added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / arch / ia64 / sn / pci / pcibr / pcibr_dma.c
blob060df4aa9916853297a0be09d4221c5a95e37654
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved.
7 */
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/geo.h>
13 #include <asm/sn/pcibr_provider.h>
14 #include <asm/sn/pcibus_provider_defs.h>
15 #include <asm/sn/pcidev.h>
16 #include <asm/sn/pic.h>
17 #include <asm/sn/sn_sal.h>
18 #include <asm/sn/tiocp.h>
19 #include "tio.h"
20 #include "xtalk/xwidgetdev.h"
21 #include "xtalk/hubdev.h"
23 extern int sn_ioif_inited;
25 /* =====================================================================
26 * DMA MANAGEMENT
28 * The Bridge ASIC provides three methods of doing DMA: via a "direct map"
29 * register available in 32-bit PCI space (which selects a contiguous 2G
30 * address space on some other widget), via "direct" addressing via 64-bit
31 * PCI space (all destination information comes from the PCI address,
32 * including transfer attributes), and via a "mapped" region that allows
33 * a bunch of different small mappings to be established with the PMU.
35 * For efficiency, we most prefer to use the 32bit direct mapping facility,
36 * since it requires no resource allocations. The advantage of using the
37 * PMU over the 64-bit direct is that single-cycle PCI addressing can be
38 * used; the advantage of using 64-bit direct over PMU addressing is that
39 * we do not have to allocate entries in the PMU.
42 static dma_addr_t
43 pcibr_dmamap_ate32(struct pcidev_info *info,
44 u64 paddr, size_t req_size, u64 flags, int dma_flags)
47 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
48 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
49 pdi_pcibus_info;
50 u8 internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
51 pdi_linux_pcidev->devfn)) - 1;
52 int ate_count;
53 int ate_index;
54 u64 ate_flags = flags | PCI32_ATE_V;
55 u64 ate;
56 u64 pci_addr;
57 u64 xio_addr;
58 u64 offset;
60 /* PIC in PCI-X mode does not supports 32bit PageMap mode */
61 if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
62 return 0;
65 /* Calculate the number of ATEs needed. */
66 if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
67 ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
68 +req_size /* max mapping bytes */
69 - 1) + 1; /* round UP */
70 } else { /* assume requested target is page aligned */
71 ate_count = IOPG(req_size /* max mapping bytes */
72 - 1) + 1; /* round UP */
75 /* Get the number of ATEs required. */
76 ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
77 if (ate_index < 0)
78 return 0;
80 /* In PCI-X mode, Prefetch not supported */
81 if (IS_PCIX(pcibus_info))
82 ate_flags &= ~(PCI32_ATE_PREF);
84 if (SN_DMA_ADDRTYPE(dma_flags == SN_DMA_ADDR_PHYS))
85 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
86 PHYS_TO_TIODMA(paddr);
87 else
88 xio_addr = paddr;
90 offset = IOPGOFF(xio_addr);
91 ate = ate_flags | (xio_addr - offset);
93 /* If PIC, put the targetid in the ATE */
94 if (IS_PIC_SOFT(pcibus_info)) {
95 ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
99 * If we're mapping for MSI, set the MSI bit in the ATE. If it's a
100 * TIOCP based pci bus, we also need to set the PIO bit in the ATE.
102 if (dma_flags & SN_DMA_MSI) {
103 ate |= PCI32_ATE_MSI;
104 if (IS_TIOCP_SOFT(pcibus_info))
105 ate |= PCI32_ATE_PIO;
108 ate_write(pcibus_info, ate_index, ate_count, ate);
111 * Set up the DMA mapped Address.
113 pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
116 * If swap was set in device in pcibr_endian_set()
117 * we need to turn swapping on.
119 if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
120 ATE_SWAP_ON(pci_addr);
123 return pci_addr;
126 static dma_addr_t
127 pcibr_dmatrans_direct64(struct pcidev_info * info, u64 paddr,
128 u64 dma_attributes, int dma_flags)
130 struct pcibus_info *pcibus_info = (struct pcibus_info *)
131 ((info->pdi_host_pcidev_info)->pdi_pcibus_info);
132 u64 pci_addr;
134 /* Translate to Crosstalk View of Physical Address */
135 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
136 pci_addr = IS_PIC_SOFT(pcibus_info) ?
137 PHYS_TO_DMA(paddr) :
138 PHYS_TO_TIODMA(paddr);
139 else
140 pci_addr = paddr;
141 pci_addr |= dma_attributes;
143 /* Handle Bus mode */
144 if (IS_PCIX(pcibus_info))
145 pci_addr &= ~PCI64_ATTR_PREF;
147 /* Handle Bridge Chipset differences */
148 if (IS_PIC_SOFT(pcibus_info)) {
149 pci_addr |=
150 ((u64) pcibus_info->
151 pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
152 } else
153 pci_addr |= (dma_flags & SN_DMA_MSI) ?
154 TIOCP_PCI64_CMDTYPE_MSI :
155 TIOCP_PCI64_CMDTYPE_MEM;
157 /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
158 if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
159 pci_addr |= PCI64_ATTR_VIRTUAL;
161 return pci_addr;
164 static dma_addr_t
165 pcibr_dmatrans_direct32(struct pcidev_info * info,
166 u64 paddr, size_t req_size, u64 flags, int dma_flags)
168 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
169 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
170 pdi_pcibus_info;
171 u64 xio_addr;
173 u64 xio_base;
174 u64 offset;
175 u64 endoff;
177 if (IS_PCIX(pcibus_info)) {
178 return 0;
181 if (dma_flags & SN_DMA_MSI)
182 return 0;
184 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
185 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
186 PHYS_TO_TIODMA(paddr);
187 else
188 xio_addr = paddr;
190 xio_base = pcibus_info->pbi_dir_xbase;
191 offset = xio_addr - xio_base;
192 endoff = req_size + offset;
193 if ((req_size > (1ULL << 31)) || /* Too Big */
194 (xio_addr < xio_base) || /* Out of range for mappings */
195 (endoff > (1ULL << 31))) { /* Too Big */
196 return 0;
199 return PCI32_DIRECT_BASE | offset;
203 * Wrapper routine for freeing DMA maps
204 * DMA mappings for Direct 64 and 32 do not have any DMA maps.
206 void
207 pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction)
209 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
210 struct pcibus_info *pcibus_info =
211 (struct pcibus_info *)pcidev_info->pdi_pcibus_info;
213 if (IS_PCI32_MAPPED(dma_handle)) {
214 int ate_index;
216 ate_index =
217 IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
218 pcibr_ate_free(pcibus_info, ate_index);
223 * On SN systems there is a race condition between a PIO read response and
224 * DMA's. In rare cases, the read response may beat the DMA, causing the
225 * driver to think that data in memory is complete and meaningful. This code
226 * eliminates that race. This routine is called by the PIO read routines
227 * after doing the read. For PIC this routine then forces a fake interrupt
228 * on another line, which is logically associated with the slot that the PIO
229 * is addressed to. It then spins while watching the memory location that
230 * the interrupt is targetted to. When the interrupt response arrives, we
231 * are sure that the DMA has landed in memory and it is safe for the driver
232 * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
233 * Bridge register since it ensures the data has entered the coherence domain,
234 * unlike the PIC Device(x) Write Request Buffer Flush register.
237 void sn_dma_flush(u64 addr)
239 nasid_t nasid;
240 int is_tio;
241 int wid_num;
242 int i, j;
243 unsigned long flags;
244 u64 itte;
245 struct hubdev_info *hubinfo;
246 struct sn_flush_device_kernel *p;
247 struct sn_flush_device_common *common;
248 struct sn_flush_nasid_entry *flush_nasid_list;
250 if (!sn_ioif_inited)
251 return;
253 nasid = NASID_GET(addr);
254 if (-1 == nasid_to_cnodeid(nasid))
255 return;
257 hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
259 if (!hubinfo) {
260 BUG();
263 flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
264 if (flush_nasid_list->widget_p == NULL)
265 return;
267 is_tio = (nasid & 1);
268 if (is_tio) {
269 int itte_index;
271 if (TIO_HWIN(addr))
272 itte_index = 0;
273 else if (TIO_BWIN_WINDOWNUM(addr))
274 itte_index = TIO_BWIN_WINDOWNUM(addr);
275 else
276 itte_index = -1;
278 if (itte_index >= 0) {
279 itte = flush_nasid_list->iio_itte[itte_index];
280 if (! TIO_ITTE_VALID(itte))
281 return;
282 wid_num = TIO_ITTE_WIDGET(itte);
283 } else
284 wid_num = TIO_SWIN_WIDGETNUM(addr);
285 } else {
286 if (BWIN_WINDOWNUM(addr)) {
287 itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)];
288 wid_num = IIO_ITTE_WIDGET(itte);
289 } else
290 wid_num = SWIN_WIDGETNUM(addr);
292 if (flush_nasid_list->widget_p[wid_num] == NULL)
293 return;
294 p = &flush_nasid_list->widget_p[wid_num][0];
296 /* find a matching BAR */
297 for (i = 0; i < DEV_PER_WIDGET; i++,p++) {
298 common = p->common;
299 for (j = 0; j < PCI_ROM_RESOURCE; j++) {
300 if (common->sfdl_bar_list[j].start == 0)
301 break;
302 if (addr >= common->sfdl_bar_list[j].start
303 && addr <= common->sfdl_bar_list[j].end)
304 break;
306 if (j < PCI_ROM_RESOURCE && common->sfdl_bar_list[j].start != 0)
307 break;
310 /* if no matching BAR, return without doing anything. */
311 if (i == DEV_PER_WIDGET)
312 return;
315 * For TIOCP use the Device(x) Write Request Buffer Flush Bridge
316 * register since it ensures the data has entered the coherence
317 * domain, unlike PIC.
319 if (is_tio) {
321 * Note: devices behind TIOCE should never be matched in the
322 * above code, and so the following code is PIC/CP centric.
323 * If CE ever needs the sn_dma_flush mechanism, we will have
324 * to account for that here and in tioce_bus_fixup().
326 u32 tio_id = HUB_L(TIO_IOSPACE_ADDR(nasid, TIO_NODE_ID));
327 u32 revnum = XWIDGET_PART_REV_NUM(tio_id);
329 /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
330 if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
331 return;
332 } else {
333 pcireg_wrb_flush_get(common->sfdl_pcibus_info,
334 (common->sfdl_slot - 1));
336 } else {
337 spin_lock_irqsave(&p->sfdl_flush_lock, flags);
338 *common->sfdl_flush_addr = 0;
340 /* force an interrupt. */
341 *(volatile u32 *)(common->sfdl_force_int_addr) = 1;
343 /* wait for the interrupt to come back. */
344 while (*(common->sfdl_flush_addr) != 0x10f)
345 cpu_relax();
347 /* okay, everything is synched up. */
348 spin_unlock_irqrestore(&p->sfdl_flush_lock, flags);
350 return;
354 * DMA interfaces. Called from pci_dma.c routines.
357 dma_addr_t
358 pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size, int dma_flags)
360 dma_addr_t dma_handle;
361 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
363 /* SN cannot support DMA addresses smaller than 32 bits. */
364 if (hwdev->dma_mask < 0x7fffffff) {
365 return 0;
368 if (hwdev->dma_mask == ~0UL) {
370 * Handle the most common case: 64 bit cards. This
371 * call should always succeed.
374 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
375 PCI64_ATTR_PREF, dma_flags);
376 } else {
377 /* Handle 32-63 bit cards via direct mapping */
378 dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr,
379 size, 0, dma_flags);
380 if (!dma_handle) {
382 * It is a 32 bit card and we cannot do direct mapping,
383 * so we use an ATE.
386 dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr,
387 size, PCI32_ATE_PREF,
388 dma_flags);
392 return dma_handle;
395 dma_addr_t
396 pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr,
397 size_t size, int dma_flags)
399 dma_addr_t dma_handle;
400 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
402 if (hwdev->dev.coherent_dma_mask == ~0UL) {
403 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
404 PCI64_ATTR_BAR, dma_flags);
405 } else {
406 dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
407 phys_addr, size,
408 PCI32_ATE_BAR, dma_flags);
411 return dma_handle;
414 EXPORT_SYMBOL(sn_dma_flush);