added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / arch / mips / jazz / jazzdma.c
blobc672c08d49e597a1597fef23716d2a4b688c675f
1 /*
2 * Mips Jazz DMA controller support
3 * Copyright (C) 1995, 1996 by Andreas Busse
5 * NOTE: Some of the argument checking could be removed when
6 * things have settled down. Also, instead of returning 0xffffffff
7 * on failure of vdma_alloc() one could leave page #0 unused
8 * and return the more usual NULL pointer as logical address.
9 */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <linux/spinlock.h>
17 #include <asm/mipsregs.h>
18 #include <asm/jazz.h>
19 #include <asm/io.h>
20 #include <asm/uaccess.h>
21 #include <asm/dma.h>
22 #include <asm/jazzdma.h>
23 #include <asm/pgtable.h>
26 * Set this to one to enable additional vdma debug code.
28 #define CONF_DEBUG_VDMA 0
30 static VDMA_PGTBL_ENTRY *pgtbl;
32 static DEFINE_SPINLOCK(vdma_lock);
35 * Debug stuff
37 #define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0)
39 static int debuglvl = 3;
42 * Initialize the pagetable with a one-to-one mapping of
43 * the first 16 Mbytes of main memory and declare all
44 * entries to be unused. Using this method will at least
45 * allow some early device driver operations to work.
47 static inline void vdma_pgtbl_init(void)
49 unsigned long paddr = 0;
50 int i;
52 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
53 pgtbl[i].frame = paddr;
54 pgtbl[i].owner = VDMA_PAGE_EMPTY;
55 paddr += VDMA_PAGESIZE;
60 * Initialize the Jazz R4030 dma controller
62 static int __init vdma_init(void)
65 * Allocate 32k of memory for DMA page tables. This needs to be page
66 * aligned and should be uncached to avoid cache flushing after every
67 * update.
69 pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
70 get_order(VDMA_PGTBL_SIZE));
71 if (!pgtbl)
72 BUG();
73 dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
74 pgtbl = (VDMA_PGTBL_ENTRY *)KSEG1ADDR(pgtbl);
77 * Clear the R4030 translation table
79 vdma_pgtbl_init();
81 r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, CPHYSADDR(pgtbl));
82 r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
83 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
85 printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
86 return 0;
90 * Allocate DMA pagetables using a simple first-fit algorithm
92 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
94 int first, last, pages, frame, i;
95 unsigned long laddr, flags;
97 /* check arguments */
99 if (paddr > 0x1fffffff) {
100 if (vdma_debug)
101 printk("vdma_alloc: Invalid physical address: %08lx\n",
102 paddr);
103 return VDMA_ERROR; /* invalid physical address */
105 if (size > 0x400000 || size == 0) {
106 if (vdma_debug)
107 printk("vdma_alloc: Invalid size: %08lx\n", size);
108 return VDMA_ERROR; /* invalid physical address */
111 spin_lock_irqsave(&vdma_lock, flags);
113 * Find free chunk
115 pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
116 first = 0;
117 while (1) {
118 while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
119 first < VDMA_PGTBL_ENTRIES) first++;
120 if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */
121 spin_unlock_irqrestore(&vdma_lock, flags);
122 return VDMA_ERROR;
125 last = first + 1;
126 while (pgtbl[last].owner == VDMA_PAGE_EMPTY
127 && last - first < pages)
128 last++;
130 if (last - first == pages)
131 break; /* found */
132 first = last + 1;
136 * Mark pages as allocated
138 laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
139 frame = paddr & ~(VDMA_PAGESIZE - 1);
141 for (i = first; i < last; i++) {
142 pgtbl[i].frame = frame;
143 pgtbl[i].owner = laddr;
144 frame += VDMA_PAGESIZE;
148 * Update translation table and return logical start address
150 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
152 if (vdma_debug > 1)
153 printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
154 pages, laddr);
156 if (vdma_debug > 2) {
157 printk("LADDR: ");
158 for (i = first; i < last; i++)
159 printk("%08x ", i << 12);
160 printk("\nPADDR: ");
161 for (i = first; i < last; i++)
162 printk("%08x ", pgtbl[i].frame);
163 printk("\nOWNER: ");
164 for (i = first; i < last; i++)
165 printk("%08x ", pgtbl[i].owner);
166 printk("\n");
169 spin_unlock_irqrestore(&vdma_lock, flags);
171 return laddr;
174 EXPORT_SYMBOL(vdma_alloc);
177 * Free previously allocated dma translation pages
178 * Note that this does NOT change the translation table,
179 * it just marks the free'd pages as unused!
181 int vdma_free(unsigned long laddr)
183 int i;
185 i = laddr >> 12;
187 if (pgtbl[i].owner != laddr) {
188 printk
189 ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
190 laddr);
191 return -1;
194 while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) {
195 pgtbl[i].owner = VDMA_PAGE_EMPTY;
196 i++;
199 if (vdma_debug > 1)
200 printk("vdma_free: freed %ld pages starting from %08lx\n",
201 i - (laddr >> 12), laddr);
203 return 0;
206 EXPORT_SYMBOL(vdma_free);
209 * Map certain page(s) to another physical address.
210 * Caller must have allocated the page(s) before.
212 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
214 int first, pages, npages;
216 if (laddr > 0xffffff) {
217 if (vdma_debug)
218 printk
219 ("vdma_map: Invalid logical address: %08lx\n",
220 laddr);
221 return -EINVAL; /* invalid logical address */
223 if (paddr > 0x1fffffff) {
224 if (vdma_debug)
225 printk
226 ("vdma_map: Invalid physical address: %08lx\n",
227 paddr);
228 return -EINVAL; /* invalid physical address */
231 npages = pages =
232 (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
233 first = laddr >> 12;
234 if (vdma_debug)
235 printk("vdma_remap: first=%x, pages=%x\n", first, pages);
236 if (first + pages > VDMA_PGTBL_ENTRIES) {
237 if (vdma_debug)
238 printk("vdma_alloc: Invalid size: %08lx\n", size);
239 return -EINVAL;
242 paddr &= ~(VDMA_PAGESIZE - 1);
243 while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
244 if (pgtbl[first].owner != laddr) {
245 if (vdma_debug)
246 printk("Trying to remap other's pages.\n");
247 return -EPERM; /* not owner */
249 pgtbl[first].frame = paddr;
250 paddr += VDMA_PAGESIZE;
251 first++;
252 pages--;
256 * Update translation table
258 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
260 if (vdma_debug > 2) {
261 int i;
262 pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
263 first = laddr >> 12;
264 printk("LADDR: ");
265 for (i = first; i < first + pages; i++)
266 printk("%08x ", i << 12);
267 printk("\nPADDR: ");
268 for (i = first; i < first + pages; i++)
269 printk("%08x ", pgtbl[i].frame);
270 printk("\nOWNER: ");
271 for (i = first; i < first + pages; i++)
272 printk("%08x ", pgtbl[i].owner);
273 printk("\n");
276 return 0;
280 * Translate a physical address to a logical address.
281 * This will return the logical address of the first
282 * match.
284 unsigned long vdma_phys2log(unsigned long paddr)
286 int i;
287 int frame;
289 frame = paddr & ~(VDMA_PAGESIZE - 1);
291 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
292 if (pgtbl[i].frame == frame)
293 break;
296 if (i == VDMA_PGTBL_ENTRIES)
297 return ~0UL;
299 return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
302 EXPORT_SYMBOL(vdma_phys2log);
305 * Translate a logical DMA address to a physical address
307 unsigned long vdma_log2phys(unsigned long laddr)
309 return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
312 EXPORT_SYMBOL(vdma_log2phys);
315 * Print DMA statistics
317 void vdma_stats(void)
319 int i;
321 printk("vdma_stats: CONFIG: %08x\n",
322 r4030_read_reg32(JAZZ_R4030_CONFIG));
323 printk("R4030 translation table base: %08x\n",
324 r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
325 printk("R4030 translation table limit: %08x\n",
326 r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
327 printk("vdma_stats: INV_ADDR: %08x\n",
328 r4030_read_reg32(JAZZ_R4030_INV_ADDR));
329 printk("vdma_stats: R_FAIL_ADDR: %08x\n",
330 r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
331 printk("vdma_stats: M_FAIL_ADDR: %08x\n",
332 r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
333 printk("vdma_stats: IRQ_SOURCE: %08x\n",
334 r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
335 printk("vdma_stats: I386_ERROR: %08x\n",
336 r4030_read_reg32(JAZZ_R4030_I386_ERROR));
337 printk("vdma_chnl_modes: ");
338 for (i = 0; i < 8; i++)
339 printk("%04x ",
340 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
341 (i << 5)));
342 printk("\n");
343 printk("vdma_chnl_enables: ");
344 for (i = 0; i < 8; i++)
345 printk("%04x ",
346 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
347 (i << 5)));
348 printk("\n");
352 * DMA transfer functions
356 * Enable a DMA channel. Also clear any error conditions.
358 void vdma_enable(int channel)
360 int status;
362 if (vdma_debug)
363 printk("vdma_enable: channel %d\n", channel);
366 * Check error conditions first
368 status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
369 if (status & 0x400)
370 printk("VDMA: Channel %d: Address error!\n", channel);
371 if (status & 0x200)
372 printk("VDMA: Channel %d: Memory error!\n", channel);
375 * Clear all interrupt flags
377 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
378 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
379 (channel << 5)) | R4030_TC_INTR
380 | R4030_MEM_INTR | R4030_ADDR_INTR);
383 * Enable the desired channel
385 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
386 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
387 (channel << 5)) |
388 R4030_CHNL_ENABLE);
391 EXPORT_SYMBOL(vdma_enable);
394 * Disable a DMA channel
396 void vdma_disable(int channel)
398 if (vdma_debug) {
399 int status =
400 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
401 (channel << 5));
403 printk("vdma_disable: channel %d\n", channel);
404 printk("VDMA: channel %d status: %04x (%s) mode: "
405 "%02x addr: %06x count: %06x\n",
406 channel, status,
407 ((status & 0x600) ? "ERROR" : "OK"),
408 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
409 (channel << 5)),
410 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
411 (channel << 5)),
412 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
413 (channel << 5)));
416 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
417 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
418 (channel << 5)) &
419 ~R4030_CHNL_ENABLE);
422 * After disabling a DMA channel a remote bus register should be
423 * read to ensure that the current DMA acknowledge cycle is completed.
425 *((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
428 EXPORT_SYMBOL(vdma_disable);
431 * Set DMA mode. This function accepts the mode values used
432 * to set a PC-style DMA controller. For the SCSI and FDC
433 * channels, we also set the default modes each time we're
434 * called.
435 * NOTE: The FAST and BURST dma modes are supported by the
436 * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
437 * for now.
439 void vdma_set_mode(int channel, int mode)
441 if (vdma_debug)
442 printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
443 mode);
445 switch (channel) {
446 case JAZZ_SCSI_DMA: /* scsi */
447 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
448 /* R4030_MODE_FAST | */
449 /* R4030_MODE_BURST | */
450 R4030_MODE_INTR_EN |
451 R4030_MODE_WIDTH_16 |
452 R4030_MODE_ATIME_80);
453 break;
455 case JAZZ_FLOPPY_DMA: /* floppy */
456 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
457 /* R4030_MODE_FAST | */
458 /* R4030_MODE_BURST | */
459 R4030_MODE_INTR_EN |
460 R4030_MODE_WIDTH_8 |
461 R4030_MODE_ATIME_120);
462 break;
464 case JAZZ_AUDIOL_DMA:
465 case JAZZ_AUDIOR_DMA:
466 printk("VDMA: Audio DMA not supported yet.\n");
467 break;
469 default:
470 printk
471 ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
472 channel);
475 switch (mode) {
476 case DMA_MODE_READ:
477 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
478 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
479 (channel << 5)) &
480 ~R4030_CHNL_WRITE);
481 break;
483 case DMA_MODE_WRITE:
484 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
485 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
486 (channel << 5)) |
487 R4030_CHNL_WRITE);
488 break;
490 default:
491 printk
492 ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
493 mode);
497 EXPORT_SYMBOL(vdma_set_mode);
500 * Set Transfer Address
502 void vdma_set_addr(int channel, long addr)
504 if (vdma_debug)
505 printk("vdma_set_addr: channel %d, addr %lx\n", channel,
506 addr);
508 r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
511 EXPORT_SYMBOL(vdma_set_addr);
514 * Set Transfer Count
516 void vdma_set_count(int channel, int count)
518 if (vdma_debug)
519 printk("vdma_set_count: channel %d, count %08x\n", channel,
520 (unsigned) count);
522 r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
525 EXPORT_SYMBOL(vdma_set_count);
528 * Get Residual
530 int vdma_get_residue(int channel)
532 int residual;
534 residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
536 if (vdma_debug)
537 printk("vdma_get_residual: channel %d: residual=%d\n",
538 channel, residual);
540 return residual;
544 * Get DMA channel enable register
546 int vdma_get_enable(int channel)
548 int enable;
550 enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
552 if (vdma_debug)
553 printk("vdma_get_enable: channel %d: enable=%d\n", channel,
554 enable);
556 return enable;
559 arch_initcall(vdma_init);