added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / md / dm-table.c
blobe8361b191b9b223baef941bfc14212dc052d127f
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
21 #define DM_MSG_PREFIX "table"
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 * The table has always exactly one reference from either mapped_device->map
30 * or hash_cell->new_map. This reference is not counted in table->holders.
31 * A pair of dm_create_table/dm_destroy_table functions is used for table
32 * creation/destruction.
34 * Temporary references from the other code increase table->holders. A pair
35 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 * When the table is about to be destroyed, we wait for table->holders to
38 * drop to zero.
41 struct dm_table {
42 struct mapped_device *md;
43 atomic_t holders;
45 /* btree table */
46 unsigned int depth;
47 unsigned int counts[MAX_DEPTH]; /* in nodes */
48 sector_t *index[MAX_DEPTH];
50 unsigned int num_targets;
51 unsigned int num_allocated;
52 sector_t *highs;
53 struct dm_target *targets;
55 unsigned barriers_supported:1;
58 * Indicates the rw permissions for the new logical
59 * device. This should be a combination of FMODE_READ
60 * and FMODE_WRITE.
62 fmode_t mode;
64 /* a list of devices used by this table */
65 struct list_head devices;
68 * These are optimistic limits taken from all the
69 * targets, some targets will need smaller limits.
71 struct io_restrictions limits;
73 /* events get handed up using this callback */
74 void (*event_fn)(void *);
75 void *event_context;
79 * Similar to ceiling(log_size(n))
81 static unsigned int int_log(unsigned int n, unsigned int base)
83 int result = 0;
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
90 return result;
94 * Returns the minimum that is _not_ zero, unless both are zero.
96 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
99 * Combine two io_restrictions, always taking the lower value.
101 static void combine_restrictions_low(struct io_restrictions *lhs,
102 struct io_restrictions *rhs)
104 lhs->max_sectors =
105 min_not_zero(lhs->max_sectors, rhs->max_sectors);
107 lhs->max_phys_segments =
108 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
110 lhs->max_hw_segments =
111 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
113 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
115 lhs->max_segment_size =
116 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
118 lhs->max_hw_sectors =
119 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
121 lhs->seg_boundary_mask =
122 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
124 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
126 lhs->no_cluster |= rhs->no_cluster;
130 * Calculate the index of the child node of the n'th node k'th key.
132 static inline unsigned int get_child(unsigned int n, unsigned int k)
134 return (n * CHILDREN_PER_NODE) + k;
138 * Return the n'th node of level l from table t.
140 static inline sector_t *get_node(struct dm_table *t,
141 unsigned int l, unsigned int n)
143 return t->index[l] + (n * KEYS_PER_NODE);
147 * Return the highest key that you could lookup from the n'th
148 * node on level l of the btree.
150 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
152 for (; l < t->depth - 1; l++)
153 n = get_child(n, CHILDREN_PER_NODE - 1);
155 if (n >= t->counts[l])
156 return (sector_t) - 1;
158 return get_node(t, l, n)[KEYS_PER_NODE - 1];
162 * Fills in a level of the btree based on the highs of the level
163 * below it.
165 static int setup_btree_index(unsigned int l, struct dm_table *t)
167 unsigned int n, k;
168 sector_t *node;
170 for (n = 0U; n < t->counts[l]; n++) {
171 node = get_node(t, l, n);
173 for (k = 0U; k < KEYS_PER_NODE; k++)
174 node[k] = high(t, l + 1, get_child(n, k));
177 return 0;
180 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
182 unsigned long size;
183 void *addr;
186 * Check that we're not going to overflow.
188 if (nmemb > (ULONG_MAX / elem_size))
189 return NULL;
191 size = nmemb * elem_size;
192 addr = vmalloc(size);
193 if (addr)
194 memset(addr, 0, size);
196 return addr;
200 * highs, and targets are managed as dynamic arrays during a
201 * table load.
203 static int alloc_targets(struct dm_table *t, unsigned int num)
205 sector_t *n_highs;
206 struct dm_target *n_targets;
207 int n = t->num_targets;
210 * Allocate both the target array and offset array at once.
211 * Append an empty entry to catch sectors beyond the end of
212 * the device.
214 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
215 sizeof(sector_t));
216 if (!n_highs)
217 return -ENOMEM;
219 n_targets = (struct dm_target *) (n_highs + num);
221 if (n) {
222 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
223 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
226 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
227 vfree(t->highs);
229 t->num_allocated = num;
230 t->highs = n_highs;
231 t->targets = n_targets;
233 return 0;
236 int dm_table_create(struct dm_table **result, fmode_t mode,
237 unsigned num_targets, struct mapped_device *md)
239 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
241 if (!t)
242 return -ENOMEM;
244 INIT_LIST_HEAD(&t->devices);
245 atomic_set(&t->holders, 0);
246 t->barriers_supported = 1;
248 if (!num_targets)
249 num_targets = KEYS_PER_NODE;
251 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
253 if (alloc_targets(t, num_targets)) {
254 kfree(t);
255 t = NULL;
256 return -ENOMEM;
259 t->mode = mode;
260 t->md = md;
261 *result = t;
262 return 0;
265 static void free_devices(struct list_head *devices)
267 struct list_head *tmp, *next;
269 list_for_each_safe(tmp, next, devices) {
270 struct dm_dev_internal *dd =
271 list_entry(tmp, struct dm_dev_internal, list);
272 kfree(dd);
276 void dm_table_destroy(struct dm_table *t)
278 unsigned int i;
280 while (atomic_read(&t->holders))
281 msleep(1);
282 smp_mb();
284 /* free the indexes (see dm_table_complete) */
285 if (t->depth >= 2)
286 vfree(t->index[t->depth - 2]);
288 /* free the targets */
289 for (i = 0; i < t->num_targets; i++) {
290 struct dm_target *tgt = t->targets + i;
292 if (tgt->type->dtr)
293 tgt->type->dtr(tgt);
295 dm_put_target_type(tgt->type);
298 vfree(t->highs);
300 /* free the device list */
301 if (t->devices.next != &t->devices) {
302 DMWARN("devices still present during destroy: "
303 "dm_table_remove_device calls missing");
305 free_devices(&t->devices);
308 kfree(t);
311 void dm_table_get(struct dm_table *t)
313 atomic_inc(&t->holders);
316 void dm_table_put(struct dm_table *t)
318 if (!t)
319 return;
321 smp_mb__before_atomic_dec();
322 atomic_dec(&t->holders);
326 * Checks to see if we need to extend highs or targets.
328 static inline int check_space(struct dm_table *t)
330 if (t->num_targets >= t->num_allocated)
331 return alloc_targets(t, t->num_allocated * 2);
333 return 0;
337 * See if we've already got a device in the list.
339 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
341 struct dm_dev_internal *dd;
343 list_for_each_entry (dd, l, list)
344 if (dd->dm_dev.bdev->bd_dev == dev)
345 return dd;
347 return NULL;
351 * Open a device so we can use it as a map destination.
353 static int open_dev(struct dm_dev_internal *d, dev_t dev,
354 struct mapped_device *md)
356 static char *_claim_ptr = "I belong to device-mapper";
357 struct block_device *bdev;
359 int r;
361 BUG_ON(d->dm_dev.bdev);
363 bdev = open_by_devnum(dev, d->dm_dev.mode);
364 if (IS_ERR(bdev))
365 return PTR_ERR(bdev);
366 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
367 if (r)
368 blkdev_put(bdev, d->dm_dev.mode);
369 else
370 d->dm_dev.bdev = bdev;
371 return r;
375 * Close a device that we've been using.
377 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
379 if (!d->dm_dev.bdev)
380 return;
382 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
383 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
384 d->dm_dev.bdev = NULL;
388 * If possible, this checks an area of a destination device is valid.
390 static int check_device_area(struct dm_dev_internal *dd, sector_t start,
391 sector_t len)
393 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT;
395 if (!dev_size)
396 return 1;
398 return ((start < dev_size) && (len <= (dev_size - start)));
402 * This upgrades the mode on an already open dm_dev, being
403 * careful to leave things as they were if we fail to reopen the
404 * device and not to touch the existing bdev field in case
405 * it is accessed concurrently inside dm_table_any_congested().
407 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
408 struct mapped_device *md)
410 int r;
411 struct dm_dev_internal dd_new, dd_old;
413 dd_new = dd_old = *dd;
415 dd_new.dm_dev.mode |= new_mode;
416 dd_new.dm_dev.bdev = NULL;
418 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
419 if (r)
420 return r;
422 dd->dm_dev.mode |= new_mode;
423 close_dev(&dd_old, md);
425 return 0;
429 * Add a device to the list, or just increment the usage count if
430 * it's already present.
432 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
433 const char *path, sector_t start, sector_t len,
434 fmode_t mode, struct dm_dev **result)
436 int r;
437 dev_t uninitialized_var(dev);
438 struct dm_dev_internal *dd;
439 unsigned int major, minor;
441 BUG_ON(!t);
443 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
444 /* Extract the major/minor numbers */
445 dev = MKDEV(major, minor);
446 if (MAJOR(dev) != major || MINOR(dev) != minor)
447 return -EOVERFLOW;
448 } else {
449 /* convert the path to a device */
450 struct block_device *bdev = lookup_bdev(path);
452 if (IS_ERR(bdev))
453 return PTR_ERR(bdev);
454 dev = bdev->bd_dev;
455 bdput(bdev);
458 dd = find_device(&t->devices, dev);
459 if (!dd) {
460 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
461 if (!dd)
462 return -ENOMEM;
464 dd->dm_dev.mode = mode;
465 dd->dm_dev.bdev = NULL;
467 if ((r = open_dev(dd, dev, t->md))) {
468 kfree(dd);
469 return r;
472 format_dev_t(dd->dm_dev.name, dev);
474 atomic_set(&dd->count, 0);
475 list_add(&dd->list, &t->devices);
477 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
478 r = upgrade_mode(dd, mode, t->md);
479 if (r)
480 return r;
482 atomic_inc(&dd->count);
484 if (!check_device_area(dd, start, len)) {
485 DMWARN("device %s too small for target", path);
486 dm_put_device(ti, &dd->dm_dev);
487 return -EINVAL;
490 *result = &dd->dm_dev;
492 return 0;
495 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
497 struct request_queue *q = bdev_get_queue(bdev);
498 struct io_restrictions *rs = &ti->limits;
499 char b[BDEVNAME_SIZE];
501 if (unlikely(!q)) {
502 DMWARN("%s: Cannot set limits for nonexistent device %s",
503 dm_device_name(ti->table->md), bdevname(bdev, b));
504 return;
508 * Combine the device limits low.
510 * FIXME: if we move an io_restriction struct
511 * into q this would just be a call to
512 * combine_restrictions_low()
514 rs->max_sectors =
515 min_not_zero(rs->max_sectors, q->max_sectors);
518 * Check if merge fn is supported.
519 * If not we'll force DM to use PAGE_SIZE or
520 * smaller I/O, just to be safe.
523 if (q->merge_bvec_fn && !ti->type->merge)
524 rs->max_sectors =
525 min_not_zero(rs->max_sectors,
526 (unsigned int) (PAGE_SIZE >> 9));
528 rs->max_phys_segments =
529 min_not_zero(rs->max_phys_segments,
530 q->max_phys_segments);
532 rs->max_hw_segments =
533 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
535 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
537 rs->max_segment_size =
538 min_not_zero(rs->max_segment_size, q->max_segment_size);
540 rs->max_hw_sectors =
541 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
543 rs->seg_boundary_mask =
544 min_not_zero(rs->seg_boundary_mask,
545 q->seg_boundary_mask);
547 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
549 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
551 EXPORT_SYMBOL_GPL(dm_set_device_limits);
553 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
554 sector_t len, fmode_t mode, struct dm_dev **result)
556 int r = __table_get_device(ti->table, ti, path,
557 start, len, mode, result);
559 if (!r)
560 dm_set_device_limits(ti, (*result)->bdev);
562 return r;
566 * Decrement a devices use count and remove it if necessary.
568 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
570 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
571 dm_dev);
573 if (atomic_dec_and_test(&dd->count)) {
574 close_dev(dd, ti->table->md);
575 list_del(&dd->list);
576 kfree(dd);
581 * Checks to see if the target joins onto the end of the table.
583 static int adjoin(struct dm_table *table, struct dm_target *ti)
585 struct dm_target *prev;
587 if (!table->num_targets)
588 return !ti->begin;
590 prev = &table->targets[table->num_targets - 1];
591 return (ti->begin == (prev->begin + prev->len));
595 * Used to dynamically allocate the arg array.
597 static char **realloc_argv(unsigned *array_size, char **old_argv)
599 char **argv;
600 unsigned new_size;
602 new_size = *array_size ? *array_size * 2 : 64;
603 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
604 if (argv) {
605 memcpy(argv, old_argv, *array_size * sizeof(*argv));
606 *array_size = new_size;
609 kfree(old_argv);
610 return argv;
614 * Destructively splits up the argument list to pass to ctr.
616 int dm_split_args(int *argc, char ***argvp, char *input)
618 char *start, *end = input, *out, **argv = NULL;
619 unsigned array_size = 0;
621 *argc = 0;
623 if (!input) {
624 *argvp = NULL;
625 return 0;
628 argv = realloc_argv(&array_size, argv);
629 if (!argv)
630 return -ENOMEM;
632 while (1) {
633 start = end;
635 /* Skip whitespace */
636 while (*start && isspace(*start))
637 start++;
639 if (!*start)
640 break; /* success, we hit the end */
642 /* 'out' is used to remove any back-quotes */
643 end = out = start;
644 while (*end) {
645 /* Everything apart from '\0' can be quoted */
646 if (*end == '\\' && *(end + 1)) {
647 *out++ = *(end + 1);
648 end += 2;
649 continue;
652 if (isspace(*end))
653 break; /* end of token */
655 *out++ = *end++;
658 /* have we already filled the array ? */
659 if ((*argc + 1) > array_size) {
660 argv = realloc_argv(&array_size, argv);
661 if (!argv)
662 return -ENOMEM;
665 /* we know this is whitespace */
666 if (*end)
667 end++;
669 /* terminate the string and put it in the array */
670 *out = '\0';
671 argv[*argc] = start;
672 (*argc)++;
675 *argvp = argv;
676 return 0;
679 static void check_for_valid_limits(struct io_restrictions *rs)
681 if (!rs->max_sectors)
682 rs->max_sectors = SAFE_MAX_SECTORS;
683 if (!rs->max_hw_sectors)
684 rs->max_hw_sectors = SAFE_MAX_SECTORS;
685 if (!rs->max_phys_segments)
686 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
687 if (!rs->max_hw_segments)
688 rs->max_hw_segments = MAX_HW_SEGMENTS;
689 if (!rs->hardsect_size)
690 rs->hardsect_size = 1 << SECTOR_SHIFT;
691 if (!rs->max_segment_size)
692 rs->max_segment_size = MAX_SEGMENT_SIZE;
693 if (!rs->seg_boundary_mask)
694 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
695 if (!rs->bounce_pfn)
696 rs->bounce_pfn = -1;
699 int dm_table_add_target(struct dm_table *t, const char *type,
700 sector_t start, sector_t len, char *params)
702 int r = -EINVAL, argc;
703 char **argv;
704 struct dm_target *tgt;
706 if ((r = check_space(t)))
707 return r;
709 tgt = t->targets + t->num_targets;
710 memset(tgt, 0, sizeof(*tgt));
712 if (!len) {
713 DMERR("%s: zero-length target", dm_device_name(t->md));
714 return -EINVAL;
717 tgt->type = dm_get_target_type(type);
718 if (!tgt->type) {
719 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
720 type);
721 return -EINVAL;
724 tgt->table = t;
725 tgt->begin = start;
726 tgt->len = len;
727 tgt->error = "Unknown error";
730 * Does this target adjoin the previous one ?
732 if (!adjoin(t, tgt)) {
733 tgt->error = "Gap in table";
734 r = -EINVAL;
735 goto bad;
738 r = dm_split_args(&argc, &argv, params);
739 if (r) {
740 tgt->error = "couldn't split parameters (insufficient memory)";
741 goto bad;
744 r = tgt->type->ctr(tgt, argc, argv);
745 kfree(argv);
746 if (r)
747 goto bad;
749 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
751 /* FIXME: the plan is to combine high here and then have
752 * the merge fn apply the target level restrictions. */
753 combine_restrictions_low(&t->limits, &tgt->limits);
755 if (!(tgt->type->features & DM_TARGET_SUPPORTS_BARRIERS))
756 t->barriers_supported = 0;
758 return 0;
760 bad:
761 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
762 dm_put_target_type(tgt->type);
763 return r;
766 static int setup_indexes(struct dm_table *t)
768 int i;
769 unsigned int total = 0;
770 sector_t *indexes;
772 /* allocate the space for *all* the indexes */
773 for (i = t->depth - 2; i >= 0; i--) {
774 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
775 total += t->counts[i];
778 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
779 if (!indexes)
780 return -ENOMEM;
782 /* set up internal nodes, bottom-up */
783 for (i = t->depth - 2; i >= 0; i--) {
784 t->index[i] = indexes;
785 indexes += (KEYS_PER_NODE * t->counts[i]);
786 setup_btree_index(i, t);
789 return 0;
793 * Builds the btree to index the map.
795 int dm_table_complete(struct dm_table *t)
797 int r = 0;
798 unsigned int leaf_nodes;
800 check_for_valid_limits(&t->limits);
803 * We only support barriers if there is exactly one underlying device.
805 if (!list_is_singular(&t->devices))
806 t->barriers_supported = 0;
808 /* how many indexes will the btree have ? */
809 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
810 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
812 /* leaf layer has already been set up */
813 t->counts[t->depth - 1] = leaf_nodes;
814 t->index[t->depth - 1] = t->highs;
816 if (t->depth >= 2)
817 r = setup_indexes(t);
819 return r;
822 static DEFINE_MUTEX(_event_lock);
823 void dm_table_event_callback(struct dm_table *t,
824 void (*fn)(void *), void *context)
826 mutex_lock(&_event_lock);
827 t->event_fn = fn;
828 t->event_context = context;
829 mutex_unlock(&_event_lock);
832 void dm_table_event(struct dm_table *t)
835 * You can no longer call dm_table_event() from interrupt
836 * context, use a bottom half instead.
838 BUG_ON(in_interrupt());
840 mutex_lock(&_event_lock);
841 if (t->event_fn)
842 t->event_fn(t->event_context);
843 mutex_unlock(&_event_lock);
846 sector_t dm_table_get_size(struct dm_table *t)
848 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
851 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
853 if (index >= t->num_targets)
854 return NULL;
856 return t->targets + index;
860 * Search the btree for the correct target.
862 * Caller should check returned pointer with dm_target_is_valid()
863 * to trap I/O beyond end of device.
865 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
867 unsigned int l, n = 0, k = 0;
868 sector_t *node;
870 for (l = 0; l < t->depth; l++) {
871 n = get_child(n, k);
872 node = get_node(t, l, n);
874 for (k = 0; k < KEYS_PER_NODE; k++)
875 if (node[k] >= sector)
876 break;
879 return &t->targets[(KEYS_PER_NODE * n) + k];
882 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
885 * Make sure we obey the optimistic sub devices
886 * restrictions.
888 blk_queue_max_sectors(q, t->limits.max_sectors);
889 q->max_phys_segments = t->limits.max_phys_segments;
890 q->max_hw_segments = t->limits.max_hw_segments;
891 q->hardsect_size = t->limits.hardsect_size;
892 q->max_segment_size = t->limits.max_segment_size;
893 q->max_hw_sectors = t->limits.max_hw_sectors;
894 q->seg_boundary_mask = t->limits.seg_boundary_mask;
895 q->bounce_pfn = t->limits.bounce_pfn;
897 if (t->limits.no_cluster)
898 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
899 else
900 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
904 unsigned int dm_table_get_num_targets(struct dm_table *t)
906 return t->num_targets;
909 struct list_head *dm_table_get_devices(struct dm_table *t)
911 return &t->devices;
914 fmode_t dm_table_get_mode(struct dm_table *t)
916 return t->mode;
919 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
921 int i = t->num_targets;
922 struct dm_target *ti = t->targets;
924 while (i--) {
925 if (postsuspend) {
926 if (ti->type->postsuspend)
927 ti->type->postsuspend(ti);
928 } else if (ti->type->presuspend)
929 ti->type->presuspend(ti);
931 ti++;
935 void dm_table_presuspend_targets(struct dm_table *t)
937 if (!t)
938 return;
940 suspend_targets(t, 0);
943 void dm_table_postsuspend_targets(struct dm_table *t)
945 if (!t)
946 return;
948 suspend_targets(t, 1);
951 int dm_table_resume_targets(struct dm_table *t)
953 int i, r = 0;
955 for (i = 0; i < t->num_targets; i++) {
956 struct dm_target *ti = t->targets + i;
958 if (!ti->type->preresume)
959 continue;
961 r = ti->type->preresume(ti);
962 if (r)
963 return r;
966 for (i = 0; i < t->num_targets; i++) {
967 struct dm_target *ti = t->targets + i;
969 if (ti->type->resume)
970 ti->type->resume(ti);
973 return 0;
976 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
978 struct dm_dev_internal *dd;
979 struct list_head *devices = dm_table_get_devices(t);
980 int r = 0;
982 list_for_each_entry(dd, devices, list) {
983 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
984 char b[BDEVNAME_SIZE];
986 if (likely(q))
987 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
988 else
989 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
990 dm_device_name(t->md),
991 bdevname(dd->dm_dev.bdev, b));
994 return r;
997 void dm_table_unplug_all(struct dm_table *t)
999 struct dm_dev_internal *dd;
1000 struct list_head *devices = dm_table_get_devices(t);
1002 list_for_each_entry(dd, devices, list) {
1003 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1004 char b[BDEVNAME_SIZE];
1006 if (likely(q))
1007 blk_unplug(q);
1008 else
1009 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1010 dm_device_name(t->md),
1011 bdevname(dd->dm_dev.bdev, b));
1015 struct mapped_device *dm_table_get_md(struct dm_table *t)
1017 dm_get(t->md);
1019 return t->md;
1022 int dm_table_barrier_ok(struct dm_table *t)
1024 return t->barriers_supported;
1026 EXPORT_SYMBOL(dm_table_barrier_ok);
1028 EXPORT_SYMBOL(dm_vcalloc);
1029 EXPORT_SYMBOL(dm_get_device);
1030 EXPORT_SYMBOL(dm_put_device);
1031 EXPORT_SYMBOL(dm_table_event);
1032 EXPORT_SYMBOL(dm_table_get_size);
1033 EXPORT_SYMBOL(dm_table_get_mode);
1034 EXPORT_SYMBOL(dm_table_get_md);
1035 EXPORT_SYMBOL(dm_table_put);
1036 EXPORT_SYMBOL(dm_table_get);
1037 EXPORT_SYMBOL(dm_table_unplug_all);