added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / net / e1000e / ich8lan.c
blobe415e81ecd3e399cf9a3e63b7737bf41b107bdaf
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
53 #include <linux/netdevice.h>
54 #include <linux/ethtool.h>
55 #include <linux/delay.h>
56 #include <linux/pci.h>
58 #include "e1000.h"
60 #define ICH_FLASH_GFPREG 0x0000
61 #define ICH_FLASH_HSFSTS 0x0004
62 #define ICH_FLASH_HSFCTL 0x0006
63 #define ICH_FLASH_FADDR 0x0008
64 #define ICH_FLASH_FDATA0 0x0010
65 #define ICH_FLASH_PR0 0x0074
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73 #define ICH_CYCLE_READ 0
74 #define ICH_CYCLE_WRITE 2
75 #define ICH_CYCLE_ERASE 3
77 #define FLASH_GFPREG_BASE_MASK 0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT 12
80 #define ICH_FLASH_SEG_SIZE_256 256
81 #define ICH_FLASH_SEG_SIZE_4K 4096
82 #define ICH_FLASH_SEG_SIZE_8K 8192
83 #define ICH_FLASH_SEG_SIZE_64K 65536
86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 #define E1000_ICH_MNG_IAMT_MODE 0x2
90 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
91 (ID_LED_DEF1_OFF2 << 8) | \
92 (ID_LED_DEF1_ON2 << 4) | \
93 (ID_LED_DEF1_DEF2))
95 #define E1000_ICH_NVM_SIG_WORD 0x13
96 #define E1000_ICH_NVM_SIG_MASK 0xC000
97 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
98 #define E1000_ICH_NVM_SIG_VALUE 0x80
100 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
102 #define E1000_FEXTNVM_SW_CONFIG 1
103 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
107 #define E1000_ICH_RAR_ENTRIES 7
109 #define PHY_PAGE_SHIFT 5
110 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
111 ((reg) & MAX_PHY_REG_ADDRESS))
112 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
113 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
115 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
116 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
117 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
119 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120 /* Offset 04h HSFSTS */
121 union ich8_hws_flash_status {
122 struct ich8_hsfsts {
123 u16 flcdone :1; /* bit 0 Flash Cycle Done */
124 u16 flcerr :1; /* bit 1 Flash Cycle Error */
125 u16 dael :1; /* bit 2 Direct Access error Log */
126 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
127 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
128 u16 reserved1 :2; /* bit 13:6 Reserved */
129 u16 reserved2 :6; /* bit 13:6 Reserved */
130 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
131 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
132 } hsf_status;
133 u16 regval;
136 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137 /* Offset 06h FLCTL */
138 union ich8_hws_flash_ctrl {
139 struct ich8_hsflctl {
140 u16 flcgo :1; /* 0 Flash Cycle Go */
141 u16 flcycle :2; /* 2:1 Flash Cycle */
142 u16 reserved :5; /* 7:3 Reserved */
143 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
144 u16 flockdn :6; /* 15:10 Reserved */
145 } hsf_ctrl;
146 u16 regval;
149 /* ICH Flash Region Access Permissions */
150 union ich8_hws_flash_regacc {
151 struct ich8_flracc {
152 u32 grra :8; /* 0:7 GbE region Read Access */
153 u32 grwa :8; /* 8:15 GbE region Write Access */
154 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
155 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
156 } hsf_flregacc;
157 u16 regval;
160 /* ICH Flash Protected Region */
161 union ich8_flash_protected_range {
162 struct ich8_pr {
163 u32 base:13; /* 0:12 Protected Range Base */
164 u32 reserved1:2; /* 13:14 Reserved */
165 u32 rpe:1; /* 15 Read Protection Enable */
166 u32 limit:13; /* 16:28 Protected Range Limit */
167 u32 reserved2:2; /* 29:30 Reserved */
168 u32 wpe:1; /* 31 Write Protection Enable */
169 } range;
170 u32 regval;
173 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
174 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
175 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
176 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
177 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
178 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
179 u32 offset, u8 byte);
180 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
181 u8 *data);
182 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
183 u16 *data);
184 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
185 u8 size, u16 *data);
186 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
187 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
188 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
190 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
192 return readw(hw->flash_address + reg);
195 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
197 return readl(hw->flash_address + reg);
200 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
202 writew(val, hw->flash_address + reg);
205 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
207 writel(val, hw->flash_address + reg);
210 #define er16flash(reg) __er16flash(hw, (reg))
211 #define er32flash(reg) __er32flash(hw, (reg))
212 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
213 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
216 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
217 * @hw: pointer to the HW structure
219 * Initialize family-specific PHY parameters and function pointers.
221 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
223 struct e1000_phy_info *phy = &hw->phy;
224 s32 ret_val;
225 u16 i = 0;
227 phy->addr = 1;
228 phy->reset_delay_us = 100;
231 * We may need to do this twice - once for IGP and if that fails,
232 * we'll set BM func pointers and try again
234 ret_val = e1000e_determine_phy_address(hw);
235 if (ret_val) {
236 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
237 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
238 ret_val = e1000e_determine_phy_address(hw);
239 if (ret_val)
240 return ret_val;
243 phy->id = 0;
244 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
245 (i++ < 100)) {
246 msleep(1);
247 ret_val = e1000e_get_phy_id(hw);
248 if (ret_val)
249 return ret_val;
252 /* Verify phy id */
253 switch (phy->id) {
254 case IGP03E1000_E_PHY_ID:
255 phy->type = e1000_phy_igp_3;
256 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
257 break;
258 case IFE_E_PHY_ID:
259 case IFE_PLUS_E_PHY_ID:
260 case IFE_C_E_PHY_ID:
261 phy->type = e1000_phy_ife;
262 phy->autoneg_mask = E1000_ALL_NOT_GIG;
263 break;
264 case BME1000_E_PHY_ID:
265 phy->type = e1000_phy_bm;
266 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
267 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
268 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
269 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
270 break;
271 default:
272 return -E1000_ERR_PHY;
273 break;
276 return 0;
280 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
281 * @hw: pointer to the HW structure
283 * Initialize family-specific NVM parameters and function
284 * pointers.
286 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
288 struct e1000_nvm_info *nvm = &hw->nvm;
289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
290 u32 gfpreg;
291 u32 sector_base_addr;
292 u32 sector_end_addr;
293 u16 i;
295 /* Can't read flash registers if the register set isn't mapped. */
296 if (!hw->flash_address) {
297 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
298 return -E1000_ERR_CONFIG;
301 nvm->type = e1000_nvm_flash_sw;
303 gfpreg = er32flash(ICH_FLASH_GFPREG);
306 * sector_X_addr is a "sector"-aligned address (4096 bytes)
307 * Add 1 to sector_end_addr since this sector is included in
308 * the overall size.
310 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
311 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
313 /* flash_base_addr is byte-aligned */
314 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
317 * find total size of the NVM, then cut in half since the total
318 * size represents two separate NVM banks.
320 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
321 << FLASH_SECTOR_ADDR_SHIFT;
322 nvm->flash_bank_size /= 2;
323 /* Adjust to word count */
324 nvm->flash_bank_size /= sizeof(u16);
326 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
328 /* Clear shadow ram */
329 for (i = 0; i < nvm->word_size; i++) {
330 dev_spec->shadow_ram[i].modified = 0;
331 dev_spec->shadow_ram[i].value = 0xFFFF;
334 return 0;
338 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
339 * @hw: pointer to the HW structure
341 * Initialize family-specific MAC parameters and function
342 * pointers.
344 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
346 struct e1000_hw *hw = &adapter->hw;
347 struct e1000_mac_info *mac = &hw->mac;
349 /* Set media type function pointer */
350 hw->phy.media_type = e1000_media_type_copper;
352 /* Set mta register count */
353 mac->mta_reg_count = 32;
354 /* Set rar entry count */
355 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
356 if (mac->type == e1000_ich8lan)
357 mac->rar_entry_count--;
358 /* Set if manageability features are enabled. */
359 mac->arc_subsystem_valid = 1;
361 /* Enable PCS Lock-loss workaround for ICH8 */
362 if (mac->type == e1000_ich8lan)
363 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
365 return 0;
368 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
370 struct e1000_hw *hw = &adapter->hw;
371 s32 rc;
373 rc = e1000_init_mac_params_ich8lan(adapter);
374 if (rc)
375 return rc;
377 rc = e1000_init_nvm_params_ich8lan(hw);
378 if (rc)
379 return rc;
381 rc = e1000_init_phy_params_ich8lan(hw);
382 if (rc)
383 return rc;
385 if ((adapter->hw.mac.type == e1000_ich8lan) &&
386 (adapter->hw.phy.type == e1000_phy_igp_3))
387 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
389 return 0;
392 static DEFINE_MUTEX(nvm_mutex);
393 static pid_t nvm_owner_pid = -1;
394 static char nvm_owner_name[TASK_COMM_LEN] = "";
397 * e1000_acquire_swflag_ich8lan - Acquire software control flag
398 * @hw: pointer to the HW structure
400 * Acquires the software control flag for performing NVM and PHY
401 * operations. This is a function pointer entry point only called by
402 * read/write routines for the PHY and NVM parts.
404 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
406 u32 extcnf_ctrl;
407 u32 timeout = PHY_CFG_TIMEOUT;
409 might_sleep();
411 if (!mutex_trylock(&nvm_mutex)) {
412 WARN(1, KERN_ERR "e1000e mutex contention. Owned by process "
413 "%s (pid %d), required by process %s (pid %d)\n",
414 nvm_owner_name, nvm_owner_pid,
415 current->comm, current->pid);
417 mutex_lock(&nvm_mutex);
419 nvm_owner_pid = current->pid;
420 strncpy(nvm_owner_name, current->comm, TASK_COMM_LEN);
422 while (timeout) {
423 extcnf_ctrl = er32(EXTCNF_CTRL);
424 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
425 ew32(EXTCNF_CTRL, extcnf_ctrl);
427 extcnf_ctrl = er32(EXTCNF_CTRL);
428 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
429 break;
430 mdelay(1);
431 timeout--;
434 if (!timeout) {
435 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
436 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
437 ew32(EXTCNF_CTRL, extcnf_ctrl);
438 nvm_owner_pid = -1;
439 strcpy(nvm_owner_name, "");
440 mutex_unlock(&nvm_mutex);
441 return -E1000_ERR_CONFIG;
444 return 0;
448 * e1000_release_swflag_ich8lan - Release software control flag
449 * @hw: pointer to the HW structure
451 * Releases the software control flag for performing NVM and PHY operations.
452 * This is a function pointer entry point only called by read/write
453 * routines for the PHY and NVM parts.
455 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
457 u32 extcnf_ctrl;
459 extcnf_ctrl = er32(EXTCNF_CTRL);
460 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
461 ew32(EXTCNF_CTRL, extcnf_ctrl);
463 nvm_owner_pid = -1;
464 strcpy(nvm_owner_name, "");
465 mutex_unlock(&nvm_mutex);
469 * e1000_check_mng_mode_ich8lan - Checks management mode
470 * @hw: pointer to the HW structure
472 * This checks if the adapter has manageability enabled.
473 * This is a function pointer entry point only called by read/write
474 * routines for the PHY and NVM parts.
476 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
478 u32 fwsm = er32(FWSM);
480 return (fwsm & E1000_FWSM_MODE_MASK) ==
481 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
485 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
486 * @hw: pointer to the HW structure
488 * Checks if firmware is blocking the reset of the PHY.
489 * This is a function pointer entry point only called by
490 * reset routines.
492 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
494 u32 fwsm;
496 fwsm = er32(FWSM);
498 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
502 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
503 * @hw: pointer to the HW structure
505 * Forces the speed and duplex settings of the PHY.
506 * This is a function pointer entry point only called by
507 * PHY setup routines.
509 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
511 struct e1000_phy_info *phy = &hw->phy;
512 s32 ret_val;
513 u16 data;
514 bool link;
516 if (phy->type != e1000_phy_ife) {
517 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
518 return ret_val;
521 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
522 if (ret_val)
523 return ret_val;
525 e1000e_phy_force_speed_duplex_setup(hw, &data);
527 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
528 if (ret_val)
529 return ret_val;
531 /* Disable MDI-X support for 10/100 */
532 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
533 if (ret_val)
534 return ret_val;
536 data &= ~IFE_PMC_AUTO_MDIX;
537 data &= ~IFE_PMC_FORCE_MDIX;
539 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
540 if (ret_val)
541 return ret_val;
543 hw_dbg(hw, "IFE PMC: %X\n", data);
545 udelay(1);
547 if (phy->autoneg_wait_to_complete) {
548 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
550 ret_val = e1000e_phy_has_link_generic(hw,
551 PHY_FORCE_LIMIT,
552 100000,
553 &link);
554 if (ret_val)
555 return ret_val;
557 if (!link)
558 hw_dbg(hw, "Link taking longer than expected.\n");
560 /* Try once more */
561 ret_val = e1000e_phy_has_link_generic(hw,
562 PHY_FORCE_LIMIT,
563 100000,
564 &link);
565 if (ret_val)
566 return ret_val;
569 return 0;
573 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
574 * @hw: pointer to the HW structure
576 * Resets the PHY
577 * This is a function pointer entry point called by drivers
578 * or other shared routines.
580 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
582 struct e1000_phy_info *phy = &hw->phy;
583 u32 i;
584 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
585 s32 ret_val;
586 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
587 u16 word_addr, reg_data, reg_addr, phy_page = 0;
589 ret_val = e1000e_phy_hw_reset_generic(hw);
590 if (ret_val)
591 return ret_val;
594 * Initialize the PHY from the NVM on ICH platforms. This
595 * is needed due to an issue where the NVM configuration is
596 * not properly autoloaded after power transitions.
597 * Therefore, after each PHY reset, we will load the
598 * configuration data out of the NVM manually.
600 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
601 struct e1000_adapter *adapter = hw->adapter;
603 /* Check if SW needs configure the PHY */
604 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
605 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
606 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
607 else
608 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
610 data = er32(FEXTNVM);
611 if (!(data & sw_cfg_mask))
612 return 0;
614 /* Wait for basic configuration completes before proceeding*/
615 do {
616 data = er32(STATUS);
617 data &= E1000_STATUS_LAN_INIT_DONE;
618 udelay(100);
619 } while ((!data) && --loop);
622 * If basic configuration is incomplete before the above loop
623 * count reaches 0, loading the configuration from NVM will
624 * leave the PHY in a bad state possibly resulting in no link.
626 if (loop == 0) {
627 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
630 /* Clear the Init Done bit for the next init event */
631 data = er32(STATUS);
632 data &= ~E1000_STATUS_LAN_INIT_DONE;
633 ew32(STATUS, data);
636 * Make sure HW does not configure LCD from PHY
637 * extended configuration before SW configuration
639 data = er32(EXTCNF_CTRL);
640 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
641 return 0;
643 cnf_size = er32(EXTCNF_SIZE);
644 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
645 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
646 if (!cnf_size)
647 return 0;
649 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
650 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
652 /* Configure LCD from extended configuration region. */
654 /* cnf_base_addr is in DWORD */
655 word_addr = (u16)(cnf_base_addr << 1);
657 for (i = 0; i < cnf_size; i++) {
658 ret_val = e1000_read_nvm(hw,
659 (word_addr + i * 2),
661 &reg_data);
662 if (ret_val)
663 return ret_val;
665 ret_val = e1000_read_nvm(hw,
666 (word_addr + i * 2 + 1),
668 &reg_addr);
669 if (ret_val)
670 return ret_val;
672 /* Save off the PHY page for future writes. */
673 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
674 phy_page = reg_data;
675 continue;
678 reg_addr |= phy_page;
680 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
681 if (ret_val)
682 return ret_val;
686 return 0;
690 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
691 * @hw: pointer to the HW structure
693 * Populates "phy" structure with various feature states.
694 * This function is only called by other family-specific
695 * routines.
697 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
699 struct e1000_phy_info *phy = &hw->phy;
700 s32 ret_val;
701 u16 data;
702 bool link;
704 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
705 if (ret_val)
706 return ret_val;
708 if (!link) {
709 hw_dbg(hw, "Phy info is only valid if link is up\n");
710 return -E1000_ERR_CONFIG;
713 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
714 if (ret_val)
715 return ret_val;
716 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
718 if (phy->polarity_correction) {
719 ret_val = e1000_check_polarity_ife_ich8lan(hw);
720 if (ret_val)
721 return ret_val;
722 } else {
723 /* Polarity is forced */
724 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
725 ? e1000_rev_polarity_reversed
726 : e1000_rev_polarity_normal;
729 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
730 if (ret_val)
731 return ret_val;
733 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
735 /* The following parameters are undefined for 10/100 operation. */
736 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
737 phy->local_rx = e1000_1000t_rx_status_undefined;
738 phy->remote_rx = e1000_1000t_rx_status_undefined;
740 return 0;
744 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
745 * @hw: pointer to the HW structure
747 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
748 * This is a function pointer entry point called by drivers
749 * or other shared routines.
751 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
753 switch (hw->phy.type) {
754 case e1000_phy_ife:
755 return e1000_get_phy_info_ife_ich8lan(hw);
756 break;
757 case e1000_phy_igp_3:
758 case e1000_phy_bm:
759 return e1000e_get_phy_info_igp(hw);
760 break;
761 default:
762 break;
765 return -E1000_ERR_PHY_TYPE;
769 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
770 * @hw: pointer to the HW structure
772 * Polarity is determined on the polarity reversal feature being enabled.
773 * This function is only called by other family-specific
774 * routines.
776 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
778 struct e1000_phy_info *phy = &hw->phy;
779 s32 ret_val;
780 u16 phy_data, offset, mask;
783 * Polarity is determined based on the reversal feature being enabled.
785 if (phy->polarity_correction) {
786 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
787 mask = IFE_PESC_POLARITY_REVERSED;
788 } else {
789 offset = IFE_PHY_SPECIAL_CONTROL;
790 mask = IFE_PSC_FORCE_POLARITY;
793 ret_val = e1e_rphy(hw, offset, &phy_data);
795 if (!ret_val)
796 phy->cable_polarity = (phy_data & mask)
797 ? e1000_rev_polarity_reversed
798 : e1000_rev_polarity_normal;
800 return ret_val;
804 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
805 * @hw: pointer to the HW structure
806 * @active: TRUE to enable LPLU, FALSE to disable
808 * Sets the LPLU D0 state according to the active flag. When
809 * activating LPLU this function also disables smart speed
810 * and vice versa. LPLU will not be activated unless the
811 * device autonegotiation advertisement meets standards of
812 * either 10 or 10/100 or 10/100/1000 at all duplexes.
813 * This is a function pointer entry point only called by
814 * PHY setup routines.
816 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
818 struct e1000_phy_info *phy = &hw->phy;
819 u32 phy_ctrl;
820 s32 ret_val = 0;
821 u16 data;
823 if (phy->type == e1000_phy_ife)
824 return ret_val;
826 phy_ctrl = er32(PHY_CTRL);
828 if (active) {
829 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
830 ew32(PHY_CTRL, phy_ctrl);
833 * Call gig speed drop workaround on LPLU before accessing
834 * any PHY registers
836 if ((hw->mac.type == e1000_ich8lan) &&
837 (hw->phy.type == e1000_phy_igp_3))
838 e1000e_gig_downshift_workaround_ich8lan(hw);
840 /* When LPLU is enabled, we should disable SmartSpeed */
841 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
842 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
843 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
844 if (ret_val)
845 return ret_val;
846 } else {
847 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
848 ew32(PHY_CTRL, phy_ctrl);
851 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
852 * during Dx states where the power conservation is most
853 * important. During driver activity we should enable
854 * SmartSpeed, so performance is maintained.
856 if (phy->smart_speed == e1000_smart_speed_on) {
857 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
858 &data);
859 if (ret_val)
860 return ret_val;
862 data |= IGP01E1000_PSCFR_SMART_SPEED;
863 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
864 data);
865 if (ret_val)
866 return ret_val;
867 } else if (phy->smart_speed == e1000_smart_speed_off) {
868 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
869 &data);
870 if (ret_val)
871 return ret_val;
873 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
874 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
875 data);
876 if (ret_val)
877 return ret_val;
881 return 0;
885 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
886 * @hw: pointer to the HW structure
887 * @active: TRUE to enable LPLU, FALSE to disable
889 * Sets the LPLU D3 state according to the active flag. When
890 * activating LPLU this function also disables smart speed
891 * and vice versa. LPLU will not be activated unless the
892 * device autonegotiation advertisement meets standards of
893 * either 10 or 10/100 or 10/100/1000 at all duplexes.
894 * This is a function pointer entry point only called by
895 * PHY setup routines.
897 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
899 struct e1000_phy_info *phy = &hw->phy;
900 u32 phy_ctrl;
901 s32 ret_val;
902 u16 data;
904 phy_ctrl = er32(PHY_CTRL);
906 if (!active) {
907 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
908 ew32(PHY_CTRL, phy_ctrl);
910 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
911 * during Dx states where the power conservation is most
912 * important. During driver activity we should enable
913 * SmartSpeed, so performance is maintained.
915 if (phy->smart_speed == e1000_smart_speed_on) {
916 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
917 &data);
918 if (ret_val)
919 return ret_val;
921 data |= IGP01E1000_PSCFR_SMART_SPEED;
922 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
923 data);
924 if (ret_val)
925 return ret_val;
926 } else if (phy->smart_speed == e1000_smart_speed_off) {
927 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
928 &data);
929 if (ret_val)
930 return ret_val;
932 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
933 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
934 data);
935 if (ret_val)
936 return ret_val;
938 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
939 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
940 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
941 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
942 ew32(PHY_CTRL, phy_ctrl);
945 * Call gig speed drop workaround on LPLU before accessing
946 * any PHY registers
948 if ((hw->mac.type == e1000_ich8lan) &&
949 (hw->phy.type == e1000_phy_igp_3))
950 e1000e_gig_downshift_workaround_ich8lan(hw);
952 /* When LPLU is enabled, we should disable SmartSpeed */
953 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
954 if (ret_val)
955 return ret_val;
957 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
958 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
961 return 0;
965 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
966 * @hw: pointer to the HW structure
967 * @bank: pointer to the variable that returns the active bank
969 * Reads signature byte from the NVM using the flash access registers.
970 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
972 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
974 u32 eecd;
975 struct e1000_nvm_info *nvm = &hw->nvm;
976 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
977 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
978 u8 sig_byte = 0;
979 s32 ret_val = 0;
981 switch (hw->mac.type) {
982 case e1000_ich8lan:
983 case e1000_ich9lan:
984 eecd = er32(EECD);
985 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
986 E1000_EECD_SEC1VAL_VALID_MASK) {
987 if (eecd & E1000_EECD_SEC1VAL)
988 *bank = 1;
989 else
990 *bank = 0;
992 return 0;
994 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
995 "reading flash signature\n");
996 /* fall-thru */
997 default:
998 /* set bank to 0 in case flash read fails */
999 *bank = 0;
1001 /* Check bank 0 */
1002 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1003 &sig_byte);
1004 if (ret_val)
1005 return ret_val;
1006 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1007 E1000_ICH_NVM_SIG_VALUE) {
1008 *bank = 0;
1009 return 0;
1012 /* Check bank 1 */
1013 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1014 bank1_offset,
1015 &sig_byte);
1016 if (ret_val)
1017 return ret_val;
1018 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1019 E1000_ICH_NVM_SIG_VALUE) {
1020 *bank = 1;
1021 return 0;
1024 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1025 return -E1000_ERR_NVM;
1028 return 0;
1032 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1033 * @hw: pointer to the HW structure
1034 * @offset: The offset (in bytes) of the word(s) to read.
1035 * @words: Size of data to read in words
1036 * @data: Pointer to the word(s) to read at offset.
1038 * Reads a word(s) from the NVM using the flash access registers.
1040 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1041 u16 *data)
1043 struct e1000_nvm_info *nvm = &hw->nvm;
1044 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1045 u32 act_offset;
1046 s32 ret_val;
1047 u32 bank = 0;
1048 u16 i, word;
1050 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1051 (words == 0)) {
1052 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1053 return -E1000_ERR_NVM;
1056 ret_val = e1000_acquire_swflag_ich8lan(hw);
1057 if (ret_val)
1058 goto out;
1060 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1061 if (ret_val)
1062 goto release;
1064 act_offset = (bank) ? nvm->flash_bank_size : 0;
1065 act_offset += offset;
1067 for (i = 0; i < words; i++) {
1068 if ((dev_spec->shadow_ram) &&
1069 (dev_spec->shadow_ram[offset+i].modified)) {
1070 data[i] = dev_spec->shadow_ram[offset+i].value;
1071 } else {
1072 ret_val = e1000_read_flash_word_ich8lan(hw,
1073 act_offset + i,
1074 &word);
1075 if (ret_val)
1076 break;
1077 data[i] = word;
1081 release:
1082 e1000_release_swflag_ich8lan(hw);
1084 out:
1085 if (ret_val)
1086 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1088 return ret_val;
1092 * e1000_flash_cycle_init_ich8lan - Initialize flash
1093 * @hw: pointer to the HW structure
1095 * This function does initial flash setup so that a new read/write/erase cycle
1096 * can be started.
1098 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1100 union ich8_hws_flash_status hsfsts;
1101 s32 ret_val = -E1000_ERR_NVM;
1102 s32 i = 0;
1104 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1106 /* Check if the flash descriptor is valid */
1107 if (hsfsts.hsf_status.fldesvalid == 0) {
1108 hw_dbg(hw, "Flash descriptor invalid. "
1109 "SW Sequencing must be used.");
1110 return -E1000_ERR_NVM;
1113 /* Clear FCERR and DAEL in hw status by writing 1 */
1114 hsfsts.hsf_status.flcerr = 1;
1115 hsfsts.hsf_status.dael = 1;
1117 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1120 * Either we should have a hardware SPI cycle in progress
1121 * bit to check against, in order to start a new cycle or
1122 * FDONE bit should be changed in the hardware so that it
1123 * is 1 after hardware reset, which can then be used as an
1124 * indication whether a cycle is in progress or has been
1125 * completed.
1128 if (hsfsts.hsf_status.flcinprog == 0) {
1130 * There is no cycle running at present,
1131 * so we can start a cycle
1132 * Begin by setting Flash Cycle Done.
1134 hsfsts.hsf_status.flcdone = 1;
1135 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1136 ret_val = 0;
1137 } else {
1139 * otherwise poll for sometime so the current
1140 * cycle has a chance to end before giving up.
1142 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1143 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1144 if (hsfsts.hsf_status.flcinprog == 0) {
1145 ret_val = 0;
1146 break;
1148 udelay(1);
1150 if (ret_val == 0) {
1152 * Successful in waiting for previous cycle to timeout,
1153 * now set the Flash Cycle Done.
1155 hsfsts.hsf_status.flcdone = 1;
1156 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1157 } else {
1158 hw_dbg(hw, "Flash controller busy, cannot get access");
1162 return ret_val;
1166 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1167 * @hw: pointer to the HW structure
1168 * @timeout: maximum time to wait for completion
1170 * This function starts a flash cycle and waits for its completion.
1172 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1174 union ich8_hws_flash_ctrl hsflctl;
1175 union ich8_hws_flash_status hsfsts;
1176 s32 ret_val = -E1000_ERR_NVM;
1177 u32 i = 0;
1179 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1180 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1181 hsflctl.hsf_ctrl.flcgo = 1;
1182 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1184 /* wait till FDONE bit is set to 1 */
1185 do {
1186 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1187 if (hsfsts.hsf_status.flcdone == 1)
1188 break;
1189 udelay(1);
1190 } while (i++ < timeout);
1192 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1193 return 0;
1195 return ret_val;
1199 * e1000_read_flash_word_ich8lan - Read word from flash
1200 * @hw: pointer to the HW structure
1201 * @offset: offset to data location
1202 * @data: pointer to the location for storing the data
1204 * Reads the flash word at offset into data. Offset is converted
1205 * to bytes before read.
1207 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1208 u16 *data)
1210 /* Must convert offset into bytes. */
1211 offset <<= 1;
1213 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1217 * e1000_read_flash_byte_ich8lan - Read byte from flash
1218 * @hw: pointer to the HW structure
1219 * @offset: The offset of the byte to read.
1220 * @data: Pointer to a byte to store the value read.
1222 * Reads a single byte from the NVM using the flash access registers.
1224 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1225 u8 *data)
1227 s32 ret_val;
1228 u16 word = 0;
1230 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1231 if (ret_val)
1232 return ret_val;
1234 *data = (u8)word;
1236 return 0;
1240 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1241 * @hw: pointer to the HW structure
1242 * @offset: The offset (in bytes) of the byte or word to read.
1243 * @size: Size of data to read, 1=byte 2=word
1244 * @data: Pointer to the word to store the value read.
1246 * Reads a byte or word from the NVM using the flash access registers.
1248 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1249 u8 size, u16 *data)
1251 union ich8_hws_flash_status hsfsts;
1252 union ich8_hws_flash_ctrl hsflctl;
1253 u32 flash_linear_addr;
1254 u32 flash_data = 0;
1255 s32 ret_val = -E1000_ERR_NVM;
1256 u8 count = 0;
1258 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1259 return -E1000_ERR_NVM;
1261 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1262 hw->nvm.flash_base_addr;
1264 do {
1265 udelay(1);
1266 /* Steps */
1267 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1268 if (ret_val != 0)
1269 break;
1271 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1272 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1273 hsflctl.hsf_ctrl.fldbcount = size - 1;
1274 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1275 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1277 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1279 ret_val = e1000_flash_cycle_ich8lan(hw,
1280 ICH_FLASH_READ_COMMAND_TIMEOUT);
1283 * Check if FCERR is set to 1, if set to 1, clear it
1284 * and try the whole sequence a few more times, else
1285 * read in (shift in) the Flash Data0, the order is
1286 * least significant byte first msb to lsb
1288 if (ret_val == 0) {
1289 flash_data = er32flash(ICH_FLASH_FDATA0);
1290 if (size == 1) {
1291 *data = (u8)(flash_data & 0x000000FF);
1292 } else if (size == 2) {
1293 *data = (u16)(flash_data & 0x0000FFFF);
1295 break;
1296 } else {
1298 * If we've gotten here, then things are probably
1299 * completely hosed, but if the error condition is
1300 * detected, it won't hurt to give it another try...
1301 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1303 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1304 if (hsfsts.hsf_status.flcerr == 1) {
1305 /* Repeat for some time before giving up. */
1306 continue;
1307 } else if (hsfsts.hsf_status.flcdone == 0) {
1308 hw_dbg(hw, "Timeout error - flash cycle "
1309 "did not complete.");
1310 break;
1313 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1315 return ret_val;
1319 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1320 * @hw: pointer to the HW structure
1321 * @offset: The offset (in bytes) of the word(s) to write.
1322 * @words: Size of data to write in words
1323 * @data: Pointer to the word(s) to write at offset.
1325 * Writes a byte or word to the NVM using the flash access registers.
1327 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1328 u16 *data)
1330 struct e1000_nvm_info *nvm = &hw->nvm;
1331 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1332 s32 ret_val;
1333 u16 i;
1335 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1336 (words == 0)) {
1337 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1338 return -E1000_ERR_NVM;
1341 ret_val = e1000_acquire_swflag_ich8lan(hw);
1342 if (ret_val)
1343 return ret_val;
1345 for (i = 0; i < words; i++) {
1346 dev_spec->shadow_ram[offset+i].modified = 1;
1347 dev_spec->shadow_ram[offset+i].value = data[i];
1350 e1000_release_swflag_ich8lan(hw);
1352 return 0;
1356 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1357 * @hw: pointer to the HW structure
1359 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1360 * which writes the checksum to the shadow ram. The changes in the shadow
1361 * ram are then committed to the EEPROM by processing each bank at a time
1362 * checking for the modified bit and writing only the pending changes.
1363 * After a successful commit, the shadow ram is cleared and is ready for
1364 * future writes.
1366 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1368 struct e1000_nvm_info *nvm = &hw->nvm;
1369 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1370 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1371 s32 ret_val;
1372 u16 data;
1374 ret_val = e1000e_update_nvm_checksum_generic(hw);
1375 if (ret_val)
1376 goto out;
1378 if (nvm->type != e1000_nvm_flash_sw)
1379 goto out;
1381 ret_val = e1000_acquire_swflag_ich8lan(hw);
1382 if (ret_val)
1383 goto out;
1386 * We're writing to the opposite bank so if we're on bank 1,
1387 * write to bank 0 etc. We also need to erase the segment that
1388 * is going to be written
1390 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1391 if (ret_val) {
1392 e1000_release_swflag_ich8lan(hw);
1393 goto out;
1396 if (bank == 0) {
1397 new_bank_offset = nvm->flash_bank_size;
1398 old_bank_offset = 0;
1399 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1400 if (ret_val) {
1401 e1000_release_swflag_ich8lan(hw);
1402 goto out;
1404 } else {
1405 old_bank_offset = nvm->flash_bank_size;
1406 new_bank_offset = 0;
1407 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1408 if (ret_val) {
1409 e1000_release_swflag_ich8lan(hw);
1410 goto out;
1414 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1416 * Determine whether to write the value stored
1417 * in the other NVM bank or a modified value stored
1418 * in the shadow RAM
1420 if (dev_spec->shadow_ram[i].modified) {
1421 data = dev_spec->shadow_ram[i].value;
1422 } else {
1423 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1424 old_bank_offset,
1425 &data);
1426 if (ret_val)
1427 break;
1431 * If the word is 0x13, then make sure the signature bits
1432 * (15:14) are 11b until the commit has completed.
1433 * This will allow us to write 10b which indicates the
1434 * signature is valid. We want to do this after the write
1435 * has completed so that we don't mark the segment valid
1436 * while the write is still in progress
1438 if (i == E1000_ICH_NVM_SIG_WORD)
1439 data |= E1000_ICH_NVM_SIG_MASK;
1441 /* Convert offset to bytes. */
1442 act_offset = (i + new_bank_offset) << 1;
1444 udelay(100);
1445 /* Write the bytes to the new bank. */
1446 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1447 act_offset,
1448 (u8)data);
1449 if (ret_val)
1450 break;
1452 udelay(100);
1453 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1454 act_offset + 1,
1455 (u8)(data >> 8));
1456 if (ret_val)
1457 break;
1461 * Don't bother writing the segment valid bits if sector
1462 * programming failed.
1464 if (ret_val) {
1465 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1466 hw_dbg(hw, "Flash commit failed.\n");
1467 e1000_release_swflag_ich8lan(hw);
1468 goto out;
1472 * Finally validate the new segment by setting bit 15:14
1473 * to 10b in word 0x13 , this can be done without an
1474 * erase as well since these bits are 11 to start with
1475 * and we need to change bit 14 to 0b
1477 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1478 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1479 if (ret_val) {
1480 e1000_release_swflag_ich8lan(hw);
1481 goto out;
1483 data &= 0xBFFF;
1484 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1485 act_offset * 2 + 1,
1486 (u8)(data >> 8));
1487 if (ret_val) {
1488 e1000_release_swflag_ich8lan(hw);
1489 goto out;
1493 * And invalidate the previously valid segment by setting
1494 * its signature word (0x13) high_byte to 0b. This can be
1495 * done without an erase because flash erase sets all bits
1496 * to 1's. We can write 1's to 0's without an erase
1498 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1499 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1500 if (ret_val) {
1501 e1000_release_swflag_ich8lan(hw);
1502 goto out;
1505 /* Great! Everything worked, we can now clear the cached entries. */
1506 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1507 dev_spec->shadow_ram[i].modified = 0;
1508 dev_spec->shadow_ram[i].value = 0xFFFF;
1511 e1000_release_swflag_ich8lan(hw);
1514 * Reload the EEPROM, or else modifications will not appear
1515 * until after the next adapter reset.
1517 e1000e_reload_nvm(hw);
1518 msleep(10);
1520 out:
1521 if (ret_val)
1522 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1524 return ret_val;
1528 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1529 * @hw: pointer to the HW structure
1531 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1532 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1533 * calculated, in which case we need to calculate the checksum and set bit 6.
1535 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1537 s32 ret_val;
1538 u16 data;
1541 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1542 * needs to be fixed. This bit is an indication that the NVM
1543 * was prepared by OEM software and did not calculate the
1544 * checksum...a likely scenario.
1546 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1547 if (ret_val)
1548 return ret_val;
1550 if ((data & 0x40) == 0) {
1551 data |= 0x40;
1552 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1553 if (ret_val)
1554 return ret_val;
1555 ret_val = e1000e_update_nvm_checksum(hw);
1556 if (ret_val)
1557 return ret_val;
1560 return e1000e_validate_nvm_checksum_generic(hw);
1564 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1565 * @hw: pointer to the HW structure
1567 * To prevent malicious write/erase of the NVM, set it to be read-only
1568 * so that the hardware ignores all write/erase cycles of the NVM via
1569 * the flash control registers. The shadow-ram copy of the NVM will
1570 * still be updated, however any updates to this copy will not stick
1571 * across driver reloads.
1573 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1575 union ich8_flash_protected_range pr0;
1576 union ich8_hws_flash_status hsfsts;
1577 u32 gfpreg;
1578 s32 ret_val;
1580 ret_val = e1000_acquire_swflag_ich8lan(hw);
1581 if (ret_val)
1582 return;
1584 gfpreg = er32flash(ICH_FLASH_GFPREG);
1586 /* Write-protect GbE Sector of NVM */
1587 pr0.regval = er32flash(ICH_FLASH_PR0);
1588 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1589 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1590 pr0.range.wpe = true;
1591 ew32flash(ICH_FLASH_PR0, pr0.regval);
1594 * Lock down a subset of GbE Flash Control Registers, e.g.
1595 * PR0 to prevent the write-protection from being lifted.
1596 * Once FLOCKDN is set, the registers protected by it cannot
1597 * be written until FLOCKDN is cleared by a hardware reset.
1599 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1600 hsfsts.hsf_status.flockdn = true;
1601 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1603 e1000_release_swflag_ich8lan(hw);
1607 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1608 * @hw: pointer to the HW structure
1609 * @offset: The offset (in bytes) of the byte/word to read.
1610 * @size: Size of data to read, 1=byte 2=word
1611 * @data: The byte(s) to write to the NVM.
1613 * Writes one/two bytes to the NVM using the flash access registers.
1615 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1616 u8 size, u16 data)
1618 union ich8_hws_flash_status hsfsts;
1619 union ich8_hws_flash_ctrl hsflctl;
1620 u32 flash_linear_addr;
1621 u32 flash_data = 0;
1622 s32 ret_val;
1623 u8 count = 0;
1625 if (size < 1 || size > 2 || data > size * 0xff ||
1626 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1627 return -E1000_ERR_NVM;
1629 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1630 hw->nvm.flash_base_addr;
1632 do {
1633 udelay(1);
1634 /* Steps */
1635 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1636 if (ret_val)
1637 break;
1639 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1640 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1641 hsflctl.hsf_ctrl.fldbcount = size -1;
1642 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1643 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1645 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1647 if (size == 1)
1648 flash_data = (u32)data & 0x00FF;
1649 else
1650 flash_data = (u32)data;
1652 ew32flash(ICH_FLASH_FDATA0, flash_data);
1655 * check if FCERR is set to 1 , if set to 1, clear it
1656 * and try the whole sequence a few more times else done
1658 ret_val = e1000_flash_cycle_ich8lan(hw,
1659 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1660 if (!ret_val)
1661 break;
1664 * If we're here, then things are most likely
1665 * completely hosed, but if the error condition
1666 * is detected, it won't hurt to give it another
1667 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1669 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1670 if (hsfsts.hsf_status.flcerr == 1)
1671 /* Repeat for some time before giving up. */
1672 continue;
1673 if (hsfsts.hsf_status.flcdone == 0) {
1674 hw_dbg(hw, "Timeout error - flash cycle "
1675 "did not complete.");
1676 break;
1678 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1680 return ret_val;
1684 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1685 * @hw: pointer to the HW structure
1686 * @offset: The index of the byte to read.
1687 * @data: The byte to write to the NVM.
1689 * Writes a single byte to the NVM using the flash access registers.
1691 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1692 u8 data)
1694 u16 word = (u16)data;
1696 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1700 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1701 * @hw: pointer to the HW structure
1702 * @offset: The offset of the byte to write.
1703 * @byte: The byte to write to the NVM.
1705 * Writes a single byte to the NVM using the flash access registers.
1706 * Goes through a retry algorithm before giving up.
1708 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1709 u32 offset, u8 byte)
1711 s32 ret_val;
1712 u16 program_retries;
1714 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1715 if (!ret_val)
1716 return ret_val;
1718 for (program_retries = 0; program_retries < 100; program_retries++) {
1719 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1720 udelay(100);
1721 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1722 if (!ret_val)
1723 break;
1725 if (program_retries == 100)
1726 return -E1000_ERR_NVM;
1728 return 0;
1732 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1733 * @hw: pointer to the HW structure
1734 * @bank: 0 for first bank, 1 for second bank, etc.
1736 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1737 * bank N is 4096 * N + flash_reg_addr.
1739 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1741 struct e1000_nvm_info *nvm = &hw->nvm;
1742 union ich8_hws_flash_status hsfsts;
1743 union ich8_hws_flash_ctrl hsflctl;
1744 u32 flash_linear_addr;
1745 /* bank size is in 16bit words - adjust to bytes */
1746 u32 flash_bank_size = nvm->flash_bank_size * 2;
1747 s32 ret_val;
1748 s32 count = 0;
1749 s32 iteration;
1750 s32 sector_size;
1751 s32 j;
1753 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1756 * Determine HW Sector size: Read BERASE bits of hw flash status
1757 * register
1758 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1759 * consecutive sectors. The start index for the nth Hw sector
1760 * can be calculated as = bank * 4096 + n * 256
1761 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1762 * The start index for the nth Hw sector can be calculated
1763 * as = bank * 4096
1764 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1765 * (ich9 only, otherwise error condition)
1766 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1768 switch (hsfsts.hsf_status.berasesz) {
1769 case 0:
1770 /* Hw sector size 256 */
1771 sector_size = ICH_FLASH_SEG_SIZE_256;
1772 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1773 break;
1774 case 1:
1775 sector_size = ICH_FLASH_SEG_SIZE_4K;
1776 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1777 break;
1778 case 2:
1779 if (hw->mac.type == e1000_ich9lan) {
1780 sector_size = ICH_FLASH_SEG_SIZE_8K;
1781 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1782 } else {
1783 return -E1000_ERR_NVM;
1785 break;
1786 case 3:
1787 sector_size = ICH_FLASH_SEG_SIZE_64K;
1788 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1789 break;
1790 default:
1791 return -E1000_ERR_NVM;
1794 /* Start with the base address, then add the sector offset. */
1795 flash_linear_addr = hw->nvm.flash_base_addr;
1796 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1798 for (j = 0; j < iteration ; j++) {
1799 do {
1800 /* Steps */
1801 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1802 if (ret_val)
1803 return ret_val;
1806 * Write a value 11 (block Erase) in Flash
1807 * Cycle field in hw flash control
1809 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1810 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1811 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1814 * Write the last 24 bits of an index within the
1815 * block into Flash Linear address field in Flash
1816 * Address.
1818 flash_linear_addr += (j * sector_size);
1819 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1821 ret_val = e1000_flash_cycle_ich8lan(hw,
1822 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1823 if (ret_val == 0)
1824 break;
1827 * Check if FCERR is set to 1. If 1,
1828 * clear it and try the whole sequence
1829 * a few more times else Done
1831 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1832 if (hsfsts.hsf_status.flcerr == 1)
1833 /* repeat for some time before giving up */
1834 continue;
1835 else if (hsfsts.hsf_status.flcdone == 0)
1836 return ret_val;
1837 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1840 return 0;
1844 * e1000_valid_led_default_ich8lan - Set the default LED settings
1845 * @hw: pointer to the HW structure
1846 * @data: Pointer to the LED settings
1848 * Reads the LED default settings from the NVM to data. If the NVM LED
1849 * settings is all 0's or F's, set the LED default to a valid LED default
1850 * setting.
1852 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1854 s32 ret_val;
1856 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1857 if (ret_val) {
1858 hw_dbg(hw, "NVM Read Error\n");
1859 return ret_val;
1862 if (*data == ID_LED_RESERVED_0000 ||
1863 *data == ID_LED_RESERVED_FFFF)
1864 *data = ID_LED_DEFAULT_ICH8LAN;
1866 return 0;
1870 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1871 * @hw: pointer to the HW structure
1873 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1874 * register, so the the bus width is hard coded.
1876 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1878 struct e1000_bus_info *bus = &hw->bus;
1879 s32 ret_val;
1881 ret_val = e1000e_get_bus_info_pcie(hw);
1884 * ICH devices are "PCI Express"-ish. They have
1885 * a configuration space, but do not contain
1886 * PCI Express Capability registers, so bus width
1887 * must be hardcoded.
1889 if (bus->width == e1000_bus_width_unknown)
1890 bus->width = e1000_bus_width_pcie_x1;
1892 return ret_val;
1896 * e1000_reset_hw_ich8lan - Reset the hardware
1897 * @hw: pointer to the HW structure
1899 * Does a full reset of the hardware which includes a reset of the PHY and
1900 * MAC.
1902 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1904 u32 ctrl, icr, kab;
1905 s32 ret_val;
1908 * Prevent the PCI-E bus from sticking if there is no TLP connection
1909 * on the last TLP read/write transaction when MAC is reset.
1911 ret_val = e1000e_disable_pcie_master(hw);
1912 if (ret_val) {
1913 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1916 hw_dbg(hw, "Masking off all interrupts\n");
1917 ew32(IMC, 0xffffffff);
1920 * Disable the Transmit and Receive units. Then delay to allow
1921 * any pending transactions to complete before we hit the MAC
1922 * with the global reset.
1924 ew32(RCTL, 0);
1925 ew32(TCTL, E1000_TCTL_PSP);
1926 e1e_flush();
1928 msleep(10);
1930 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1931 if (hw->mac.type == e1000_ich8lan) {
1932 /* Set Tx and Rx buffer allocation to 8k apiece. */
1933 ew32(PBA, E1000_PBA_8K);
1934 /* Set Packet Buffer Size to 16k. */
1935 ew32(PBS, E1000_PBS_16K);
1938 ctrl = er32(CTRL);
1940 if (!e1000_check_reset_block(hw)) {
1942 * PHY HW reset requires MAC CORE reset at the same
1943 * time to make sure the interface between MAC and the
1944 * external PHY is reset.
1946 ctrl |= E1000_CTRL_PHY_RST;
1948 ret_val = e1000_acquire_swflag_ich8lan(hw);
1949 /* Whether or not the swflag was acquired, we need to reset the part */
1950 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
1951 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1952 msleep(20);
1954 if (!ret_val) {
1955 /* release the swflag because it is not reset by
1956 * hardware reset
1958 e1000_release_swflag_ich8lan(hw);
1961 ret_val = e1000e_get_auto_rd_done(hw);
1962 if (ret_val) {
1964 * When auto config read does not complete, do not
1965 * return with an error. This can happen in situations
1966 * where there is no eeprom and prevents getting link.
1968 hw_dbg(hw, "Auto Read Done did not complete\n");
1971 ew32(IMC, 0xffffffff);
1972 icr = er32(ICR);
1974 kab = er32(KABGTXD);
1975 kab |= E1000_KABGTXD_BGSQLBIAS;
1976 ew32(KABGTXD, kab);
1978 return ret_val;
1982 * e1000_init_hw_ich8lan - Initialize the hardware
1983 * @hw: pointer to the HW structure
1985 * Prepares the hardware for transmit and receive by doing the following:
1986 * - initialize hardware bits
1987 * - initialize LED identification
1988 * - setup receive address registers
1989 * - setup flow control
1990 * - setup transmit descriptors
1991 * - clear statistics
1993 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1995 struct e1000_mac_info *mac = &hw->mac;
1996 u32 ctrl_ext, txdctl, snoop;
1997 s32 ret_val;
1998 u16 i;
2000 e1000_initialize_hw_bits_ich8lan(hw);
2002 /* Initialize identification LED */
2003 ret_val = e1000e_id_led_init(hw);
2004 if (ret_val) {
2005 hw_dbg(hw, "Error initializing identification LED\n");
2006 return ret_val;
2009 /* Setup the receive address. */
2010 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2012 /* Zero out the Multicast HASH table */
2013 hw_dbg(hw, "Zeroing the MTA\n");
2014 for (i = 0; i < mac->mta_reg_count; i++)
2015 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2017 /* Setup link and flow control */
2018 ret_val = e1000_setup_link_ich8lan(hw);
2020 /* Set the transmit descriptor write-back policy for both queues */
2021 txdctl = er32(TXDCTL(0));
2022 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2023 E1000_TXDCTL_FULL_TX_DESC_WB;
2024 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2025 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2026 ew32(TXDCTL(0), txdctl);
2027 txdctl = er32(TXDCTL(1));
2028 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2029 E1000_TXDCTL_FULL_TX_DESC_WB;
2030 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2031 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2032 ew32(TXDCTL(1), txdctl);
2035 * ICH8 has opposite polarity of no_snoop bits.
2036 * By default, we should use snoop behavior.
2038 if (mac->type == e1000_ich8lan)
2039 snoop = PCIE_ICH8_SNOOP_ALL;
2040 else
2041 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2042 e1000e_set_pcie_no_snoop(hw, snoop);
2044 ctrl_ext = er32(CTRL_EXT);
2045 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2046 ew32(CTRL_EXT, ctrl_ext);
2049 * Clear all of the statistics registers (clear on read). It is
2050 * important that we do this after we have tried to establish link
2051 * because the symbol error count will increment wildly if there
2052 * is no link.
2054 e1000_clear_hw_cntrs_ich8lan(hw);
2056 return 0;
2059 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2060 * @hw: pointer to the HW structure
2062 * Sets/Clears required hardware bits necessary for correctly setting up the
2063 * hardware for transmit and receive.
2065 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2067 u32 reg;
2069 /* Extended Device Control */
2070 reg = er32(CTRL_EXT);
2071 reg |= (1 << 22);
2072 ew32(CTRL_EXT, reg);
2074 /* Transmit Descriptor Control 0 */
2075 reg = er32(TXDCTL(0));
2076 reg |= (1 << 22);
2077 ew32(TXDCTL(0), reg);
2079 /* Transmit Descriptor Control 1 */
2080 reg = er32(TXDCTL(1));
2081 reg |= (1 << 22);
2082 ew32(TXDCTL(1), reg);
2084 /* Transmit Arbitration Control 0 */
2085 reg = er32(TARC(0));
2086 if (hw->mac.type == e1000_ich8lan)
2087 reg |= (1 << 28) | (1 << 29);
2088 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2089 ew32(TARC(0), reg);
2091 /* Transmit Arbitration Control 1 */
2092 reg = er32(TARC(1));
2093 if (er32(TCTL) & E1000_TCTL_MULR)
2094 reg &= ~(1 << 28);
2095 else
2096 reg |= (1 << 28);
2097 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2098 ew32(TARC(1), reg);
2100 /* Device Status */
2101 if (hw->mac.type == e1000_ich8lan) {
2102 reg = er32(STATUS);
2103 reg &= ~(1 << 31);
2104 ew32(STATUS, reg);
2109 * e1000_setup_link_ich8lan - Setup flow control and link settings
2110 * @hw: pointer to the HW structure
2112 * Determines which flow control settings to use, then configures flow
2113 * control. Calls the appropriate media-specific link configuration
2114 * function. Assuming the adapter has a valid link partner, a valid link
2115 * should be established. Assumes the hardware has previously been reset
2116 * and the transmitter and receiver are not enabled.
2118 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2120 s32 ret_val;
2122 if (e1000_check_reset_block(hw))
2123 return 0;
2126 * ICH parts do not have a word in the NVM to determine
2127 * the default flow control setting, so we explicitly
2128 * set it to full.
2130 if (hw->fc.requested_mode == e1000_fc_default)
2131 hw->fc.requested_mode = e1000_fc_full;
2134 * Save off the requested flow control mode for use later. Depending
2135 * on the link partner's capabilities, we may or may not use this mode.
2137 hw->fc.current_mode = hw->fc.requested_mode;
2139 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2140 hw->fc.current_mode);
2142 /* Continue to configure the copper link. */
2143 ret_val = e1000_setup_copper_link_ich8lan(hw);
2144 if (ret_val)
2145 return ret_val;
2147 ew32(FCTTV, hw->fc.pause_time);
2149 return e1000e_set_fc_watermarks(hw);
2153 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2154 * @hw: pointer to the HW structure
2156 * Configures the kumeran interface to the PHY to wait the appropriate time
2157 * when polling the PHY, then call the generic setup_copper_link to finish
2158 * configuring the copper link.
2160 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2162 u32 ctrl;
2163 s32 ret_val;
2164 u16 reg_data;
2166 ctrl = er32(CTRL);
2167 ctrl |= E1000_CTRL_SLU;
2168 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2169 ew32(CTRL, ctrl);
2172 * Set the mac to wait the maximum time between each iteration
2173 * and increase the max iterations when polling the phy;
2174 * this fixes erroneous timeouts at 10Mbps.
2176 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2177 if (ret_val)
2178 return ret_val;
2179 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2180 if (ret_val)
2181 return ret_val;
2182 reg_data |= 0x3F;
2183 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2184 if (ret_val)
2185 return ret_val;
2187 if (hw->phy.type == e1000_phy_igp_3) {
2188 ret_val = e1000e_copper_link_setup_igp(hw);
2189 if (ret_val)
2190 return ret_val;
2191 } else if (hw->phy.type == e1000_phy_bm) {
2192 ret_val = e1000e_copper_link_setup_m88(hw);
2193 if (ret_val)
2194 return ret_val;
2197 if (hw->phy.type == e1000_phy_ife) {
2198 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2199 if (ret_val)
2200 return ret_val;
2202 reg_data &= ~IFE_PMC_AUTO_MDIX;
2204 switch (hw->phy.mdix) {
2205 case 1:
2206 reg_data &= ~IFE_PMC_FORCE_MDIX;
2207 break;
2208 case 2:
2209 reg_data |= IFE_PMC_FORCE_MDIX;
2210 break;
2211 case 0:
2212 default:
2213 reg_data |= IFE_PMC_AUTO_MDIX;
2214 break;
2216 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2217 if (ret_val)
2218 return ret_val;
2220 return e1000e_setup_copper_link(hw);
2224 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2225 * @hw: pointer to the HW structure
2226 * @speed: pointer to store current link speed
2227 * @duplex: pointer to store the current link duplex
2229 * Calls the generic get_speed_and_duplex to retrieve the current link
2230 * information and then calls the Kumeran lock loss workaround for links at
2231 * gigabit speeds.
2233 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2234 u16 *duplex)
2236 s32 ret_val;
2238 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2239 if (ret_val)
2240 return ret_val;
2242 if ((hw->mac.type == e1000_ich8lan) &&
2243 (hw->phy.type == e1000_phy_igp_3) &&
2244 (*speed == SPEED_1000)) {
2245 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2248 return ret_val;
2252 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2253 * @hw: pointer to the HW structure
2255 * Work-around for 82566 Kumeran PCS lock loss:
2256 * On link status change (i.e. PCI reset, speed change) and link is up and
2257 * speed is gigabit-
2258 * 0) if workaround is optionally disabled do nothing
2259 * 1) wait 1ms for Kumeran link to come up
2260 * 2) check Kumeran Diagnostic register PCS lock loss bit
2261 * 3) if not set the link is locked (all is good), otherwise...
2262 * 4) reset the PHY
2263 * 5) repeat up to 10 times
2264 * Note: this is only called for IGP3 copper when speed is 1gb.
2266 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2268 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2269 u32 phy_ctrl;
2270 s32 ret_val;
2271 u16 i, data;
2272 bool link;
2274 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2275 return 0;
2278 * Make sure link is up before proceeding. If not just return.
2279 * Attempting this while link is negotiating fouled up link
2280 * stability
2282 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2283 if (!link)
2284 return 0;
2286 for (i = 0; i < 10; i++) {
2287 /* read once to clear */
2288 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2289 if (ret_val)
2290 return ret_val;
2291 /* and again to get new status */
2292 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2293 if (ret_val)
2294 return ret_val;
2296 /* check for PCS lock */
2297 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2298 return 0;
2300 /* Issue PHY reset */
2301 e1000_phy_hw_reset(hw);
2302 mdelay(5);
2304 /* Disable GigE link negotiation */
2305 phy_ctrl = er32(PHY_CTRL);
2306 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2307 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2308 ew32(PHY_CTRL, phy_ctrl);
2311 * Call gig speed drop workaround on Gig disable before accessing
2312 * any PHY registers
2314 e1000e_gig_downshift_workaround_ich8lan(hw);
2316 /* unable to acquire PCS lock */
2317 return -E1000_ERR_PHY;
2321 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2322 * @hw: pointer to the HW structure
2323 * @state: boolean value used to set the current Kumeran workaround state
2325 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2326 * /disabled - FALSE).
2328 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2329 bool state)
2331 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2333 if (hw->mac.type != e1000_ich8lan) {
2334 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2335 return;
2338 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2342 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2343 * @hw: pointer to the HW structure
2345 * Workaround for 82566 power-down on D3 entry:
2346 * 1) disable gigabit link
2347 * 2) write VR power-down enable
2348 * 3) read it back
2349 * Continue if successful, else issue LCD reset and repeat
2351 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2353 u32 reg;
2354 u16 data;
2355 u8 retry = 0;
2357 if (hw->phy.type != e1000_phy_igp_3)
2358 return;
2360 /* Try the workaround twice (if needed) */
2361 do {
2362 /* Disable link */
2363 reg = er32(PHY_CTRL);
2364 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2365 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2366 ew32(PHY_CTRL, reg);
2369 * Call gig speed drop workaround on Gig disable before
2370 * accessing any PHY registers
2372 if (hw->mac.type == e1000_ich8lan)
2373 e1000e_gig_downshift_workaround_ich8lan(hw);
2375 /* Write VR power-down enable */
2376 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2377 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2378 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2380 /* Read it back and test */
2381 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2382 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2383 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2384 break;
2386 /* Issue PHY reset and repeat at most one more time */
2387 reg = er32(CTRL);
2388 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2389 retry++;
2390 } while (retry);
2394 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2395 * @hw: pointer to the HW structure
2397 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2398 * LPLU, Gig disable, MDIC PHY reset):
2399 * 1) Set Kumeran Near-end loopback
2400 * 2) Clear Kumeran Near-end loopback
2401 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2403 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2405 s32 ret_val;
2406 u16 reg_data;
2408 if ((hw->mac.type != e1000_ich8lan) ||
2409 (hw->phy.type != e1000_phy_igp_3))
2410 return;
2412 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2413 &reg_data);
2414 if (ret_val)
2415 return;
2416 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2417 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2418 reg_data);
2419 if (ret_val)
2420 return;
2421 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2422 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2423 reg_data);
2427 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2428 * @hw: pointer to the HW structure
2430 * During S0 to Sx transition, it is possible the link remains at gig
2431 * instead of negotiating to a lower speed. Before going to Sx, set
2432 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2433 * to a lower speed.
2435 * Should only be called for ICH9 and ICH10 devices.
2437 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2439 u32 phy_ctrl;
2441 if ((hw->mac.type == e1000_ich10lan) ||
2442 (hw->mac.type == e1000_ich9lan)) {
2443 phy_ctrl = er32(PHY_CTRL);
2444 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2445 E1000_PHY_CTRL_GBE_DISABLE;
2446 ew32(PHY_CTRL, phy_ctrl);
2449 return;
2453 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2454 * @hw: pointer to the HW structure
2456 * Return the LED back to the default configuration.
2458 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2460 if (hw->phy.type == e1000_phy_ife)
2461 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2463 ew32(LEDCTL, hw->mac.ledctl_default);
2464 return 0;
2468 * e1000_led_on_ich8lan - Turn LEDs on
2469 * @hw: pointer to the HW structure
2471 * Turn on the LEDs.
2473 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2475 if (hw->phy.type == e1000_phy_ife)
2476 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2477 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2479 ew32(LEDCTL, hw->mac.ledctl_mode2);
2480 return 0;
2484 * e1000_led_off_ich8lan - Turn LEDs off
2485 * @hw: pointer to the HW structure
2487 * Turn off the LEDs.
2489 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2491 if (hw->phy.type == e1000_phy_ife)
2492 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2493 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2495 ew32(LEDCTL, hw->mac.ledctl_mode1);
2496 return 0;
2500 * e1000_get_cfg_done_ich8lan - Read config done bit
2501 * @hw: pointer to the HW structure
2503 * Read the management control register for the config done bit for
2504 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2505 * to read the config done bit, so an error is *ONLY* logged and returns
2506 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2507 * would not be able to be reset or change link.
2509 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2511 u32 bank = 0;
2513 e1000e_get_cfg_done(hw);
2515 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2516 if (hw->mac.type != e1000_ich10lan) {
2517 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2518 (hw->phy.type == e1000_phy_igp_3)) {
2519 e1000e_phy_init_script_igp3(hw);
2521 } else {
2522 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2523 /* Maybe we should do a basic PHY config */
2524 hw_dbg(hw, "EEPROM not present\n");
2525 return -E1000_ERR_CONFIG;
2529 return 0;
2533 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2534 * @hw: pointer to the HW structure
2536 * Clears hardware counters specific to the silicon family and calls
2537 * clear_hw_cntrs_generic to clear all general purpose counters.
2539 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2541 u32 temp;
2543 e1000e_clear_hw_cntrs_base(hw);
2545 temp = er32(ALGNERRC);
2546 temp = er32(RXERRC);
2547 temp = er32(TNCRS);
2548 temp = er32(CEXTERR);
2549 temp = er32(TSCTC);
2550 temp = er32(TSCTFC);
2552 temp = er32(MGTPRC);
2553 temp = er32(MGTPDC);
2554 temp = er32(MGTPTC);
2556 temp = er32(IAC);
2557 temp = er32(ICRXOC);
2561 static struct e1000_mac_operations ich8_mac_ops = {
2562 .check_mng_mode = e1000_check_mng_mode_ich8lan,
2563 .check_for_link = e1000e_check_for_copper_link,
2564 .cleanup_led = e1000_cleanup_led_ich8lan,
2565 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2566 .get_bus_info = e1000_get_bus_info_ich8lan,
2567 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2568 .led_on = e1000_led_on_ich8lan,
2569 .led_off = e1000_led_off_ich8lan,
2570 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2571 .reset_hw = e1000_reset_hw_ich8lan,
2572 .init_hw = e1000_init_hw_ich8lan,
2573 .setup_link = e1000_setup_link_ich8lan,
2574 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2577 static struct e1000_phy_operations ich8_phy_ops = {
2578 .acquire_phy = e1000_acquire_swflag_ich8lan,
2579 .check_reset_block = e1000_check_reset_block_ich8lan,
2580 .commit_phy = NULL,
2581 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2582 .get_cfg_done = e1000_get_cfg_done_ich8lan,
2583 .get_cable_length = e1000e_get_cable_length_igp_2,
2584 .get_phy_info = e1000_get_phy_info_ich8lan,
2585 .read_phy_reg = e1000e_read_phy_reg_igp,
2586 .release_phy = e1000_release_swflag_ich8lan,
2587 .reset_phy = e1000_phy_hw_reset_ich8lan,
2588 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2589 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2590 .write_phy_reg = e1000e_write_phy_reg_igp,
2593 static struct e1000_nvm_operations ich8_nvm_ops = {
2594 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2595 .read_nvm = e1000_read_nvm_ich8lan,
2596 .release_nvm = e1000_release_swflag_ich8lan,
2597 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2598 .valid_led_default = e1000_valid_led_default_ich8lan,
2599 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2600 .write_nvm = e1000_write_nvm_ich8lan,
2603 struct e1000_info e1000_ich8_info = {
2604 .mac = e1000_ich8lan,
2605 .flags = FLAG_HAS_WOL
2606 | FLAG_IS_ICH
2607 | FLAG_RX_CSUM_ENABLED
2608 | FLAG_HAS_CTRLEXT_ON_LOAD
2609 | FLAG_HAS_AMT
2610 | FLAG_HAS_FLASH
2611 | FLAG_APME_IN_WUC,
2612 .pba = 8,
2613 .get_variants = e1000_get_variants_ich8lan,
2614 .mac_ops = &ich8_mac_ops,
2615 .phy_ops = &ich8_phy_ops,
2616 .nvm_ops = &ich8_nvm_ops,
2619 struct e1000_info e1000_ich9_info = {
2620 .mac = e1000_ich9lan,
2621 .flags = FLAG_HAS_JUMBO_FRAMES
2622 | FLAG_IS_ICH
2623 | FLAG_HAS_WOL
2624 | FLAG_RX_CSUM_ENABLED
2625 | FLAG_HAS_CTRLEXT_ON_LOAD
2626 | FLAG_HAS_AMT
2627 | FLAG_HAS_ERT
2628 | FLAG_HAS_FLASH
2629 | FLAG_APME_IN_WUC,
2630 .pba = 10,
2631 .get_variants = e1000_get_variants_ich8lan,
2632 .mac_ops = &ich8_mac_ops,
2633 .phy_ops = &ich8_phy_ops,
2634 .nvm_ops = &ich8_nvm_ops,
2637 struct e1000_info e1000_ich10_info = {
2638 .mac = e1000_ich10lan,
2639 .flags = FLAG_HAS_JUMBO_FRAMES
2640 | FLAG_IS_ICH
2641 | FLAG_HAS_WOL
2642 | FLAG_RX_CSUM_ENABLED
2643 | FLAG_HAS_CTRLEXT_ON_LOAD
2644 | FLAG_HAS_AMT
2645 | FLAG_HAS_ERT
2646 | FLAG_HAS_FLASH
2647 | FLAG_APME_IN_WUC,
2648 .pba = 10,
2649 .get_variants = e1000_get_variants_ich8lan,
2650 .mac_ops = &ich8_mac_ops,
2651 .phy_ops = &ich8_phy_ops,
2652 .nvm_ops = &ich8_nvm_ops,