; i < length; i++){
429 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
430 mb();
431 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
432 mb();
435 writel(host, &regs->HostCtrl);
436 writel(misc, &regs->LocalCtrl);
437 writel(io, &regs->ExtIo);
438 mb();
439 return i;
444 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
445 * it to our CPU byte-order.
447 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
448 size_t offset)
450 __be32 word;
452 if ((rr_read_eeprom(rrpriv, offset,
453 (unsigned char *)&word, 4) == 4))
454 return be32_to_cpu(word);
455 return 0;
460 * Write a string to the EEPROM.
462 * This is only called when the firmware is not running.
464 static unsigned int write_eeprom(struct rr_private *rrpriv,
465 unsigned long offset,
466 unsigned char *buf,
467 unsigned long length)
469 struct rr_regs __iomem *regs = rrpriv->regs;
470 u32 misc, io, data, i, j, ready, error = 0;
472 io = readl(&regs->ExtIo);
473 writel(0, &regs->ExtIo);
474 misc = readl(&regs->LocalCtrl);
475 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
476 mb();
478 for (i = 0; i < length; i++){
479 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
480 mb();
481 data = buf[i] << 24;
483 * Only try to write the data if it is not the same
484 * value already.
486 if ((readl(&regs->WinData) & 0xff000000) != data){
487 writel(data, &regs->WinData);
488 ready = 0;
489 j = 0;
490 mb();
491 while(!ready){
492 udelay(20);
493 if ((readl(&regs->WinData) & 0xff000000) ==
494 data)
495 ready = 1;
496 mb();
497 if (j++ > 5000){
498 printk("data mismatch: %08x, "
499 "WinData %08x\n", data,
500 readl(&regs->WinData));
501 ready = 1;
502 error = 1;
508 writel(misc, &regs->LocalCtrl);
509 writel(io, &regs->ExtIo);
510 mb();
512 return error;
516 static int __devinit rr_init(struct net_device *dev)
518 struct rr_private *rrpriv;
519 struct rr_regs __iomem *regs;
520 u32 sram_size, rev;
522 rrpriv = netdev_priv(dev);
523 regs = rrpriv->regs;
525 rev = readl(&regs->FwRev);
526 rrpriv->fw_rev = rev;
527 if (rev > 0x00020024)
528 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
529 ((rev >> 8) & 0xff), (rev & 0xff));
530 else if (rev >= 0x00020000) {
531 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
532 "later is recommended)\n", (rev >> 16),
533 ((rev >> 8) & 0xff), (rev & 0xff));
534 }else{
535 printk(" Firmware revision too old: %i.%i.%i, please "
536 "upgrade to 2.0.37 or later.\n",
537 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
540 #if (DEBUG > 2)
541 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
542 #endif
545 * Read the hardware address from the eeprom. The HW address
546 * is not really necessary for HIPPI but awfully convenient.
547 * The pointer arithmetic to put it in dev_addr is ugly, but
548 * Donald Becker does it this way for the GigE version of this
549 * card and it's shorter and more portable than any
550 * other method I've seen. -VAL
553 *(__be16 *)(dev->dev_addr) =
554 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
555 *(__be32 *)(dev->dev_addr+2) =
556 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
558 printk(" MAC: %pM\n", dev->dev_addr);
560 sram_size = rr_read_eeprom_word(rrpriv, 8);
561 printk(" SRAM size 0x%06x\n", sram_size);
563 return 0;
567 static int rr_init1(struct net_device *dev)
569 struct rr_private *rrpriv;
570 struct rr_regs __iomem *regs;
571 unsigned long myjif, flags;
572 struct cmd cmd;
573 u32 hostctrl;
574 int ecode = 0;
575 short i;
577 rrpriv = netdev_priv(dev);
578 regs = rrpriv->regs;
580 spin_lock_irqsave(&rrpriv->lock, flags);
582 hostctrl = readl(&regs->HostCtrl);
583 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
584 wmb();
586 if (hostctrl & PARITY_ERR){
587 printk("%s: Parity error halting NIC - this is serious!\n",
588 dev->name);
589 spin_unlock_irqrestore(&rrpriv->lock, flags);
590 ecode = -EFAULT;
591 goto error;
594 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
595 set_infoaddr(regs, rrpriv->info_dma);
597 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
598 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
599 rrpriv->info->evt_ctrl.mode = 0;
600 rrpriv->info->evt_ctrl.pi = 0;
601 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
603 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
604 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
605 rrpriv->info->cmd_ctrl.mode = 0;
606 rrpriv->info->cmd_ctrl.pi = 15;
608 for (i = 0; i < CMD_RING_ENTRIES; i++) {
609 writel(0, &regs->CmdRing[i]);
612 for (i = 0; i < TX_RING_ENTRIES; i++) {
613 rrpriv->tx_ring[i].size = 0;
614 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
615 rrpriv->tx_skbuff[i] = NULL;
617 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
618 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
619 rrpriv->info->tx_ctrl.mode = 0;
620 rrpriv->info->tx_ctrl.pi = 0;
621 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
624 * Set dirty_tx before we start receiving interrupts, otherwise
625 * the interrupt handler might think it is supposed to process
626 * tx ints before we are up and running, which may cause a null
627 * pointer access in the int handler.
629 rrpriv->tx_full = 0;
630 rrpriv->cur_rx = 0;
631 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
633 rr_reset(dev);
635 /* Tuning values */
636 writel(0x5000, &regs->ConRetry);
637 writel(0x100, &regs->ConRetryTmr);
638 writel(0x500000, &regs->ConTmout);
639 writel(0x60, &regs->IntrTmr);
640 writel(0x500000, &regs->TxDataMvTimeout);
641 writel(0x200000, &regs->RxDataMvTimeout);
642 writel(0x80, &regs->WriteDmaThresh);
643 writel(0x80, &regs->ReadDmaThresh);
645 rrpriv->fw_running = 0;
646 wmb();
648 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
649 writel(hostctrl, &regs->HostCtrl);
650 wmb();
652 spin_unlock_irqrestore(&rrpriv->lock, flags);
654 for (i = 0; i < RX_RING_ENTRIES; i++) {
655 struct sk_buff *skb;
656 dma_addr_t addr;
658 rrpriv->rx_ring[i].mode = 0;
659 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
660 if (!skb) {
661 printk(KERN_WARNING "%s: Unable to allocate memory "
662 "for receive ring - halting NIC\n", dev->name);
663 ecode = -ENOMEM;
664 goto error;
666 rrpriv->rx_skbuff[i] = skb;
667 addr = pci_map_single(rrpriv->pci_dev, skb->data,
668 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
670 * Sanity test to see if we conflict with the DMA
671 * limitations of the Roadrunner.
673 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
674 printk("skb alloc error\n");
676 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
677 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
680 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
681 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
682 rrpriv->rx_ctrl[4].mode = 8;
683 rrpriv->rx_ctrl[4].pi = 0;
684 wmb();
685 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
687 udelay(1000);
690 * Now start the FirmWare.
692 cmd.code = C_START_FW;
693 cmd.ring = 0;
694 cmd.index = 0;
696 rr_issue_cmd(rrpriv, &cmd);
699 * Give the FirmWare time to chew on the `get running' command.
701 myjif = jiffies + 5 * HZ;
702 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
703 cpu_relax();
705 netif_start_queue(dev);
707 return ecode;
709 error:
711 * We might have gotten here because we are out of memory,
712 * make sure we release everything we allocated before failing
714 for (i = 0; i < RX_RING_ENTRIES; i++) {
715 struct sk_buff *skb = rrpriv->rx_skbuff[i];
717 if (skb) {
718 pci_unmap_single(rrpriv->pci_dev,
719 rrpriv->rx_ring[i].addr.addrlo,
720 dev->mtu + HIPPI_HLEN,
721 PCI_DMA_FROMDEVICE);
722 rrpriv->rx_ring[i].size = 0;
723 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
724 dev_kfree_skb(skb);
725 rrpriv->rx_skbuff[i] = NULL;
728 return ecode;
733 * All events are considered to be slow (RX/TX ints do not generate
734 * events) and are handled here, outside the main interrupt handler,
735 * to reduce the size of the handler.
737 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
739 struct rr_private *rrpriv;
740 struct rr_regs __iomem *regs;
741 u32 tmp;
743 rrpriv = netdev_priv(dev);
744 regs = rrpriv->regs;
746 while (prodidx != eidx){
747 switch (rrpriv->evt_ring[eidx].code){
748 case E_NIC_UP:
749 tmp = readl(&regs->FwRev);
750 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
751 "up and running\n", dev->name,
752 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
753 rrpriv->fw_running = 1;
754 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
755 wmb();
756 break;
757 case E_LINK_ON:
758 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
759 break;
760 case E_LINK_OFF:
761 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
762 break;
763 case E_RX_IDLE:
764 printk(KERN_WARNING "%s: RX data not moving\n",
765 dev->name);
766 goto drop;
767 case E_WATCHDOG:
768 printk(KERN_INFO "%s: The watchdog is here to see "
769 "us\n", dev->name);
770 break;
771 case E_INTERN_ERR:
772 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
773 dev->name);
774 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
775 &regs->HostCtrl);
776 wmb();
777 break;
778 case E_HOST_ERR:
779 printk(KERN_ERR "%s: Host software error\n",
780 dev->name);
781 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
782 &regs->HostCtrl);
783 wmb();
784 break;
786 * TX events.
788 case E_CON_REJ:
789 printk(KERN_WARNING "%s: Connection rejected\n",
790 dev->name);
791 dev->stats.tx_aborted_errors++;
792 break;
793 case E_CON_TMOUT:
794 printk(KERN_WARNING "%s: Connection timeout\n",
795 dev->name);
796 break;
797 case E_DISC_ERR:
798 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
799 dev->name);
800 dev->stats.tx_aborted_errors++;
801 break;
802 case E_INT_PRTY:
803 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
804 dev->name);
805 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
806 &regs->HostCtrl);
807 wmb();
808 break;
809 case E_TX_IDLE:
810 printk(KERN_WARNING "%s: Transmitter idle\n",
811 dev->name);
812 break;
813 case E_TX_LINK_DROP:
814 printk(KERN_WARNING "%s: Link lost during transmit\n",
815 dev->name);
816 dev->stats.tx_aborted_errors++;
817 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
818 &regs->HostCtrl);
819 wmb();
820 break;
821 case E_TX_INV_RNG:
822 printk(KERN_ERR "%s: Invalid send ring block\n",
823 dev->name);
824 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
825 &regs->HostCtrl);
826 wmb();
827 break;
828 case E_TX_INV_BUF:
829 printk(KERN_ERR "%s: Invalid send buffer address\n",
830 dev->name);
831 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
832 &regs->HostCtrl);
833 wmb();
834 break;
835 case E_TX_INV_DSC:
836 printk(KERN_ERR "%s: Invalid descriptor address\n",
837 dev->name);
838 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
839 &regs->HostCtrl);
840 wmb();
841 break;
843 * RX events.
845 case E_RX_RNG_OUT:
846 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
847 break;
849 case E_RX_PAR_ERR:
850 printk(KERN_WARNING "%s: Receive parity error\n",
851 dev->name);
852 goto drop;
853 case E_RX_LLRC_ERR:
854 printk(KERN_WARNING "%s: Receive LLRC error\n",
855 dev->name);
856 goto drop;
857 case E_PKT_LN_ERR:
858 printk(KERN_WARNING "%s: Receive packet length "
859 "error\n", dev->name);
860 goto drop;
861 case E_DTA_CKSM_ERR:
862 printk(KERN_WARNING "%s: Data checksum error\n",
863 dev->name);
864 goto drop;
865 case E_SHT_BST:
866 printk(KERN_WARNING "%s: Unexpected short burst "
867 "error\n", dev->name);
868 goto drop;
869 case E_STATE_ERR:
870 printk(KERN_WARNING "%s: Recv. state transition"
871 " error\n", dev->name);
872 goto drop;
873 case E_UNEXP_DATA:
874 printk(KERN_WARNING "%s: Unexpected data error\n",
875 dev->name);
876 goto drop;
877 case E_LST_LNK_ERR:
878 printk(KERN_WARNING "%s: Link lost error\n",
879 dev->name);
880 goto drop;
881 case E_FRM_ERR:
882 printk(KERN_WARNING "%s: Framming Error\n",
883 dev->name);
884 goto drop;
885 case E_FLG_SYN_ERR:
886 printk(KERN_WARNING "%s: Flag sync. lost during "
887 "packet\n", dev->name);
888 goto drop;
889 case E_RX_INV_BUF:
890 printk(KERN_ERR "%s: Invalid receive buffer "
891 "address\n", dev->name);
892 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
893 &regs->HostCtrl);
894 wmb();
895 break;
896 case E_RX_INV_DSC:
897 printk(KERN_ERR "%s: Invalid receive descriptor "
898 "address\n", dev->name);
899 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
900 &regs->HostCtrl);
901 wmb();
902 break;
903 case E_RNG_BLK:
904 printk(KERN_ERR "%s: Invalid ring block\n",
905 dev->name);
906 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
907 &regs->HostCtrl);
908 wmb();
909 break;
910 drop:
911 /* Label packet to be dropped.
912 * Actual dropping occurs in rx
913 * handling.
915 * The index of packet we get to drop is
916 * the index of the packet following
917 * the bad packet. -kbf
920 u16 index = rrpriv->evt_ring[eidx].index;
921 index = (index + (RX_RING_ENTRIES - 1)) %
922 RX_RING_ENTRIES;
923 rrpriv->rx_ring[index].mode |=
924 (PACKET_BAD | PACKET_END);
926 break;
927 default:
928 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
929 dev->name, rrpriv->evt_ring[eidx].code);
931 eidx = (eidx + 1) % EVT_RING_ENTRIES;
934 rrpriv->info->evt_ctrl.pi = eidx;
935 wmb();
936 return eidx;
940 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
942 struct rr_private *rrpriv = netdev_priv(dev);
943 struct rr_regs __iomem *regs = rrpriv->regs;
945 do {
946 struct rx_desc *desc;
947 u32 pkt_len;
949 desc = &(rrpriv->rx_ring[index]);
950 pkt_len = desc->size;
951 #if (DEBUG > 2)
952 printk("index %i, rxlimit %i\n", index, rxlimit);
953 printk("len %x, mode %x\n", pkt_len, desc->mode);
954 #endif
955 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
956 dev->stats.rx_dropped++;
957 goto defer;
960 if (pkt_len > 0){
961 struct sk_buff *skb, *rx_skb;
963 rx_skb = rrpriv->rx_skbuff[index];
965 if (pkt_len < PKT_COPY_THRESHOLD) {
966 skb = alloc_skb(pkt_len, GFP_ATOMIC);
967 if (skb == NULL){
968 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
969 dev->stats.rx_dropped++;
970 goto defer;
971 } else {
972 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
973 desc->addr.addrlo,
974 pkt_len,
975 PCI_DMA_FROMDEVICE);
977 memcpy(skb_put(skb, pkt_len),
978 rx_skb->data, pkt_len);
980 pci_dma_sync_single_for_device(rrpriv->pci_dev,
981 desc->addr.addrlo,
982 pkt_len,
983 PCI_DMA_FROMDEVICE);
985 }else{
986 struct sk_buff *newskb;
988 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
989 GFP_ATOMIC);
990 if (newskb){
991 dma_addr_t addr;
993 pci_unmap_single(rrpriv->pci_dev,
994 desc->addr.addrlo, dev->mtu +
995 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
996 skb = rx_skb;
997 skb_put(skb, pkt_len);
998 rrpriv->rx_skbuff[index] = newskb;
999 addr = pci_map_single(rrpriv->pci_dev,
1000 newskb->data,
1001 dev->mtu + HIPPI_HLEN,
1002 PCI_DMA_FROMDEVICE);
1003 set_rraddr(&desc->addr, addr);
1004 } else {
1005 printk("%s: Out of memory, deferring "
1006 "packet\n", dev->name);
1007 dev->stats.rx_dropped++;
1008 goto defer;
1011 skb->protocol = hippi_type_trans(skb, dev);
1013 netif_rx(skb); /* send it up */
1015 dev->stats.rx_packets++;
1016 dev->stats.rx_bytes += pkt_len;
1018 defer:
1019 desc->mode = 0;
1020 desc->size = dev->mtu + HIPPI_HLEN;
1022 if ((index & 7) == 7)
1023 writel(index, &regs->IpRxPi);
1025 index = (index + 1) % RX_RING_ENTRIES;
1026 } while(index != rxlimit);
1028 rrpriv->cur_rx = index;
1029 wmb();
1033 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1035 struct rr_private *rrpriv;
1036 struct rr_regs __iomem *regs;
1037 struct net_device *dev = (struct net_device *)dev_id;
1038 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1040 rrpriv = netdev_priv(dev);
1041 regs = rrpriv->regs;
1043 if (!(readl(&regs->HostCtrl) & RR_INT))
1044 return IRQ_NONE;
1046 spin_lock(&rrpriv->lock);
1048 prodidx = readl(&regs->EvtPrd);
1049 txcsmr = (prodidx >> 8) & 0xff;
1050 rxlimit = (prodidx >> 16) & 0xff;
1051 prodidx &= 0xff;
1053 #if (DEBUG > 2)
1054 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1055 prodidx, rrpriv->info->evt_ctrl.pi);
1056 #endif
1058 * Order here is important. We must handle events
1059 * before doing anything else in order to catch
1060 * such things as LLRC errors, etc -kbf
1063 eidx = rrpriv->info->evt_ctrl.pi;
1064 if (prodidx != eidx)
1065 eidx = rr_handle_event(dev, prodidx, eidx);
1067 rxindex = rrpriv->cur_rx;
1068 if (rxindex != rxlimit)
1069 rx_int(dev, rxlimit, rxindex);
1071 txcon = rrpriv->dirty_tx;
1072 if (txcsmr != txcon) {
1073 do {
1074 /* Due to occational firmware TX producer/consumer out
1075 * of sync. error need to check entry in ring -kbf
1077 if(rrpriv->tx_skbuff[txcon]){
1078 struct tx_desc *desc;
1079 struct sk_buff *skb;
1081 desc = &(rrpriv->tx_ring[txcon]);
1082 skb = rrpriv->tx_skbuff[txcon];
1084 dev->stats.tx_packets++;
1085 dev->stats.tx_bytes += skb->len;
1087 pci_unmap_single(rrpriv->pci_dev,
1088 desc->addr.addrlo, skb->len,
1089 PCI_DMA_TODEVICE);
1090 dev_kfree_skb_irq(skb);
1092 rrpriv->tx_skbuff[txcon] = NULL;
1093 desc->size = 0;
1094 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1095 desc->mode = 0;
1097 txcon = (txcon + 1) % TX_RING_ENTRIES;
1098 } while (txcsmr != txcon);
1099 wmb();
1101 rrpriv->dirty_tx = txcon;
1102 if (rrpriv->tx_full && rr_if_busy(dev) &&
1103 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1104 != rrpriv->dirty_tx)){
1105 rrpriv->tx_full = 0;
1106 netif_wake_queue(dev);
1110 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1111 writel(eidx, &regs->EvtCon);
1112 wmb();
1114 spin_unlock(&rrpriv->lock);
1115 return IRQ_HANDLED;
1118 static inline void rr_raz_tx(struct rr_private *rrpriv,
1119 struct net_device *dev)
1121 int i;
1123 for (i = 0; i < TX_RING_ENTRIES; i++) {
1124 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1126 if (skb) {
1127 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1129 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1130 skb->len, PCI_DMA_TODEVICE);
1131 desc->size = 0;
1132 set_rraddr(&desc->addr, 0);
1133 dev_kfree_skb(skb);
1134 rrpriv->tx_skbuff[i] = NULL;
1140 static inline void rr_raz_rx(struct rr_private *rrpriv,
1141 struct net_device *dev)
1143 int i;
1145 for (i = 0; i < RX_RING_ENTRIES; i++) {
1146 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1148 if (skb) {
1149 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1151 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1152 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1153 desc->size = 0;
1154 set_rraddr(&desc->addr, 0);
1155 dev_kfree_skb(skb);
1156 rrpriv->rx_skbuff[i] = NULL;
1161 static void rr_timer(unsigned long data)
1163 struct net_device *dev = (struct net_device *)data;
1164 struct rr_private *rrpriv = netdev_priv(dev);
1165 struct rr_regs __iomem *regs = rrpriv->regs;
1166 unsigned long flags;
1168 if (readl(&regs->HostCtrl) & NIC_HALTED){
1169 printk("%s: Restarting nic\n", dev->name);
1170 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1171 memset(rrpriv->info, 0, sizeof(struct rr_info));
1172 wmb();
1174 rr_raz_tx(rrpriv, dev);
1175 rr_raz_rx(rrpriv, dev);
1177 if (rr_init1(dev)) {
1178 spin_lock_irqsave(&rrpriv->lock, flags);
1179 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1180 &regs->HostCtrl);
1181 spin_unlock_irqrestore(&rrpriv->lock, flags);
1184 rrpriv->timer.expires = RUN_AT(5*HZ);
1185 add_timer(&rrpriv->timer);
1189 static int rr_open(struct net_device *dev)
1191 struct rr_private *rrpriv = netdev_priv(dev);
1192 struct pci_dev *pdev = rrpriv->pci_dev;
1193 struct rr_regs __iomem *regs;
1194 int ecode = 0;
1195 unsigned long flags;
1196 dma_addr_t dma_addr;
1198 regs = rrpriv->regs;
1200 if (rrpriv->fw_rev < 0x00020000) {
1201 printk(KERN_WARNING "%s: trying to configure device with "
1202 "obsolete firmware\n", dev->name);
1203 ecode = -EBUSY;
1204 goto error;
1207 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1208 256 * sizeof(struct ring_ctrl),
1209 &dma_addr);
1210 if (!rrpriv->rx_ctrl) {
1211 ecode = -ENOMEM;
1212 goto error;
1214 rrpriv->rx_ctrl_dma = dma_addr;
1215 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1217 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1218 &dma_addr);
1219 if (!rrpriv->info) {
1220 ecode = -ENOMEM;
1221 goto error;
1223 rrpriv->info_dma = dma_addr;
1224 memset(rrpriv->info, 0, sizeof(struct rr_info));
1225 wmb();
1227 spin_lock_irqsave(&rrpriv->lock, flags);
1228 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1229 readl(&regs->HostCtrl);
1230 spin_unlock_irqrestore(&rrpriv->lock, flags);
1232 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1233 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1234 dev->name, dev->irq);
1235 ecode = -EAGAIN;
1236 goto error;
1239 if ((ecode = rr_init1(dev)))
1240 goto error;
1242 /* Set the timer to switch to check for link beat and perhaps switch
1243 to an alternate media type. */
1244 init_timer(&rrpriv->timer);
1245 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1246 rrpriv->timer.data = (unsigned long)dev;
1247 rrpriv->timer.function = &rr_timer; /* timer handler */
1248 add_timer(&rrpriv->timer);
1250 netif_start_queue(dev);
1252 return ecode;
1254 error:
1255 spin_lock_irqsave(&rrpriv->lock, flags);
1256 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1257 spin_unlock_irqrestore(&rrpriv->lock, flags);
1259 if (rrpriv->info) {
1260 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1261 rrpriv->info_dma);
1262 rrpriv->info = NULL;
1264 if (rrpriv->rx_ctrl) {
1265 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1266 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1267 rrpriv->rx_ctrl = NULL;
1270 netif_stop_queue(dev);
1272 return ecode;
1276 static void rr_dump(struct net_device *dev)
1278 struct rr_private *rrpriv;
1279 struct rr_regs __iomem *regs;
1280 u32 index, cons;
1281 short i;
1282 int len;
1284 rrpriv = netdev_priv(dev);
1285 regs = rrpriv->regs;
1287 printk("%s: dumping NIC TX rings\n", dev->name);
1289 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1290 readl(&regs->RxPrd), readl(&regs->TxPrd),
1291 readl(&regs->EvtPrd), readl(&regs->TxPi),
1292 rrpriv->info->tx_ctrl.pi);
1294 printk("Error code 0x%x\n", readl(&regs->Fail1));
1296 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1297 cons = rrpriv->dirty_tx;
1298 printk("TX ring index %i, TX consumer %i\n",
1299 index, cons);
1301 if (rrpriv->tx_skbuff[index]){
1302 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1303 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1304 for (i = 0; i < len; i++){
1305 if (!(i & 7))
1306 printk("\n");
1307 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1309 printk("\n");
1312 if (rrpriv->tx_skbuff[cons]){
1313 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1314 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1315 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1316 rrpriv->tx_ring[cons].mode,
1317 rrpriv->tx_ring[cons].size,
1318 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1319 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1320 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1321 for (i = 0; i < len; i++){
1322 if (!(i & 7))
1323 printk("\n");
1324 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1326 printk("\n");
1329 printk("dumping TX ring info:\n");
1330 for (i = 0; i < TX_RING_ENTRIES; i++)
1331 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1332 rrpriv->tx_ring[i].mode,
1333 rrpriv->tx_ring[i].size,
1334 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1339 static int rr_close(struct net_device *dev)
1341 struct rr_private *rrpriv;
1342 struct rr_regs __iomem *regs;
1343 unsigned long flags;
1344 u32 tmp;
1345 short i;
1347 netif_stop_queue(dev);
1349 rrpriv = netdev_priv(dev);
1350 regs = rrpriv->regs;
1353 * Lock to make sure we are not cleaning up while another CPU
1354 * is handling interrupts.
1356 spin_lock_irqsave(&rrpriv->lock, flags);
1358 tmp = readl(&regs->HostCtrl);
1359 if (tmp & NIC_HALTED){
1360 printk("%s: NIC already halted\n", dev->name);
1361 rr_dump(dev);
1362 }else{
1363 tmp |= HALT_NIC | RR_CLEAR_INT;
1364 writel(tmp, &regs->HostCtrl);
1365 readl(&regs->HostCtrl);
1368 rrpriv->fw_running = 0;
1370 del_timer_sync(&rrpriv->timer);
1372 writel(0, &regs->TxPi);
1373 writel(0, &regs->IpRxPi);
1375 writel(0, &regs->EvtCon);
1376 writel(0, &regs->EvtPrd);
1378 for (i = 0; i < CMD_RING_ENTRIES; i++)
1379 writel(0, &regs->CmdRing[i]);
1381 rrpriv->info->tx_ctrl.entries = 0;
1382 rrpriv->info->cmd_ctrl.pi = 0;
1383 rrpriv->info->evt_ctrl.pi = 0;
1384 rrpriv->rx_ctrl[4].entries = 0;
1386 rr_raz_tx(rrpriv, dev);
1387 rr_raz_rx(rrpriv, dev);
1389 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1390 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1391 rrpriv->rx_ctrl = NULL;
1393 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1394 rrpriv->info, rrpriv->info_dma);
1395 rrpriv->info = NULL;
1397 free_irq(dev->irq, dev);
1398 spin_unlock_irqrestore(&rrpriv->lock, flags);
1400 return 0;
1404 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1406 struct rr_private *rrpriv = netdev_priv(dev);
1407 struct rr_regs __iomem *regs = rrpriv->regs;
1408 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1409 struct ring_ctrl *txctrl;
1410 unsigned long flags;
1411 u32 index, len = skb->len;
1412 u32 *ifield;
1413 struct sk_buff *new_skb;
1415 if (readl(&regs->Mode) & FATAL_ERR)
1416 printk("error codes Fail1 %02x, Fail2 %02x\n",
1417 readl(&regs->Fail1), readl(&regs->Fail2));
1420 * We probably need to deal with tbusy here to prevent overruns.
1423 if (skb_headroom(skb) < 8){
1424 printk("incoming skb too small - reallocating\n");
1425 if (!(new_skb = dev_alloc_skb(len + 8))) {
1426 dev_kfree_skb(skb);
1427 netif_wake_queue(dev);
1428 return -EBUSY;
1430 skb_reserve(new_skb, 8);
1431 skb_put(new_skb, len);
1432 skb_copy_from_linear_data(skb, new_skb->data, len);
1433 dev_kfree_skb(skb);
1434 skb = new_skb;
1437 ifield = (u32 *)skb_push(skb, 8);
1439 ifield[0] = 0;
1440 ifield[1] = hcb->ifield;
1443 * We don't need the lock before we are actually going to start
1444 * fiddling with the control blocks.
1446 spin_lock_irqsave(&rrpriv->lock, flags);
1448 txctrl = &rrpriv->info->tx_ctrl;
1450 index = txctrl->pi;
1452 rrpriv->tx_skbuff[index] = skb;
1453 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1454 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1455 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1456 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1457 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1458 wmb();
1459 writel(txctrl->pi, &regs->TxPi);
1461 if (txctrl->pi == rrpriv->dirty_tx){
1462 rrpriv->tx_full = 1;
1463 netif_stop_queue(dev);
1466 spin_unlock_irqrestore(&rrpriv->lock, flags);
1468 dev->trans_start = jiffies;
1469 return 0;
1474 * Read the firmware out of the EEPROM and put it into the SRAM
1475 * (or from user space - later)
1477 * This operation requires the NIC to be halted and is performed with
1478 * interrupts disabled and with the spinlock hold.
1480 static int rr_load_firmware(struct net_device *dev)
1482 struct rr_private *rrpriv;
1483 struct rr_regs __iomem *regs;
1484 size_t eptr, segptr;
1485 int i, j;
1486 u32 localctrl, sptr, len, tmp;
1487 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1489 rrpriv = netdev_priv(dev);
1490 regs = rrpriv->regs;
1492 if (dev->flags & IFF_UP)
1493 return -EBUSY;
1495 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1496 printk("%s: Trying to load firmware to a running NIC.\n",
1497 dev->name);
1498 return -EBUSY;
1501 localctrl = readl(&regs->LocalCtrl);
1502 writel(0, &regs->LocalCtrl);
1504 writel(0, &regs->EvtPrd);
1505 writel(0, &regs->RxPrd);
1506 writel(0, &regs->TxPrd);
1509 * First wipe the entire SRAM, otherwise we might run into all
1510 * kinds of trouble ... sigh, this took almost all afternoon
1511 * to track down ;-(
1513 io = readl(&regs->ExtIo);
1514 writel(0, &regs->ExtIo);
1515 sram_size = rr_read_eeprom_word(rrpriv, 8);
1517 for (i = 200; i < sram_size / 4; i++){
1518 writel(i * 4, &regs->WinBase);
1519 mb();
1520 writel(0, &regs->WinData);
1521 mb();
1523 writel(io, &regs->ExtIo);
1524 mb();
1526 eptr = rr_read_eeprom_word(rrpriv,
1527 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1528 eptr = ((eptr & 0x1fffff) >> 3);
1530 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1531 p2len = (p2len << 2);
1532 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1533 p2size = ((p2size & 0x1fffff) >> 3);
1535 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1536 printk("%s: eptr is invalid\n", dev->name);
1537 goto out;
1540 revision = rr_read_eeprom_word(rrpriv,
1541 offsetof(struct eeprom, manf.HeaderFmt));
1543 if (revision != 1){
1544 printk("%s: invalid firmware format (%i)\n",
1545 dev->name, revision);
1546 goto out;
1549 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1550 eptr +=4;
1551 #if (DEBUG > 1)
1552 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1553 #endif
1555 for (i = 0; i < nr_seg; i++){
1556 sptr = rr_read_eeprom_word(rrpriv, eptr);
1557 eptr += 4;
1558 len = rr_read_eeprom_word(rrpriv, eptr);
1559 eptr += 4;
1560 segptr = rr_read_eeprom_word(rrpriv, eptr);
1561 segptr = ((segptr & 0x1fffff) >> 3);
1562 eptr += 4;
1563 #if (DEBUG > 1)
1564 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1565 dev->name, i, sptr, len, segptr);
1566 #endif
1567 for (j = 0; j < len; j++){
1568 tmp = rr_read_eeprom_word(rrpriv, segptr);
1569 writel(sptr, &regs->WinBase);
1570 mb();
1571 writel(tmp, &regs->WinData);
1572 mb();
1573 segptr += 4;
1574 sptr += 4;
1578 out:
1579 writel(localctrl, &regs->LocalCtrl);
1580 mb();
1581 return 0;
1585 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1587 struct rr_private *rrpriv;
1588 unsigned char *image, *oldimage;
1589 unsigned long flags;
1590 unsigned int i;
1591 int error = -EOPNOTSUPP;
1593 rrpriv = netdev_priv(dev);
1595 switch(cmd){
1596 case SIOCRRGFW:
1597 if (!capable(CAP_SYS_RAWIO)){
1598 return -EPERM;
1601 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1602 if (!image){
1603 printk(KERN_ERR "%s: Unable to allocate memory "
1604 "for EEPROM image\n", dev->name);
1605 return -ENOMEM;
1609 if (rrpriv->fw_running){
1610 printk("%s: Firmware already running\n", dev->name);
1611 error = -EPERM;
1612 goto gf_out;
1615 spin_lock_irqsave(&rrpriv->lock, flags);
1616 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1617 spin_unlock_irqrestore(&rrpriv->lock, flags);
1618 if (i != EEPROM_BYTES){
1619 printk(KERN_ERR "%s: Error reading EEPROM\n",
1620 dev->name);
1621 error = -EFAULT;
1622 goto gf_out;
1624 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1625 if (error)
1626 error = -EFAULT;
1627 gf_out:
1628 kfree(image);
1629 return error;
1631 case SIOCRRPFW:
1632 if (!capable(CAP_SYS_RAWIO)){
1633 return -EPERM;
1636 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1637 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1638 if (!image || !oldimage) {
1639 printk(KERN_ERR "%s: Unable to allocate memory "
1640 "for EEPROM image\n", dev->name);
1641 error = -ENOMEM;
1642 goto wf_out;
1645 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1646 if (error) {
1647 error = -EFAULT;
1648 goto wf_out;
1651 if (rrpriv->fw_running){
1652 printk("%s: Firmware already running\n", dev->name);
1653 error = -EPERM;
1654 goto wf_out;
1657 printk("%s: Updating EEPROM firmware\n", dev->name);
1659 spin_lock_irqsave(&rrpriv->lock, flags);
1660 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1661 if (error)
1662 printk(KERN_ERR "%s: Error writing EEPROM\n",
1663 dev->name);
1665 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1666 spin_unlock_irqrestore(&rrpriv->lock, flags);
1668 if (i != EEPROM_BYTES)
1669 printk(KERN_ERR "%s: Error reading back EEPROM "
1670 "image\n", dev->name);
1672 error = memcmp(image, oldimage, EEPROM_BYTES);
1673 if (error){
1674 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1675 dev->name);
1676 error = -EFAULT;
1678 wf_out:
1679 kfree(oldimage);
1680 kfree(image);
1681 return error;
1683 case SIOCRRID:
1684 return put_user(0x52523032, (int __user *)rq->ifr_data);
1685 default:
1686 return error;
1690 static struct pci_device_id rr_pci_tbl[] = {
1691 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1692 PCI_ANY_ID, PCI_ANY_ID, },
1693 { 0,}
1695 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1697 static struct pci_driver rr_driver = {
1698 .name = "rrunner",
1699 .id_table = rr_pci_tbl,
1700 .probe = rr_init_one,
1701 .remove = __devexit_p(rr_remove_one),
1704 static int __init rr_init_module(void)
1706 return pci_register_driver(&rr_driver);
1709 static void __exit rr_cleanup_module(void)
1711 pci_unregister_driver(&rr_driver);
1714 module_init(rr_init_module);
1715 module_exit(rr_cleanup_module);