added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / net / mlx4 / en_tx.c
blob4afd5993e31c4cd01a2d12a452e5164e0fe92dd8
1 /*
2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
34 #include <asm/page.h>
35 #include <linux/mlx4/cq.h>
36 #include <linux/mlx4/qp.h>
37 #include <linux/skbuff.h>
38 #include <linux/if_vlan.h>
39 #include <linux/vmalloc.h>
41 #include "mlx4_en.h"
43 enum {
44 MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
47 static int inline_thold __read_mostly = MAX_INLINE;
49 module_param_named(inline_thold, inline_thold, int, 0444);
50 MODULE_PARM_DESC(inline_thold, "treshold for using inline data");
52 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
53 struct mlx4_en_tx_ring *ring, u32 size,
54 u16 stride)
56 struct mlx4_en_dev *mdev = priv->mdev;
57 int tmp;
58 int err;
60 ring->size = size;
61 ring->size_mask = size - 1;
62 ring->stride = stride;
64 inline_thold = min(inline_thold, MAX_INLINE);
66 spin_lock_init(&ring->comp_lock);
68 tmp = size * sizeof(struct mlx4_en_tx_info);
69 ring->tx_info = vmalloc(tmp);
70 if (!ring->tx_info) {
71 mlx4_err(mdev, "Failed allocating tx_info ring\n");
72 return -ENOMEM;
74 mlx4_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
75 ring->tx_info, tmp);
77 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
78 if (!ring->bounce_buf) {
79 mlx4_err(mdev, "Failed allocating bounce buffer\n");
80 err = -ENOMEM;
81 goto err_tx;
83 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
85 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
86 2 * PAGE_SIZE);
87 if (err) {
88 mlx4_err(mdev, "Failed allocating hwq resources\n");
89 goto err_bounce;
92 err = mlx4_en_map_buffer(&ring->wqres.buf);
93 if (err) {
94 mlx4_err(mdev, "Failed to map TX buffer\n");
95 goto err_hwq_res;
98 ring->buf = ring->wqres.buf.direct.buf;
100 mlx4_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
101 "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
102 ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
104 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn);
105 if (err) {
106 mlx4_err(mdev, "Failed reserving qp for tx ring.\n");
107 goto err_map;
110 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
111 if (err) {
112 mlx4_err(mdev, "Failed allocating qp %d\n", ring->qpn);
113 goto err_reserve;
116 return 0;
118 err_reserve:
119 mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
120 err_map:
121 mlx4_en_unmap_buffer(&ring->wqres.buf);
122 err_hwq_res:
123 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
124 err_bounce:
125 kfree(ring->bounce_buf);
126 ring->bounce_buf = NULL;
127 err_tx:
128 vfree(ring->tx_info);
129 ring->tx_info = NULL;
130 return err;
133 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
134 struct mlx4_en_tx_ring *ring)
136 struct mlx4_en_dev *mdev = priv->mdev;
137 mlx4_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
139 mlx4_qp_remove(mdev->dev, &ring->qp);
140 mlx4_qp_free(mdev->dev, &ring->qp);
141 mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
142 mlx4_en_unmap_buffer(&ring->wqres.buf);
143 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
144 kfree(ring->bounce_buf);
145 ring->bounce_buf = NULL;
146 vfree(ring->tx_info);
147 ring->tx_info = NULL;
150 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
151 struct mlx4_en_tx_ring *ring,
152 int cq, int srqn)
154 struct mlx4_en_dev *mdev = priv->mdev;
155 int err;
157 ring->cqn = cq;
158 ring->prod = 0;
159 ring->cons = 0xffffffff;
160 ring->last_nr_txbb = 1;
161 ring->poll_cnt = 0;
162 ring->blocked = 0;
163 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
164 memset(ring->buf, 0, ring->buf_size);
166 ring->qp_state = MLX4_QP_STATE_RST;
167 ring->doorbell_qpn = swab32(ring->qp.qpn << 8);
169 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
170 ring->cqn, srqn, &ring->context);
172 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
173 &ring->qp, &ring->qp_state);
175 return err;
178 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
179 struct mlx4_en_tx_ring *ring)
181 struct mlx4_en_dev *mdev = priv->mdev;
183 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
184 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
188 static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
189 struct mlx4_en_tx_ring *ring,
190 int index, u8 owner)
192 struct mlx4_en_dev *mdev = priv->mdev;
193 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
194 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
195 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
196 struct sk_buff *skb = tx_info->skb;
197 struct skb_frag_struct *frag;
198 void *end = ring->buf + ring->buf_size;
199 int frags = skb_shinfo(skb)->nr_frags;
200 int i;
201 __be32 *ptr = (__be32 *)tx_desc;
202 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
204 /* Optimize the common case when there are no wraparounds */
205 if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
206 if (!tx_info->inl) {
207 if (tx_info->linear) {
208 pci_unmap_single(mdev->pdev,
209 (dma_addr_t) be64_to_cpu(data->addr),
210 be32_to_cpu(data->byte_count),
211 PCI_DMA_TODEVICE);
212 ++data;
215 for (i = 0; i < frags; i++) {
216 frag = &skb_shinfo(skb)->frags[i];
217 pci_unmap_page(mdev->pdev,
218 (dma_addr_t) be64_to_cpu(data[i].addr),
219 frag->size, PCI_DMA_TODEVICE);
222 /* Stamp the freed descriptor */
223 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
224 *ptr = stamp;
225 ptr += STAMP_DWORDS;
228 } else {
229 if (!tx_info->inl) {
230 if ((void *) data >= end) {
231 data = (struct mlx4_wqe_data_seg *)
232 (ring->buf + ((void *) data - end));
235 if (tx_info->linear) {
236 pci_unmap_single(mdev->pdev,
237 (dma_addr_t) be64_to_cpu(data->addr),
238 be32_to_cpu(data->byte_count),
239 PCI_DMA_TODEVICE);
240 ++data;
243 for (i = 0; i < frags; i++) {
244 /* Check for wraparound before unmapping */
245 if ((void *) data >= end)
246 data = (struct mlx4_wqe_data_seg *) ring->buf;
247 frag = &skb_shinfo(skb)->frags[i];
248 pci_unmap_page(mdev->pdev,
249 (dma_addr_t) be64_to_cpu(data->addr),
250 frag->size, PCI_DMA_TODEVICE);
253 /* Stamp the freed descriptor */
254 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
255 *ptr = stamp;
256 ptr += STAMP_DWORDS;
257 if ((void *) ptr >= end) {
258 ptr = ring->buf;
259 stamp ^= cpu_to_be32(0x80000000);
264 dev_kfree_skb_any(skb);
265 return tx_info->nr_txbb;
269 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
271 struct mlx4_en_priv *priv = netdev_priv(dev);
272 int cnt = 0;
274 /* Skip last polled descriptor */
275 ring->cons += ring->last_nr_txbb;
276 mlx4_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
277 ring->cons, ring->prod);
279 if ((u32) (ring->prod - ring->cons) > ring->size) {
280 if (netif_msg_tx_err(priv))
281 mlx4_warn(priv->mdev, "Tx consumer passed producer!\n");
282 return 0;
285 while (ring->cons != ring->prod) {
286 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
287 ring->cons & ring->size_mask,
288 !!(ring->cons & ring->size));
289 ring->cons += ring->last_nr_txbb;
290 cnt++;
293 if (cnt)
294 mlx4_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
296 return cnt;
299 void mlx4_en_set_prio_map(struct mlx4_en_priv *priv, u16 *prio_map, u32 ring_num)
301 int block = 8 / ring_num;
302 int extra = 8 - (block * ring_num);
303 int num = 0;
304 u16 ring = 1;
305 int prio;
307 if (ring_num == 1) {
308 for (prio = 0; prio < 8; prio++)
309 prio_map[prio] = 0;
310 return;
313 for (prio = 0; prio < 8; prio++) {
314 if (extra && (num == block + 1)) {
315 ring++;
316 num = 0;
317 extra--;
318 } else if (!extra && (num == block)) {
319 ring++;
320 num = 0;
322 prio_map[prio] = ring;
323 mlx4_dbg(DRV, priv, " prio:%d --> ring:%d\n", prio, ring);
324 num++;
328 static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq)
330 struct mlx4_en_priv *priv = netdev_priv(dev);
331 struct mlx4_cq *mcq = &cq->mcq;
332 struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
333 struct mlx4_cqe *cqe = cq->buf;
334 u16 index;
335 u16 new_index;
336 u32 txbbs_skipped = 0;
337 u32 cq_last_sav;
339 /* index always points to the first TXBB of the last polled descriptor */
340 index = ring->cons & ring->size_mask;
341 new_index = be16_to_cpu(cqe->wqe_index) & ring->size_mask;
342 if (index == new_index)
343 return;
345 if (!priv->port_up)
346 return;
349 * We use a two-stage loop:
350 * - the first samples the HW-updated CQE
351 * - the second frees TXBBs until the last sample
352 * This lets us amortize CQE cache misses, while still polling the CQ
353 * until is quiescent.
355 cq_last_sav = mcq->cons_index;
356 do {
357 do {
358 /* Skip over last polled CQE */
359 index = (index + ring->last_nr_txbb) & ring->size_mask;
360 txbbs_skipped += ring->last_nr_txbb;
362 /* Poll next CQE */
363 ring->last_nr_txbb = mlx4_en_free_tx_desc(
364 priv, ring, index,
365 !!((ring->cons + txbbs_skipped) &
366 ring->size));
367 ++mcq->cons_index;
369 } while (index != new_index);
371 new_index = be16_to_cpu(cqe->wqe_index) & ring->size_mask;
372 } while (index != new_index);
373 AVG_PERF_COUNTER(priv->pstats.tx_coal_avg,
374 (u32) (mcq->cons_index - cq_last_sav));
377 * To prevent CQ overflow we first update CQ consumer and only then
378 * the ring consumer.
380 mlx4_cq_set_ci(mcq);
381 wmb();
382 ring->cons += txbbs_skipped;
384 /* Wakeup Tx queue if this ring stopped it */
385 if (unlikely(ring->blocked)) {
386 if ((u32) (ring->prod - ring->cons) <=
387 ring->size - HEADROOM - MAX_DESC_TXBBS) {
389 /* TODO: support multiqueue netdevs. Currently, we block
390 * when *any* ring is full. Note that:
391 * - 2 Tx rings can unblock at the same time and call
392 * netif_wake_queue(), which is OK since this
393 * operation is idempotent.
394 * - We might wake the queue just after another ring
395 * stopped it. This is no big deal because the next
396 * transmission on that ring would stop the queue.
398 ring->blocked = 0;
399 netif_wake_queue(dev);
400 priv->port_stats.wake_queue++;
405 void mlx4_en_tx_irq(struct mlx4_cq *mcq)
407 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
408 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
409 struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
411 if (!spin_trylock(&ring->comp_lock))
412 return;
413 mlx4_en_process_tx_cq(cq->dev, cq);
414 mod_timer(&cq->timer, jiffies + 1);
415 spin_unlock(&ring->comp_lock);
419 void mlx4_en_poll_tx_cq(unsigned long data)
421 struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
422 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
423 struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring];
424 u32 inflight;
426 INC_PERF_COUNTER(priv->pstats.tx_poll);
428 if (!spin_trylock(&ring->comp_lock)) {
429 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
430 return;
432 mlx4_en_process_tx_cq(cq->dev, cq);
433 inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
435 /* If there are still packets in flight and the timer has not already
436 * been scheduled by the Tx routine then schedule it here to guarantee
437 * completion processing of these packets */
438 if (inflight && priv->port_up)
439 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
441 spin_unlock(&ring->comp_lock);
444 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
445 struct mlx4_en_tx_ring *ring,
446 u32 index,
447 unsigned int desc_size)
449 u32 copy = (ring->size - index) * TXBB_SIZE;
450 int i;
452 for (i = desc_size - copy - 4; i >= 0; i -= 4) {
453 if ((i & (TXBB_SIZE - 1)) == 0)
454 wmb();
456 *((u32 *) (ring->buf + i)) =
457 *((u32 *) (ring->bounce_buf + copy + i));
460 for (i = copy - 4; i >= 4 ; i -= 4) {
461 if ((i & (TXBB_SIZE - 1)) == 0)
462 wmb();
464 *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
465 *((u32 *) (ring->bounce_buf + i));
468 /* Return real descriptor location */
469 return ring->buf + index * TXBB_SIZE;
472 static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
474 struct mlx4_en_cq *cq = &priv->tx_cq[tx_ind];
475 struct mlx4_en_tx_ring *ring = &priv->tx_ring[tx_ind];
477 /* If we don't have a pending timer, set one up to catch our recent
478 post in case the interface becomes idle */
479 if (!timer_pending(&cq->timer))
480 mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
482 /* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
483 if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
484 if (spin_trylock(&ring->comp_lock)) {
485 mlx4_en_process_tx_cq(priv->dev, cq);
486 spin_unlock(&ring->comp_lock);
490 static void *get_frag_ptr(struct sk_buff *skb)
492 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
493 struct page *page = frag->page;
494 void *ptr;
496 ptr = page_address(page);
497 if (unlikely(!ptr))
498 return NULL;
500 return ptr + frag->page_offset;
503 static int is_inline(struct sk_buff *skb, void **pfrag)
505 void *ptr;
507 if (inline_thold && !skb_is_gso(skb) && skb->len <= inline_thold) {
508 if (skb_shinfo(skb)->nr_frags == 1) {
509 ptr = get_frag_ptr(skb);
510 if (unlikely(!ptr))
511 return 0;
513 if (pfrag)
514 *pfrag = ptr;
516 return 1;
517 } else if (unlikely(skb_shinfo(skb)->nr_frags))
518 return 0;
519 else
520 return 1;
523 return 0;
526 static int inline_size(struct sk_buff *skb)
528 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
529 <= MLX4_INLINE_ALIGN)
530 return ALIGN(skb->len + CTRL_SIZE +
531 sizeof(struct mlx4_wqe_inline_seg), 16);
532 else
533 return ALIGN(skb->len + CTRL_SIZE + 2 *
534 sizeof(struct mlx4_wqe_inline_seg), 16);
537 static int get_real_size(struct sk_buff *skb, struct net_device *dev,
538 int *lso_header_size)
540 struct mlx4_en_priv *priv = netdev_priv(dev);
541 struct mlx4_en_dev *mdev = priv->mdev;
542 int real_size;
544 if (skb_is_gso(skb)) {
545 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
546 real_size = CTRL_SIZE + skb_shinfo(skb)->nr_frags * DS_SIZE +
547 ALIGN(*lso_header_size + 4, DS_SIZE);
548 if (unlikely(*lso_header_size != skb_headlen(skb))) {
549 /* We add a segment for the skb linear buffer only if
550 * it contains data */
551 if (*lso_header_size < skb_headlen(skb))
552 real_size += DS_SIZE;
553 else {
554 if (netif_msg_tx_err(priv))
555 mlx4_warn(mdev, "Non-linear headers\n");
556 dev_kfree_skb_any(skb);
557 return 0;
560 if (unlikely(*lso_header_size > MAX_LSO_HDR_SIZE)) {
561 if (netif_msg_tx_err(priv))
562 mlx4_warn(mdev, "LSO header size too big\n");
563 dev_kfree_skb_any(skb);
564 return 0;
566 } else {
567 *lso_header_size = 0;
568 if (!is_inline(skb, NULL))
569 real_size = CTRL_SIZE + (skb_shinfo(skb)->nr_frags + 1) * DS_SIZE;
570 else
571 real_size = inline_size(skb);
574 return real_size;
577 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct sk_buff *skb,
578 int real_size, u16 *vlan_tag, int tx_ind, void *fragptr)
580 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
581 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
583 if (skb->len <= spc) {
584 inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
585 skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
586 if (skb_shinfo(skb)->nr_frags)
587 memcpy(((void *)(inl + 1)) + skb_headlen(skb), fragptr,
588 skb_shinfo(skb)->frags[0].size);
590 } else {
591 inl->byte_count = cpu_to_be32(1 << 31 | spc);
592 if (skb_headlen(skb) <= spc) {
593 skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
594 if (skb_headlen(skb) < spc) {
595 memcpy(((void *)(inl + 1)) + skb_headlen(skb),
596 fragptr, spc - skb_headlen(skb));
597 fragptr += spc - skb_headlen(skb);
599 inl = (void *) (inl + 1) + spc;
600 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
601 } else {
602 skb_copy_from_linear_data(skb, inl + 1, spc);
603 inl = (void *) (inl + 1) + spc;
604 skb_copy_from_linear_data_offset(skb, spc, inl + 1,
605 skb_headlen(skb) - spc);
606 if (skb_shinfo(skb)->nr_frags)
607 memcpy(((void *)(inl + 1)) + skb_headlen(skb) - spc,
608 fragptr, skb_shinfo(skb)->frags[0].size);
611 wmb();
612 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
614 tx_desc->ctrl.vlan_tag = cpu_to_be16(*vlan_tag);
615 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!(*vlan_tag);
616 tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
619 static int get_vlan_info(struct mlx4_en_priv *priv, struct sk_buff *skb,
620 u16 *vlan_tag)
622 int tx_ind;
624 /* Obtain VLAN information if present */
625 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
626 *vlan_tag = vlan_tx_tag_get(skb);
627 /* Set the Tx ring to use according to vlan priority */
628 tx_ind = priv->tx_prio_map[*vlan_tag >> 13];
629 } else {
630 *vlan_tag = 0;
631 tx_ind = 0;
633 return tx_ind;
636 int mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
638 struct mlx4_en_priv *priv = netdev_priv(dev);
639 struct mlx4_en_dev *mdev = priv->mdev;
640 struct mlx4_en_tx_ring *ring;
641 struct mlx4_en_cq *cq;
642 struct mlx4_en_tx_desc *tx_desc;
643 struct mlx4_wqe_data_seg *data;
644 struct skb_frag_struct *frag;
645 struct mlx4_en_tx_info *tx_info;
646 int tx_ind = 0;
647 int nr_txbb;
648 int desc_size;
649 int real_size;
650 dma_addr_t dma;
651 u32 index;
652 __be32 op_own;
653 u16 vlan_tag;
654 int i;
655 int lso_header_size;
656 void *fragptr;
658 if (unlikely(!skb->len)) {
659 dev_kfree_skb_any(skb);
660 return NETDEV_TX_OK;
662 real_size = get_real_size(skb, dev, &lso_header_size);
663 if (unlikely(!real_size))
664 return NETDEV_TX_OK;
666 /* Allign descriptor to TXBB size */
667 desc_size = ALIGN(real_size, TXBB_SIZE);
668 nr_txbb = desc_size / TXBB_SIZE;
669 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
670 if (netif_msg_tx_err(priv))
671 mlx4_warn(mdev, "Oversized header or SG list\n");
672 dev_kfree_skb_any(skb);
673 return NETDEV_TX_OK;
676 tx_ind = get_vlan_info(priv, skb, &vlan_tag);
677 ring = &priv->tx_ring[tx_ind];
679 /* Check available TXBBs And 2K spare for prefetch */
680 if (unlikely(((int)(ring->prod - ring->cons)) >
681 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
682 /* every full Tx ring stops queue.
683 * TODO: implement multi-queue support (per-queue stop) */
684 netif_stop_queue(dev);
685 ring->blocked = 1;
686 priv->port_stats.queue_stopped++;
688 /* Use interrupts to find out when queue opened */
689 cq = &priv->tx_cq[tx_ind];
690 mlx4_en_arm_cq(priv, cq);
691 return NETDEV_TX_BUSY;
694 /* Now that we know what Tx ring to use */
695 if (unlikely(!priv->port_up)) {
696 if (netif_msg_tx_err(priv))
697 mlx4_warn(mdev, "xmit: port down!\n");
698 dev_kfree_skb_any(skb);
699 return NETDEV_TX_OK;
702 /* Track current inflight packets for performance analysis */
703 AVG_PERF_COUNTER(priv->pstats.inflight_avg,
704 (u32) (ring->prod - ring->cons - 1));
706 /* Packet is good - grab an index and transmit it */
707 index = ring->prod & ring->size_mask;
709 /* See if we have enough space for whole descriptor TXBB for setting
710 * SW ownership on next descriptor; if not, use a bounce buffer. */
711 if (likely(index + nr_txbb <= ring->size))
712 tx_desc = ring->buf + index * TXBB_SIZE;
713 else
714 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
716 /* Save skb in tx_info ring */
717 tx_info = &ring->tx_info[index];
718 tx_info->skb = skb;
719 tx_info->nr_txbb = nr_txbb;
721 /* Prepare ctrl segement apart opcode+ownership, which depends on
722 * whether LSO is used */
723 tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
724 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!vlan_tag;
725 tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
726 tx_desc->ctrl.srcrb_flags = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
727 MLX4_WQE_CTRL_SOLICITED);
728 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
729 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
730 MLX4_WQE_CTRL_TCP_UDP_CSUM);
731 priv->port_stats.tx_chksum_offload++;
734 /* Handle LSO (TSO) packets */
735 if (lso_header_size) {
736 /* Mark opcode as LSO */
737 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
738 ((ring->prod & ring->size) ?
739 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
741 /* Fill in the LSO prefix */
742 tx_desc->lso.mss_hdr_size = cpu_to_be32(
743 skb_shinfo(skb)->gso_size << 16 | lso_header_size);
745 /* Copy headers;
746 * note that we already verified that it is linear */
747 memcpy(tx_desc->lso.header, skb->data, lso_header_size);
748 data = ((void *) &tx_desc->lso +
749 ALIGN(lso_header_size + 4, DS_SIZE));
751 priv->port_stats.tso_packets++;
752 i = ((skb->len - lso_header_size) / skb_shinfo(skb)->gso_size) +
753 !!((skb->len - lso_header_size) % skb_shinfo(skb)->gso_size);
754 ring->bytes += skb->len + (i - 1) * lso_header_size;
755 ring->packets += i;
756 } else {
757 /* Normal (Non LSO) packet */
758 op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
759 ((ring->prod & ring->size) ?
760 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
761 data = &tx_desc->data;
762 ring->bytes += max(skb->len, (unsigned int) ETH_ZLEN);
763 ring->packets++;
766 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
769 /* valid only for none inline segments */
770 tx_info->data_offset = (void *) data - (void *) tx_desc;
772 tx_info->linear = (lso_header_size < skb_headlen(skb) && !is_inline(skb, NULL)) ? 1 : 0;
773 data += skb_shinfo(skb)->nr_frags + tx_info->linear - 1;
775 if (!is_inline(skb, &fragptr)) {
776 /* Map fragments */
777 for (i = skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) {
778 frag = &skb_shinfo(skb)->frags[i];
779 dma = pci_map_page(mdev->dev->pdev, frag->page, frag->page_offset,
780 frag->size, PCI_DMA_TODEVICE);
781 data->addr = cpu_to_be64(dma);
782 data->lkey = cpu_to_be32(mdev->mr.key);
783 wmb();
784 data->byte_count = cpu_to_be32(frag->size);
785 --data;
788 /* Map linear part */
789 if (tx_info->linear) {
790 dma = pci_map_single(mdev->dev->pdev, skb->data + lso_header_size,
791 skb_headlen(skb) - lso_header_size, PCI_DMA_TODEVICE);
792 data->addr = cpu_to_be64(dma);
793 data->lkey = cpu_to_be32(mdev->mr.key);
794 wmb();
795 data->byte_count = cpu_to_be32(skb_headlen(skb) - lso_header_size);
797 tx_info->inl = 0;
798 } else {
799 build_inline_wqe(tx_desc, skb, real_size, &vlan_tag, tx_ind, fragptr);
800 tx_info->inl = 1;
803 ring->prod += nr_txbb;
805 /* If we used a bounce buffer then copy descriptor back into place */
806 if (tx_desc == (struct mlx4_en_tx_desc *) ring->bounce_buf)
807 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
809 /* Run destructor before passing skb to HW */
810 if (likely(!skb_shared(skb)))
811 skb_orphan(skb);
813 /* Ensure new descirptor hits memory
814 * before setting ownership of this descriptor to HW */
815 wmb();
816 tx_desc->ctrl.owner_opcode = op_own;
818 /* Ring doorbell! */
819 wmb();
820 writel(ring->doorbell_qpn, mdev->uar_map + MLX4_SEND_DOORBELL);
821 dev->trans_start = jiffies;
823 /* Poll CQ here */
824 mlx4_en_xmit_poll(priv, tx_ind);
826 return 0;