added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / arch / sparc / kernel / smp_64.c
bloba35fef7954e9a9e3cb386c24fb1fdc974d34f358
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
24 #include <linux/cpu.h>
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32 #include <asm/hvtramp.h>
33 #include <asm/io.h>
34 #include <asm/timer.h>
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/oplib.h>
41 #include <asm/uaccess.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/sections.h>
45 #include <asm/prom.h>
46 #include <asm/mdesc.h>
47 #include <asm/ldc.h>
48 #include <asm/hypervisor.h>
50 int sparc64_multi_core __read_mostly;
52 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
53 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
54 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
56 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
57 EXPORT_SYMBOL(cpu_core_map);
59 static cpumask_t smp_commenced_mask;
61 void smp_info(struct seq_file *m)
63 int i;
65 seq_printf(m, "State:\n");
66 for_each_online_cpu(i)
67 seq_printf(m, "CPU%d:\t\tonline\n", i);
70 void smp_bogo(struct seq_file *m)
72 int i;
74 for_each_online_cpu(i)
75 seq_printf(m,
76 "Cpu%dClkTck\t: %016lx\n",
77 i, cpu_data(i).clock_tick);
80 extern void setup_sparc64_timer(void);
82 static volatile unsigned long callin_flag = 0;
84 void __cpuinit smp_callin(void)
86 int cpuid = hard_smp_processor_id();
88 __local_per_cpu_offset = __per_cpu_offset(cpuid);
90 if (tlb_type == hypervisor)
91 sun4v_ktsb_register();
93 __flush_tlb_all();
95 setup_sparc64_timer();
97 if (cheetah_pcache_forced_on)
98 cheetah_enable_pcache();
100 local_irq_enable();
102 callin_flag = 1;
103 __asm__ __volatile__("membar #Sync\n\t"
104 "flush %%g6" : : : "memory");
106 /* Clear this or we will die instantly when we
107 * schedule back to this idler...
109 current_thread_info()->new_child = 0;
111 /* Attach to the address space of init_task. */
112 atomic_inc(&init_mm.mm_count);
113 current->active_mm = &init_mm;
115 /* inform the notifiers about the new cpu */
116 notify_cpu_starting(cpuid);
118 while (!cpu_isset(cpuid, smp_commenced_mask))
119 rmb();
121 ipi_call_lock_irq();
122 cpu_set(cpuid, cpu_online_map);
123 ipi_call_unlock_irq();
125 /* idle thread is expected to have preempt disabled */
126 preempt_disable();
129 void cpu_panic(void)
131 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132 panic("SMP bolixed\n");
135 /* This tick register synchronization scheme is taken entirely from
136 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
138 * The only change I've made is to rework it so that the master
139 * initiates the synchonization instead of the slave. -DaveM
142 #define MASTER 0
143 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
145 #define NUM_ROUNDS 64 /* magic value */
146 #define NUM_ITERS 5 /* likewise */
148 static DEFINE_SPINLOCK(itc_sync_lock);
149 static unsigned long go[SLAVE + 1];
151 #define DEBUG_TICK_SYNC 0
153 static inline long get_delta (long *rt, long *master)
155 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
156 unsigned long tcenter, t0, t1, tm;
157 unsigned long i;
159 for (i = 0; i < NUM_ITERS; i++) {
160 t0 = tick_ops->get_tick();
161 go[MASTER] = 1;
162 membar_safe("#StoreLoad");
163 while (!(tm = go[SLAVE]))
164 rmb();
165 go[SLAVE] = 0;
166 wmb();
167 t1 = tick_ops->get_tick();
169 if (t1 - t0 < best_t1 - best_t0)
170 best_t0 = t0, best_t1 = t1, best_tm = tm;
173 *rt = best_t1 - best_t0;
174 *master = best_tm - best_t0;
176 /* average best_t0 and best_t1 without overflow: */
177 tcenter = (best_t0/2 + best_t1/2);
178 if (best_t0 % 2 + best_t1 % 2 == 2)
179 tcenter++;
180 return tcenter - best_tm;
183 void smp_synchronize_tick_client(void)
185 long i, delta, adj, adjust_latency = 0, done = 0;
186 unsigned long flags, rt, master_time_stamp, bound;
187 #if DEBUG_TICK_SYNC
188 struct {
189 long rt; /* roundtrip time */
190 long master; /* master's timestamp */
191 long diff; /* difference between midpoint and master's timestamp */
192 long lat; /* estimate of itc adjustment latency */
193 } t[NUM_ROUNDS];
194 #endif
196 go[MASTER] = 1;
198 while (go[MASTER])
199 rmb();
201 local_irq_save(flags);
203 for (i = 0; i < NUM_ROUNDS; i++) {
204 delta = get_delta(&rt, &master_time_stamp);
205 if (delta == 0) {
206 done = 1; /* let's lock on to this... */
207 bound = rt;
210 if (!done) {
211 if (i > 0) {
212 adjust_latency += -delta;
213 adj = -delta + adjust_latency/4;
214 } else
215 adj = -delta;
217 tick_ops->add_tick(adj);
219 #if DEBUG_TICK_SYNC
220 t[i].rt = rt;
221 t[i].master = master_time_stamp;
222 t[i].diff = delta;
223 t[i].lat = adjust_latency/4;
224 #endif
227 local_irq_restore(flags);
229 #if DEBUG_TICK_SYNC
230 for (i = 0; i < NUM_ROUNDS; i++)
231 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232 t[i].rt, t[i].master, t[i].diff, t[i].lat);
233 #endif
235 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
236 "(last diff %ld cycles, maxerr %lu cycles)\n",
237 smp_processor_id(), delta, rt);
240 static void smp_start_sync_tick_client(int cpu);
242 static void smp_synchronize_one_tick(int cpu)
244 unsigned long flags, i;
246 go[MASTER] = 0;
248 smp_start_sync_tick_client(cpu);
250 /* wait for client to be ready */
251 while (!go[MASTER])
252 rmb();
254 /* now let the client proceed into his loop */
255 go[MASTER] = 0;
256 membar_safe("#StoreLoad");
258 spin_lock_irqsave(&itc_sync_lock, flags);
260 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
261 while (!go[MASTER])
262 rmb();
263 go[MASTER] = 0;
264 wmb();
265 go[SLAVE] = tick_ops->get_tick();
266 membar_safe("#StoreLoad");
269 spin_unlock_irqrestore(&itc_sync_lock, flags);
272 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
273 /* XXX Put this in some common place. XXX */
274 static unsigned long kimage_addr_to_ra(void *p)
276 unsigned long val = (unsigned long) p;
278 return kern_base + (val - KERNBASE);
281 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
283 extern unsigned long sparc64_ttable_tl0;
284 extern unsigned long kern_locked_tte_data;
285 struct hvtramp_descr *hdesc;
286 unsigned long trampoline_ra;
287 struct trap_per_cpu *tb;
288 u64 tte_vaddr, tte_data;
289 unsigned long hv_err;
290 int i;
292 hdesc = kzalloc(sizeof(*hdesc) +
293 (sizeof(struct hvtramp_mapping) *
294 num_kernel_image_mappings - 1),
295 GFP_KERNEL);
296 if (!hdesc) {
297 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
298 "hvtramp_descr.\n");
299 return;
302 hdesc->cpu = cpu;
303 hdesc->num_mappings = num_kernel_image_mappings;
305 tb = &trap_block[cpu];
306 tb->hdesc = hdesc;
308 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
309 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311 hdesc->thread_reg = thread_reg;
313 tte_vaddr = (unsigned long) KERNBASE;
314 tte_data = kern_locked_tte_data;
316 for (i = 0; i < hdesc->num_mappings; i++) {
317 hdesc->maps[i].vaddr = tte_vaddr;
318 hdesc->maps[i].tte = tte_data;
319 tte_vaddr += 0x400000;
320 tte_data += 0x400000;
323 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
326 kimage_addr_to_ra(&sparc64_ttable_tl0),
327 __pa(hdesc));
328 if (hv_err)
329 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
330 "gives error %lu\n", hv_err);
332 #endif
334 extern unsigned long sparc64_cpu_startup;
336 /* The OBP cpu startup callback truncates the 3rd arg cookie to
337 * 32-bits (I think) so to be safe we have it read the pointer
338 * contained here so we work on >4GB machines. -DaveM
340 static struct thread_info *cpu_new_thread = NULL;
342 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
344 struct trap_per_cpu *tb = &trap_block[cpu];
345 unsigned long entry =
346 (unsigned long)(&sparc64_cpu_startup);
347 unsigned long cookie =
348 (unsigned long)(&cpu_new_thread);
349 struct task_struct *p;
350 int timeout, ret;
352 p = fork_idle(cpu);
353 if (IS_ERR(p))
354 return PTR_ERR(p);
355 callin_flag = 0;
356 cpu_new_thread = task_thread_info(p);
358 if (tlb_type == hypervisor) {
359 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
360 if (ldom_domaining_enabled)
361 ldom_startcpu_cpuid(cpu,
362 (unsigned long) cpu_new_thread);
363 else
364 #endif
365 prom_startcpu_cpuid(cpu, entry, cookie);
366 } else {
367 struct device_node *dp = of_find_node_by_cpuid(cpu);
369 prom_startcpu(dp->node, entry, cookie);
372 for (timeout = 0; timeout < 50000; timeout++) {
373 if (callin_flag)
374 break;
375 udelay(100);
378 if (callin_flag) {
379 ret = 0;
380 } else {
381 printk("Processor %d is stuck.\n", cpu);
382 ret = -ENODEV;
384 cpu_new_thread = NULL;
386 if (tb->hdesc) {
387 kfree(tb->hdesc);
388 tb->hdesc = NULL;
391 return ret;
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396 u64 result, target;
397 int stuck, tmp;
399 if (this_is_starfire) {
400 /* map to real upaid */
401 cpu = (((cpu & 0x3c) << 1) |
402 ((cpu & 0x40) >> 4) |
403 (cpu & 0x3));
406 target = (cpu << 14) | 0x70;
407 again:
408 /* Ok, this is the real Spitfire Errata #54.
409 * One must read back from a UDB internal register
410 * after writes to the UDB interrupt dispatch, but
411 * before the membar Sync for that write.
412 * So we use the high UDB control register (ASI 0x7f,
413 * ADDR 0x20) for the dummy read. -DaveM
415 tmp = 0x40;
416 __asm__ __volatile__(
417 "wrpr %1, %2, %%pstate\n\t"
418 "stxa %4, [%0] %3\n\t"
419 "stxa %5, [%0+%8] %3\n\t"
420 "add %0, %8, %0\n\t"
421 "stxa %6, [%0+%8] %3\n\t"
422 "membar #Sync\n\t"
423 "stxa %%g0, [%7] %3\n\t"
424 "membar #Sync\n\t"
425 "mov 0x20, %%g1\n\t"
426 "ldxa [%%g1] 0x7f, %%g0\n\t"
427 "membar #Sync"
428 : "=r" (tmp)
429 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 "r" (0x10), "0" (tmp)
432 : "g1");
434 /* NOTE: PSTATE_IE is still clear. */
435 stuck = 100000;
436 do {
437 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438 : "=r" (result)
439 : "i" (ASI_INTR_DISPATCH_STAT));
440 if (result == 0) {
441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 : : "r" (pstate));
443 return;
445 stuck -= 1;
446 if (stuck == 0)
447 break;
448 } while (result & 0x1);
449 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 : : "r" (pstate));
451 if (stuck == 0) {
452 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 smp_processor_id(), result);
454 } else {
455 udelay(2);
456 goto again;
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
462 u64 *mondo, data0, data1, data2;
463 u16 *cpu_list;
464 u64 pstate;
465 int i;
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 cpu_list = __va(tb->cpu_list_pa);
469 mondo = __va(tb->cpu_mondo_block_pa);
470 data0 = mondo[0];
471 data1 = mondo[1];
472 data2 = mondo[2];
473 for (i = 0; i < cnt; i++)
474 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478 * packet, but we have no use for that. However we do take advantage of
479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
483 int nack_busy_id, is_jbus, need_more;
484 u64 *mondo, pstate, ver, busy_mask;
485 u16 *cpu_list;
487 cpu_list = __va(tb->cpu_list_pa);
488 mondo = __va(tb->cpu_mondo_block_pa);
490 /* Unfortunately, someone at Sun had the brilliant idea to make the
491 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 * derivative processor.
494 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 (ver >> 32) == __SERRANO_ID);
498 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
500 retry:
501 need_more = 0;
502 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 : : "r" (pstate), "i" (PSTATE_IE));
505 /* Setup the dispatch data registers. */
506 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
507 "stxa %1, [%4] %6\n\t"
508 "stxa %2, [%5] %6\n\t"
509 "membar #Sync\n\t"
510 : /* no outputs */
511 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 "r" (0x40), "r" (0x50), "r" (0x60),
513 "i" (ASI_INTR_W));
515 nack_busy_id = 0;
516 busy_mask = 0;
518 int i;
520 for (i = 0; i < cnt; i++) {
521 u64 target, nr;
523 nr = cpu_list[i];
524 if (nr == 0xffff)
525 continue;
527 target = (nr << 14) | 0x70;
528 if (is_jbus) {
529 busy_mask |= (0x1UL << (nr * 2));
530 } else {
531 target |= (nack_busy_id << 24);
532 busy_mask |= (0x1UL <<
533 (nack_busy_id * 2));
535 __asm__ __volatile__(
536 "stxa %%g0, [%0] %1\n\t"
537 "membar #Sync\n\t"
538 : /* no outputs */
539 : "r" (target), "i" (ASI_INTR_W));
540 nack_busy_id++;
541 if (nack_busy_id == 32) {
542 need_more = 1;
543 break;
548 /* Now, poll for completion. */
550 u64 dispatch_stat, nack_mask;
551 long stuck;
553 stuck = 100000 * nack_busy_id;
554 nack_mask = busy_mask << 1;
555 do {
556 __asm__ __volatile__("ldxa [%%g0] %1, %0"
557 : "=r" (dispatch_stat)
558 : "i" (ASI_INTR_DISPATCH_STAT));
559 if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 : : "r" (pstate));
562 if (unlikely(need_more)) {
563 int i, this_cnt = 0;
564 for (i = 0; i < cnt; i++) {
565 if (cpu_list[i] == 0xffff)
566 continue;
567 cpu_list[i] = 0xffff;
568 this_cnt++;
569 if (this_cnt == 32)
570 break;
572 goto retry;
574 return;
576 if (!--stuck)
577 break;
578 } while (dispatch_stat & busy_mask);
580 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 : : "r" (pstate));
583 if (dispatch_stat & busy_mask) {
584 /* Busy bits will not clear, continue instead
585 * of freezing up on this cpu.
587 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 smp_processor_id(), dispatch_stat);
589 } else {
590 int i, this_busy_nack = 0;
592 /* Delay some random time with interrupts enabled
593 * to prevent deadlock.
595 udelay(2 * nack_busy_id);
597 /* Clear out the mask bits for cpus which did not
598 * NACK us.
600 for (i = 0; i < cnt; i++) {
601 u64 check_mask, nr;
603 nr = cpu_list[i];
604 if (nr == 0xffff)
605 continue;
607 if (is_jbus)
608 check_mask = (0x2UL << (2*nr));
609 else
610 check_mask = (0x2UL <<
611 this_busy_nack);
612 if ((dispatch_stat & check_mask) == 0)
613 cpu_list[i] = 0xffff;
614 this_busy_nack += 2;
615 if (this_busy_nack == 64)
616 break;
619 goto retry;
624 /* Multi-cpu list version. */
625 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
627 int retries, this_cpu, prev_sent, i, saw_cpu_error;
628 unsigned long status;
629 u16 *cpu_list;
631 this_cpu = smp_processor_id();
633 cpu_list = __va(tb->cpu_list_pa);
635 saw_cpu_error = 0;
636 retries = 0;
637 prev_sent = 0;
638 do {
639 int forward_progress, n_sent;
641 status = sun4v_cpu_mondo_send(cnt,
642 tb->cpu_list_pa,
643 tb->cpu_mondo_block_pa);
645 /* HV_EOK means all cpus received the xcall, we're done. */
646 if (likely(status == HV_EOK))
647 break;
649 /* First, see if we made any forward progress.
651 * The hypervisor indicates successful sends by setting
652 * cpu list entries to the value 0xffff.
654 n_sent = 0;
655 for (i = 0; i < cnt; i++) {
656 if (likely(cpu_list[i] == 0xffff))
657 n_sent++;
660 forward_progress = 0;
661 if (n_sent > prev_sent)
662 forward_progress = 1;
664 prev_sent = n_sent;
666 /* If we get a HV_ECPUERROR, then one or more of the cpus
667 * in the list are in error state. Use the cpu_state()
668 * hypervisor call to find out which cpus are in error state.
670 if (unlikely(status == HV_ECPUERROR)) {
671 for (i = 0; i < cnt; i++) {
672 long err;
673 u16 cpu;
675 cpu = cpu_list[i];
676 if (cpu == 0xffff)
677 continue;
679 err = sun4v_cpu_state(cpu);
680 if (err == HV_CPU_STATE_ERROR) {
681 saw_cpu_error = (cpu + 1);
682 cpu_list[i] = 0xffff;
685 } else if (unlikely(status != HV_EWOULDBLOCK))
686 goto fatal_mondo_error;
688 /* Don't bother rewriting the CPU list, just leave the
689 * 0xffff and non-0xffff entries in there and the
690 * hypervisor will do the right thing.
692 * Only advance timeout state if we didn't make any
693 * forward progress.
695 if (unlikely(!forward_progress)) {
696 if (unlikely(++retries > 10000))
697 goto fatal_mondo_timeout;
699 /* Delay a little bit to let other cpus catch up
700 * on their cpu mondo queue work.
702 udelay(2 * cnt);
704 } while (1);
706 if (unlikely(saw_cpu_error))
707 goto fatal_mondo_cpu_error;
709 return;
711 fatal_mondo_cpu_error:
712 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
713 "(including %d) were in error state\n",
714 this_cpu, saw_cpu_error - 1);
715 return;
717 fatal_mondo_timeout:
718 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719 " progress after %d retries.\n",
720 this_cpu, retries);
721 goto dump_cpu_list_and_out;
723 fatal_mondo_error:
724 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725 this_cpu, status);
726 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727 "mondo_block_pa(%lx)\n",
728 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
730 dump_cpu_list_and_out:
731 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732 for (i = 0; i < cnt; i++)
733 printk("%u ", cpu_list[i]);
734 printk("]\n");
737 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
739 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
741 struct trap_per_cpu *tb;
742 int this_cpu, i, cnt;
743 unsigned long flags;
744 u16 *cpu_list;
745 u64 *mondo;
747 /* We have to do this whole thing with interrupts fully disabled.
748 * Otherwise if we send an xcall from interrupt context it will
749 * corrupt both our mondo block and cpu list state.
751 * One consequence of this is that we cannot use timeout mechanisms
752 * that depend upon interrupts being delivered locally. So, for
753 * example, we cannot sample jiffies and expect it to advance.
755 * Fortunately, udelay() uses %stick/%tick so we can use that.
757 local_irq_save(flags);
759 this_cpu = smp_processor_id();
760 tb = &trap_block[this_cpu];
762 mondo = __va(tb->cpu_mondo_block_pa);
763 mondo[0] = data0;
764 mondo[1] = data1;
765 mondo[2] = data2;
766 wmb();
768 cpu_list = __va(tb->cpu_list_pa);
770 /* Setup the initial cpu list. */
771 cnt = 0;
772 for_each_cpu(i, mask) {
773 if (i == this_cpu || !cpu_online(i))
774 continue;
775 cpu_list[cnt++] = i;
778 if (cnt)
779 xcall_deliver_impl(tb, cnt);
781 local_irq_restore(flags);
784 /* Send cross call to all processors mentioned in MASK_P
785 * except self. Really, there are only two cases currently,
786 * "&cpu_online_map" and "&mm->cpu_vm_mask".
788 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
790 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
792 xcall_deliver(data0, data1, data2, mask);
795 /* Send cross call to all processors except self. */
796 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
798 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
801 extern unsigned long xcall_sync_tick;
803 static void smp_start_sync_tick_client(int cpu)
805 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
806 &cpumask_of_cpu(cpu));
809 extern unsigned long xcall_call_function;
811 void arch_send_call_function_ipi(cpumask_t mask)
813 xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
816 extern unsigned long xcall_call_function_single;
818 void arch_send_call_function_single_ipi(int cpu)
820 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
821 &cpumask_of_cpu(cpu));
824 void smp_call_function_client(int irq, struct pt_regs *regs)
826 clear_softint(1 << irq);
827 generic_smp_call_function_interrupt();
830 void smp_call_function_single_client(int irq, struct pt_regs *regs)
832 clear_softint(1 << irq);
833 generic_smp_call_function_single_interrupt();
836 static void tsb_sync(void *info)
838 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
839 struct mm_struct *mm = info;
841 /* It is not valid to test "currrent->active_mm == mm" here.
843 * The value of "current" is not changed atomically with
844 * switch_mm(). But that's OK, we just need to check the
845 * current cpu's trap block PGD physical address.
847 if (tp->pgd_paddr == __pa(mm->pgd))
848 tsb_context_switch(mm);
851 void smp_tsb_sync(struct mm_struct *mm)
853 smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
856 extern unsigned long xcall_flush_tlb_mm;
857 extern unsigned long xcall_flush_tlb_pending;
858 extern unsigned long xcall_flush_tlb_kernel_range;
859 extern unsigned long xcall_fetch_glob_regs;
860 extern unsigned long xcall_receive_signal;
861 extern unsigned long xcall_new_mmu_context_version;
862 #ifdef CONFIG_KGDB
863 extern unsigned long xcall_kgdb_capture;
864 #endif
866 #ifdef DCACHE_ALIASING_POSSIBLE
867 extern unsigned long xcall_flush_dcache_page_cheetah;
868 #endif
869 extern unsigned long xcall_flush_dcache_page_spitfire;
871 #ifdef CONFIG_DEBUG_DCFLUSH
872 extern atomic_t dcpage_flushes;
873 extern atomic_t dcpage_flushes_xcall;
874 #endif
876 static inline void __local_flush_dcache_page(struct page *page)
878 #ifdef DCACHE_ALIASING_POSSIBLE
879 __flush_dcache_page(page_address(page),
880 ((tlb_type == spitfire) &&
881 page_mapping(page) != NULL));
882 #else
883 if (page_mapping(page) != NULL &&
884 tlb_type == spitfire)
885 __flush_icache_page(__pa(page_address(page)));
886 #endif
889 void smp_flush_dcache_page_impl(struct page *page, int cpu)
891 int this_cpu;
893 if (tlb_type == hypervisor)
894 return;
896 #ifdef CONFIG_DEBUG_DCFLUSH
897 atomic_inc(&dcpage_flushes);
898 #endif
900 this_cpu = get_cpu();
902 if (cpu == this_cpu) {
903 __local_flush_dcache_page(page);
904 } else if (cpu_online(cpu)) {
905 void *pg_addr = page_address(page);
906 u64 data0 = 0;
908 if (tlb_type == spitfire) {
909 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
910 if (page_mapping(page) != NULL)
911 data0 |= ((u64)1 << 32);
912 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
915 #endif
917 if (data0) {
918 xcall_deliver(data0, __pa(pg_addr),
919 (u64) pg_addr, &cpumask_of_cpu(cpu));
920 #ifdef CONFIG_DEBUG_DCFLUSH
921 atomic_inc(&dcpage_flushes_xcall);
922 #endif
926 put_cpu();
929 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931 void *pg_addr;
932 int this_cpu;
933 u64 data0;
935 if (tlb_type == hypervisor)
936 return;
938 this_cpu = get_cpu();
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 atomic_inc(&dcpage_flushes);
942 #endif
943 data0 = 0;
944 pg_addr = page_address(page);
945 if (tlb_type == spitfire) {
946 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 if (page_mapping(page) != NULL)
948 data0 |= ((u64)1 << 32);
949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
954 if (data0) {
955 xcall_deliver(data0, __pa(pg_addr),
956 (u64) pg_addr, &cpu_online_map);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 atomic_inc(&dcpage_flushes_xcall);
959 #endif
961 __local_flush_dcache_page(page);
963 put_cpu();
966 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
968 struct mm_struct *mm;
969 unsigned long flags;
971 clear_softint(1 << irq);
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
976 mm = current->active_mm;
977 if (unlikely(!mm || (mm == &init_mm)))
978 return;
980 spin_lock_irqsave(&mm->context.lock, flags);
982 if (unlikely(!CTX_VALID(mm->context)))
983 get_new_mmu_context(mm);
985 spin_unlock_irqrestore(&mm->context.lock, flags);
987 load_secondary_context(mm);
988 __flush_tlb_mm(CTX_HWBITS(mm->context),
989 SECONDARY_CONTEXT);
992 void smp_new_mmu_context_version(void)
994 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
1000 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002 #endif
1004 void smp_fetch_global_regs(void)
1006 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1009 /* We know that the window frames of the user have been flushed
1010 * to the stack before we get here because all callers of us
1011 * are flush_tlb_*() routines, and these run after flush_cache_*()
1012 * which performs the flushw.
1014 * The SMP TLB coherency scheme we use works as follows:
1016 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1017 * space has (potentially) executed on, this is the heuristic
1018 * we use to avoid doing cross calls.
1020 * Also, for flushing from kswapd and also for clones, we
1021 * use cpu_vm_mask as the list of cpus to make run the TLB.
1023 * 2) TLB context numbers are shared globally across all processors
1024 * in the system, this allows us to play several games to avoid
1025 * cross calls.
1027 * One invariant is that when a cpu switches to a process, and
1028 * that processes tsk->active_mm->cpu_vm_mask does not have the
1029 * current cpu's bit set, that tlb context is flushed locally.
1031 * If the address space is non-shared (ie. mm->count == 1) we avoid
1032 * cross calls when we want to flush the currently running process's
1033 * tlb state. This is done by clearing all cpu bits except the current
1034 * processor's in current->mm->cpu_vm_mask and performing the
1035 * flush locally only. This will force any subsequent cpus which run
1036 * this task to flush the context from the local tlb if the process
1037 * migrates to another cpu (again).
1039 * 3) For shared address spaces (threads) and swapping we bite the
1040 * bullet for most cases and perform the cross call (but only to
1041 * the cpus listed in cpu_vm_mask).
1043 * The performance gain from "optimizing" away the cross call for threads is
1044 * questionable (in theory the big win for threads is the massive sharing of
1045 * address space state across processors).
1048 /* This currently is only used by the hugetlb arch pre-fault
1049 * hook on UltraSPARC-III+ and later when changing the pagesize
1050 * bits of the context register for an address space.
1052 void smp_flush_tlb_mm(struct mm_struct *mm)
1054 u32 ctx = CTX_HWBITS(mm->context);
1055 int cpu = get_cpu();
1057 if (atomic_read(&mm->mm_users) == 1) {
1058 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1059 goto local_flush_and_out;
1062 smp_cross_call_masked(&xcall_flush_tlb_mm,
1063 ctx, 0, 0,
1064 &mm->cpu_vm_mask);
1066 local_flush_and_out:
1067 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069 put_cpu();
1072 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1074 u32 ctx = CTX_HWBITS(mm->context);
1075 int cpu = get_cpu();
1077 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1078 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1079 else
1080 smp_cross_call_masked(&xcall_flush_tlb_pending,
1081 ctx, nr, (unsigned long) vaddrs,
1082 &mm->cpu_vm_mask);
1084 __flush_tlb_pending(ctx, nr, vaddrs);
1086 put_cpu();
1089 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1091 start &= PAGE_MASK;
1092 end = PAGE_ALIGN(end);
1093 if (start != end) {
1094 smp_cross_call(&xcall_flush_tlb_kernel_range,
1095 0, start, end);
1097 __flush_tlb_kernel_range(start, end);
1101 /* CPU capture. */
1102 /* #define CAPTURE_DEBUG */
1103 extern unsigned long xcall_capture;
1105 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1106 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1107 static unsigned long penguins_are_doing_time;
1109 void smp_capture(void)
1111 int result = atomic_add_ret(1, &smp_capture_depth);
1113 if (result == 1) {
1114 int ncpus = num_online_cpus();
1116 #ifdef CAPTURE_DEBUG
1117 printk("CPU[%d]: Sending penguins to jail...",
1118 smp_processor_id());
1119 #endif
1120 penguins_are_doing_time = 1;
1121 atomic_inc(&smp_capture_registry);
1122 smp_cross_call(&xcall_capture, 0, 0, 0);
1123 while (atomic_read(&smp_capture_registry) != ncpus)
1124 rmb();
1125 #ifdef CAPTURE_DEBUG
1126 printk("done\n");
1127 #endif
1131 void smp_release(void)
1133 if (atomic_dec_and_test(&smp_capture_depth)) {
1134 #ifdef CAPTURE_DEBUG
1135 printk("CPU[%d]: Giving pardon to "
1136 "imprisoned penguins\n",
1137 smp_processor_id());
1138 #endif
1139 penguins_are_doing_time = 0;
1140 membar_safe("#StoreLoad");
1141 atomic_dec(&smp_capture_registry);
1145 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1146 * set, so they can service tlb flush xcalls...
1148 extern void prom_world(int);
1150 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152 clear_softint(1 << irq);
1154 preempt_disable();
1156 __asm__ __volatile__("flushw");
1157 prom_world(1);
1158 atomic_inc(&smp_capture_registry);
1159 membar_safe("#StoreLoad");
1160 while (penguins_are_doing_time)
1161 rmb();
1162 atomic_dec(&smp_capture_registry);
1163 prom_world(0);
1165 preempt_enable();
1168 /* /proc/profile writes can call this, don't __init it please. */
1169 int setup_profiling_timer(unsigned int multiplier)
1171 return -EINVAL;
1174 void __init smp_prepare_cpus(unsigned int max_cpus)
1178 void __devinit smp_prepare_boot_cpu(void)
1182 void __init smp_setup_processor_id(void)
1184 if (tlb_type == spitfire)
1185 xcall_deliver_impl = spitfire_xcall_deliver;
1186 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1187 xcall_deliver_impl = cheetah_xcall_deliver;
1188 else
1189 xcall_deliver_impl = hypervisor_xcall_deliver;
1192 void __devinit smp_fill_in_sib_core_maps(void)
1194 unsigned int i;
1196 for_each_present_cpu(i) {
1197 unsigned int j;
1199 cpus_clear(cpu_core_map[i]);
1200 if (cpu_data(i).core_id == 0) {
1201 cpu_set(i, cpu_core_map[i]);
1202 continue;
1205 for_each_present_cpu(j) {
1206 if (cpu_data(i).core_id ==
1207 cpu_data(j).core_id)
1208 cpu_set(j, cpu_core_map[i]);
1212 for_each_present_cpu(i) {
1213 unsigned int j;
1215 cpus_clear(per_cpu(cpu_sibling_map, i));
1216 if (cpu_data(i).proc_id == -1) {
1217 cpu_set(i, per_cpu(cpu_sibling_map, i));
1218 continue;
1221 for_each_present_cpu(j) {
1222 if (cpu_data(i).proc_id ==
1223 cpu_data(j).proc_id)
1224 cpu_set(j, per_cpu(cpu_sibling_map, i));
1229 int __cpuinit __cpu_up(unsigned int cpu)
1231 int ret = smp_boot_one_cpu(cpu);
1233 if (!ret) {
1234 cpu_set(cpu, smp_commenced_mask);
1235 while (!cpu_isset(cpu, cpu_online_map))
1236 mb();
1237 if (!cpu_isset(cpu, cpu_online_map)) {
1238 ret = -ENODEV;
1239 } else {
1240 /* On SUN4V, writes to %tick and %stick are
1241 * not allowed.
1243 if (tlb_type != hypervisor)
1244 smp_synchronize_one_tick(cpu);
1247 return ret;
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 void cpu_play_dead(void)
1253 int cpu = smp_processor_id();
1254 unsigned long pstate;
1256 idle_task_exit();
1258 if (tlb_type == hypervisor) {
1259 struct trap_per_cpu *tb = &trap_block[cpu];
1261 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1262 tb->cpu_mondo_pa, 0);
1263 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1264 tb->dev_mondo_pa, 0);
1265 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1266 tb->resum_mondo_pa, 0);
1267 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1268 tb->nonresum_mondo_pa, 0);
1271 cpu_clear(cpu, smp_commenced_mask);
1272 membar_safe("#Sync");
1274 local_irq_disable();
1276 __asm__ __volatile__(
1277 "rdpr %%pstate, %0\n\t"
1278 "wrpr %0, %1, %%pstate"
1279 : "=r" (pstate)
1280 : "i" (PSTATE_IE));
1282 while (1)
1283 barrier();
1286 int __cpu_disable(void)
1288 int cpu = smp_processor_id();
1289 cpuinfo_sparc *c;
1290 int i;
1292 for_each_cpu_mask(i, cpu_core_map[cpu])
1293 cpu_clear(cpu, cpu_core_map[i]);
1294 cpus_clear(cpu_core_map[cpu]);
1296 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1297 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1298 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1300 c = &cpu_data(cpu);
1302 c->core_id = 0;
1303 c->proc_id = -1;
1305 smp_wmb();
1307 /* Make sure no interrupts point to this cpu. */
1308 fixup_irqs();
1310 local_irq_enable();
1311 mdelay(1);
1312 local_irq_disable();
1314 ipi_call_lock();
1315 cpu_clear(cpu, cpu_online_map);
1316 ipi_call_unlock();
1318 return 0;
1321 void __cpu_die(unsigned int cpu)
1323 int i;
1325 for (i = 0; i < 100; i++) {
1326 smp_rmb();
1327 if (!cpu_isset(cpu, smp_commenced_mask))
1328 break;
1329 msleep(100);
1331 if (cpu_isset(cpu, smp_commenced_mask)) {
1332 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1333 } else {
1334 #if defined(CONFIG_SUN_LDOMS)
1335 unsigned long hv_err;
1336 int limit = 100;
1338 do {
1339 hv_err = sun4v_cpu_stop(cpu);
1340 if (hv_err == HV_EOK) {
1341 cpu_clear(cpu, cpu_present_map);
1342 break;
1344 } while (--limit > 0);
1345 if (limit <= 0) {
1346 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1347 hv_err);
1349 #endif
1352 #endif
1354 void __init smp_cpus_done(unsigned int max_cpus)
1358 void smp_send_reschedule(int cpu)
1360 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361 &cpumask_of_cpu(cpu));
1364 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1366 clear_softint(1 << irq);
1369 /* This is a nop because we capture all other cpus
1370 * anyways when making the PROM active.
1372 void smp_send_stop(void)
1376 unsigned long __per_cpu_base __read_mostly;
1377 unsigned long __per_cpu_shift __read_mostly;
1379 EXPORT_SYMBOL(__per_cpu_base);
1380 EXPORT_SYMBOL(__per_cpu_shift);
1382 void __init real_setup_per_cpu_areas(void)
1384 unsigned long paddr, goal, size, i;
1385 char *ptr;
1387 /* Copy section for each CPU (we discard the original) */
1388 goal = PERCPU_ENOUGH_ROOM;
1390 __per_cpu_shift = PAGE_SHIFT;
1391 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1392 __per_cpu_shift++;
1394 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1395 if (!paddr) {
1396 prom_printf("Cannot allocate per-cpu memory.\n");
1397 prom_halt();
1400 ptr = __va(paddr);
1401 __per_cpu_base = ptr - __per_cpu_start;
1403 for (i = 0; i < NR_CPUS; i++, ptr += size)
1404 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1406 /* Setup %g5 for the boot cpu. */
1407 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());