added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / drivers / ata / libata-core.c
blobc64ae15e9a03284902f51702f24727aa746eea30
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
67 #include "libata.h"
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops = {
76 .prereset = ata_std_prereset,
77 .postreset = ata_std_postreset,
78 .error_handler = ata_std_error_handler,
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
84 .qc_defer = ata_std_qc_defer,
85 .hardreset = sata_std_hardreset,
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
99 struct workqueue_struct *ata_aux_wq;
101 struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
108 unsigned int lflags;
111 struct ata_force_ent {
112 int port;
113 int device;
114 struct ata_force_param param;
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 static int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 int libata_fua = 0;
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
167 static bool ata_sstatus_online(u32 sstatus)
169 return (sstatus & 0xf) == 0x3;
173 * ata_link_next - link iteration helper
174 * @link: the previous link, NULL to start
175 * @ap: ATA port containing links to iterate
176 * @mode: iteration mode, one of ATA_LITER_*
178 * LOCKING:
179 * Host lock or EH context.
181 * RETURNS:
182 * Pointer to the next link.
184 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
185 enum ata_link_iter_mode mode)
187 BUG_ON(mode != ATA_LITER_EDGE &&
188 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 /* NULL link indicates start of iteration */
191 if (!link)
192 switch (mode) {
193 case ATA_LITER_EDGE:
194 case ATA_LITER_PMP_FIRST:
195 if (sata_pmp_attached(ap))
196 return ap->pmp_link;
197 /* fall through */
198 case ATA_LITER_HOST_FIRST:
199 return &ap->link;
202 /* we just iterated over the host link, what's next? */
203 if (link == &ap->link)
204 switch (mode) {
205 case ATA_LITER_HOST_FIRST:
206 if (sata_pmp_attached(ap))
207 return ap->pmp_link;
208 /* fall through */
209 case ATA_LITER_PMP_FIRST:
210 if (unlikely(ap->slave_link))
211 return ap->slave_link;
212 /* fall through */
213 case ATA_LITER_EDGE:
214 return NULL;
217 /* slave_link excludes PMP */
218 if (unlikely(link == ap->slave_link))
219 return NULL;
221 /* we were over a PMP link */
222 if (++link < ap->pmp_link + ap->nr_pmp_links)
223 return link;
225 if (mode == ATA_LITER_PMP_FIRST)
226 return &ap->link;
228 return NULL;
232 * ata_dev_next - device iteration helper
233 * @dev: the previous device, NULL to start
234 * @link: ATA link containing devices to iterate
235 * @mode: iteration mode, one of ATA_DITER_*
237 * LOCKING:
238 * Host lock or EH context.
240 * RETURNS:
241 * Pointer to the next device.
243 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
244 enum ata_dev_iter_mode mode)
246 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
247 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 /* NULL dev indicates start of iteration */
250 if (!dev)
251 switch (mode) {
252 case ATA_DITER_ENABLED:
253 case ATA_DITER_ALL:
254 dev = link->device;
255 goto check;
256 case ATA_DITER_ENABLED_REVERSE:
257 case ATA_DITER_ALL_REVERSE:
258 dev = link->device + ata_link_max_devices(link) - 1;
259 goto check;
262 next:
263 /* move to the next one */
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 if (++dev < link->device + ata_link_max_devices(link))
268 goto check;
269 return NULL;
270 case ATA_DITER_ENABLED_REVERSE:
271 case ATA_DITER_ALL_REVERSE:
272 if (--dev >= link->device)
273 goto check;
274 return NULL;
277 check:
278 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
279 !ata_dev_enabled(dev))
280 goto next;
281 return dev;
285 * ata_dev_phys_link - find physical link for a device
286 * @dev: ATA device to look up physical link for
288 * Look up physical link which @dev is attached to. Note that
289 * this is different from @dev->link only when @dev is on slave
290 * link. For all other cases, it's the same as @dev->link.
292 * LOCKING:
293 * Don't care.
295 * RETURNS:
296 * Pointer to the found physical link.
298 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 struct ata_port *ap = dev->link->ap;
302 if (!ap->slave_link)
303 return dev->link;
304 if (!dev->devno)
305 return &ap->link;
306 return ap->slave_link;
310 * ata_force_cbl - force cable type according to libata.force
311 * @ap: ATA port of interest
313 * Force cable type according to libata.force and whine about it.
314 * The last entry which has matching port number is used, so it
315 * can be specified as part of device force parameters. For
316 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317 * same effect.
319 * LOCKING:
320 * EH context.
322 void ata_force_cbl(struct ata_port *ap)
324 int i;
326 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 const struct ata_force_ent *fe = &ata_force_tbl[i];
329 if (fe->port != -1 && fe->port != ap->print_id)
330 continue;
332 if (fe->param.cbl == ATA_CBL_NONE)
333 continue;
335 ap->cbl = fe->param.cbl;
336 ata_port_printk(ap, KERN_NOTICE,
337 "FORCE: cable set to %s\n", fe->param.name);
338 return;
343 * ata_force_link_limits - force link limits according to libata.force
344 * @link: ATA link of interest
346 * Force link flags and SATA spd limit according to libata.force
347 * and whine about it. When only the port part is specified
348 * (e.g. 1:), the limit applies to all links connected to both
349 * the host link and all fan-out ports connected via PMP. If the
350 * device part is specified as 0 (e.g. 1.00:), it specifies the
351 * first fan-out link not the host link. Device number 15 always
352 * points to the host link whether PMP is attached or not. If the
353 * controller has slave link, device number 16 points to it.
355 * LOCKING:
356 * EH context.
358 static void ata_force_link_limits(struct ata_link *link)
360 bool did_spd = false;
361 int linkno = link->pmp;
362 int i;
364 if (ata_is_host_link(link))
365 linkno += 15;
367 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
368 const struct ata_force_ent *fe = &ata_force_tbl[i];
370 if (fe->port != -1 && fe->port != link->ap->print_id)
371 continue;
373 if (fe->device != -1 && fe->device != linkno)
374 continue;
376 /* only honor the first spd limit */
377 if (!did_spd && fe->param.spd_limit) {
378 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
379 ata_link_printk(link, KERN_NOTICE,
380 "FORCE: PHY spd limit set to %s\n",
381 fe->param.name);
382 did_spd = true;
385 /* let lflags stack */
386 if (fe->param.lflags) {
387 link->flags |= fe->param.lflags;
388 ata_link_printk(link, KERN_NOTICE,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe->param.lflags, link->flags);
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
403 * LOCKING:
404 * EH context.
406 static void ata_force_xfermask(struct ata_device *dev)
408 int devno = dev->link->pmp + dev->devno;
409 int alt_devno = devno;
410 int i;
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev->link))
414 alt_devno += 15;
416 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 const struct ata_force_ent *fe = &ata_force_tbl[i];
418 unsigned long pio_mask, mwdma_mask, udma_mask;
420 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 continue;
423 if (fe->device != -1 && fe->device != devno &&
424 fe->device != alt_devno)
425 continue;
427 if (!fe->param.xfer_mask)
428 continue;
430 ata_unpack_xfermask(fe->param.xfer_mask,
431 &pio_mask, &mwdma_mask, &udma_mask);
432 if (udma_mask)
433 dev->udma_mask = udma_mask;
434 else if (mwdma_mask) {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = mwdma_mask;
437 } else {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = 0;
440 dev->pio_mask = pio_mask;
443 ata_dev_printk(dev, KERN_NOTICE,
444 "FORCE: xfer_mask set to %s\n", fe->param.name);
445 return;
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
457 * LOCKING:
458 * EH context.
460 static void ata_force_horkage(struct ata_device *dev)
462 int devno = dev->link->pmp + dev->devno;
463 int alt_devno = devno;
464 int i;
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev->link))
468 alt_devno += 15;
470 for (i = 0; i < ata_force_tbl_size; i++) {
471 const struct ata_force_ent *fe = &ata_force_tbl[i];
473 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 continue;
476 if (fe->device != -1 && fe->device != devno &&
477 fe->device != alt_devno)
478 continue;
480 if (!(~dev->horkage & fe->param.horkage_on) &&
481 !(dev->horkage & fe->param.horkage_off))
482 continue;
484 dev->horkage |= fe->param.horkage_on;
485 dev->horkage &= ~fe->param.horkage_off;
487 ata_dev_printk(dev, KERN_NOTICE,
488 "FORCE: horkage modified (%s)\n", fe->param.name);
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
496 * Determine ATAPI command type from @opcode.
498 * LOCKING:
499 * None.
501 * RETURNS:
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 int atapi_cmd_type(u8 opcode)
506 switch (opcode) {
507 case GPCMD_READ_10:
508 case GPCMD_READ_12:
509 return ATAPI_READ;
511 case GPCMD_WRITE_10:
512 case GPCMD_WRITE_12:
513 case GPCMD_WRITE_AND_VERIFY_10:
514 return ATAPI_WRITE;
516 case GPCMD_READ_CD:
517 case GPCMD_READ_CD_MSF:
518 return ATAPI_READ_CD;
520 case ATA_16:
521 case ATA_12:
522 if (atapi_passthru16)
523 return ATAPI_PASS_THRU;
524 /* fall thru */
525 default:
526 return ATAPI_MISC;
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
533 * @pmp: Port multiplier port
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
540 * LOCKING:
541 * Inherited from caller.
543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 fis[0] = 0x27; /* Register - Host to Device FIS */
546 fis[1] = pmp & 0xf; /* Port multiplier number*/
547 if (is_cmd)
548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
553 fis[4] = tf->lbal;
554 fis[5] = tf->lbam;
555 fis[6] = tf->lbah;
556 fis[7] = tf->device;
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
563 fis[12] = tf->nsect;
564 fis[13] = tf->hob_nsect;
565 fis[14] = 0;
566 fis[15] = tf->ctl;
568 fis[16] = 0;
569 fis[17] = 0;
570 fis[18] = 0;
571 fis[19] = 0;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 * LOCKING:
582 * Inherited from caller.
585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 tf->command = fis[2]; /* status */
588 tf->feature = fis[3]; /* error */
590 tf->lbal = fis[4];
591 tf->lbam = fis[5];
592 tf->lbah = fis[6];
593 tf->device = fis[7];
595 tf->hob_lbal = fis[8];
596 tf->hob_lbam = fis[9];
597 tf->hob_lbah = fis[10];
599 tf->nsect = fis[12];
600 tf->hob_nsect = fis[13];
603 static const u8 ata_rw_cmds[] = {
604 /* pio multi */
605 ATA_CMD_READ_MULTI,
606 ATA_CMD_WRITE_MULTI,
607 ATA_CMD_READ_MULTI_EXT,
608 ATA_CMD_WRITE_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_FUA_EXT,
613 /* pio */
614 ATA_CMD_PIO_READ,
615 ATA_CMD_PIO_WRITE,
616 ATA_CMD_PIO_READ_EXT,
617 ATA_CMD_PIO_WRITE_EXT,
622 /* dma */
623 ATA_CMD_READ,
624 ATA_CMD_WRITE,
625 ATA_CMD_READ_EXT,
626 ATA_CMD_WRITE_EXT,
630 ATA_CMD_WRITE_FUA_EXT
634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
638 * Examine the device configuration and tf->flags to calculate
639 * the proper read/write commands and protocol to use.
641 * LOCKING:
642 * caller.
644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 u8 cmd;
648 int index, fua, lba48, write;
650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 if (dev->flags & ATA_DFLAG_PIO) {
655 tf->protocol = ATA_PROT_PIO;
656 index = dev->multi_count ? 0 : 8;
657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 /* Unable to use DMA due to host limitation */
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else {
662 tf->protocol = ATA_PROT_DMA;
663 index = 16;
666 cmd = ata_rw_cmds[index + fua + lba48 + write];
667 if (cmd) {
668 tf->command = cmd;
669 return 0;
671 return -1;
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
679 * LOCKING:
680 * None.
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
686 * RETURNS:
687 * Block address read from @tf.
689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 u64 block = 0;
693 if (tf->flags & ATA_TFLAG_LBA) {
694 if (tf->flags & ATA_TFLAG_LBA48) {
695 block |= (u64)tf->hob_lbah << 40;
696 block |= (u64)tf->hob_lbam << 32;
697 block |= (u64)tf->hob_lbal << 24;
698 } else
699 block |= (tf->device & 0xf) << 24;
701 block |= tf->lbah << 16;
702 block |= tf->lbam << 8;
703 block |= tf->lbal;
704 } else {
705 u32 cyl, head, sect;
707 cyl = tf->lbam | (tf->lbah << 8);
708 head = tf->device & 0xf;
709 sect = tf->lbal;
711 block = (cyl * dev->heads + head) * dev->sectors + sect;
714 return block;
718 * ata_build_rw_tf - Build ATA taskfile for given read/write request
719 * @tf: Target ATA taskfile
720 * @dev: ATA device @tf belongs to
721 * @block: Block address
722 * @n_block: Number of blocks
723 * @tf_flags: RW/FUA etc...
724 * @tag: tag
726 * LOCKING:
727 * None.
729 * Build ATA taskfile @tf for read/write request described by
730 * @block, @n_block, @tf_flags and @tag on @dev.
732 * RETURNS:
734 * 0 on success, -ERANGE if the request is too large for @dev,
735 * -EINVAL if the request is invalid.
737 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
738 u64 block, u32 n_block, unsigned int tf_flags,
739 unsigned int tag)
741 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
742 tf->flags |= tf_flags;
744 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
745 /* yay, NCQ */
746 if (!lba_48_ok(block, n_block))
747 return -ERANGE;
749 tf->protocol = ATA_PROT_NCQ;
750 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752 if (tf->flags & ATA_TFLAG_WRITE)
753 tf->command = ATA_CMD_FPDMA_WRITE;
754 else
755 tf->command = ATA_CMD_FPDMA_READ;
757 tf->nsect = tag << 3;
758 tf->hob_feature = (n_block >> 8) & 0xff;
759 tf->feature = n_block & 0xff;
761 tf->hob_lbah = (block >> 40) & 0xff;
762 tf->hob_lbam = (block >> 32) & 0xff;
763 tf->hob_lbal = (block >> 24) & 0xff;
764 tf->lbah = (block >> 16) & 0xff;
765 tf->lbam = (block >> 8) & 0xff;
766 tf->lbal = block & 0xff;
768 tf->device = 1 << 6;
769 if (tf->flags & ATA_TFLAG_FUA)
770 tf->device |= 1 << 7;
771 } else if (dev->flags & ATA_DFLAG_LBA) {
772 tf->flags |= ATA_TFLAG_LBA;
774 if (lba_28_ok(block, n_block)) {
775 /* use LBA28 */
776 tf->device |= (block >> 24) & 0xf;
777 } else if (lba_48_ok(block, n_block)) {
778 if (!(dev->flags & ATA_DFLAG_LBA48))
779 return -ERANGE;
781 /* use LBA48 */
782 tf->flags |= ATA_TFLAG_LBA48;
784 tf->hob_nsect = (n_block >> 8) & 0xff;
786 tf->hob_lbah = (block >> 40) & 0xff;
787 tf->hob_lbam = (block >> 32) & 0xff;
788 tf->hob_lbal = (block >> 24) & 0xff;
789 } else
790 /* request too large even for LBA48 */
791 return -ERANGE;
793 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
794 return -EINVAL;
796 tf->nsect = n_block & 0xff;
798 tf->lbah = (block >> 16) & 0xff;
799 tf->lbam = (block >> 8) & 0xff;
800 tf->lbal = block & 0xff;
802 tf->device |= ATA_LBA;
803 } else {
804 /* CHS */
805 u32 sect, head, cyl, track;
807 /* The request -may- be too large for CHS addressing. */
808 if (!lba_28_ok(block, n_block))
809 return -ERANGE;
811 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
812 return -EINVAL;
814 /* Convert LBA to CHS */
815 track = (u32)block / dev->sectors;
816 cyl = track / dev->heads;
817 head = track % dev->heads;
818 sect = (u32)block % dev->sectors + 1;
820 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 (u32)block, track, cyl, head, sect);
823 /* Check whether the converted CHS can fit.
824 Cylinder: 0-65535
825 Head: 0-15
826 Sector: 1-255*/
827 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
828 return -ERANGE;
830 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
831 tf->lbal = sect;
832 tf->lbam = cyl;
833 tf->lbah = cyl >> 8;
834 tf->device |= head;
837 return 0;
841 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842 * @pio_mask: pio_mask
843 * @mwdma_mask: mwdma_mask
844 * @udma_mask: udma_mask
846 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847 * unsigned int xfer_mask.
849 * LOCKING:
850 * None.
852 * RETURNS:
853 * Packed xfer_mask.
855 unsigned long ata_pack_xfermask(unsigned long pio_mask,
856 unsigned long mwdma_mask,
857 unsigned long udma_mask)
859 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
860 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
861 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866 * @xfer_mask: xfer_mask to unpack
867 * @pio_mask: resulting pio_mask
868 * @mwdma_mask: resulting mwdma_mask
869 * @udma_mask: resulting udma_mask
871 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872 * Any NULL distination masks will be ignored.
874 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
875 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 if (pio_mask)
878 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
879 if (mwdma_mask)
880 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
881 if (udma_mask)
882 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
885 static const struct ata_xfer_ent {
886 int shift, bits;
887 u8 base;
888 } ata_xfer_tbl[] = {
889 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
890 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
891 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
892 { -1, },
896 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897 * @xfer_mask: xfer_mask of interest
899 * Return matching XFER_* value for @xfer_mask. Only the highest
900 * bit of @xfer_mask is considered.
902 * LOCKING:
903 * None.
905 * RETURNS:
906 * Matching XFER_* value, 0xff if no match found.
908 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 int highbit = fls(xfer_mask) - 1;
911 const struct ata_xfer_ent *ent;
913 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
914 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
915 return ent->base + highbit - ent->shift;
916 return 0xff;
920 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921 * @xfer_mode: XFER_* of interest
923 * Return matching xfer_mask for @xfer_mode.
925 * LOCKING:
926 * None.
928 * RETURNS:
929 * Matching xfer_mask, 0 if no match found.
931 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 const struct ata_xfer_ent *ent;
935 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
936 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
937 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
938 & ~((1 << ent->shift) - 1);
939 return 0;
943 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944 * @xfer_mode: XFER_* of interest
946 * Return matching xfer_shift for @xfer_mode.
948 * LOCKING:
949 * None.
951 * RETURNS:
952 * Matching xfer_shift, -1 if no match found.
954 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 const struct ata_xfer_ent *ent;
958 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
960 return ent->shift;
961 return -1;
965 * ata_mode_string - convert xfer_mask to string
966 * @xfer_mask: mask of bits supported; only highest bit counts.
968 * Determine string which represents the highest speed
969 * (highest bit in @modemask).
971 * LOCKING:
972 * None.
974 * RETURNS:
975 * Constant C string representing highest speed listed in
976 * @mode_mask, or the constant C string "<n/a>".
978 const char *ata_mode_string(unsigned long xfer_mask)
980 static const char * const xfer_mode_str[] = {
981 "PIO0",
982 "PIO1",
983 "PIO2",
984 "PIO3",
985 "PIO4",
986 "PIO5",
987 "PIO6",
988 "MWDMA0",
989 "MWDMA1",
990 "MWDMA2",
991 "MWDMA3",
992 "MWDMA4",
993 "UDMA/16",
994 "UDMA/25",
995 "UDMA/33",
996 "UDMA/44",
997 "UDMA/66",
998 "UDMA/100",
999 "UDMA/133",
1000 "UDMA7",
1002 int highbit;
1004 highbit = fls(xfer_mask) - 1;
1005 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1006 return xfer_mode_str[highbit];
1007 return "<n/a>";
1010 static const char *sata_spd_string(unsigned int spd)
1012 static const char * const spd_str[] = {
1013 "1.5 Gbps",
1014 "3.0 Gbps",
1015 "6.0 Gbps",
1018 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1019 return "<unknown>";
1020 return spd_str[spd - 1];
1023 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 struct ata_link *link = dev->link;
1026 struct ata_port *ap = link->ap;
1027 u32 scontrol;
1028 unsigned int err_mask;
1029 int rc;
1032 * disallow DIPM for drivers which haven't set
1033 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1034 * phy ready will be set in the interrupt status on
1035 * state changes, which will cause some drivers to
1036 * think there are errors - additionally drivers will
1037 * need to disable hot plug.
1039 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1040 ap->pm_policy = NOT_AVAILABLE;
1041 return -EINVAL;
1045 * For DIPM, we will only enable it for the
1046 * min_power setting.
1048 * Why? Because Disks are too stupid to know that
1049 * If the host rejects a request to go to SLUMBER
1050 * they should retry at PARTIAL, and instead it
1051 * just would give up. So, for medium_power to
1052 * work at all, we need to only allow HIPM.
1054 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1055 if (rc)
1056 return rc;
1058 switch (policy) {
1059 case MIN_POWER:
1060 /* no restrictions on IPM transitions */
1061 scontrol &= ~(0x3 << 8);
1062 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1063 if (rc)
1064 return rc;
1066 /* enable DIPM */
1067 if (dev->flags & ATA_DFLAG_DIPM)
1068 err_mask = ata_dev_set_feature(dev,
1069 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1070 break;
1071 case MEDIUM_POWER:
1072 /* allow IPM to PARTIAL */
1073 scontrol &= ~(0x1 << 8);
1074 scontrol |= (0x2 << 8);
1075 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1076 if (rc)
1077 return rc;
1080 * we don't have to disable DIPM since IPM flags
1081 * disallow transitions to SLUMBER, which effectively
1082 * disable DIPM if it does not support PARTIAL
1084 break;
1085 case NOT_AVAILABLE:
1086 case MAX_PERFORMANCE:
1087 /* disable all IPM transitions */
1088 scontrol |= (0x3 << 8);
1089 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1090 if (rc)
1091 return rc;
1094 * we don't have to disable DIPM since IPM flags
1095 * disallow all transitions which effectively
1096 * disable DIPM anyway.
1098 break;
1101 /* FIXME: handle SET FEATURES failure */
1102 (void) err_mask;
1104 return 0;
1108 * ata_dev_enable_pm - enable SATA interface power management
1109 * @dev: device to enable power management
1110 * @policy: the link power management policy
1112 * Enable SATA Interface power management. This will enable
1113 * Device Interface Power Management (DIPM) for min_power
1114 * policy, and then call driver specific callbacks for
1115 * enabling Host Initiated Power management.
1117 * Locking: Caller.
1118 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 int rc = 0;
1123 struct ata_port *ap = dev->link->ap;
1125 /* set HIPM first, then DIPM */
1126 if (ap->ops->enable_pm)
1127 rc = ap->ops->enable_pm(ap, policy);
1128 if (rc)
1129 goto enable_pm_out;
1130 rc = ata_dev_set_dipm(dev, policy);
1132 enable_pm_out:
1133 if (rc)
1134 ap->pm_policy = MAX_PERFORMANCE;
1135 else
1136 ap->pm_policy = policy;
1137 return /* rc */; /* hopefully we can use 'rc' eventually */
1140 #ifdef CONFIG_PM
1142 * ata_dev_disable_pm - disable SATA interface power management
1143 * @dev: device to disable power management
1145 * Disable SATA Interface power management. This will disable
1146 * Device Interface Power Management (DIPM) without changing
1147 * policy, call driver specific callbacks for disabling Host
1148 * Initiated Power management.
1150 * Locking: Caller.
1151 * Returns: void
1153 static void ata_dev_disable_pm(struct ata_device *dev)
1155 struct ata_port *ap = dev->link->ap;
1157 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1158 if (ap->ops->disable_pm)
1159 ap->ops->disable_pm(ap);
1161 #endif /* CONFIG_PM */
1163 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 ap->pm_policy = policy;
1166 ap->link.eh_info.action |= ATA_EH_LPM;
1167 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1168 ata_port_schedule_eh(ap);
1171 #ifdef CONFIG_PM
1172 static void ata_lpm_enable(struct ata_host *host)
1174 struct ata_link *link;
1175 struct ata_port *ap;
1176 struct ata_device *dev;
1177 int i;
1179 for (i = 0; i < host->n_ports; i++) {
1180 ap = host->ports[i];
1181 ata_for_each_link(link, ap, EDGE) {
1182 ata_for_each_dev(dev, link, ALL)
1183 ata_dev_disable_pm(dev);
1188 static void ata_lpm_disable(struct ata_host *host)
1190 int i;
1192 for (i = 0; i < host->n_ports; i++) {
1193 struct ata_port *ap = host->ports[i];
1194 ata_lpm_schedule(ap, ap->pm_policy);
1197 #endif /* CONFIG_PM */
1200 * ata_dev_classify - determine device type based on ATA-spec signature
1201 * @tf: ATA taskfile register set for device to be identified
1203 * Determine from taskfile register contents whether a device is
1204 * ATA or ATAPI, as per "Signature and persistence" section
1205 * of ATA/PI spec (volume 1, sect 5.14).
1207 * LOCKING:
1208 * None.
1210 * RETURNS:
1211 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212 * %ATA_DEV_UNKNOWN the event of failure.
1214 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 /* Apple's open source Darwin code hints that some devices only
1217 * put a proper signature into the LBA mid/high registers,
1218 * So, we only check those. It's sufficient for uniqueness.
1220 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1223 * spec has never mentioned about using different signatures
1224 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1225 * Multiplier specification began to use 0x69/0x96 to identify
1226 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 * 0x69/0x96 shortly and described them as reserved for
1229 * SerialATA.
1231 * We follow the current spec and consider that 0x69/0x96
1232 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1235 DPRINTK("found ATA device by sig\n");
1236 return ATA_DEV_ATA;
1239 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1240 DPRINTK("found ATAPI device by sig\n");
1241 return ATA_DEV_ATAPI;
1244 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1245 DPRINTK("found PMP device by sig\n");
1246 return ATA_DEV_PMP;
1249 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1250 printk(KERN_INFO "ata: SEMB device ignored\n");
1251 return ATA_DEV_SEMB_UNSUP; /* not yet */
1254 DPRINTK("unknown device\n");
1255 return ATA_DEV_UNKNOWN;
1259 * ata_id_string - Convert IDENTIFY DEVICE page into string
1260 * @id: IDENTIFY DEVICE results we will examine
1261 * @s: string into which data is output
1262 * @ofs: offset into identify device page
1263 * @len: length of string to return. must be an even number.
1265 * The strings in the IDENTIFY DEVICE page are broken up into
1266 * 16-bit chunks. Run through the string, and output each
1267 * 8-bit chunk linearly, regardless of platform.
1269 * LOCKING:
1270 * caller.
1273 void ata_id_string(const u16 *id, unsigned char *s,
1274 unsigned int ofs, unsigned int len)
1276 unsigned int c;
1278 BUG_ON(len & 1);
1280 while (len > 0) {
1281 c = id[ofs] >> 8;
1282 *s = c;
1283 s++;
1285 c = id[ofs] & 0xff;
1286 *s = c;
1287 s++;
1289 ofs++;
1290 len -= 2;
1295 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1296 * @id: IDENTIFY DEVICE results we will examine
1297 * @s: string into which data is output
1298 * @ofs: offset into identify device page
1299 * @len: length of string to return. must be an odd number.
1301 * This function is identical to ata_id_string except that it
1302 * trims trailing spaces and terminates the resulting string with
1303 * null. @len must be actual maximum length (even number) + 1.
1305 * LOCKING:
1306 * caller.
1308 void ata_id_c_string(const u16 *id, unsigned char *s,
1309 unsigned int ofs, unsigned int len)
1311 unsigned char *p;
1313 ata_id_string(id, s, ofs, len - 1);
1315 p = s + strnlen(s, len - 1);
1316 while (p > s && p[-1] == ' ')
1317 p--;
1318 *p = '\0';
1321 static u64 ata_id_n_sectors(const u16 *id)
1323 if (ata_id_has_lba(id)) {
1324 if (ata_id_has_lba48(id))
1325 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1326 else
1327 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1328 } else {
1329 if (ata_id_current_chs_valid(id))
1330 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1331 id[ATA_ID_CUR_SECTORS];
1332 else
1333 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1334 id[ATA_ID_SECTORS];
1338 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1340 u64 sectors = 0;
1342 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1343 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1344 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1345 sectors |= (tf->lbah & 0xff) << 16;
1346 sectors |= (tf->lbam & 0xff) << 8;
1347 sectors |= (tf->lbal & 0xff);
1349 return sectors;
1352 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1354 u64 sectors = 0;
1356 sectors |= (tf->device & 0x0f) << 24;
1357 sectors |= (tf->lbah & 0xff) << 16;
1358 sectors |= (tf->lbam & 0xff) << 8;
1359 sectors |= (tf->lbal & 0xff);
1361 return sectors;
1365 * ata_read_native_max_address - Read native max address
1366 * @dev: target device
1367 * @max_sectors: out parameter for the result native max address
1369 * Perform an LBA48 or LBA28 native size query upon the device in
1370 * question.
1372 * RETURNS:
1373 * 0 on success, -EACCES if command is aborted by the drive.
1374 * -EIO on other errors.
1376 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1378 unsigned int err_mask;
1379 struct ata_taskfile tf;
1380 int lba48 = ata_id_has_lba48(dev->id);
1382 ata_tf_init(dev, &tf);
1384 /* always clear all address registers */
1385 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1387 if (lba48) {
1388 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1389 tf.flags |= ATA_TFLAG_LBA48;
1390 } else
1391 tf.command = ATA_CMD_READ_NATIVE_MAX;
1393 tf.protocol |= ATA_PROT_NODATA;
1394 tf.device |= ATA_LBA;
1396 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1397 if (err_mask) {
1398 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1399 "max address (err_mask=0x%x)\n", err_mask);
1400 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1401 return -EACCES;
1402 return -EIO;
1405 if (lba48)
1406 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1407 else
1408 *max_sectors = ata_tf_to_lba(&tf) + 1;
1409 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1410 (*max_sectors)--;
1411 return 0;
1415 * ata_set_max_sectors - Set max sectors
1416 * @dev: target device
1417 * @new_sectors: new max sectors value to set for the device
1419 * Set max sectors of @dev to @new_sectors.
1421 * RETURNS:
1422 * 0 on success, -EACCES if command is aborted or denied (due to
1423 * previous non-volatile SET_MAX) by the drive. -EIO on other
1424 * errors.
1426 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1428 unsigned int err_mask;
1429 struct ata_taskfile tf;
1430 int lba48 = ata_id_has_lba48(dev->id);
1432 new_sectors--;
1434 ata_tf_init(dev, &tf);
1436 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1438 if (lba48) {
1439 tf.command = ATA_CMD_SET_MAX_EXT;
1440 tf.flags |= ATA_TFLAG_LBA48;
1442 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1443 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1444 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1445 } else {
1446 tf.command = ATA_CMD_SET_MAX;
1448 tf.device |= (new_sectors >> 24) & 0xf;
1451 tf.protocol |= ATA_PROT_NODATA;
1452 tf.device |= ATA_LBA;
1454 tf.lbal = (new_sectors >> 0) & 0xff;
1455 tf.lbam = (new_sectors >> 8) & 0xff;
1456 tf.lbah = (new_sectors >> 16) & 0xff;
1458 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1459 if (err_mask) {
1460 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1461 "max address (err_mask=0x%x)\n", err_mask);
1462 if (err_mask == AC_ERR_DEV &&
1463 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1464 return -EACCES;
1465 return -EIO;
1468 return 0;
1472 * ata_hpa_resize - Resize a device with an HPA set
1473 * @dev: Device to resize
1475 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1476 * it if required to the full size of the media. The caller must check
1477 * the drive has the HPA feature set enabled.
1479 * RETURNS:
1480 * 0 on success, -errno on failure.
1482 static int ata_hpa_resize(struct ata_device *dev)
1484 struct ata_eh_context *ehc = &dev->link->eh_context;
1485 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1486 u64 sectors = ata_id_n_sectors(dev->id);
1487 u64 uninitialized_var(native_sectors);
1488 int rc;
1490 /* do we need to do it? */
1491 if (dev->class != ATA_DEV_ATA ||
1492 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1493 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1494 return 0;
1496 /* read native max address */
1497 rc = ata_read_native_max_address(dev, &native_sectors);
1498 if (rc) {
1499 /* If device aborted the command or HPA isn't going to
1500 * be unlocked, skip HPA resizing.
1502 if (rc == -EACCES || !ata_ignore_hpa) {
1503 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1504 "broken, skipping HPA handling\n");
1505 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1507 /* we can continue if device aborted the command */
1508 if (rc == -EACCES)
1509 rc = 0;
1512 return rc;
1515 /* nothing to do? */
1516 if (native_sectors <= sectors || !ata_ignore_hpa) {
1517 if (!print_info || native_sectors == sectors)
1518 return 0;
1520 if (native_sectors > sectors)
1521 ata_dev_printk(dev, KERN_INFO,
1522 "HPA detected: current %llu, native %llu\n",
1523 (unsigned long long)sectors,
1524 (unsigned long long)native_sectors);
1525 else if (native_sectors < sectors)
1526 ata_dev_printk(dev, KERN_WARNING,
1527 "native sectors (%llu) is smaller than "
1528 "sectors (%llu)\n",
1529 (unsigned long long)native_sectors,
1530 (unsigned long long)sectors);
1531 return 0;
1534 /* let's unlock HPA */
1535 rc = ata_set_max_sectors(dev, native_sectors);
1536 if (rc == -EACCES) {
1537 /* if device aborted the command, skip HPA resizing */
1538 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1539 "(%llu -> %llu), skipping HPA handling\n",
1540 (unsigned long long)sectors,
1541 (unsigned long long)native_sectors);
1542 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1543 return 0;
1544 } else if (rc)
1545 return rc;
1547 /* re-read IDENTIFY data */
1548 rc = ata_dev_reread_id(dev, 0);
1549 if (rc) {
1550 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1551 "data after HPA resizing\n");
1552 return rc;
1555 if (print_info) {
1556 u64 new_sectors = ata_id_n_sectors(dev->id);
1557 ata_dev_printk(dev, KERN_INFO,
1558 "HPA unlocked: %llu -> %llu, native %llu\n",
1559 (unsigned long long)sectors,
1560 (unsigned long long)new_sectors,
1561 (unsigned long long)native_sectors);
1564 return 0;
1568 * ata_dump_id - IDENTIFY DEVICE info debugging output
1569 * @id: IDENTIFY DEVICE page to dump
1571 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1572 * page.
1574 * LOCKING:
1575 * caller.
1578 static inline void ata_dump_id(const u16 *id)
1580 DPRINTK("49==0x%04x "
1581 "53==0x%04x "
1582 "63==0x%04x "
1583 "64==0x%04x "
1584 "75==0x%04x \n",
1585 id[49],
1586 id[53],
1587 id[63],
1588 id[64],
1589 id[75]);
1590 DPRINTK("80==0x%04x "
1591 "81==0x%04x "
1592 "82==0x%04x "
1593 "83==0x%04x "
1594 "84==0x%04x \n",
1595 id[80],
1596 id[81],
1597 id[82],
1598 id[83],
1599 id[84]);
1600 DPRINTK("88==0x%04x "
1601 "93==0x%04x\n",
1602 id[88],
1603 id[93]);
1607 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1608 * @id: IDENTIFY data to compute xfer mask from
1610 * Compute the xfermask for this device. This is not as trivial
1611 * as it seems if we must consider early devices correctly.
1613 * FIXME: pre IDE drive timing (do we care ?).
1615 * LOCKING:
1616 * None.
1618 * RETURNS:
1619 * Computed xfermask
1621 unsigned long ata_id_xfermask(const u16 *id)
1623 unsigned long pio_mask, mwdma_mask, udma_mask;
1625 /* Usual case. Word 53 indicates word 64 is valid */
1626 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1627 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1628 pio_mask <<= 3;
1629 pio_mask |= 0x7;
1630 } else {
1631 /* If word 64 isn't valid then Word 51 high byte holds
1632 * the PIO timing number for the maximum. Turn it into
1633 * a mask.
1635 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1636 if (mode < 5) /* Valid PIO range */
1637 pio_mask = (2 << mode) - 1;
1638 else
1639 pio_mask = 1;
1641 /* But wait.. there's more. Design your standards by
1642 * committee and you too can get a free iordy field to
1643 * process. However its the speeds not the modes that
1644 * are supported... Note drivers using the timing API
1645 * will get this right anyway
1649 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1651 if (ata_id_is_cfa(id)) {
1653 * Process compact flash extended modes
1655 int pio = id[163] & 0x7;
1656 int dma = (id[163] >> 3) & 7;
1658 if (pio)
1659 pio_mask |= (1 << 5);
1660 if (pio > 1)
1661 pio_mask |= (1 << 6);
1662 if (dma)
1663 mwdma_mask |= (1 << 3);
1664 if (dma > 1)
1665 mwdma_mask |= (1 << 4);
1668 udma_mask = 0;
1669 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1670 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1672 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1676 * ata_pio_queue_task - Queue port_task
1677 * @ap: The ata_port to queue port_task for
1678 * @data: data for @fn to use
1679 * @delay: delay time in msecs for workqueue function
1681 * Schedule @fn(@data) for execution after @delay jiffies using
1682 * port_task. There is one port_task per port and it's the
1683 * user(low level driver)'s responsibility to make sure that only
1684 * one task is active at any given time.
1686 * libata core layer takes care of synchronization between
1687 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1688 * synchronization.
1690 * LOCKING:
1691 * Inherited from caller.
1693 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1695 ap->port_task_data = data;
1697 /* may fail if ata_port_flush_task() in progress */
1698 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1702 * ata_port_flush_task - Flush port_task
1703 * @ap: The ata_port to flush port_task for
1705 * After this function completes, port_task is guranteed not to
1706 * be running or scheduled.
1708 * LOCKING:
1709 * Kernel thread context (may sleep)
1711 void ata_port_flush_task(struct ata_port *ap)
1713 DPRINTK("ENTER\n");
1715 cancel_rearming_delayed_work(&ap->port_task);
1717 if (ata_msg_ctl(ap))
1718 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1721 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1723 struct completion *waiting = qc->private_data;
1725 complete(waiting);
1729 * ata_exec_internal_sg - execute libata internal command
1730 * @dev: Device to which the command is sent
1731 * @tf: Taskfile registers for the command and the result
1732 * @cdb: CDB for packet command
1733 * @dma_dir: Data tranfer direction of the command
1734 * @sgl: sg list for the data buffer of the command
1735 * @n_elem: Number of sg entries
1736 * @timeout: Timeout in msecs (0 for default)
1738 * Executes libata internal command with timeout. @tf contains
1739 * command on entry and result on return. Timeout and error
1740 * conditions are reported via return value. No recovery action
1741 * is taken after a command times out. It's caller's duty to
1742 * clean up after timeout.
1744 * LOCKING:
1745 * None. Should be called with kernel context, might sleep.
1747 * RETURNS:
1748 * Zero on success, AC_ERR_* mask on failure
1750 unsigned ata_exec_internal_sg(struct ata_device *dev,
1751 struct ata_taskfile *tf, const u8 *cdb,
1752 int dma_dir, struct scatterlist *sgl,
1753 unsigned int n_elem, unsigned long timeout)
1755 struct ata_link *link = dev->link;
1756 struct ata_port *ap = link->ap;
1757 u8 command = tf->command;
1758 int auto_timeout = 0;
1759 struct ata_queued_cmd *qc;
1760 unsigned int tag, preempted_tag;
1761 u32 preempted_sactive, preempted_qc_active;
1762 int preempted_nr_active_links;
1763 DECLARE_COMPLETION_ONSTACK(wait);
1764 unsigned long flags;
1765 unsigned int err_mask;
1766 int rc;
1768 spin_lock_irqsave(ap->lock, flags);
1770 /* no internal command while frozen */
1771 if (ap->pflags & ATA_PFLAG_FROZEN) {
1772 spin_unlock_irqrestore(ap->lock, flags);
1773 return AC_ERR_SYSTEM;
1776 /* initialize internal qc */
1778 /* XXX: Tag 0 is used for drivers with legacy EH as some
1779 * drivers choke if any other tag is given. This breaks
1780 * ata_tag_internal() test for those drivers. Don't use new
1781 * EH stuff without converting to it.
1783 if (ap->ops->error_handler)
1784 tag = ATA_TAG_INTERNAL;
1785 else
1786 tag = 0;
1788 if (test_and_set_bit(tag, &ap->qc_allocated))
1789 BUG();
1790 qc = __ata_qc_from_tag(ap, tag);
1792 qc->tag = tag;
1793 qc->scsicmd = NULL;
1794 qc->ap = ap;
1795 qc->dev = dev;
1796 ata_qc_reinit(qc);
1798 preempted_tag = link->active_tag;
1799 preempted_sactive = link->sactive;
1800 preempted_qc_active = ap->qc_active;
1801 preempted_nr_active_links = ap->nr_active_links;
1802 link->active_tag = ATA_TAG_POISON;
1803 link->sactive = 0;
1804 ap->qc_active = 0;
1805 ap->nr_active_links = 0;
1807 /* prepare & issue qc */
1808 qc->tf = *tf;
1809 if (cdb)
1810 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1811 qc->flags |= ATA_QCFLAG_RESULT_TF;
1812 qc->dma_dir = dma_dir;
1813 if (dma_dir != DMA_NONE) {
1814 unsigned int i, buflen = 0;
1815 struct scatterlist *sg;
1817 for_each_sg(sgl, sg, n_elem, i)
1818 buflen += sg->length;
1820 ata_sg_init(qc, sgl, n_elem);
1821 qc->nbytes = buflen;
1824 qc->private_data = &wait;
1825 qc->complete_fn = ata_qc_complete_internal;
1827 ata_qc_issue(qc);
1829 spin_unlock_irqrestore(ap->lock, flags);
1831 if (!timeout) {
1832 if (ata_probe_timeout)
1833 timeout = ata_probe_timeout * 1000;
1834 else {
1835 timeout = ata_internal_cmd_timeout(dev, command);
1836 auto_timeout = 1;
1840 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1842 ata_port_flush_task(ap);
1844 if (!rc) {
1845 spin_lock_irqsave(ap->lock, flags);
1847 /* We're racing with irq here. If we lose, the
1848 * following test prevents us from completing the qc
1849 * twice. If we win, the port is frozen and will be
1850 * cleaned up by ->post_internal_cmd().
1852 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1853 qc->err_mask |= AC_ERR_TIMEOUT;
1855 if (ap->ops->error_handler)
1856 ata_port_freeze(ap);
1857 else
1858 ata_qc_complete(qc);
1860 if (ata_msg_warn(ap))
1861 ata_dev_printk(dev, KERN_WARNING,
1862 "qc timeout (cmd 0x%x)\n", command);
1865 spin_unlock_irqrestore(ap->lock, flags);
1868 /* do post_internal_cmd */
1869 if (ap->ops->post_internal_cmd)
1870 ap->ops->post_internal_cmd(qc);
1872 /* perform minimal error analysis */
1873 if (qc->flags & ATA_QCFLAG_FAILED) {
1874 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1875 qc->err_mask |= AC_ERR_DEV;
1877 if (!qc->err_mask)
1878 qc->err_mask |= AC_ERR_OTHER;
1880 if (qc->err_mask & ~AC_ERR_OTHER)
1881 qc->err_mask &= ~AC_ERR_OTHER;
1884 /* finish up */
1885 spin_lock_irqsave(ap->lock, flags);
1887 *tf = qc->result_tf;
1888 err_mask = qc->err_mask;
1890 ata_qc_free(qc);
1891 link->active_tag = preempted_tag;
1892 link->sactive = preempted_sactive;
1893 ap->qc_active = preempted_qc_active;
1894 ap->nr_active_links = preempted_nr_active_links;
1896 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1897 * Until those drivers are fixed, we detect the condition
1898 * here, fail the command with AC_ERR_SYSTEM and reenable the
1899 * port.
1901 * Note that this doesn't change any behavior as internal
1902 * command failure results in disabling the device in the
1903 * higher layer for LLDDs without new reset/EH callbacks.
1905 * Kill the following code as soon as those drivers are fixed.
1907 if (ap->flags & ATA_FLAG_DISABLED) {
1908 err_mask |= AC_ERR_SYSTEM;
1909 ata_port_probe(ap);
1912 spin_unlock_irqrestore(ap->lock, flags);
1914 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1915 ata_internal_cmd_timed_out(dev, command);
1917 return err_mask;
1921 * ata_exec_internal - execute libata internal command
1922 * @dev: Device to which the command is sent
1923 * @tf: Taskfile registers for the command and the result
1924 * @cdb: CDB for packet command
1925 * @dma_dir: Data tranfer direction of the command
1926 * @buf: Data buffer of the command
1927 * @buflen: Length of data buffer
1928 * @timeout: Timeout in msecs (0 for default)
1930 * Wrapper around ata_exec_internal_sg() which takes simple
1931 * buffer instead of sg list.
1933 * LOCKING:
1934 * None. Should be called with kernel context, might sleep.
1936 * RETURNS:
1937 * Zero on success, AC_ERR_* mask on failure
1939 unsigned ata_exec_internal(struct ata_device *dev,
1940 struct ata_taskfile *tf, const u8 *cdb,
1941 int dma_dir, void *buf, unsigned int buflen,
1942 unsigned long timeout)
1944 struct scatterlist *psg = NULL, sg;
1945 unsigned int n_elem = 0;
1947 if (dma_dir != DMA_NONE) {
1948 WARN_ON(!buf);
1949 sg_init_one(&sg, buf, buflen);
1950 psg = &sg;
1951 n_elem++;
1954 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1955 timeout);
1959 * ata_do_simple_cmd - execute simple internal command
1960 * @dev: Device to which the command is sent
1961 * @cmd: Opcode to execute
1963 * Execute a 'simple' command, that only consists of the opcode
1964 * 'cmd' itself, without filling any other registers
1966 * LOCKING:
1967 * Kernel thread context (may sleep).
1969 * RETURNS:
1970 * Zero on success, AC_ERR_* mask on failure
1972 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1974 struct ata_taskfile tf;
1976 ata_tf_init(dev, &tf);
1978 tf.command = cmd;
1979 tf.flags |= ATA_TFLAG_DEVICE;
1980 tf.protocol = ATA_PROT_NODATA;
1982 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1986 * ata_pio_need_iordy - check if iordy needed
1987 * @adev: ATA device
1989 * Check if the current speed of the device requires IORDY. Used
1990 * by various controllers for chip configuration.
1993 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1995 /* Controller doesn't support IORDY. Probably a pointless check
1996 as the caller should know this */
1997 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1998 return 0;
1999 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2000 if (ata_id_is_cfa(adev->id)
2001 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2002 return 0;
2003 /* PIO3 and higher it is mandatory */
2004 if (adev->pio_mode > XFER_PIO_2)
2005 return 1;
2006 /* We turn it on when possible */
2007 if (ata_id_has_iordy(adev->id))
2008 return 1;
2009 return 0;
2013 * ata_pio_mask_no_iordy - Return the non IORDY mask
2014 * @adev: ATA device
2016 * Compute the highest mode possible if we are not using iordy. Return
2017 * -1 if no iordy mode is available.
2020 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2022 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2023 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2024 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2025 /* Is the speed faster than the drive allows non IORDY ? */
2026 if (pio) {
2027 /* This is cycle times not frequency - watch the logic! */
2028 if (pio > 240) /* PIO2 is 240nS per cycle */
2029 return 3 << ATA_SHIFT_PIO;
2030 return 7 << ATA_SHIFT_PIO;
2033 return 3 << ATA_SHIFT_PIO;
2037 * ata_do_dev_read_id - default ID read method
2038 * @dev: device
2039 * @tf: proposed taskfile
2040 * @id: data buffer
2042 * Issue the identify taskfile and hand back the buffer containing
2043 * identify data. For some RAID controllers and for pre ATA devices
2044 * this function is wrapped or replaced by the driver
2046 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2047 struct ata_taskfile *tf, u16 *id)
2049 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2050 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2054 * ata_dev_read_id - Read ID data from the specified device
2055 * @dev: target device
2056 * @p_class: pointer to class of the target device (may be changed)
2057 * @flags: ATA_READID_* flags
2058 * @id: buffer to read IDENTIFY data into
2060 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2061 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2062 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2063 * for pre-ATA4 drives.
2065 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2066 * now we abort if we hit that case.
2068 * LOCKING:
2069 * Kernel thread context (may sleep)
2071 * RETURNS:
2072 * 0 on success, -errno otherwise.
2074 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2075 unsigned int flags, u16 *id)
2077 struct ata_port *ap = dev->link->ap;
2078 unsigned int class = *p_class;
2079 struct ata_taskfile tf;
2080 unsigned int err_mask = 0;
2081 const char *reason;
2082 int may_fallback = 1, tried_spinup = 0;
2083 int rc;
2085 if (ata_msg_ctl(ap))
2086 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2088 retry:
2089 ata_tf_init(dev, &tf);
2091 switch (class) {
2092 case ATA_DEV_ATA:
2093 tf.command = ATA_CMD_ID_ATA;
2094 break;
2095 case ATA_DEV_ATAPI:
2096 tf.command = ATA_CMD_ID_ATAPI;
2097 break;
2098 default:
2099 rc = -ENODEV;
2100 reason = "unsupported class";
2101 goto err_out;
2104 tf.protocol = ATA_PROT_PIO;
2106 /* Some devices choke if TF registers contain garbage. Make
2107 * sure those are properly initialized.
2109 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2111 /* Device presence detection is unreliable on some
2112 * controllers. Always poll IDENTIFY if available.
2114 tf.flags |= ATA_TFLAG_POLLING;
2116 if (ap->ops->read_id)
2117 err_mask = ap->ops->read_id(dev, &tf, id);
2118 else
2119 err_mask = ata_do_dev_read_id(dev, &tf, id);
2121 if (err_mask) {
2122 if (err_mask & AC_ERR_NODEV_HINT) {
2123 ata_dev_printk(dev, KERN_DEBUG,
2124 "NODEV after polling detection\n");
2125 return -ENOENT;
2128 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2129 /* Device or controller might have reported
2130 * the wrong device class. Give a shot at the
2131 * other IDENTIFY if the current one is
2132 * aborted by the device.
2134 if (may_fallback) {
2135 may_fallback = 0;
2137 if (class == ATA_DEV_ATA)
2138 class = ATA_DEV_ATAPI;
2139 else
2140 class = ATA_DEV_ATA;
2141 goto retry;
2144 /* Control reaches here iff the device aborted
2145 * both flavors of IDENTIFYs which happens
2146 * sometimes with phantom devices.
2148 ata_dev_printk(dev, KERN_DEBUG,
2149 "both IDENTIFYs aborted, assuming NODEV\n");
2150 return -ENOENT;
2153 rc = -EIO;
2154 reason = "I/O error";
2155 goto err_out;
2158 /* Falling back doesn't make sense if ID data was read
2159 * successfully at least once.
2161 may_fallback = 0;
2163 swap_buf_le16(id, ATA_ID_WORDS);
2165 /* sanity check */
2166 rc = -EINVAL;
2167 reason = "device reports invalid type";
2169 if (class == ATA_DEV_ATA) {
2170 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2171 goto err_out;
2172 } else {
2173 if (ata_id_is_ata(id))
2174 goto err_out;
2177 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2178 tried_spinup = 1;
2180 * Drive powered-up in standby mode, and requires a specific
2181 * SET_FEATURES spin-up subcommand before it will accept
2182 * anything other than the original IDENTIFY command.
2184 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2185 if (err_mask && id[2] != 0x738c) {
2186 rc = -EIO;
2187 reason = "SPINUP failed";
2188 goto err_out;
2191 * If the drive initially returned incomplete IDENTIFY info,
2192 * we now must reissue the IDENTIFY command.
2194 if (id[2] == 0x37c8)
2195 goto retry;
2198 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2200 * The exact sequence expected by certain pre-ATA4 drives is:
2201 * SRST RESET
2202 * IDENTIFY (optional in early ATA)
2203 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2204 * anything else..
2205 * Some drives were very specific about that exact sequence.
2207 * Note that ATA4 says lba is mandatory so the second check
2208 * shoud never trigger.
2210 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2211 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2212 if (err_mask) {
2213 rc = -EIO;
2214 reason = "INIT_DEV_PARAMS failed";
2215 goto err_out;
2218 /* current CHS translation info (id[53-58]) might be
2219 * changed. reread the identify device info.
2221 flags &= ~ATA_READID_POSTRESET;
2222 goto retry;
2226 *p_class = class;
2228 return 0;
2230 err_out:
2231 if (ata_msg_warn(ap))
2232 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2233 "(%s, err_mask=0x%x)\n", reason, err_mask);
2234 return rc;
2237 static int ata_do_link_spd_horkage(struct ata_device *dev)
2239 struct ata_link *plink = ata_dev_phys_link(dev);
2240 u32 target, target_limit;
2242 if (!sata_scr_valid(plink))
2243 return 0;
2245 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2246 target = 1;
2247 else
2248 return 0;
2250 target_limit = (1 << target) - 1;
2252 /* if already on stricter limit, no need to push further */
2253 if (plink->sata_spd_limit <= target_limit)
2254 return 0;
2256 plink->sata_spd_limit = target_limit;
2258 /* Request another EH round by returning -EAGAIN if link is
2259 * going faster than the target speed. Forward progress is
2260 * guaranteed by setting sata_spd_limit to target_limit above.
2262 if (plink->sata_spd > target) {
2263 ata_dev_printk(dev, KERN_INFO,
2264 "applying link speed limit horkage to %s\n",
2265 sata_spd_string(target));
2266 return -EAGAIN;
2268 return 0;
2271 static inline u8 ata_dev_knobble(struct ata_device *dev)
2273 struct ata_port *ap = dev->link->ap;
2275 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2276 return 0;
2278 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2281 static void ata_dev_config_ncq(struct ata_device *dev,
2282 char *desc, size_t desc_sz)
2284 struct ata_port *ap = dev->link->ap;
2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2287 if (!ata_id_has_ncq(dev->id)) {
2288 desc[0] = '\0';
2289 return;
2291 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2292 snprintf(desc, desc_sz, "NCQ (not used)");
2293 return;
2295 if (ap->flags & ATA_FLAG_NCQ) {
2296 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2297 dev->flags |= ATA_DFLAG_NCQ;
2300 if (hdepth >= ddepth)
2301 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2302 else
2303 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2307 * ata_dev_configure - Configure the specified ATA/ATAPI device
2308 * @dev: Target device to configure
2310 * Configure @dev according to @dev->id. Generic and low-level
2311 * driver specific fixups are also applied.
2313 * LOCKING:
2314 * Kernel thread context (may sleep)
2316 * RETURNS:
2317 * 0 on success, -errno otherwise
2319 int ata_dev_configure(struct ata_device *dev)
2321 struct ata_port *ap = dev->link->ap;
2322 struct ata_eh_context *ehc = &dev->link->eh_context;
2323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2324 const u16 *id = dev->id;
2325 unsigned long xfer_mask;
2326 char revbuf[7]; /* XYZ-99\0 */
2327 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2328 char modelbuf[ATA_ID_PROD_LEN+1];
2329 int rc;
2331 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2332 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2333 __func__);
2334 return 0;
2337 if (ata_msg_probe(ap))
2338 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2340 /* set horkage */
2341 dev->horkage |= ata_dev_blacklisted(dev);
2342 ata_force_horkage(dev);
2344 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2345 ata_dev_printk(dev, KERN_INFO,
2346 "unsupported device, disabling\n");
2347 ata_dev_disable(dev);
2348 return 0;
2351 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2352 dev->class == ATA_DEV_ATAPI) {
2353 ata_dev_printk(dev, KERN_WARNING,
2354 "WARNING: ATAPI is %s, device ignored.\n",
2355 atapi_enabled ? "not supported with this driver"
2356 : "disabled");
2357 ata_dev_disable(dev);
2358 return 0;
2361 rc = ata_do_link_spd_horkage(dev);
2362 if (rc)
2363 return rc;
2365 /* let ACPI work its magic */
2366 rc = ata_acpi_on_devcfg(dev);
2367 if (rc)
2368 return rc;
2370 /* massage HPA, do it early as it might change IDENTIFY data */
2371 rc = ata_hpa_resize(dev);
2372 if (rc)
2373 return rc;
2375 /* print device capabilities */
2376 if (ata_msg_probe(ap))
2377 ata_dev_printk(dev, KERN_DEBUG,
2378 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2379 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2380 __func__,
2381 id[49], id[82], id[83], id[84],
2382 id[85], id[86], id[87], id[88]);
2384 /* initialize to-be-configured parameters */
2385 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2386 dev->max_sectors = 0;
2387 dev->cdb_len = 0;
2388 dev->n_sectors = 0;
2389 dev->cylinders = 0;
2390 dev->heads = 0;
2391 dev->sectors = 0;
2394 * common ATA, ATAPI feature tests
2397 /* find max transfer mode; for printk only */
2398 xfer_mask = ata_id_xfermask(id);
2400 if (ata_msg_probe(ap))
2401 ata_dump_id(id);
2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 sizeof(fwrevbuf));
2407 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 sizeof(modelbuf));
2410 /* ATA-specific feature tests */
2411 if (dev->class == ATA_DEV_ATA) {
2412 if (ata_id_is_cfa(id)) {
2413 if (id[162] & 1) /* CPRM may make this media unusable */
2414 ata_dev_printk(dev, KERN_WARNING,
2415 "supports DRM functions and may "
2416 "not be fully accessable.\n");
2417 snprintf(revbuf, 7, "CFA");
2418 } else {
2419 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2420 /* Warn the user if the device has TPM extensions */
2421 if (ata_id_has_tpm(id))
2422 ata_dev_printk(dev, KERN_WARNING,
2423 "supports DRM functions and may "
2424 "not be fully accessable.\n");
2427 dev->n_sectors = ata_id_n_sectors(id);
2429 if (dev->id[59] & 0x100)
2430 dev->multi_count = dev->id[59] & 0xff;
2432 if (ata_id_has_lba(id)) {
2433 const char *lba_desc;
2434 char ncq_desc[20];
2436 lba_desc = "LBA";
2437 dev->flags |= ATA_DFLAG_LBA;
2438 if (ata_id_has_lba48(id)) {
2439 dev->flags |= ATA_DFLAG_LBA48;
2440 lba_desc = "LBA48";
2442 if (dev->n_sectors >= (1UL << 28) &&
2443 ata_id_has_flush_ext(id))
2444 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2447 /* config NCQ */
2448 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2450 /* print device info to dmesg */
2451 if (ata_msg_drv(ap) && print_info) {
2452 ata_dev_printk(dev, KERN_INFO,
2453 "%s: %s, %s, max %s\n",
2454 revbuf, modelbuf, fwrevbuf,
2455 ata_mode_string(xfer_mask));
2456 ata_dev_printk(dev, KERN_INFO,
2457 "%Lu sectors, multi %u: %s %s\n",
2458 (unsigned long long)dev->n_sectors,
2459 dev->multi_count, lba_desc, ncq_desc);
2461 } else {
2462 /* CHS */
2464 /* Default translation */
2465 dev->cylinders = id[1];
2466 dev->heads = id[3];
2467 dev->sectors = id[6];
2469 if (ata_id_current_chs_valid(id)) {
2470 /* Current CHS translation is valid. */
2471 dev->cylinders = id[54];
2472 dev->heads = id[55];
2473 dev->sectors = id[56];
2476 /* print device info to dmesg */
2477 if (ata_msg_drv(ap) && print_info) {
2478 ata_dev_printk(dev, KERN_INFO,
2479 "%s: %s, %s, max %s\n",
2480 revbuf, modelbuf, fwrevbuf,
2481 ata_mode_string(xfer_mask));
2482 ata_dev_printk(dev, KERN_INFO,
2483 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2484 (unsigned long long)dev->n_sectors,
2485 dev->multi_count, dev->cylinders,
2486 dev->heads, dev->sectors);
2490 dev->cdb_len = 16;
2493 /* ATAPI-specific feature tests */
2494 else if (dev->class == ATA_DEV_ATAPI) {
2495 const char *cdb_intr_string = "";
2496 const char *atapi_an_string = "";
2497 const char *dma_dir_string = "";
2498 u32 sntf;
2500 rc = atapi_cdb_len(id);
2501 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2502 if (ata_msg_warn(ap))
2503 ata_dev_printk(dev, KERN_WARNING,
2504 "unsupported CDB len\n");
2505 rc = -EINVAL;
2506 goto err_out_nosup;
2508 dev->cdb_len = (unsigned int) rc;
2510 /* Enable ATAPI AN if both the host and device have
2511 * the support. If PMP is attached, SNTF is required
2512 * to enable ATAPI AN to discern between PHY status
2513 * changed notifications and ATAPI ANs.
2515 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2516 (!sata_pmp_attached(ap) ||
2517 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2518 unsigned int err_mask;
2520 /* issue SET feature command to turn this on */
2521 err_mask = ata_dev_set_feature(dev,
2522 SETFEATURES_SATA_ENABLE, SATA_AN);
2523 if (err_mask)
2524 ata_dev_printk(dev, KERN_ERR,
2525 "failed to enable ATAPI AN "
2526 "(err_mask=0x%x)\n", err_mask);
2527 else {
2528 dev->flags |= ATA_DFLAG_AN;
2529 atapi_an_string = ", ATAPI AN";
2533 if (ata_id_cdb_intr(dev->id)) {
2534 dev->flags |= ATA_DFLAG_CDB_INTR;
2535 cdb_intr_string = ", CDB intr";
2538 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2539 dev->flags |= ATA_DFLAG_DMADIR;
2540 dma_dir_string = ", DMADIR";
2543 /* print device info to dmesg */
2544 if (ata_msg_drv(ap) && print_info)
2545 ata_dev_printk(dev, KERN_INFO,
2546 "ATAPI: %s, %s, max %s%s%s%s\n",
2547 modelbuf, fwrevbuf,
2548 ata_mode_string(xfer_mask),
2549 cdb_intr_string, atapi_an_string,
2550 dma_dir_string);
2553 /* determine max_sectors */
2554 dev->max_sectors = ATA_MAX_SECTORS;
2555 if (dev->flags & ATA_DFLAG_LBA48)
2556 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2558 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2559 if (ata_id_has_hipm(dev->id))
2560 dev->flags |= ATA_DFLAG_HIPM;
2561 if (ata_id_has_dipm(dev->id))
2562 dev->flags |= ATA_DFLAG_DIPM;
2565 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2566 200 sectors */
2567 if (ata_dev_knobble(dev)) {
2568 if (ata_msg_drv(ap) && print_info)
2569 ata_dev_printk(dev, KERN_INFO,
2570 "applying bridge limits\n");
2571 dev->udma_mask &= ATA_UDMA5;
2572 dev->max_sectors = ATA_MAX_SECTORS;
2575 if ((dev->class == ATA_DEV_ATAPI) &&
2576 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2577 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2578 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2581 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2582 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2583 dev->max_sectors);
2585 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2586 dev->horkage |= ATA_HORKAGE_IPM;
2588 /* reset link pm_policy for this port to no pm */
2589 ap->pm_policy = MAX_PERFORMANCE;
2592 if (ap->ops->dev_config)
2593 ap->ops->dev_config(dev);
2595 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2596 /* Let the user know. We don't want to disallow opens for
2597 rescue purposes, or in case the vendor is just a blithering
2598 idiot. Do this after the dev_config call as some controllers
2599 with buggy firmware may want to avoid reporting false device
2600 bugs */
2602 if (print_info) {
2603 ata_dev_printk(dev, KERN_WARNING,
2604 "Drive reports diagnostics failure. This may indicate a drive\n");
2605 ata_dev_printk(dev, KERN_WARNING,
2606 "fault or invalid emulation. Contact drive vendor for information.\n");
2610 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2611 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2612 "firmware update to be fully functional.\n");
2613 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2614 "or visit http://ata.wiki.kernel.org.\n");
2617 return 0;
2619 err_out_nosup:
2620 if (ata_msg_probe(ap))
2621 ata_dev_printk(dev, KERN_DEBUG,
2622 "%s: EXIT, err\n", __func__);
2623 return rc;
2627 * ata_cable_40wire - return 40 wire cable type
2628 * @ap: port
2630 * Helper method for drivers which want to hardwire 40 wire cable
2631 * detection.
2634 int ata_cable_40wire(struct ata_port *ap)
2636 return ATA_CBL_PATA40;
2640 * ata_cable_80wire - return 80 wire cable type
2641 * @ap: port
2643 * Helper method for drivers which want to hardwire 80 wire cable
2644 * detection.
2647 int ata_cable_80wire(struct ata_port *ap)
2649 return ATA_CBL_PATA80;
2653 * ata_cable_unknown - return unknown PATA cable.
2654 * @ap: port
2656 * Helper method for drivers which have no PATA cable detection.
2659 int ata_cable_unknown(struct ata_port *ap)
2661 return ATA_CBL_PATA_UNK;
2665 * ata_cable_ignore - return ignored PATA cable.
2666 * @ap: port
2668 * Helper method for drivers which don't use cable type to limit
2669 * transfer mode.
2671 int ata_cable_ignore(struct ata_port *ap)
2673 return ATA_CBL_PATA_IGN;
2677 * ata_cable_sata - return SATA cable type
2678 * @ap: port
2680 * Helper method for drivers which have SATA cables
2683 int ata_cable_sata(struct ata_port *ap)
2685 return ATA_CBL_SATA;
2689 * ata_bus_probe - Reset and probe ATA bus
2690 * @ap: Bus to probe
2692 * Master ATA bus probing function. Initiates a hardware-dependent
2693 * bus reset, then attempts to identify any devices found on
2694 * the bus.
2696 * LOCKING:
2697 * PCI/etc. bus probe sem.
2699 * RETURNS:
2700 * Zero on success, negative errno otherwise.
2703 int ata_bus_probe(struct ata_port *ap)
2705 unsigned int classes[ATA_MAX_DEVICES];
2706 int tries[ATA_MAX_DEVICES];
2707 int rc;
2708 struct ata_device *dev;
2710 ata_port_probe(ap);
2712 ata_for_each_dev(dev, &ap->link, ALL)
2713 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2715 retry:
2716 ata_for_each_dev(dev, &ap->link, ALL) {
2717 /* If we issue an SRST then an ATA drive (not ATAPI)
2718 * may change configuration and be in PIO0 timing. If
2719 * we do a hard reset (or are coming from power on)
2720 * this is true for ATA or ATAPI. Until we've set a
2721 * suitable controller mode we should not touch the
2722 * bus as we may be talking too fast.
2724 dev->pio_mode = XFER_PIO_0;
2726 /* If the controller has a pio mode setup function
2727 * then use it to set the chipset to rights. Don't
2728 * touch the DMA setup as that will be dealt with when
2729 * configuring devices.
2731 if (ap->ops->set_piomode)
2732 ap->ops->set_piomode(ap, dev);
2735 /* reset and determine device classes */
2736 ap->ops->phy_reset(ap);
2738 ata_for_each_dev(dev, &ap->link, ALL) {
2739 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2740 dev->class != ATA_DEV_UNKNOWN)
2741 classes[dev->devno] = dev->class;
2742 else
2743 classes[dev->devno] = ATA_DEV_NONE;
2745 dev->class = ATA_DEV_UNKNOWN;
2748 ata_port_probe(ap);
2750 /* read IDENTIFY page and configure devices. We have to do the identify
2751 specific sequence bass-ackwards so that PDIAG- is released by
2752 the slave device */
2754 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2755 if (tries[dev->devno])
2756 dev->class = classes[dev->devno];
2758 if (!ata_dev_enabled(dev))
2759 continue;
2761 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2762 dev->id);
2763 if (rc)
2764 goto fail;
2767 /* Now ask for the cable type as PDIAG- should have been released */
2768 if (ap->ops->cable_detect)
2769 ap->cbl = ap->ops->cable_detect(ap);
2771 /* We may have SATA bridge glue hiding here irrespective of
2772 * the reported cable types and sensed types. When SATA
2773 * drives indicate we have a bridge, we don't know which end
2774 * of the link the bridge is which is a problem.
2776 ata_for_each_dev(dev, &ap->link, ENABLED)
2777 if (ata_id_is_sata(dev->id))
2778 ap->cbl = ATA_CBL_SATA;
2780 /* After the identify sequence we can now set up the devices. We do
2781 this in the normal order so that the user doesn't get confused */
2783 ata_for_each_dev(dev, &ap->link, ENABLED) {
2784 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2785 rc = ata_dev_configure(dev);
2786 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2787 if (rc)
2788 goto fail;
2791 /* configure transfer mode */
2792 rc = ata_set_mode(&ap->link, &dev);
2793 if (rc)
2794 goto fail;
2796 ata_for_each_dev(dev, &ap->link, ENABLED)
2797 return 0;
2799 /* no device present, disable port */
2800 ata_port_disable(ap);
2801 return -ENODEV;
2803 fail:
2804 tries[dev->devno]--;
2806 switch (rc) {
2807 case -EINVAL:
2808 /* eeek, something went very wrong, give up */
2809 tries[dev->devno] = 0;
2810 break;
2812 case -ENODEV:
2813 /* give it just one more chance */
2814 tries[dev->devno] = min(tries[dev->devno], 1);
2815 case -EIO:
2816 if (tries[dev->devno] == 1) {
2817 /* This is the last chance, better to slow
2818 * down than lose it.
2820 sata_down_spd_limit(&ap->link, 0);
2821 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2825 if (!tries[dev->devno])
2826 ata_dev_disable(dev);
2828 goto retry;
2832 * ata_port_probe - Mark port as enabled
2833 * @ap: Port for which we indicate enablement
2835 * Modify @ap data structure such that the system
2836 * thinks that the entire port is enabled.
2838 * LOCKING: host lock, or some other form of
2839 * serialization.
2842 void ata_port_probe(struct ata_port *ap)
2844 ap->flags &= ~ATA_FLAG_DISABLED;
2848 * sata_print_link_status - Print SATA link status
2849 * @link: SATA link to printk link status about
2851 * This function prints link speed and status of a SATA link.
2853 * LOCKING:
2854 * None.
2856 static void sata_print_link_status(struct ata_link *link)
2858 u32 sstatus, scontrol, tmp;
2860 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2861 return;
2862 sata_scr_read(link, SCR_CONTROL, &scontrol);
2864 if (ata_phys_link_online(link)) {
2865 tmp = (sstatus >> 4) & 0xf;
2866 ata_link_printk(link, KERN_INFO,
2867 "SATA link up %s (SStatus %X SControl %X)\n",
2868 sata_spd_string(tmp), sstatus, scontrol);
2869 } else {
2870 ata_link_printk(link, KERN_INFO,
2871 "SATA link down (SStatus %X SControl %X)\n",
2872 sstatus, scontrol);
2877 * ata_dev_pair - return other device on cable
2878 * @adev: device
2880 * Obtain the other device on the same cable, or if none is
2881 * present NULL is returned
2884 struct ata_device *ata_dev_pair(struct ata_device *adev)
2886 struct ata_link *link = adev->link;
2887 struct ata_device *pair = &link->device[1 - adev->devno];
2888 if (!ata_dev_enabled(pair))
2889 return NULL;
2890 return pair;
2894 * ata_port_disable - Disable port.
2895 * @ap: Port to be disabled.
2897 * Modify @ap data structure such that the system
2898 * thinks that the entire port is disabled, and should
2899 * never attempt to probe or communicate with devices
2900 * on this port.
2902 * LOCKING: host lock, or some other form of
2903 * serialization.
2906 void ata_port_disable(struct ata_port *ap)
2908 ap->link.device[0].class = ATA_DEV_NONE;
2909 ap->link.device[1].class = ATA_DEV_NONE;
2910 ap->flags |= ATA_FLAG_DISABLED;
2914 * sata_down_spd_limit - adjust SATA spd limit downward
2915 * @link: Link to adjust SATA spd limit for
2916 * @spd_limit: Additional limit
2918 * Adjust SATA spd limit of @link downward. Note that this
2919 * function only adjusts the limit. The change must be applied
2920 * using sata_set_spd().
2922 * If @spd_limit is non-zero, the speed is limited to equal to or
2923 * lower than @spd_limit if such speed is supported. If
2924 * @spd_limit is slower than any supported speed, only the lowest
2925 * supported speed is allowed.
2927 * LOCKING:
2928 * Inherited from caller.
2930 * RETURNS:
2931 * 0 on success, negative errno on failure
2933 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2935 u32 sstatus, spd, mask;
2936 int rc, bit;
2938 if (!sata_scr_valid(link))
2939 return -EOPNOTSUPP;
2941 /* If SCR can be read, use it to determine the current SPD.
2942 * If not, use cached value in link->sata_spd.
2944 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2945 if (rc == 0 && ata_sstatus_online(sstatus))
2946 spd = (sstatus >> 4) & 0xf;
2947 else
2948 spd = link->sata_spd;
2950 mask = link->sata_spd_limit;
2951 if (mask <= 1)
2952 return -EINVAL;
2954 /* unconditionally mask off the highest bit */
2955 bit = fls(mask) - 1;
2956 mask &= ~(1 << bit);
2958 /* Mask off all speeds higher than or equal to the current
2959 * one. Force 1.5Gbps if current SPD is not available.
2961 if (spd > 1)
2962 mask &= (1 << (spd - 1)) - 1;
2963 else
2964 mask &= 1;
2966 /* were we already at the bottom? */
2967 if (!mask)
2968 return -EINVAL;
2970 if (spd_limit) {
2971 if (mask & ((1 << spd_limit) - 1))
2972 mask &= (1 << spd_limit) - 1;
2973 else {
2974 bit = ffs(mask) - 1;
2975 mask = 1 << bit;
2979 link->sata_spd_limit = mask;
2981 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2982 sata_spd_string(fls(mask)));
2984 return 0;
2987 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2989 struct ata_link *host_link = &link->ap->link;
2990 u32 limit, target, spd;
2992 limit = link->sata_spd_limit;
2994 /* Don't configure downstream link faster than upstream link.
2995 * It doesn't speed up anything and some PMPs choke on such
2996 * configuration.
2998 if (!ata_is_host_link(link) && host_link->sata_spd)
2999 limit &= (1 << host_link->sata_spd) - 1;
3001 if (limit == UINT_MAX)
3002 target = 0;
3003 else
3004 target = fls(limit);
3006 spd = (*scontrol >> 4) & 0xf;
3007 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3009 return spd != target;
3013 * sata_set_spd_needed - is SATA spd configuration needed
3014 * @link: Link in question
3016 * Test whether the spd limit in SControl matches
3017 * @link->sata_spd_limit. This function is used to determine
3018 * whether hardreset is necessary to apply SATA spd
3019 * configuration.
3021 * LOCKING:
3022 * Inherited from caller.
3024 * RETURNS:
3025 * 1 if SATA spd configuration is needed, 0 otherwise.
3027 static int sata_set_spd_needed(struct ata_link *link)
3029 u32 scontrol;
3031 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3032 return 1;
3034 return __sata_set_spd_needed(link, &scontrol);
3038 * sata_set_spd - set SATA spd according to spd limit
3039 * @link: Link to set SATA spd for
3041 * Set SATA spd of @link according to sata_spd_limit.
3043 * LOCKING:
3044 * Inherited from caller.
3046 * RETURNS:
3047 * 0 if spd doesn't need to be changed, 1 if spd has been
3048 * changed. Negative errno if SCR registers are inaccessible.
3050 int sata_set_spd(struct ata_link *link)
3052 u32 scontrol;
3053 int rc;
3055 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3056 return rc;
3058 if (!__sata_set_spd_needed(link, &scontrol))
3059 return 0;
3061 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3062 return rc;
3064 return 1;
3068 * This mode timing computation functionality is ported over from
3069 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3072 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3073 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3074 * for UDMA6, which is currently supported only by Maxtor drives.
3076 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3079 static const struct ata_timing ata_timing[] = {
3080 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3081 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3082 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3083 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3084 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3085 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3086 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3087 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3089 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3090 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3091 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3093 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3094 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3095 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3096 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3097 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3099 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3100 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3101 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3102 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3103 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3104 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3105 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3106 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3108 { 0xFF }
3111 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3112 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3114 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3116 q->setup = EZ(t->setup * 1000, T);
3117 q->act8b = EZ(t->act8b * 1000, T);
3118 q->rec8b = EZ(t->rec8b * 1000, T);
3119 q->cyc8b = EZ(t->cyc8b * 1000, T);
3120 q->active = EZ(t->active * 1000, T);
3121 q->recover = EZ(t->recover * 1000, T);
3122 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3123 q->cycle = EZ(t->cycle * 1000, T);
3124 q->udma = EZ(t->udma * 1000, UT);
3127 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3128 struct ata_timing *m, unsigned int what)
3130 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3131 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3132 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3133 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3134 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3135 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3136 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3137 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3138 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3141 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3143 const struct ata_timing *t = ata_timing;
3145 while (xfer_mode > t->mode)
3146 t++;
3148 if (xfer_mode == t->mode)
3149 return t;
3150 return NULL;
3153 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3154 struct ata_timing *t, int T, int UT)
3156 const struct ata_timing *s;
3157 struct ata_timing p;
3160 * Find the mode.
3163 if (!(s = ata_timing_find_mode(speed)))
3164 return -EINVAL;
3166 memcpy(t, s, sizeof(*s));
3169 * If the drive is an EIDE drive, it can tell us it needs extended
3170 * PIO/MW_DMA cycle timing.
3173 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3174 memset(&p, 0, sizeof(p));
3175 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3176 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3177 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3178 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3179 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3181 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3185 * Convert the timing to bus clock counts.
3188 ata_timing_quantize(t, t, T, UT);
3191 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3192 * S.M.A.R.T * and some other commands. We have to ensure that the
3193 * DMA cycle timing is slower/equal than the fastest PIO timing.
3196 if (speed > XFER_PIO_6) {
3197 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3198 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3202 * Lengthen active & recovery time so that cycle time is correct.
3205 if (t->act8b + t->rec8b < t->cyc8b) {
3206 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3207 t->rec8b = t->cyc8b - t->act8b;
3210 if (t->active + t->recover < t->cycle) {
3211 t->active += (t->cycle - (t->active + t->recover)) / 2;
3212 t->recover = t->cycle - t->active;
3215 /* In a few cases quantisation may produce enough errors to
3216 leave t->cycle too low for the sum of active and recovery
3217 if so we must correct this */
3218 if (t->active + t->recover > t->cycle)
3219 t->cycle = t->active + t->recover;
3221 return 0;
3225 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3226 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3227 * @cycle: cycle duration in ns
3229 * Return matching xfer mode for @cycle. The returned mode is of
3230 * the transfer type specified by @xfer_shift. If @cycle is too
3231 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3232 * than the fastest known mode, the fasted mode is returned.
3234 * LOCKING:
3235 * None.
3237 * RETURNS:
3238 * Matching xfer_mode, 0xff if no match found.
3240 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3242 u8 base_mode = 0xff, last_mode = 0xff;
3243 const struct ata_xfer_ent *ent;
3244 const struct ata_timing *t;
3246 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3247 if (ent->shift == xfer_shift)
3248 base_mode = ent->base;
3250 for (t = ata_timing_find_mode(base_mode);
3251 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3252 unsigned short this_cycle;
3254 switch (xfer_shift) {
3255 case ATA_SHIFT_PIO:
3256 case ATA_SHIFT_MWDMA:
3257 this_cycle = t->cycle;
3258 break;
3259 case ATA_SHIFT_UDMA:
3260 this_cycle = t->udma;
3261 break;
3262 default:
3263 return 0xff;
3266 if (cycle > this_cycle)
3267 break;
3269 last_mode = t->mode;
3272 return last_mode;
3276 * ata_down_xfermask_limit - adjust dev xfer masks downward
3277 * @dev: Device to adjust xfer masks
3278 * @sel: ATA_DNXFER_* selector
3280 * Adjust xfer masks of @dev downward. Note that this function
3281 * does not apply the change. Invoking ata_set_mode() afterwards
3282 * will apply the limit.
3284 * LOCKING:
3285 * Inherited from caller.
3287 * RETURNS:
3288 * 0 on success, negative errno on failure
3290 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3292 char buf[32];
3293 unsigned long orig_mask, xfer_mask;
3294 unsigned long pio_mask, mwdma_mask, udma_mask;
3295 int quiet, highbit;
3297 quiet = !!(sel & ATA_DNXFER_QUIET);
3298 sel &= ~ATA_DNXFER_QUIET;
3300 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3301 dev->mwdma_mask,
3302 dev->udma_mask);
3303 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3305 switch (sel) {
3306 case ATA_DNXFER_PIO:
3307 highbit = fls(pio_mask) - 1;
3308 pio_mask &= ~(1 << highbit);
3309 break;
3311 case ATA_DNXFER_DMA:
3312 if (udma_mask) {
3313 highbit = fls(udma_mask) - 1;
3314 udma_mask &= ~(1 << highbit);
3315 if (!udma_mask)
3316 return -ENOENT;
3317 } else if (mwdma_mask) {
3318 highbit = fls(mwdma_mask) - 1;
3319 mwdma_mask &= ~(1 << highbit);
3320 if (!mwdma_mask)
3321 return -ENOENT;
3323 break;
3325 case ATA_DNXFER_40C:
3326 udma_mask &= ATA_UDMA_MASK_40C;
3327 break;
3329 case ATA_DNXFER_FORCE_PIO0:
3330 pio_mask &= 1;
3331 case ATA_DNXFER_FORCE_PIO:
3332 mwdma_mask = 0;
3333 udma_mask = 0;
3334 break;
3336 default:
3337 BUG();
3340 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3342 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3343 return -ENOENT;
3345 if (!quiet) {
3346 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3347 snprintf(buf, sizeof(buf), "%s:%s",
3348 ata_mode_string(xfer_mask),
3349 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3350 else
3351 snprintf(buf, sizeof(buf), "%s",
3352 ata_mode_string(xfer_mask));
3354 ata_dev_printk(dev, KERN_WARNING,
3355 "limiting speed to %s\n", buf);
3358 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3359 &dev->udma_mask);
3361 return 0;
3364 static int ata_dev_set_mode(struct ata_device *dev)
3366 struct ata_eh_context *ehc = &dev->link->eh_context;
3367 const char *dev_err_whine = "";
3368 int ign_dev_err = 0;
3369 unsigned int err_mask;
3370 int rc;
3372 dev->flags &= ~ATA_DFLAG_PIO;
3373 if (dev->xfer_shift == ATA_SHIFT_PIO)
3374 dev->flags |= ATA_DFLAG_PIO;
3376 err_mask = ata_dev_set_xfermode(dev);
3378 if (err_mask & ~AC_ERR_DEV)
3379 goto fail;
3381 /* revalidate */
3382 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3383 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3384 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3385 if (rc)
3386 return rc;
3388 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3389 /* Old CFA may refuse this command, which is just fine */
3390 if (ata_id_is_cfa(dev->id))
3391 ign_dev_err = 1;
3392 /* Catch several broken garbage emulations plus some pre
3393 ATA devices */
3394 if (ata_id_major_version(dev->id) == 0 &&
3395 dev->pio_mode <= XFER_PIO_2)
3396 ign_dev_err = 1;
3397 /* Some very old devices and some bad newer ones fail
3398 any kind of SET_XFERMODE request but support PIO0-2
3399 timings and no IORDY */
3400 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3401 ign_dev_err = 1;
3403 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3404 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3405 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3406 dev->dma_mode == XFER_MW_DMA_0 &&
3407 (dev->id[63] >> 8) & 1)
3408 ign_dev_err = 1;
3410 /* if the device is actually configured correctly, ignore dev err */
3411 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3412 ign_dev_err = 1;
3414 if (err_mask & AC_ERR_DEV) {
3415 if (!ign_dev_err)
3416 goto fail;
3417 else
3418 dev_err_whine = " (device error ignored)";
3421 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3422 dev->xfer_shift, (int)dev->xfer_mode);
3424 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3425 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3426 dev_err_whine);
3428 return 0;
3430 fail:
3431 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3432 "(err_mask=0x%x)\n", err_mask);
3433 return -EIO;
3437 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3438 * @link: link on which timings will be programmed
3439 * @r_failed_dev: out parameter for failed device
3441 * Standard implementation of the function used to tune and set
3442 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3443 * ata_dev_set_mode() fails, pointer to the failing device is
3444 * returned in @r_failed_dev.
3446 * LOCKING:
3447 * PCI/etc. bus probe sem.
3449 * RETURNS:
3450 * 0 on success, negative errno otherwise
3453 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3455 struct ata_port *ap = link->ap;
3456 struct ata_device *dev;
3457 int rc = 0, used_dma = 0, found = 0;
3459 /* step 1: calculate xfer_mask */
3460 ata_for_each_dev(dev, link, ENABLED) {
3461 unsigned long pio_mask, dma_mask;
3462 unsigned int mode_mask;
3464 mode_mask = ATA_DMA_MASK_ATA;
3465 if (dev->class == ATA_DEV_ATAPI)
3466 mode_mask = ATA_DMA_MASK_ATAPI;
3467 else if (ata_id_is_cfa(dev->id))
3468 mode_mask = ATA_DMA_MASK_CFA;
3470 ata_dev_xfermask(dev);
3471 ata_force_xfermask(dev);
3473 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3474 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3476 if (libata_dma_mask & mode_mask)
3477 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3478 else
3479 dma_mask = 0;
3481 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3482 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3484 found = 1;
3485 if (ata_dma_enabled(dev))
3486 used_dma = 1;
3488 if (!found)
3489 goto out;
3491 /* step 2: always set host PIO timings */
3492 ata_for_each_dev(dev, link, ENABLED) {
3493 if (dev->pio_mode == 0xff) {
3494 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3495 rc = -EINVAL;
3496 goto out;
3499 dev->xfer_mode = dev->pio_mode;
3500 dev->xfer_shift = ATA_SHIFT_PIO;
3501 if (ap->ops->set_piomode)
3502 ap->ops->set_piomode(ap, dev);
3505 /* step 3: set host DMA timings */
3506 ata_for_each_dev(dev, link, ENABLED) {
3507 if (!ata_dma_enabled(dev))
3508 continue;
3510 dev->xfer_mode = dev->dma_mode;
3511 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3512 if (ap->ops->set_dmamode)
3513 ap->ops->set_dmamode(ap, dev);
3516 /* step 4: update devices' xfer mode */
3517 ata_for_each_dev(dev, link, ENABLED) {
3518 rc = ata_dev_set_mode(dev);
3519 if (rc)
3520 goto out;
3523 /* Record simplex status. If we selected DMA then the other
3524 * host channels are not permitted to do so.
3526 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3527 ap->host->simplex_claimed = ap;
3529 out:
3530 if (rc)
3531 *r_failed_dev = dev;
3532 return rc;
3536 * ata_wait_ready - wait for link to become ready
3537 * @link: link to be waited on
3538 * @deadline: deadline jiffies for the operation
3539 * @check_ready: callback to check link readiness
3541 * Wait for @link to become ready. @check_ready should return
3542 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3543 * link doesn't seem to be occupied, other errno for other error
3544 * conditions.
3546 * Transient -ENODEV conditions are allowed for
3547 * ATA_TMOUT_FF_WAIT.
3549 * LOCKING:
3550 * EH context.
3552 * RETURNS:
3553 * 0 if @linke is ready before @deadline; otherwise, -errno.
3555 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3556 int (*check_ready)(struct ata_link *link))
3558 unsigned long start = jiffies;
3559 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3560 int warned = 0;
3562 /* Slave readiness can't be tested separately from master. On
3563 * M/S emulation configuration, this function should be called
3564 * only on the master and it will handle both master and slave.
3566 WARN_ON(link == link->ap->slave_link);
3568 if (time_after(nodev_deadline, deadline))
3569 nodev_deadline = deadline;
3571 while (1) {
3572 unsigned long now = jiffies;
3573 int ready, tmp;
3575 ready = tmp = check_ready(link);
3576 if (ready > 0)
3577 return 0;
3579 /* -ENODEV could be transient. Ignore -ENODEV if link
3580 * is online. Also, some SATA devices take a long
3581 * time to clear 0xff after reset. For example,
3582 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3583 * GoVault needs even more than that. Wait for
3584 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3586 * Note that some PATA controllers (pata_ali) explode
3587 * if status register is read more than once when
3588 * there's no device attached.
3590 if (ready == -ENODEV) {
3591 if (ata_link_online(link))
3592 ready = 0;
3593 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3594 !ata_link_offline(link) &&
3595 time_before(now, nodev_deadline))
3596 ready = 0;
3599 if (ready)
3600 return ready;
3601 if (time_after(now, deadline))
3602 return -EBUSY;
3604 if (!warned && time_after(now, start + 5 * HZ) &&
3605 (deadline - now > 3 * HZ)) {
3606 ata_link_printk(link, KERN_WARNING,
3607 "link is slow to respond, please be patient "
3608 "(ready=%d)\n", tmp);
3609 warned = 1;
3612 msleep(50);
3617 * ata_wait_after_reset - wait for link to become ready after reset
3618 * @link: link to be waited on
3619 * @deadline: deadline jiffies for the operation
3620 * @check_ready: callback to check link readiness
3622 * Wait for @link to become ready after reset.
3624 * LOCKING:
3625 * EH context.
3627 * RETURNS:
3628 * 0 if @linke is ready before @deadline; otherwise, -errno.
3630 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3631 int (*check_ready)(struct ata_link *link))
3633 msleep(ATA_WAIT_AFTER_RESET);
3635 return ata_wait_ready(link, deadline, check_ready);
3639 * sata_link_debounce - debounce SATA phy status
3640 * @link: ATA link to debounce SATA phy status for
3641 * @params: timing parameters { interval, duratinon, timeout } in msec
3642 * @deadline: deadline jiffies for the operation
3644 * Make sure SStatus of @link reaches stable state, determined by
3645 * holding the same value where DET is not 1 for @duration polled
3646 * every @interval, before @timeout. Timeout constraints the
3647 * beginning of the stable state. Because DET gets stuck at 1 on
3648 * some controllers after hot unplugging, this functions waits
3649 * until timeout then returns 0 if DET is stable at 1.
3651 * @timeout is further limited by @deadline. The sooner of the
3652 * two is used.
3654 * LOCKING:
3655 * Kernel thread context (may sleep)
3657 * RETURNS:
3658 * 0 on success, -errno on failure.
3660 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3661 unsigned long deadline)
3663 unsigned long interval = params[0];
3664 unsigned long duration = params[1];
3665 unsigned long last_jiffies, t;
3666 u32 last, cur;
3667 int rc;
3669 t = ata_deadline(jiffies, params[2]);
3670 if (time_before(t, deadline))
3671 deadline = t;
3673 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3674 return rc;
3675 cur &= 0xf;
3677 last = cur;
3678 last_jiffies = jiffies;
3680 while (1) {
3681 msleep(interval);
3682 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3683 return rc;
3684 cur &= 0xf;
3686 /* DET stable? */
3687 if (cur == last) {
3688 if (cur == 1 && time_before(jiffies, deadline))
3689 continue;
3690 if (time_after(jiffies,
3691 ata_deadline(last_jiffies, duration)))
3692 return 0;
3693 continue;
3696 /* unstable, start over */
3697 last = cur;
3698 last_jiffies = jiffies;
3700 /* Check deadline. If debouncing failed, return
3701 * -EPIPE to tell upper layer to lower link speed.
3703 if (time_after(jiffies, deadline))
3704 return -EPIPE;
3709 * sata_link_resume - resume SATA link
3710 * @link: ATA link to resume SATA
3711 * @params: timing parameters { interval, duratinon, timeout } in msec
3712 * @deadline: deadline jiffies for the operation
3714 * Resume SATA phy @link and debounce it.
3716 * LOCKING:
3717 * Kernel thread context (may sleep)
3719 * RETURNS:
3720 * 0 on success, -errno on failure.
3722 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3723 unsigned long deadline)
3725 u32 scontrol, serror;
3726 int rc;
3728 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729 return rc;
3731 scontrol = (scontrol & 0x0f0) | 0x300;
3733 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3734 return rc;
3736 /* Some PHYs react badly if SStatus is pounded immediately
3737 * after resuming. Delay 200ms before debouncing.
3739 msleep(200);
3741 if ((rc = sata_link_debounce(link, params, deadline)))
3742 return rc;
3744 /* clear SError, some PHYs require this even for SRST to work */
3745 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3746 rc = sata_scr_write(link, SCR_ERROR, serror);
3748 return rc != -EINVAL ? rc : 0;
3752 * ata_std_prereset - prepare for reset
3753 * @link: ATA link to be reset
3754 * @deadline: deadline jiffies for the operation
3756 * @link is about to be reset. Initialize it. Failure from
3757 * prereset makes libata abort whole reset sequence and give up
3758 * that port, so prereset should be best-effort. It does its
3759 * best to prepare for reset sequence but if things go wrong, it
3760 * should just whine, not fail.
3762 * LOCKING:
3763 * Kernel thread context (may sleep)
3765 * RETURNS:
3766 * 0 on success, -errno otherwise.
3768 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3770 struct ata_port *ap = link->ap;
3771 struct ata_eh_context *ehc = &link->eh_context;
3772 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3773 int rc;
3775 /* if we're about to do hardreset, nothing more to do */
3776 if (ehc->i.action & ATA_EH_HARDRESET)
3777 return 0;
3779 /* if SATA, resume link */
3780 if (ap->flags & ATA_FLAG_SATA) {
3781 rc = sata_link_resume(link, timing, deadline);
3782 /* whine about phy resume failure but proceed */
3783 if (rc && rc != -EOPNOTSUPP)
3784 ata_link_printk(link, KERN_WARNING, "failed to resume "
3785 "link for reset (errno=%d)\n", rc);
3788 /* no point in trying softreset on offline link */
3789 if (ata_phys_link_offline(link))
3790 ehc->i.action &= ~ATA_EH_SOFTRESET;
3792 return 0;
3796 * sata_link_hardreset - reset link via SATA phy reset
3797 * @link: link to reset
3798 * @timing: timing parameters { interval, duratinon, timeout } in msec
3799 * @deadline: deadline jiffies for the operation
3800 * @online: optional out parameter indicating link onlineness
3801 * @check_ready: optional callback to check link readiness
3803 * SATA phy-reset @link using DET bits of SControl register.
3804 * After hardreset, link readiness is waited upon using
3805 * ata_wait_ready() if @check_ready is specified. LLDs are
3806 * allowed to not specify @check_ready and wait itself after this
3807 * function returns. Device classification is LLD's
3808 * responsibility.
3810 * *@online is set to one iff reset succeeded and @link is online
3811 * after reset.
3813 * LOCKING:
3814 * Kernel thread context (may sleep)
3816 * RETURNS:
3817 * 0 on success, -errno otherwise.
3819 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3820 unsigned long deadline,
3821 bool *online, int (*check_ready)(struct ata_link *))
3823 u32 scontrol;
3824 int rc;
3826 DPRINTK("ENTER\n");
3828 if (online)
3829 *online = false;
3831 if (sata_set_spd_needed(link)) {
3832 /* SATA spec says nothing about how to reconfigure
3833 * spd. To be on the safe side, turn off phy during
3834 * reconfiguration. This works for at least ICH7 AHCI
3835 * and Sil3124.
3837 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3838 goto out;
3840 scontrol = (scontrol & 0x0f0) | 0x304;
3842 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3843 goto out;
3845 sata_set_spd(link);
3848 /* issue phy wake/reset */
3849 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3850 goto out;
3852 scontrol = (scontrol & 0x0f0) | 0x301;
3854 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3855 goto out;
3857 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3858 * 10.4.2 says at least 1 ms.
3860 msleep(1);
3862 /* bring link back */
3863 rc = sata_link_resume(link, timing, deadline);
3864 if (rc)
3865 goto out;
3866 /* if link is offline nothing more to do */
3867 if (ata_phys_link_offline(link))
3868 goto out;
3870 /* Link is online. From this point, -ENODEV too is an error. */
3871 if (online)
3872 *online = true;
3874 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3875 /* If PMP is supported, we have to do follow-up SRST.
3876 * Some PMPs don't send D2H Reg FIS after hardreset if
3877 * the first port is empty. Wait only for
3878 * ATA_TMOUT_PMP_SRST_WAIT.
3880 if (check_ready) {
3881 unsigned long pmp_deadline;
3883 pmp_deadline = ata_deadline(jiffies,
3884 ATA_TMOUT_PMP_SRST_WAIT);
3885 if (time_after(pmp_deadline, deadline))
3886 pmp_deadline = deadline;
3887 ata_wait_ready(link, pmp_deadline, check_ready);
3889 rc = -EAGAIN;
3890 goto out;
3893 rc = 0;
3894 if (check_ready)
3895 rc = ata_wait_ready(link, deadline, check_ready);
3896 out:
3897 if (rc && rc != -EAGAIN) {
3898 /* online is set iff link is online && reset succeeded */
3899 if (online)
3900 *online = false;
3901 ata_link_printk(link, KERN_ERR,
3902 "COMRESET failed (errno=%d)\n", rc);
3904 DPRINTK("EXIT, rc=%d\n", rc);
3905 return rc;
3909 * sata_std_hardreset - COMRESET w/o waiting or classification
3910 * @link: link to reset
3911 * @class: resulting class of attached device
3912 * @deadline: deadline jiffies for the operation
3914 * Standard SATA COMRESET w/o waiting or classification.
3916 * LOCKING:
3917 * Kernel thread context (may sleep)
3919 * RETURNS:
3920 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3922 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3923 unsigned long deadline)
3925 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3926 bool online;
3927 int rc;
3929 /* do hardreset */
3930 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3931 return online ? -EAGAIN : rc;
3935 * ata_std_postreset - standard postreset callback
3936 * @link: the target ata_link
3937 * @classes: classes of attached devices
3939 * This function is invoked after a successful reset. Note that
3940 * the device might have been reset more than once using
3941 * different reset methods before postreset is invoked.
3943 * LOCKING:
3944 * Kernel thread context (may sleep)
3946 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3948 u32 serror;
3950 DPRINTK("ENTER\n");
3952 /* reset complete, clear SError */
3953 if (!sata_scr_read(link, SCR_ERROR, &serror))
3954 sata_scr_write(link, SCR_ERROR, serror);
3956 /* print link status */
3957 sata_print_link_status(link);
3959 DPRINTK("EXIT\n");
3963 * ata_dev_same_device - Determine whether new ID matches configured device
3964 * @dev: device to compare against
3965 * @new_class: class of the new device
3966 * @new_id: IDENTIFY page of the new device
3968 * Compare @new_class and @new_id against @dev and determine
3969 * whether @dev is the device indicated by @new_class and
3970 * @new_id.
3972 * LOCKING:
3973 * None.
3975 * RETURNS:
3976 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3978 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3979 const u16 *new_id)
3981 const u16 *old_id = dev->id;
3982 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3983 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3985 if (dev->class != new_class) {
3986 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3987 dev->class, new_class);
3988 return 0;
3991 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3992 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3993 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3994 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3996 if (strcmp(model[0], model[1])) {
3997 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3998 "'%s' != '%s'\n", model[0], model[1]);
3999 return 0;
4002 if (strcmp(serial[0], serial[1])) {
4003 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4004 "'%s' != '%s'\n", serial[0], serial[1]);
4005 return 0;
4008 return 1;
4012 * ata_dev_reread_id - Re-read IDENTIFY data
4013 * @dev: target ATA device
4014 * @readid_flags: read ID flags
4016 * Re-read IDENTIFY page and make sure @dev is still attached to
4017 * the port.
4019 * LOCKING:
4020 * Kernel thread context (may sleep)
4022 * RETURNS:
4023 * 0 on success, negative errno otherwise
4025 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4027 unsigned int class = dev->class;
4028 u16 *id = (void *)dev->link->ap->sector_buf;
4029 int rc;
4031 /* read ID data */
4032 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4033 if (rc)
4034 return rc;
4036 /* is the device still there? */
4037 if (!ata_dev_same_device(dev, class, id))
4038 return -ENODEV;
4040 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4041 return 0;
4045 * ata_dev_revalidate - Revalidate ATA device
4046 * @dev: device to revalidate
4047 * @new_class: new class code
4048 * @readid_flags: read ID flags
4050 * Re-read IDENTIFY page, make sure @dev is still attached to the
4051 * port and reconfigure it according to the new IDENTIFY page.
4053 * LOCKING:
4054 * Kernel thread context (may sleep)
4056 * RETURNS:
4057 * 0 on success, negative errno otherwise
4059 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4060 unsigned int readid_flags)
4062 u64 n_sectors = dev->n_sectors;
4063 int rc;
4065 if (!ata_dev_enabled(dev))
4066 return -ENODEV;
4068 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4069 if (ata_class_enabled(new_class) &&
4070 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4071 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4072 dev->class, new_class);
4073 rc = -ENODEV;
4074 goto fail;
4077 /* re-read ID */
4078 rc = ata_dev_reread_id(dev, readid_flags);
4079 if (rc)
4080 goto fail;
4082 /* configure device according to the new ID */
4083 rc = ata_dev_configure(dev);
4084 if (rc)
4085 goto fail;
4087 /* verify n_sectors hasn't changed */
4088 if (dev->class == ATA_DEV_ATA && n_sectors &&
4089 dev->n_sectors != n_sectors) {
4090 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4091 "%llu != %llu\n",
4092 (unsigned long long)n_sectors,
4093 (unsigned long long)dev->n_sectors);
4095 /* restore original n_sectors */
4096 dev->n_sectors = n_sectors;
4098 rc = -ENODEV;
4099 goto fail;
4102 return 0;
4104 fail:
4105 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4106 return rc;
4109 struct ata_blacklist_entry {
4110 const char *model_num;
4111 const char *model_rev;
4112 unsigned long horkage;
4115 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4116 /* Devices with DMA related problems under Linux */
4117 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4118 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4119 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4120 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4121 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4122 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4123 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4124 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4125 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4126 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4127 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4128 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4129 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4130 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4131 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4132 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4133 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4134 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4135 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4136 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4137 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4138 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4139 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4140 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4141 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4142 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4143 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4144 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4145 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4146 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4147 /* Odd clown on sil3726/4726 PMPs */
4148 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4150 /* Weird ATAPI devices */
4151 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4152 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4154 /* Devices we expect to fail diagnostics */
4156 /* Devices where NCQ should be avoided */
4157 /* NCQ is slow */
4158 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4159 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4160 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4161 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4162 /* NCQ is broken */
4163 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4164 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4165 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4166 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4167 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4169 /* Seagate NCQ + FLUSH CACHE firmware bug */
4170 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4172 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4173 ATA_HORKAGE_FIRMWARE_WARN },
4174 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4175 ATA_HORKAGE_FIRMWARE_WARN },
4176 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4177 ATA_HORKAGE_FIRMWARE_WARN },
4178 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4179 ATA_HORKAGE_FIRMWARE_WARN },
4181 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4182 ATA_HORKAGE_FIRMWARE_WARN },
4183 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4184 ATA_HORKAGE_FIRMWARE_WARN },
4185 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4186 ATA_HORKAGE_FIRMWARE_WARN },
4187 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4188 ATA_HORKAGE_FIRMWARE_WARN },
4189 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4190 ATA_HORKAGE_FIRMWARE_WARN },
4192 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4193 ATA_HORKAGE_FIRMWARE_WARN },
4194 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4195 ATA_HORKAGE_FIRMWARE_WARN },
4196 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4197 ATA_HORKAGE_FIRMWARE_WARN },
4198 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4199 ATA_HORKAGE_FIRMWARE_WARN },
4200 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4201 ATA_HORKAGE_FIRMWARE_WARN },
4203 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4204 ATA_HORKAGE_FIRMWARE_WARN },
4205 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4206 ATA_HORKAGE_FIRMWARE_WARN },
4207 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4208 ATA_HORKAGE_FIRMWARE_WARN },
4209 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4210 ATA_HORKAGE_FIRMWARE_WARN },
4211 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4212 ATA_HORKAGE_FIRMWARE_WARN },
4214 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4215 ATA_HORKAGE_FIRMWARE_WARN },
4216 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4217 ATA_HORKAGE_FIRMWARE_WARN },
4218 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4223 ATA_HORKAGE_FIRMWARE_WARN },
4225 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4226 ATA_HORKAGE_FIRMWARE_WARN },
4227 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4236 /* Blacklist entries taken from Silicon Image 3124/3132
4237 Windows driver .inf file - also several Linux problem reports */
4238 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4239 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4240 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4242 /* devices which puke on READ_NATIVE_MAX */
4243 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4244 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4245 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4246 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4248 /* Devices which report 1 sector over size HPA */
4249 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4250 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4251 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4253 /* Devices which get the IVB wrong */
4254 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4255 /* Maybe we should just blacklist TSSTcorp... */
4256 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4257 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4258 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4259 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4260 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4261 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4263 /* Devices that do not need bridging limits applied */
4264 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4266 /* Devices which aren't very happy with higher link speeds */
4267 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4269 /* End Marker */
4273 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4275 const char *p;
4276 int len;
4279 * check for trailing wildcard: *\0
4281 p = strchr(patt, wildchar);
4282 if (p && ((*(p + 1)) == 0))
4283 len = p - patt;
4284 else {
4285 len = strlen(name);
4286 if (!len) {
4287 if (!*patt)
4288 return 0;
4289 return -1;
4293 return strncmp(patt, name, len);
4296 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4298 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4299 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4300 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4302 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4303 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4305 while (ad->model_num) {
4306 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4307 if (ad->model_rev == NULL)
4308 return ad->horkage;
4309 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4310 return ad->horkage;
4312 ad++;
4314 return 0;
4317 static int ata_dma_blacklisted(const struct ata_device *dev)
4319 /* We don't support polling DMA.
4320 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4321 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4323 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4324 (dev->flags & ATA_DFLAG_CDB_INTR))
4325 return 1;
4326 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4330 * ata_is_40wire - check drive side detection
4331 * @dev: device
4333 * Perform drive side detection decoding, allowing for device vendors
4334 * who can't follow the documentation.
4337 static int ata_is_40wire(struct ata_device *dev)
4339 if (dev->horkage & ATA_HORKAGE_IVB)
4340 return ata_drive_40wire_relaxed(dev->id);
4341 return ata_drive_40wire(dev->id);
4345 * cable_is_40wire - 40/80/SATA decider
4346 * @ap: port to consider
4348 * This function encapsulates the policy for speed management
4349 * in one place. At the moment we don't cache the result but
4350 * there is a good case for setting ap->cbl to the result when
4351 * we are called with unknown cables (and figuring out if it
4352 * impacts hotplug at all).
4354 * Return 1 if the cable appears to be 40 wire.
4357 static int cable_is_40wire(struct ata_port *ap)
4359 struct ata_link *link;
4360 struct ata_device *dev;
4362 /* If the controller thinks we are 40 wire, we are. */
4363 if (ap->cbl == ATA_CBL_PATA40)
4364 return 1;
4366 /* If the controller thinks we are 80 wire, we are. */
4367 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4368 return 0;
4370 /* If the system is known to be 40 wire short cable (eg
4371 * laptop), then we allow 80 wire modes even if the drive
4372 * isn't sure.
4374 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4375 return 0;
4377 /* If the controller doesn't know, we scan.
4379 * Note: We look for all 40 wire detects at this point. Any
4380 * 80 wire detect is taken to be 80 wire cable because
4381 * - in many setups only the one drive (slave if present) will
4382 * give a valid detect
4383 * - if you have a non detect capable drive you don't want it
4384 * to colour the choice
4386 ata_for_each_link(link, ap, EDGE) {
4387 ata_for_each_dev(dev, link, ENABLED) {
4388 if (!ata_is_40wire(dev))
4389 return 0;
4392 return 1;
4396 * ata_dev_xfermask - Compute supported xfermask of the given device
4397 * @dev: Device to compute xfermask for
4399 * Compute supported xfermask of @dev and store it in
4400 * dev->*_mask. This function is responsible for applying all
4401 * known limits including host controller limits, device
4402 * blacklist, etc...
4404 * LOCKING:
4405 * None.
4407 static void ata_dev_xfermask(struct ata_device *dev)
4409 struct ata_link *link = dev->link;
4410 struct ata_port *ap = link->ap;
4411 struct ata_host *host = ap->host;
4412 unsigned long xfer_mask;
4414 /* controller modes available */
4415 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4416 ap->mwdma_mask, ap->udma_mask);
4418 /* drive modes available */
4419 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4420 dev->mwdma_mask, dev->udma_mask);
4421 xfer_mask &= ata_id_xfermask(dev->id);
4424 * CFA Advanced TrueIDE timings are not allowed on a shared
4425 * cable
4427 if (ata_dev_pair(dev)) {
4428 /* No PIO5 or PIO6 */
4429 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4430 /* No MWDMA3 or MWDMA 4 */
4431 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4434 if (ata_dma_blacklisted(dev)) {
4435 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4436 ata_dev_printk(dev, KERN_WARNING,
4437 "device is on DMA blacklist, disabling DMA\n");
4440 if ((host->flags & ATA_HOST_SIMPLEX) &&
4441 host->simplex_claimed && host->simplex_claimed != ap) {
4442 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4443 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4444 "other device, disabling DMA\n");
4447 if (ap->flags & ATA_FLAG_NO_IORDY)
4448 xfer_mask &= ata_pio_mask_no_iordy(dev);
4450 if (ap->ops->mode_filter)
4451 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4453 /* Apply cable rule here. Don't apply it early because when
4454 * we handle hot plug the cable type can itself change.
4455 * Check this last so that we know if the transfer rate was
4456 * solely limited by the cable.
4457 * Unknown or 80 wire cables reported host side are checked
4458 * drive side as well. Cases where we know a 40wire cable
4459 * is used safely for 80 are not checked here.
4461 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4462 /* UDMA/44 or higher would be available */
4463 if (cable_is_40wire(ap)) {
4464 ata_dev_printk(dev, KERN_WARNING,
4465 "limited to UDMA/33 due to 40-wire cable\n");
4466 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4469 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4470 &dev->mwdma_mask, &dev->udma_mask);
4474 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4475 * @dev: Device to which command will be sent
4477 * Issue SET FEATURES - XFER MODE command to device @dev
4478 * on port @ap.
4480 * LOCKING:
4481 * PCI/etc. bus probe sem.
4483 * RETURNS:
4484 * 0 on success, AC_ERR_* mask otherwise.
4487 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4489 struct ata_taskfile tf;
4490 unsigned int err_mask;
4492 /* set up set-features taskfile */
4493 DPRINTK("set features - xfer mode\n");
4495 /* Some controllers and ATAPI devices show flaky interrupt
4496 * behavior after setting xfer mode. Use polling instead.
4498 ata_tf_init(dev, &tf);
4499 tf.command = ATA_CMD_SET_FEATURES;
4500 tf.feature = SETFEATURES_XFER;
4501 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4502 tf.protocol = ATA_PROT_NODATA;
4503 /* If we are using IORDY we must send the mode setting command */
4504 if (ata_pio_need_iordy(dev))
4505 tf.nsect = dev->xfer_mode;
4506 /* If the device has IORDY and the controller does not - turn it off */
4507 else if (ata_id_has_iordy(dev->id))
4508 tf.nsect = 0x01;
4509 else /* In the ancient relic department - skip all of this */
4510 return 0;
4512 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4514 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4515 return err_mask;
4518 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4519 * @dev: Device to which command will be sent
4520 * @enable: Whether to enable or disable the feature
4521 * @feature: The sector count represents the feature to set
4523 * Issue SET FEATURES - SATA FEATURES command to device @dev
4524 * on port @ap with sector count
4526 * LOCKING:
4527 * PCI/etc. bus probe sem.
4529 * RETURNS:
4530 * 0 on success, AC_ERR_* mask otherwise.
4532 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4533 u8 feature)
4535 struct ata_taskfile tf;
4536 unsigned int err_mask;
4538 /* set up set-features taskfile */
4539 DPRINTK("set features - SATA features\n");
4541 ata_tf_init(dev, &tf);
4542 tf.command = ATA_CMD_SET_FEATURES;
4543 tf.feature = enable;
4544 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4545 tf.protocol = ATA_PROT_NODATA;
4546 tf.nsect = feature;
4548 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4550 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4551 return err_mask;
4555 * ata_dev_init_params - Issue INIT DEV PARAMS command
4556 * @dev: Device to which command will be sent
4557 * @heads: Number of heads (taskfile parameter)
4558 * @sectors: Number of sectors (taskfile parameter)
4560 * LOCKING:
4561 * Kernel thread context (may sleep)
4563 * RETURNS:
4564 * 0 on success, AC_ERR_* mask otherwise.
4566 static unsigned int ata_dev_init_params(struct ata_device *dev,
4567 u16 heads, u16 sectors)
4569 struct ata_taskfile tf;
4570 unsigned int err_mask;
4572 /* Number of sectors per track 1-255. Number of heads 1-16 */
4573 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4574 return AC_ERR_INVALID;
4576 /* set up init dev params taskfile */
4577 DPRINTK("init dev params \n");
4579 ata_tf_init(dev, &tf);
4580 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4581 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4582 tf.protocol = ATA_PROT_NODATA;
4583 tf.nsect = sectors;
4584 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4586 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4587 /* A clean abort indicates an original or just out of spec drive
4588 and we should continue as we issue the setup based on the
4589 drive reported working geometry */
4590 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4591 err_mask = 0;
4593 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4594 return err_mask;
4598 * ata_sg_clean - Unmap DMA memory associated with command
4599 * @qc: Command containing DMA memory to be released
4601 * Unmap all mapped DMA memory associated with this command.
4603 * LOCKING:
4604 * spin_lock_irqsave(host lock)
4606 void ata_sg_clean(struct ata_queued_cmd *qc)
4608 struct ata_port *ap = qc->ap;
4609 struct scatterlist *sg = qc->sg;
4610 int dir = qc->dma_dir;
4612 WARN_ON_ONCE(sg == NULL);
4614 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4616 if (qc->n_elem)
4617 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4619 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4620 qc->sg = NULL;
4624 * atapi_check_dma - Check whether ATAPI DMA can be supported
4625 * @qc: Metadata associated with taskfile to check
4627 * Allow low-level driver to filter ATA PACKET commands, returning
4628 * a status indicating whether or not it is OK to use DMA for the
4629 * supplied PACKET command.
4631 * LOCKING:
4632 * spin_lock_irqsave(host lock)
4634 * RETURNS: 0 when ATAPI DMA can be used
4635 * nonzero otherwise
4637 int atapi_check_dma(struct ata_queued_cmd *qc)
4639 struct ata_port *ap = qc->ap;
4641 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4642 * few ATAPI devices choke on such DMA requests.
4644 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4645 unlikely(qc->nbytes & 15))
4646 return 1;
4648 if (ap->ops->check_atapi_dma)
4649 return ap->ops->check_atapi_dma(qc);
4651 return 0;
4655 * ata_std_qc_defer - Check whether a qc needs to be deferred
4656 * @qc: ATA command in question
4658 * Non-NCQ commands cannot run with any other command, NCQ or
4659 * not. As upper layer only knows the queue depth, we are
4660 * responsible for maintaining exclusion. This function checks
4661 * whether a new command @qc can be issued.
4663 * LOCKING:
4664 * spin_lock_irqsave(host lock)
4666 * RETURNS:
4667 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4669 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4671 struct ata_link *link = qc->dev->link;
4673 if (qc->tf.protocol == ATA_PROT_NCQ) {
4674 if (!ata_tag_valid(link->active_tag))
4675 return 0;
4676 } else {
4677 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4678 return 0;
4681 return ATA_DEFER_LINK;
4684 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4687 * ata_sg_init - Associate command with scatter-gather table.
4688 * @qc: Command to be associated
4689 * @sg: Scatter-gather table.
4690 * @n_elem: Number of elements in s/g table.
4692 * Initialize the data-related elements of queued_cmd @qc
4693 * to point to a scatter-gather table @sg, containing @n_elem
4694 * elements.
4696 * LOCKING:
4697 * spin_lock_irqsave(host lock)
4699 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4700 unsigned int n_elem)
4702 qc->sg = sg;
4703 qc->n_elem = n_elem;
4704 qc->cursg = qc->sg;
4708 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4709 * @qc: Command with scatter-gather table to be mapped.
4711 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4713 * LOCKING:
4714 * spin_lock_irqsave(host lock)
4716 * RETURNS:
4717 * Zero on success, negative on error.
4720 static int ata_sg_setup(struct ata_queued_cmd *qc)
4722 struct ata_port *ap = qc->ap;
4723 unsigned int n_elem;
4725 VPRINTK("ENTER, ata%u\n", ap->print_id);
4727 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4728 if (n_elem < 1)
4729 return -1;
4731 DPRINTK("%d sg elements mapped\n", n_elem);
4732 qc->orig_n_elem = qc->n_elem;
4733 qc->n_elem = n_elem;
4734 qc->flags |= ATA_QCFLAG_DMAMAP;
4736 return 0;
4740 * swap_buf_le16 - swap halves of 16-bit words in place
4741 * @buf: Buffer to swap
4742 * @buf_words: Number of 16-bit words in buffer.
4744 * Swap halves of 16-bit words if needed to convert from
4745 * little-endian byte order to native cpu byte order, or
4746 * vice-versa.
4748 * LOCKING:
4749 * Inherited from caller.
4751 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4753 #ifdef __BIG_ENDIAN
4754 unsigned int i;
4756 for (i = 0; i < buf_words; i++)
4757 buf[i] = le16_to_cpu(buf[i]);
4758 #endif /* __BIG_ENDIAN */
4762 * ata_qc_new - Request an available ATA command, for queueing
4763 * @ap: target port
4765 * LOCKING:
4766 * None.
4769 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4771 struct ata_queued_cmd *qc = NULL;
4772 unsigned int i;
4774 /* no command while frozen */
4775 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4776 return NULL;
4778 /* the last tag is reserved for internal command. */
4779 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4780 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4781 qc = __ata_qc_from_tag(ap, i);
4782 break;
4785 if (qc)
4786 qc->tag = i;
4788 return qc;
4792 * ata_qc_new_init - Request an available ATA command, and initialize it
4793 * @dev: Device from whom we request an available command structure
4795 * LOCKING:
4796 * None.
4799 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4801 struct ata_port *ap = dev->link->ap;
4802 struct ata_queued_cmd *qc;
4804 qc = ata_qc_new(ap);
4805 if (qc) {
4806 qc->scsicmd = NULL;
4807 qc->ap = ap;
4808 qc->dev = dev;
4810 ata_qc_reinit(qc);
4813 return qc;
4817 * ata_qc_free - free unused ata_queued_cmd
4818 * @qc: Command to complete
4820 * Designed to free unused ata_queued_cmd object
4821 * in case something prevents using it.
4823 * LOCKING:
4824 * spin_lock_irqsave(host lock)
4826 void ata_qc_free(struct ata_queued_cmd *qc)
4828 struct ata_port *ap = qc->ap;
4829 unsigned int tag;
4831 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4833 qc->flags = 0;
4834 tag = qc->tag;
4835 if (likely(ata_tag_valid(tag))) {
4836 qc->tag = ATA_TAG_POISON;
4837 clear_bit(tag, &ap->qc_allocated);
4841 void __ata_qc_complete(struct ata_queued_cmd *qc)
4843 struct ata_port *ap = qc->ap;
4844 struct ata_link *link = qc->dev->link;
4846 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4847 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4849 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4850 ata_sg_clean(qc);
4852 /* command should be marked inactive atomically with qc completion */
4853 if (qc->tf.protocol == ATA_PROT_NCQ) {
4854 link->sactive &= ~(1 << qc->tag);
4855 if (!link->sactive)
4856 ap->nr_active_links--;
4857 } else {
4858 link->active_tag = ATA_TAG_POISON;
4859 ap->nr_active_links--;
4862 /* clear exclusive status */
4863 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4864 ap->excl_link == link))
4865 ap->excl_link = NULL;
4867 /* atapi: mark qc as inactive to prevent the interrupt handler
4868 * from completing the command twice later, before the error handler
4869 * is called. (when rc != 0 and atapi request sense is needed)
4871 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4872 ap->qc_active &= ~(1 << qc->tag);
4874 /* call completion callback */
4875 qc->complete_fn(qc);
4878 static void fill_result_tf(struct ata_queued_cmd *qc)
4880 struct ata_port *ap = qc->ap;
4882 qc->result_tf.flags = qc->tf.flags;
4883 ap->ops->qc_fill_rtf(qc);
4886 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4888 struct ata_device *dev = qc->dev;
4890 if (ata_tag_internal(qc->tag))
4891 return;
4893 if (ata_is_nodata(qc->tf.protocol))
4894 return;
4896 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4897 return;
4899 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4903 * ata_qc_complete - Complete an active ATA command
4904 * @qc: Command to complete
4906 * Indicate to the mid and upper layers that an ATA
4907 * command has completed, with either an ok or not-ok status.
4909 * LOCKING:
4910 * spin_lock_irqsave(host lock)
4912 void ata_qc_complete(struct ata_queued_cmd *qc)
4914 struct ata_port *ap = qc->ap;
4916 /* XXX: New EH and old EH use different mechanisms to
4917 * synchronize EH with regular execution path.
4919 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4920 * Normal execution path is responsible for not accessing a
4921 * failed qc. libata core enforces the rule by returning NULL
4922 * from ata_qc_from_tag() for failed qcs.
4924 * Old EH depends on ata_qc_complete() nullifying completion
4925 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4926 * not synchronize with interrupt handler. Only PIO task is
4927 * taken care of.
4929 if (ap->ops->error_handler) {
4930 struct ata_device *dev = qc->dev;
4931 struct ata_eh_info *ehi = &dev->link->eh_info;
4933 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4935 if (unlikely(qc->err_mask))
4936 qc->flags |= ATA_QCFLAG_FAILED;
4938 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4939 if (!ata_tag_internal(qc->tag)) {
4940 /* always fill result TF for failed qc */
4941 fill_result_tf(qc);
4942 ata_qc_schedule_eh(qc);
4943 return;
4947 /* read result TF if requested */
4948 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4949 fill_result_tf(qc);
4951 /* Some commands need post-processing after successful
4952 * completion.
4954 switch (qc->tf.command) {
4955 case ATA_CMD_SET_FEATURES:
4956 if (qc->tf.feature != SETFEATURES_WC_ON &&
4957 qc->tf.feature != SETFEATURES_WC_OFF)
4958 break;
4959 /* fall through */
4960 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4961 case ATA_CMD_SET_MULTI: /* multi_count changed */
4962 /* revalidate device */
4963 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4964 ata_port_schedule_eh(ap);
4965 break;
4967 case ATA_CMD_SLEEP:
4968 dev->flags |= ATA_DFLAG_SLEEPING;
4969 break;
4972 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4973 ata_verify_xfer(qc);
4975 __ata_qc_complete(qc);
4976 } else {
4977 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4978 return;
4980 /* read result TF if failed or requested */
4981 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4982 fill_result_tf(qc);
4984 __ata_qc_complete(qc);
4989 * ata_qc_complete_multiple - Complete multiple qcs successfully
4990 * @ap: port in question
4991 * @qc_active: new qc_active mask
4993 * Complete in-flight commands. This functions is meant to be
4994 * called from low-level driver's interrupt routine to complete
4995 * requests normally. ap->qc_active and @qc_active is compared
4996 * and commands are completed accordingly.
4998 * LOCKING:
4999 * spin_lock_irqsave(host lock)
5001 * RETURNS:
5002 * Number of completed commands on success, -errno otherwise.
5004 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5006 int nr_done = 0;
5007 u32 done_mask;
5008 int i;
5010 done_mask = ap->qc_active ^ qc_active;
5012 if (unlikely(done_mask & qc_active)) {
5013 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5014 "(%08x->%08x)\n", ap->qc_active, qc_active);
5015 return -EINVAL;
5018 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5019 struct ata_queued_cmd *qc;
5021 if (!(done_mask & (1 << i)))
5022 continue;
5024 if ((qc = ata_qc_from_tag(ap, i))) {
5025 ata_qc_complete(qc);
5026 nr_done++;
5030 return nr_done;
5034 * ata_qc_issue - issue taskfile to device
5035 * @qc: command to issue to device
5037 * Prepare an ATA command to submission to device.
5038 * This includes mapping the data into a DMA-able
5039 * area, filling in the S/G table, and finally
5040 * writing the taskfile to hardware, starting the command.
5042 * LOCKING:
5043 * spin_lock_irqsave(host lock)
5045 void ata_qc_issue(struct ata_queued_cmd *qc)
5047 struct ata_port *ap = qc->ap;
5048 struct ata_link *link = qc->dev->link;
5049 u8 prot = qc->tf.protocol;
5051 /* Make sure only one non-NCQ command is outstanding. The
5052 * check is skipped for old EH because it reuses active qc to
5053 * request ATAPI sense.
5055 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5057 if (ata_is_ncq(prot)) {
5058 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5060 if (!link->sactive)
5061 ap->nr_active_links++;
5062 link->sactive |= 1 << qc->tag;
5063 } else {
5064 WARN_ON_ONCE(link->sactive);
5066 ap->nr_active_links++;
5067 link->active_tag = qc->tag;
5070 qc->flags |= ATA_QCFLAG_ACTIVE;
5071 ap->qc_active |= 1 << qc->tag;
5073 /* We guarantee to LLDs that they will have at least one
5074 * non-zero sg if the command is a data command.
5076 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5078 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5079 (ap->flags & ATA_FLAG_PIO_DMA)))
5080 if (ata_sg_setup(qc))
5081 goto sg_err;
5083 /* if device is sleeping, schedule reset and abort the link */
5084 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5085 link->eh_info.action |= ATA_EH_RESET;
5086 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5087 ata_link_abort(link);
5088 return;
5091 ap->ops->qc_prep(qc);
5093 qc->err_mask |= ap->ops->qc_issue(qc);
5094 if (unlikely(qc->err_mask))
5095 goto err;
5096 return;
5098 sg_err:
5099 qc->err_mask |= AC_ERR_SYSTEM;
5100 err:
5101 ata_qc_complete(qc);
5105 * sata_scr_valid - test whether SCRs are accessible
5106 * @link: ATA link to test SCR accessibility for
5108 * Test whether SCRs are accessible for @link.
5110 * LOCKING:
5111 * None.
5113 * RETURNS:
5114 * 1 if SCRs are accessible, 0 otherwise.
5116 int sata_scr_valid(struct ata_link *link)
5118 struct ata_port *ap = link->ap;
5120 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5124 * sata_scr_read - read SCR register of the specified port
5125 * @link: ATA link to read SCR for
5126 * @reg: SCR to read
5127 * @val: Place to store read value
5129 * Read SCR register @reg of @link into *@val. This function is
5130 * guaranteed to succeed if @link is ap->link, the cable type of
5131 * the port is SATA and the port implements ->scr_read.
5133 * LOCKING:
5134 * None if @link is ap->link. Kernel thread context otherwise.
5136 * RETURNS:
5137 * 0 on success, negative errno on failure.
5139 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5141 if (ata_is_host_link(link)) {
5142 if (sata_scr_valid(link))
5143 return link->ap->ops->scr_read(link, reg, val);
5144 return -EOPNOTSUPP;
5147 return sata_pmp_scr_read(link, reg, val);
5151 * sata_scr_write - write SCR register of the specified port
5152 * @link: ATA link to write SCR for
5153 * @reg: SCR to write
5154 * @val: value to write
5156 * Write @val to SCR register @reg of @link. This function is
5157 * guaranteed to succeed if @link is ap->link, the cable type of
5158 * the port is SATA and the port implements ->scr_read.
5160 * LOCKING:
5161 * None if @link is ap->link. Kernel thread context otherwise.
5163 * RETURNS:
5164 * 0 on success, negative errno on failure.
5166 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5168 if (ata_is_host_link(link)) {
5169 if (sata_scr_valid(link))
5170 return link->ap->ops->scr_write(link, reg, val);
5171 return -EOPNOTSUPP;
5174 return sata_pmp_scr_write(link, reg, val);
5178 * sata_scr_write_flush - write SCR register of the specified port and flush
5179 * @link: ATA link to write SCR for
5180 * @reg: SCR to write
5181 * @val: value to write
5183 * This function is identical to sata_scr_write() except that this
5184 * function performs flush after writing to the register.
5186 * LOCKING:
5187 * None if @link is ap->link. Kernel thread context otherwise.
5189 * RETURNS:
5190 * 0 on success, negative errno on failure.
5192 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5194 if (ata_is_host_link(link)) {
5195 int rc;
5197 if (sata_scr_valid(link)) {
5198 rc = link->ap->ops->scr_write(link, reg, val);
5199 if (rc == 0)
5200 rc = link->ap->ops->scr_read(link, reg, &val);
5201 return rc;
5203 return -EOPNOTSUPP;
5206 return sata_pmp_scr_write(link, reg, val);
5210 * ata_phys_link_online - test whether the given link is online
5211 * @link: ATA link to test
5213 * Test whether @link is online. Note that this function returns
5214 * 0 if online status of @link cannot be obtained, so
5215 * ata_link_online(link) != !ata_link_offline(link).
5217 * LOCKING:
5218 * None.
5220 * RETURNS:
5221 * True if the port online status is available and online.
5223 bool ata_phys_link_online(struct ata_link *link)
5225 u32 sstatus;
5227 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5228 ata_sstatus_online(sstatus))
5229 return true;
5230 return false;
5234 * ata_phys_link_offline - test whether the given link is offline
5235 * @link: ATA link to test
5237 * Test whether @link is offline. Note that this function
5238 * returns 0 if offline status of @link cannot be obtained, so
5239 * ata_link_online(link) != !ata_link_offline(link).
5241 * LOCKING:
5242 * None.
5244 * RETURNS:
5245 * True if the port offline status is available and offline.
5247 bool ata_phys_link_offline(struct ata_link *link)
5249 u32 sstatus;
5251 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5252 !ata_sstatus_online(sstatus))
5253 return true;
5254 return false;
5258 * ata_link_online - test whether the given link is online
5259 * @link: ATA link to test
5261 * Test whether @link is online. This is identical to
5262 * ata_phys_link_online() when there's no slave link. When
5263 * there's a slave link, this function should only be called on
5264 * the master link and will return true if any of M/S links is
5265 * online.
5267 * LOCKING:
5268 * None.
5270 * RETURNS:
5271 * True if the port online status is available and online.
5273 bool ata_link_online(struct ata_link *link)
5275 struct ata_link *slave = link->ap->slave_link;
5277 WARN_ON(link == slave); /* shouldn't be called on slave link */
5279 return ata_phys_link_online(link) ||
5280 (slave && ata_phys_link_online(slave));
5284 * ata_link_offline - test whether the given link is offline
5285 * @link: ATA link to test
5287 * Test whether @link is offline. This is identical to
5288 * ata_phys_link_offline() when there's no slave link. When
5289 * there's a slave link, this function should only be called on
5290 * the master link and will return true if both M/S links are
5291 * offline.
5293 * LOCKING:
5294 * None.
5296 * RETURNS:
5297 * True if the port offline status is available and offline.
5299 bool ata_link_offline(struct ata_link *link)
5301 struct ata_link *slave = link->ap->slave_link;
5303 WARN_ON(link == slave); /* shouldn't be called on slave link */
5305 return ata_phys_link_offline(link) &&
5306 (!slave || ata_phys_link_offline(slave));
5309 #ifdef CONFIG_PM
5310 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5311 unsigned int action, unsigned int ehi_flags,
5312 int wait)
5314 unsigned long flags;
5315 int i, rc;
5317 for (i = 0; i < host->n_ports; i++) {
5318 struct ata_port *ap = host->ports[i];
5319 struct ata_link *link;
5321 /* Previous resume operation might still be in
5322 * progress. Wait for PM_PENDING to clear.
5324 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5325 ata_port_wait_eh(ap);
5326 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5329 /* request PM ops to EH */
5330 spin_lock_irqsave(ap->lock, flags);
5332 ap->pm_mesg = mesg;
5333 if (wait) {
5334 rc = 0;
5335 ap->pm_result = &rc;
5338 ap->pflags |= ATA_PFLAG_PM_PENDING;
5339 ata_for_each_link(link, ap, HOST_FIRST) {
5340 link->eh_info.action |= action;
5341 link->eh_info.flags |= ehi_flags;
5344 ata_port_schedule_eh(ap);
5346 spin_unlock_irqrestore(ap->lock, flags);
5348 /* wait and check result */
5349 if (wait) {
5350 ata_port_wait_eh(ap);
5351 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5352 if (rc)
5353 return rc;
5357 return 0;
5361 * ata_host_suspend - suspend host
5362 * @host: host to suspend
5363 * @mesg: PM message
5365 * Suspend @host. Actual operation is performed by EH. This
5366 * function requests EH to perform PM operations and waits for EH
5367 * to finish.
5369 * LOCKING:
5370 * Kernel thread context (may sleep).
5372 * RETURNS:
5373 * 0 on success, -errno on failure.
5375 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5377 int rc;
5380 * disable link pm on all ports before requesting
5381 * any pm activity
5383 ata_lpm_enable(host);
5385 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5386 if (rc == 0)
5387 host->dev->power.power_state = mesg;
5388 return rc;
5392 * ata_host_resume - resume host
5393 * @host: host to resume
5395 * Resume @host. Actual operation is performed by EH. This
5396 * function requests EH to perform PM operations and returns.
5397 * Note that all resume operations are performed parallely.
5399 * LOCKING:
5400 * Kernel thread context (may sleep).
5402 void ata_host_resume(struct ata_host *host)
5404 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5405 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5406 host->dev->power.power_state = PMSG_ON;
5408 /* reenable link pm */
5409 ata_lpm_disable(host);
5411 #endif
5414 * ata_port_start - Set port up for dma.
5415 * @ap: Port to initialize
5417 * Called just after data structures for each port are
5418 * initialized. Allocates space for PRD table.
5420 * May be used as the port_start() entry in ata_port_operations.
5422 * LOCKING:
5423 * Inherited from caller.
5425 int ata_port_start(struct ata_port *ap)
5427 struct device *dev = ap->dev;
5429 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5430 GFP_KERNEL);
5431 if (!ap->prd)
5432 return -ENOMEM;
5434 return 0;
5438 * ata_dev_init - Initialize an ata_device structure
5439 * @dev: Device structure to initialize
5441 * Initialize @dev in preparation for probing.
5443 * LOCKING:
5444 * Inherited from caller.
5446 void ata_dev_init(struct ata_device *dev)
5448 struct ata_link *link = ata_dev_phys_link(dev);
5449 struct ata_port *ap = link->ap;
5450 unsigned long flags;
5452 /* SATA spd limit is bound to the attached device, reset together */
5453 link->sata_spd_limit = link->hw_sata_spd_limit;
5454 link->sata_spd = 0;
5456 /* High bits of dev->flags are used to record warm plug
5457 * requests which occur asynchronously. Synchronize using
5458 * host lock.
5460 spin_lock_irqsave(ap->lock, flags);
5461 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5462 dev->horkage = 0;
5463 spin_unlock_irqrestore(ap->lock, flags);
5465 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5466 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5467 dev->pio_mask = UINT_MAX;
5468 dev->mwdma_mask = UINT_MAX;
5469 dev->udma_mask = UINT_MAX;
5473 * ata_link_init - Initialize an ata_link structure
5474 * @ap: ATA port link is attached to
5475 * @link: Link structure to initialize
5476 * @pmp: Port multiplier port number
5478 * Initialize @link.
5480 * LOCKING:
5481 * Kernel thread context (may sleep)
5483 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5485 int i;
5487 /* clear everything except for devices */
5488 memset(link, 0, offsetof(struct ata_link, device[0]));
5490 link->ap = ap;
5491 link->pmp = pmp;
5492 link->active_tag = ATA_TAG_POISON;
5493 link->hw_sata_spd_limit = UINT_MAX;
5495 /* can't use iterator, ap isn't initialized yet */
5496 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5497 struct ata_device *dev = &link->device[i];
5499 dev->link = link;
5500 dev->devno = dev - link->device;
5501 ata_dev_init(dev);
5506 * sata_link_init_spd - Initialize link->sata_spd_limit
5507 * @link: Link to configure sata_spd_limit for
5509 * Initialize @link->[hw_]sata_spd_limit to the currently
5510 * configured value.
5512 * LOCKING:
5513 * Kernel thread context (may sleep).
5515 * RETURNS:
5516 * 0 on success, -errno on failure.
5518 int sata_link_init_spd(struct ata_link *link)
5520 u8 spd;
5521 int rc;
5523 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5524 if (rc)
5525 return rc;
5527 spd = (link->saved_scontrol >> 4) & 0xf;
5528 if (spd)
5529 link->hw_sata_spd_limit &= (1 << spd) - 1;
5531 ata_force_link_limits(link);
5533 link->sata_spd_limit = link->hw_sata_spd_limit;
5535 return 0;
5539 * ata_port_alloc - allocate and initialize basic ATA port resources
5540 * @host: ATA host this allocated port belongs to
5542 * Allocate and initialize basic ATA port resources.
5544 * RETURNS:
5545 * Allocate ATA port on success, NULL on failure.
5547 * LOCKING:
5548 * Inherited from calling layer (may sleep).
5550 struct ata_port *ata_port_alloc(struct ata_host *host)
5552 struct ata_port *ap;
5554 DPRINTK("ENTER\n");
5556 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5557 if (!ap)
5558 return NULL;
5560 ap->pflags |= ATA_PFLAG_INITIALIZING;
5561 ap->lock = &host->lock;
5562 ap->flags = ATA_FLAG_DISABLED;
5563 ap->print_id = -1;
5564 ap->ctl = ATA_DEVCTL_OBS;
5565 ap->host = host;
5566 ap->dev = host->dev;
5567 ap->last_ctl = 0xFF;
5569 #if defined(ATA_VERBOSE_DEBUG)
5570 /* turn on all debugging levels */
5571 ap->msg_enable = 0x00FF;
5572 #elif defined(ATA_DEBUG)
5573 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5574 #else
5575 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5576 #endif
5578 #ifdef CONFIG_ATA_SFF
5579 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5580 #else
5581 INIT_DELAYED_WORK(&ap->port_task, NULL);
5582 #endif
5583 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5584 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5585 INIT_LIST_HEAD(&ap->eh_done_q);
5586 init_waitqueue_head(&ap->eh_wait_q);
5587 init_completion(&ap->park_req_pending);
5588 init_timer_deferrable(&ap->fastdrain_timer);
5589 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5590 ap->fastdrain_timer.data = (unsigned long)ap;
5592 ap->cbl = ATA_CBL_NONE;
5594 ata_link_init(ap, &ap->link, 0);
5596 #ifdef ATA_IRQ_TRAP
5597 ap->stats.unhandled_irq = 1;
5598 ap->stats.idle_irq = 1;
5599 #endif
5600 return ap;
5603 static void ata_host_release(struct device *gendev, void *res)
5605 struct ata_host *host = dev_get_drvdata(gendev);
5606 int i;
5608 for (i = 0; i < host->n_ports; i++) {
5609 struct ata_port *ap = host->ports[i];
5611 if (!ap)
5612 continue;
5614 if (ap->scsi_host)
5615 scsi_host_put(ap->scsi_host);
5617 kfree(ap->pmp_link);
5618 kfree(ap->slave_link);
5619 kfree(ap);
5620 host->ports[i] = NULL;
5623 dev_set_drvdata(gendev, NULL);
5627 * ata_host_alloc - allocate and init basic ATA host resources
5628 * @dev: generic device this host is associated with
5629 * @max_ports: maximum number of ATA ports associated with this host
5631 * Allocate and initialize basic ATA host resources. LLD calls
5632 * this function to allocate a host, initializes it fully and
5633 * attaches it using ata_host_register().
5635 * @max_ports ports are allocated and host->n_ports is
5636 * initialized to @max_ports. The caller is allowed to decrease
5637 * host->n_ports before calling ata_host_register(). The unused
5638 * ports will be automatically freed on registration.
5640 * RETURNS:
5641 * Allocate ATA host on success, NULL on failure.
5643 * LOCKING:
5644 * Inherited from calling layer (may sleep).
5646 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5648 struct ata_host *host;
5649 size_t sz;
5650 int i;
5652 DPRINTK("ENTER\n");
5654 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5655 return NULL;
5657 /* alloc a container for our list of ATA ports (buses) */
5658 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5659 /* alloc a container for our list of ATA ports (buses) */
5660 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5661 if (!host)
5662 goto err_out;
5664 devres_add(dev, host);
5665 dev_set_drvdata(dev, host);
5667 spin_lock_init(&host->lock);
5668 host->dev = dev;
5669 host->n_ports = max_ports;
5671 /* allocate ports bound to this host */
5672 for (i = 0; i < max_ports; i++) {
5673 struct ata_port *ap;
5675 ap = ata_port_alloc(host);
5676 if (!ap)
5677 goto err_out;
5679 ap->port_no = i;
5680 host->ports[i] = ap;
5683 devres_remove_group(dev, NULL);
5684 return host;
5686 err_out:
5687 devres_release_group(dev, NULL);
5688 return NULL;
5692 * ata_host_alloc_pinfo - alloc host and init with port_info array
5693 * @dev: generic device this host is associated with
5694 * @ppi: array of ATA port_info to initialize host with
5695 * @n_ports: number of ATA ports attached to this host
5697 * Allocate ATA host and initialize with info from @ppi. If NULL
5698 * terminated, @ppi may contain fewer entries than @n_ports. The
5699 * last entry will be used for the remaining ports.
5701 * RETURNS:
5702 * Allocate ATA host on success, NULL on failure.
5704 * LOCKING:
5705 * Inherited from calling layer (may sleep).
5707 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5708 const struct ata_port_info * const * ppi,
5709 int n_ports)
5711 const struct ata_port_info *pi;
5712 struct ata_host *host;
5713 int i, j;
5715 host = ata_host_alloc(dev, n_ports);
5716 if (!host)
5717 return NULL;
5719 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5720 struct ata_port *ap = host->ports[i];
5722 if (ppi[j])
5723 pi = ppi[j++];
5725 ap->pio_mask = pi->pio_mask;
5726 ap->mwdma_mask = pi->mwdma_mask;
5727 ap->udma_mask = pi->udma_mask;
5728 ap->flags |= pi->flags;
5729 ap->link.flags |= pi->link_flags;
5730 ap->ops = pi->port_ops;
5732 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5733 host->ops = pi->port_ops;
5736 return host;
5740 * ata_slave_link_init - initialize slave link
5741 * @ap: port to initialize slave link for
5743 * Create and initialize slave link for @ap. This enables slave
5744 * link handling on the port.
5746 * In libata, a port contains links and a link contains devices.
5747 * There is single host link but if a PMP is attached to it,
5748 * there can be multiple fan-out links. On SATA, there's usually
5749 * a single device connected to a link but PATA and SATA
5750 * controllers emulating TF based interface can have two - master
5751 * and slave.
5753 * However, there are a few controllers which don't fit into this
5754 * abstraction too well - SATA controllers which emulate TF
5755 * interface with both master and slave devices but also have
5756 * separate SCR register sets for each device. These controllers
5757 * need separate links for physical link handling
5758 * (e.g. onlineness, link speed) but should be treated like a
5759 * traditional M/S controller for everything else (e.g. command
5760 * issue, softreset).
5762 * slave_link is libata's way of handling this class of
5763 * controllers without impacting core layer too much. For
5764 * anything other than physical link handling, the default host
5765 * link is used for both master and slave. For physical link
5766 * handling, separate @ap->slave_link is used. All dirty details
5767 * are implemented inside libata core layer. From LLD's POV, the
5768 * only difference is that prereset, hardreset and postreset are
5769 * called once more for the slave link, so the reset sequence
5770 * looks like the following.
5772 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5773 * softreset(M) -> postreset(M) -> postreset(S)
5775 * Note that softreset is called only for the master. Softreset
5776 * resets both M/S by definition, so SRST on master should handle
5777 * both (the standard method will work just fine).
5779 * LOCKING:
5780 * Should be called before host is registered.
5782 * RETURNS:
5783 * 0 on success, -errno on failure.
5785 int ata_slave_link_init(struct ata_port *ap)
5787 struct ata_link *link;
5789 WARN_ON(ap->slave_link);
5790 WARN_ON(ap->flags & ATA_FLAG_PMP);
5792 link = kzalloc(sizeof(*link), GFP_KERNEL);
5793 if (!link)
5794 return -ENOMEM;
5796 ata_link_init(ap, link, 1);
5797 ap->slave_link = link;
5798 return 0;
5801 static void ata_host_stop(struct device *gendev, void *res)
5803 struct ata_host *host = dev_get_drvdata(gendev);
5804 int i;
5806 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5808 for (i = 0; i < host->n_ports; i++) {
5809 struct ata_port *ap = host->ports[i];
5811 if (ap->ops->port_stop)
5812 ap->ops->port_stop(ap);
5815 if (host->ops->host_stop)
5816 host->ops->host_stop(host);
5820 * ata_finalize_port_ops - finalize ata_port_operations
5821 * @ops: ata_port_operations to finalize
5823 * An ata_port_operations can inherit from another ops and that
5824 * ops can again inherit from another. This can go on as many
5825 * times as necessary as long as there is no loop in the
5826 * inheritance chain.
5828 * Ops tables are finalized when the host is started. NULL or
5829 * unspecified entries are inherited from the closet ancestor
5830 * which has the method and the entry is populated with it.
5831 * After finalization, the ops table directly points to all the
5832 * methods and ->inherits is no longer necessary and cleared.
5834 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5836 * LOCKING:
5837 * None.
5839 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5841 static DEFINE_SPINLOCK(lock);
5842 const struct ata_port_operations *cur;
5843 void **begin = (void **)ops;
5844 void **end = (void **)&ops->inherits;
5845 void **pp;
5847 if (!ops || !ops->inherits)
5848 return;
5850 spin_lock(&lock);
5852 for (cur = ops->inherits; cur; cur = cur->inherits) {
5853 void **inherit = (void **)cur;
5855 for (pp = begin; pp < end; pp++, inherit++)
5856 if (!*pp)
5857 *pp = *inherit;
5860 for (pp = begin; pp < end; pp++)
5861 if (IS_ERR(*pp))
5862 *pp = NULL;
5864 ops->inherits = NULL;
5866 spin_unlock(&lock);
5870 * ata_host_start - start and freeze ports of an ATA host
5871 * @host: ATA host to start ports for
5873 * Start and then freeze ports of @host. Started status is
5874 * recorded in host->flags, so this function can be called
5875 * multiple times. Ports are guaranteed to get started only
5876 * once. If host->ops isn't initialized yet, its set to the
5877 * first non-dummy port ops.
5879 * LOCKING:
5880 * Inherited from calling layer (may sleep).
5882 * RETURNS:
5883 * 0 if all ports are started successfully, -errno otherwise.
5885 int ata_host_start(struct ata_host *host)
5887 int have_stop = 0;
5888 void *start_dr = NULL;
5889 int i, rc;
5891 if (host->flags & ATA_HOST_STARTED)
5892 return 0;
5894 ata_finalize_port_ops(host->ops);
5896 for (i = 0; i < host->n_ports; i++) {
5897 struct ata_port *ap = host->ports[i];
5899 ata_finalize_port_ops(ap->ops);
5901 if (!host->ops && !ata_port_is_dummy(ap))
5902 host->ops = ap->ops;
5904 if (ap->ops->port_stop)
5905 have_stop = 1;
5908 if (host->ops->host_stop)
5909 have_stop = 1;
5911 if (have_stop) {
5912 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5913 if (!start_dr)
5914 return -ENOMEM;
5917 for (i = 0; i < host->n_ports; i++) {
5918 struct ata_port *ap = host->ports[i];
5920 if (ap->ops->port_start) {
5921 rc = ap->ops->port_start(ap);
5922 if (rc) {
5923 if (rc != -ENODEV)
5924 dev_printk(KERN_ERR, host->dev,
5925 "failed to start port %d "
5926 "(errno=%d)\n", i, rc);
5927 goto err_out;
5930 ata_eh_freeze_port(ap);
5933 if (start_dr)
5934 devres_add(host->dev, start_dr);
5935 host->flags |= ATA_HOST_STARTED;
5936 return 0;
5938 err_out:
5939 while (--i >= 0) {
5940 struct ata_port *ap = host->ports[i];
5942 if (ap->ops->port_stop)
5943 ap->ops->port_stop(ap);
5945 devres_free(start_dr);
5946 return rc;
5950 * ata_sas_host_init - Initialize a host struct
5951 * @host: host to initialize
5952 * @dev: device host is attached to
5953 * @flags: host flags
5954 * @ops: port_ops
5956 * LOCKING:
5957 * PCI/etc. bus probe sem.
5960 /* KILLME - the only user left is ipr */
5961 void ata_host_init(struct ata_host *host, struct device *dev,
5962 unsigned long flags, struct ata_port_operations *ops)
5964 spin_lock_init(&host->lock);
5965 host->dev = dev;
5966 host->flags = flags;
5967 host->ops = ops;
5971 static void async_port_probe(void *data, async_cookie_t cookie)
5973 int rc;
5974 struct ata_port *ap = data;
5977 * If we're not allowed to scan this host in parallel,
5978 * we need to wait until all previous scans have completed
5979 * before going further.
5980 * Jeff Garzik says this is only within a controller, so we
5981 * don't need to wait for port 0, only for later ports.
5983 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5984 async_synchronize_cookie(cookie);
5986 /* probe */
5987 if (ap->ops->error_handler) {
5988 struct ata_eh_info *ehi = &ap->link.eh_info;
5989 unsigned long flags;
5991 ata_port_probe(ap);
5993 /* kick EH for boot probing */
5994 spin_lock_irqsave(ap->lock, flags);
5996 ehi->probe_mask |= ATA_ALL_DEVICES;
5997 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5998 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6000 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6001 ap->pflags |= ATA_PFLAG_LOADING;
6002 ata_port_schedule_eh(ap);
6004 spin_unlock_irqrestore(ap->lock, flags);
6006 /* wait for EH to finish */
6007 ata_port_wait_eh(ap);
6008 } else {
6009 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6010 rc = ata_bus_probe(ap);
6011 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6013 if (rc) {
6014 /* FIXME: do something useful here?
6015 * Current libata behavior will
6016 * tear down everything when
6017 * the module is removed
6018 * or the h/w is unplugged.
6023 /* in order to keep device order, we need to synchronize at this point */
6024 async_synchronize_cookie(cookie);
6026 ata_scsi_scan_host(ap, 1);
6030 * ata_host_register - register initialized ATA host
6031 * @host: ATA host to register
6032 * @sht: template for SCSI host
6034 * Register initialized ATA host. @host is allocated using
6035 * ata_host_alloc() and fully initialized by LLD. This function
6036 * starts ports, registers @host with ATA and SCSI layers and
6037 * probe registered devices.
6039 * LOCKING:
6040 * Inherited from calling layer (may sleep).
6042 * RETURNS:
6043 * 0 on success, -errno otherwise.
6045 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6047 int i, rc;
6049 /* host must have been started */
6050 if (!(host->flags & ATA_HOST_STARTED)) {
6051 dev_printk(KERN_ERR, host->dev,
6052 "BUG: trying to register unstarted host\n");
6053 WARN_ON(1);
6054 return -EINVAL;
6057 /* Blow away unused ports. This happens when LLD can't
6058 * determine the exact number of ports to allocate at
6059 * allocation time.
6061 for (i = host->n_ports; host->ports[i]; i++)
6062 kfree(host->ports[i]);
6064 /* give ports names and add SCSI hosts */
6065 for (i = 0; i < host->n_ports; i++)
6066 host->ports[i]->print_id = ata_print_id++;
6068 rc = ata_scsi_add_hosts(host, sht);
6069 if (rc)
6070 return rc;
6072 /* associate with ACPI nodes */
6073 ata_acpi_associate(host);
6075 /* set cable, sata_spd_limit and report */
6076 for (i = 0; i < host->n_ports; i++) {
6077 struct ata_port *ap = host->ports[i];
6078 unsigned long xfer_mask;
6080 /* set SATA cable type if still unset */
6081 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6082 ap->cbl = ATA_CBL_SATA;
6084 /* init sata_spd_limit to the current value */
6085 sata_link_init_spd(&ap->link);
6086 if (ap->slave_link)
6087 sata_link_init_spd(ap->slave_link);
6089 /* print per-port info to dmesg */
6090 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6091 ap->udma_mask);
6093 if (!ata_port_is_dummy(ap)) {
6094 ata_port_printk(ap, KERN_INFO,
6095 "%cATA max %s %s\n",
6096 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6097 ata_mode_string(xfer_mask),
6098 ap->link.eh_info.desc);
6099 ata_ehi_clear_desc(&ap->link.eh_info);
6100 } else
6101 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6104 /* perform each probe synchronously */
6105 DPRINTK("probe begin\n");
6106 for (i = 0; i < host->n_ports; i++) {
6107 struct ata_port *ap = host->ports[i];
6108 async_schedule(async_port_probe, ap);
6110 DPRINTK("probe end\n");
6112 return 0;
6116 * ata_host_activate - start host, request IRQ and register it
6117 * @host: target ATA host
6118 * @irq: IRQ to request
6119 * @irq_handler: irq_handler used when requesting IRQ
6120 * @irq_flags: irq_flags used when requesting IRQ
6121 * @sht: scsi_host_template to use when registering the host
6123 * After allocating an ATA host and initializing it, most libata
6124 * LLDs perform three steps to activate the host - start host,
6125 * request IRQ and register it. This helper takes necessasry
6126 * arguments and performs the three steps in one go.
6128 * An invalid IRQ skips the IRQ registration and expects the host to
6129 * have set polling mode on the port. In this case, @irq_handler
6130 * should be NULL.
6132 * LOCKING:
6133 * Inherited from calling layer (may sleep).
6135 * RETURNS:
6136 * 0 on success, -errno otherwise.
6138 int ata_host_activate(struct ata_host *host, int irq,
6139 irq_handler_t irq_handler, unsigned long irq_flags,
6140 struct scsi_host_template *sht)
6142 int i, rc;
6144 rc = ata_host_start(host);
6145 if (rc)
6146 return rc;
6148 /* Special case for polling mode */
6149 if (!irq) {
6150 WARN_ON(irq_handler);
6151 return ata_host_register(host, sht);
6154 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6155 dev_driver_string(host->dev), host);
6156 if (rc)
6157 return rc;
6159 for (i = 0; i < host->n_ports; i++)
6160 ata_port_desc(host->ports[i], "irq %d", irq);
6162 rc = ata_host_register(host, sht);
6163 /* if failed, just free the IRQ and leave ports alone */
6164 if (rc)
6165 devm_free_irq(host->dev, irq, host);
6167 return rc;
6171 * ata_port_detach - Detach ATA port in prepration of device removal
6172 * @ap: ATA port to be detached
6174 * Detach all ATA devices and the associated SCSI devices of @ap;
6175 * then, remove the associated SCSI host. @ap is guaranteed to
6176 * be quiescent on return from this function.
6178 * LOCKING:
6179 * Kernel thread context (may sleep).
6181 static void ata_port_detach(struct ata_port *ap)
6183 unsigned long flags;
6185 if (!ap->ops->error_handler)
6186 goto skip_eh;
6188 /* tell EH we're leaving & flush EH */
6189 spin_lock_irqsave(ap->lock, flags);
6190 ap->pflags |= ATA_PFLAG_UNLOADING;
6191 ata_port_schedule_eh(ap);
6192 spin_unlock_irqrestore(ap->lock, flags);
6194 /* wait till EH commits suicide */
6195 ata_port_wait_eh(ap);
6197 /* it better be dead now */
6198 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6200 cancel_rearming_delayed_work(&ap->hotplug_task);
6202 skip_eh:
6203 /* remove the associated SCSI host */
6204 scsi_remove_host(ap->scsi_host);
6208 * ata_host_detach - Detach all ports of an ATA host
6209 * @host: Host to detach
6211 * Detach all ports of @host.
6213 * LOCKING:
6214 * Kernel thread context (may sleep).
6216 void ata_host_detach(struct ata_host *host)
6218 int i;
6220 for (i = 0; i < host->n_ports; i++)
6221 ata_port_detach(host->ports[i]);
6223 /* the host is dead now, dissociate ACPI */
6224 ata_acpi_dissociate(host);
6227 #ifdef CONFIG_PCI
6230 * ata_pci_remove_one - PCI layer callback for device removal
6231 * @pdev: PCI device that was removed
6233 * PCI layer indicates to libata via this hook that hot-unplug or
6234 * module unload event has occurred. Detach all ports. Resource
6235 * release is handled via devres.
6237 * LOCKING:
6238 * Inherited from PCI layer (may sleep).
6240 void ata_pci_remove_one(struct pci_dev *pdev)
6242 struct device *dev = &pdev->dev;
6243 struct ata_host *host = dev_get_drvdata(dev);
6245 ata_host_detach(host);
6248 /* move to PCI subsystem */
6249 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6251 unsigned long tmp = 0;
6253 switch (bits->width) {
6254 case 1: {
6255 u8 tmp8 = 0;
6256 pci_read_config_byte(pdev, bits->reg, &tmp8);
6257 tmp = tmp8;
6258 break;
6260 case 2: {
6261 u16 tmp16 = 0;
6262 pci_read_config_word(pdev, bits->reg, &tmp16);
6263 tmp = tmp16;
6264 break;
6266 case 4: {
6267 u32 tmp32 = 0;
6268 pci_read_config_dword(pdev, bits->reg, &tmp32);
6269 tmp = tmp32;
6270 break;
6273 default:
6274 return -EINVAL;
6277 tmp &= bits->mask;
6279 return (tmp == bits->val) ? 1 : 0;
6282 #ifdef CONFIG_PM
6283 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6285 pci_save_state(pdev);
6286 pci_disable_device(pdev);
6288 if (mesg.event & PM_EVENT_SLEEP)
6289 pci_set_power_state(pdev, PCI_D3hot);
6292 int ata_pci_device_do_resume(struct pci_dev *pdev)
6294 int rc;
6296 pci_set_power_state(pdev, PCI_D0);
6297 pci_restore_state(pdev);
6299 rc = pcim_enable_device(pdev);
6300 if (rc) {
6301 dev_printk(KERN_ERR, &pdev->dev,
6302 "failed to enable device after resume (%d)\n", rc);
6303 return rc;
6306 pci_set_master(pdev);
6307 return 0;
6310 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6312 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6313 int rc = 0;
6315 rc = ata_host_suspend(host, mesg);
6316 if (rc)
6317 return rc;
6319 ata_pci_device_do_suspend(pdev, mesg);
6321 return 0;
6324 int ata_pci_device_resume(struct pci_dev *pdev)
6326 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6327 int rc;
6329 rc = ata_pci_device_do_resume(pdev);
6330 if (rc == 0)
6331 ata_host_resume(host);
6332 return rc;
6334 #endif /* CONFIG_PM */
6336 #endif /* CONFIG_PCI */
6338 static int __init ata_parse_force_one(char **cur,
6339 struct ata_force_ent *force_ent,
6340 const char **reason)
6342 /* FIXME: Currently, there's no way to tag init const data and
6343 * using __initdata causes build failure on some versions of
6344 * gcc. Once __initdataconst is implemented, add const to the
6345 * following structure.
6347 static struct ata_force_param force_tbl[] __initdata = {
6348 { "40c", .cbl = ATA_CBL_PATA40 },
6349 { "80c", .cbl = ATA_CBL_PATA80 },
6350 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6351 { "unk", .cbl = ATA_CBL_PATA_UNK },
6352 { "ign", .cbl = ATA_CBL_PATA_IGN },
6353 { "sata", .cbl = ATA_CBL_SATA },
6354 { "1.5Gbps", .spd_limit = 1 },
6355 { "3.0Gbps", .spd_limit = 2 },
6356 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6357 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6358 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6359 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6360 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6361 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6362 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6363 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6364 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6365 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6366 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6367 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6368 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6369 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6370 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6371 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6372 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6373 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6374 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6375 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6376 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6377 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6378 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6379 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6380 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6381 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6382 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6383 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6384 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6385 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6386 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6387 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6388 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6389 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6390 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6391 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6392 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6393 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6394 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6396 char *start = *cur, *p = *cur;
6397 char *id, *val, *endp;
6398 const struct ata_force_param *match_fp = NULL;
6399 int nr_matches = 0, i;
6401 /* find where this param ends and update *cur */
6402 while (*p != '\0' && *p != ',')
6403 p++;
6405 if (*p == '\0')
6406 *cur = p;
6407 else
6408 *cur = p + 1;
6410 *p = '\0';
6412 /* parse */
6413 p = strchr(start, ':');
6414 if (!p) {
6415 val = strstrip(start);
6416 goto parse_val;
6418 *p = '\0';
6420 id = strstrip(start);
6421 val = strstrip(p + 1);
6423 /* parse id */
6424 p = strchr(id, '.');
6425 if (p) {
6426 *p++ = '\0';
6427 force_ent->device = simple_strtoul(p, &endp, 10);
6428 if (p == endp || *endp != '\0') {
6429 *reason = "invalid device";
6430 return -EINVAL;
6434 force_ent->port = simple_strtoul(id, &endp, 10);
6435 if (p == endp || *endp != '\0') {
6436 *reason = "invalid port/link";
6437 return -EINVAL;
6440 parse_val:
6441 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6442 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6443 const struct ata_force_param *fp = &force_tbl[i];
6445 if (strncasecmp(val, fp->name, strlen(val)))
6446 continue;
6448 nr_matches++;
6449 match_fp = fp;
6451 if (strcasecmp(val, fp->name) == 0) {
6452 nr_matches = 1;
6453 break;
6457 if (!nr_matches) {
6458 *reason = "unknown value";
6459 return -EINVAL;
6461 if (nr_matches > 1) {
6462 *reason = "ambigious value";
6463 return -EINVAL;
6466 force_ent->param = *match_fp;
6468 return 0;
6471 static void __init ata_parse_force_param(void)
6473 int idx = 0, size = 1;
6474 int last_port = -1, last_device = -1;
6475 char *p, *cur, *next;
6477 /* calculate maximum number of params and allocate force_tbl */
6478 for (p = ata_force_param_buf; *p; p++)
6479 if (*p == ',')
6480 size++;
6482 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6483 if (!ata_force_tbl) {
6484 printk(KERN_WARNING "ata: failed to extend force table, "
6485 "libata.force ignored\n");
6486 return;
6489 /* parse and populate the table */
6490 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6491 const char *reason = "";
6492 struct ata_force_ent te = { .port = -1, .device = -1 };
6494 next = cur;
6495 if (ata_parse_force_one(&next, &te, &reason)) {
6496 printk(KERN_WARNING "ata: failed to parse force "
6497 "parameter \"%s\" (%s)\n",
6498 cur, reason);
6499 continue;
6502 if (te.port == -1) {
6503 te.port = last_port;
6504 te.device = last_device;
6507 ata_force_tbl[idx++] = te;
6509 last_port = te.port;
6510 last_device = te.device;
6513 ata_force_tbl_size = idx;
6516 static int __init ata_init(void)
6518 ata_parse_force_param();
6520 ata_wq = create_workqueue("ata");
6521 if (!ata_wq)
6522 goto free_force_tbl;
6524 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6525 if (!ata_aux_wq)
6526 goto free_wq;
6528 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6529 return 0;
6531 free_wq:
6532 destroy_workqueue(ata_wq);
6533 free_force_tbl:
6534 kfree(ata_force_tbl);
6535 return -ENOMEM;
6538 static void __exit ata_exit(void)
6540 kfree(ata_force_tbl);
6541 destroy_workqueue(ata_wq);
6542 destroy_workqueue(ata_aux_wq);
6545 subsys_initcall(ata_init);
6546 module_exit(ata_exit);
6548 static unsigned long ratelimit_time;
6549 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6551 int ata_ratelimit(void)
6553 int rc;
6554 unsigned long flags;
6556 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6558 if (time_after(jiffies, ratelimit_time)) {
6559 rc = 1;
6560 ratelimit_time = jiffies + (HZ/5);
6561 } else
6562 rc = 0;
6564 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6566 return rc;
6570 * ata_wait_register - wait until register value changes
6571 * @reg: IO-mapped register
6572 * @mask: Mask to apply to read register value
6573 * @val: Wait condition
6574 * @interval: polling interval in milliseconds
6575 * @timeout: timeout in milliseconds
6577 * Waiting for some bits of register to change is a common
6578 * operation for ATA controllers. This function reads 32bit LE
6579 * IO-mapped register @reg and tests for the following condition.
6581 * (*@reg & mask) != val
6583 * If the condition is met, it returns; otherwise, the process is
6584 * repeated after @interval_msec until timeout.
6586 * LOCKING:
6587 * Kernel thread context (may sleep)
6589 * RETURNS:
6590 * The final register value.
6592 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6593 unsigned long interval, unsigned long timeout)
6595 unsigned long deadline;
6596 u32 tmp;
6598 tmp = ioread32(reg);
6600 /* Calculate timeout _after_ the first read to make sure
6601 * preceding writes reach the controller before starting to
6602 * eat away the timeout.
6604 deadline = ata_deadline(jiffies, timeout);
6606 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6607 msleep(interval);
6608 tmp = ioread32(reg);
6611 return tmp;
6615 * Dummy port_ops
6617 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6619 return AC_ERR_SYSTEM;
6622 static void ata_dummy_error_handler(struct ata_port *ap)
6624 /* truly dummy */
6627 struct ata_port_operations ata_dummy_port_ops = {
6628 .qc_prep = ata_noop_qc_prep,
6629 .qc_issue = ata_dummy_qc_issue,
6630 .error_handler = ata_dummy_error_handler,
6633 const struct ata_port_info ata_dummy_port_info = {
6634 .port_ops = &ata_dummy_port_ops,
6638 * libata is essentially a library of internal helper functions for
6639 * low-level ATA host controller drivers. As such, the API/ABI is
6640 * likely to change as new drivers are added and updated.
6641 * Do not depend on ABI/API stability.
6643 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6644 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6645 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6646 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6647 EXPORT_SYMBOL_GPL(sata_port_ops);
6648 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6649 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6650 EXPORT_SYMBOL_GPL(ata_link_next);
6651 EXPORT_SYMBOL_GPL(ata_dev_next);
6652 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6653 EXPORT_SYMBOL_GPL(ata_host_init);
6654 EXPORT_SYMBOL_GPL(ata_host_alloc);
6655 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6656 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6657 EXPORT_SYMBOL_GPL(ata_host_start);
6658 EXPORT_SYMBOL_GPL(ata_host_register);
6659 EXPORT_SYMBOL_GPL(ata_host_activate);
6660 EXPORT_SYMBOL_GPL(ata_host_detach);
6661 EXPORT_SYMBOL_GPL(ata_sg_init);
6662 EXPORT_SYMBOL_GPL(ata_qc_complete);
6663 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6664 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6665 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6666 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6667 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6668 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6669 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6670 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6671 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6672 EXPORT_SYMBOL_GPL(ata_mode_string);
6673 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6674 EXPORT_SYMBOL_GPL(ata_port_start);
6675 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6676 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6677 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6678 EXPORT_SYMBOL_GPL(ata_port_probe);
6679 EXPORT_SYMBOL_GPL(ata_dev_disable);
6680 EXPORT_SYMBOL_GPL(sata_set_spd);
6681 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6682 EXPORT_SYMBOL_GPL(sata_link_debounce);
6683 EXPORT_SYMBOL_GPL(sata_link_resume);
6684 EXPORT_SYMBOL_GPL(ata_std_prereset);
6685 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6686 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6687 EXPORT_SYMBOL_GPL(ata_std_postreset);
6688 EXPORT_SYMBOL_GPL(ata_dev_classify);
6689 EXPORT_SYMBOL_GPL(ata_dev_pair);
6690 EXPORT_SYMBOL_GPL(ata_port_disable);
6691 EXPORT_SYMBOL_GPL(ata_ratelimit);
6692 EXPORT_SYMBOL_GPL(ata_wait_register);
6693 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6694 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6695 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6696 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6697 EXPORT_SYMBOL_GPL(sata_scr_valid);
6698 EXPORT_SYMBOL_GPL(sata_scr_read);
6699 EXPORT_SYMBOL_GPL(sata_scr_write);
6700 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6701 EXPORT_SYMBOL_GPL(ata_link_online);
6702 EXPORT_SYMBOL_GPL(ata_link_offline);
6703 #ifdef CONFIG_PM
6704 EXPORT_SYMBOL_GPL(ata_host_suspend);
6705 EXPORT_SYMBOL_GPL(ata_host_resume);
6706 #endif /* CONFIG_PM */
6707 EXPORT_SYMBOL_GPL(ata_id_string);
6708 EXPORT_SYMBOL_GPL(ata_id_c_string);
6709 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6710 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6712 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6713 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6714 EXPORT_SYMBOL_GPL(ata_timing_compute);
6715 EXPORT_SYMBOL_GPL(ata_timing_merge);
6716 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6718 #ifdef CONFIG_PCI
6719 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6720 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6721 #ifdef CONFIG_PM
6722 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6723 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6724 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6725 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6726 #endif /* CONFIG_PM */
6727 #endif /* CONFIG_PCI */
6729 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6730 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6731 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6732 EXPORT_SYMBOL_GPL(ata_port_desc);
6733 #ifdef CONFIG_PCI
6734 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6735 #endif /* CONFIG_PCI */
6736 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6737 EXPORT_SYMBOL_GPL(ata_link_abort);
6738 EXPORT_SYMBOL_GPL(ata_port_abort);
6739 EXPORT_SYMBOL_GPL(ata_port_freeze);
6740 EXPORT_SYMBOL_GPL(sata_async_notification);
6741 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6742 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6743 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6744 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6745 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6746 EXPORT_SYMBOL_GPL(ata_do_eh);
6747 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6749 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6750 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6751 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6752 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6753 EXPORT_SYMBOL_GPL(ata_cable_sata);