added 2.6.29.6 aldebaran kernel
[nao-ulib.git] / kernel / 2.6.29.6-aldebaran-rt / arch / arm / kernel / process.c
blobe714439a057fc38da564667cf4350de0524febfb
1 /*
2 * linux/arch/arm/kernel/process.c
4 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
5 * Original Copyright (C) 1995 Linus Torvalds
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <stdarg.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/slab.h>
20 #include <linux/user.h>
21 #include <linux/delay.h>
22 #include <linux/reboot.h>
23 #include <linux/interrupt.h>
24 #include <linux/kallsyms.h>
25 #include <linux/init.h>
26 #include <linux/cpu.h>
27 #include <linux/elfcore.h>
28 #include <linux/pm.h>
29 #include <linux/tick.h>
30 #include <linux/utsname.h>
31 #include <linux/uaccess.h>
33 #include <asm/leds.h>
34 #include <asm/processor.h>
35 #include <asm/system.h>
36 #include <asm/thread_notify.h>
37 #include <asm/mach/time.h>
39 static const char *processor_modes[] = {
40 "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
41 "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
42 "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
43 "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
46 static const char *isa_modes[] = {
47 "ARM" , "Thumb" , "Jazelle", "ThumbEE"
50 extern void setup_mm_for_reboot(char mode);
52 static volatile int hlt_counter;
54 #include <mach/system.h>
56 void disable_hlt(void)
58 hlt_counter++;
61 EXPORT_SYMBOL(disable_hlt);
63 void enable_hlt(void)
65 hlt_counter--;
68 EXPORT_SYMBOL(enable_hlt);
70 static int __init nohlt_setup(char *__unused)
72 hlt_counter = 1;
73 return 1;
76 static int __init hlt_setup(char *__unused)
78 hlt_counter = 0;
79 return 1;
82 __setup("nohlt", nohlt_setup);
83 __setup("hlt", hlt_setup);
85 void arm_machine_restart(char mode)
88 * Clean and disable cache, and turn off interrupts
90 cpu_proc_fin();
93 * Tell the mm system that we are going to reboot -
94 * we may need it to insert some 1:1 mappings so that
95 * soft boot works.
97 setup_mm_for_reboot(mode);
100 * Now call the architecture specific reboot code.
102 arch_reset(mode);
105 * Whoops - the architecture was unable to reboot.
106 * Tell the user!
108 mdelay(1000);
109 printk("Reboot failed -- System halted\n");
110 while (1);
114 * Function pointers to optional machine specific functions
116 void (*pm_idle)(void);
117 EXPORT_SYMBOL(pm_idle);
119 void (*pm_power_off)(void);
120 EXPORT_SYMBOL(pm_power_off);
122 void (*arm_pm_restart)(char str) = arm_machine_restart;
123 EXPORT_SYMBOL_GPL(arm_pm_restart);
127 * This is our default idle handler. We need to disable
128 * interrupts here to ensure we don't miss a wakeup call.
130 static void default_idle(void)
132 if (hlt_counter)
133 cpu_relax();
134 else {
135 local_irq_disable();
136 if (!need_resched())
137 arch_idle();
138 local_irq_enable();
143 * The idle thread. We try to conserve power, while trying to keep
144 * overall latency low. The architecture specific idle is passed
145 * a value to indicate the level of "idleness" of the system.
147 void cpu_idle(void)
149 local_fiq_enable();
151 /* endless idle loop with no priority at all */
152 while (1) {
153 void (*idle)(void) = pm_idle;
155 #ifdef CONFIG_HOTPLUG_CPU
156 if (cpu_is_offline(smp_processor_id())) {
157 leds_event(led_idle_start);
158 cpu_die();
160 #endif
162 if (!idle)
163 idle = default_idle;
164 leds_event(led_idle_start);
165 tick_nohz_stop_sched_tick(1);
166 while (!need_resched())
167 idle();
168 leds_event(led_idle_end);
169 tick_nohz_restart_sched_tick();
170 local_irq_disable();
171 __preempt_enable_no_resched();
172 __schedule();
173 preempt_disable();
174 local_irq_enable();
178 static char reboot_mode = 'h';
180 int __init reboot_setup(char *str)
182 reboot_mode = str[0];
183 return 1;
186 __setup("reboot=", reboot_setup);
188 void machine_halt(void)
193 void machine_power_off(void)
195 if (pm_power_off)
196 pm_power_off();
199 void machine_restart(char * __unused)
201 arm_pm_restart(reboot_mode);
204 void __show_regs(struct pt_regs *regs)
206 unsigned long flags;
207 char buf[64];
209 printk("CPU: %d %s (%s %.*s)\n",
210 smp_processor_id(), print_tainted(), init_utsname()->release,
211 (int)strcspn(init_utsname()->version, " "),
212 init_utsname()->version);
213 print_symbol("PC is at %s\n", instruction_pointer(regs));
214 print_symbol("LR is at %s\n", regs->ARM_lr);
215 printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
216 "sp : %08lx ip : %08lx fp : %08lx\n",
217 regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
218 regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
219 printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
220 regs->ARM_r10, regs->ARM_r9,
221 regs->ARM_r8);
222 printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
223 regs->ARM_r7, regs->ARM_r6,
224 regs->ARM_r5, regs->ARM_r4);
225 printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
226 regs->ARM_r3, regs->ARM_r2,
227 regs->ARM_r1, regs->ARM_r0);
229 flags = regs->ARM_cpsr;
230 buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
231 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
232 buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
233 buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
234 buf[4] = '\0';
236 printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
237 buf, interrupts_enabled(regs) ? "n" : "ff",
238 fast_interrupts_enabled(regs) ? "n" : "ff",
239 processor_modes[processor_mode(regs)],
240 isa_modes[isa_mode(regs)],
241 get_fs() == get_ds() ? "kernel" : "user");
242 #ifdef CONFIG_CPU_CP15
244 unsigned int ctrl;
246 buf[0] = '\0';
247 #ifdef CONFIG_CPU_CP15_MMU
249 unsigned int transbase, dac;
250 asm("mrc p15, 0, %0, c2, c0\n\t"
251 "mrc p15, 0, %1, c3, c0\n"
252 : "=r" (transbase), "=r" (dac));
253 snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
254 transbase, dac);
256 #endif
257 asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
259 printk("Control: %08x%s\n", ctrl, buf);
261 #endif
264 void show_regs(struct pt_regs * regs)
266 printk("\n");
267 printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
268 __show_regs(regs);
269 __backtrace();
273 * Free current thread data structures etc..
275 void exit_thread(void)
279 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
281 EXPORT_SYMBOL_GPL(thread_notify_head);
283 void flush_thread(void)
285 struct thread_info *thread = current_thread_info();
286 struct task_struct *tsk = current;
288 memset(thread->used_cp, 0, sizeof(thread->used_cp));
289 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
290 memset(&thread->fpstate, 0, sizeof(union fp_state));
292 thread_notify(THREAD_NOTIFY_FLUSH, thread);
295 void release_thread(struct task_struct *dead_task)
297 struct thread_info *thread = task_thread_info(dead_task);
299 thread_notify(THREAD_NOTIFY_RELEASE, thread);
302 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
305 copy_thread(int nr, unsigned long clone_flags, unsigned long stack_start,
306 unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
308 struct thread_info *thread = task_thread_info(p);
309 struct pt_regs *childregs = task_pt_regs(p);
311 *childregs = *regs;
312 childregs->ARM_r0 = 0;
313 childregs->ARM_sp = stack_start;
315 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
316 thread->cpu_context.sp = (unsigned long)childregs;
317 thread->cpu_context.pc = (unsigned long)ret_from_fork;
319 if (clone_flags & CLONE_SETTLS)
320 thread->tp_value = regs->ARM_r3;
322 return 0;
326 * fill in the fpe structure for a core dump...
328 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
330 struct thread_info *thread = current_thread_info();
331 int used_math = thread->used_cp[1] | thread->used_cp[2];
333 if (used_math)
334 memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
336 return used_math != 0;
338 EXPORT_SYMBOL(dump_fpu);
341 * Shuffle the argument into the correct register before calling the
342 * thread function. r1 is the thread argument, r2 is the pointer to
343 * the thread function, and r3 points to the exit function.
345 extern void kernel_thread_helper(void);
346 asm( ".section .text\n"
347 " .align\n"
348 " .type kernel_thread_helper, #function\n"
349 "kernel_thread_helper:\n"
350 " mov r0, r1\n"
351 " mov lr, r3\n"
352 " mov pc, r2\n"
353 " .size kernel_thread_helper, . - kernel_thread_helper\n"
354 " .previous");
357 * Create a kernel thread.
359 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
361 struct pt_regs regs;
363 memset(&regs, 0, sizeof(regs));
365 regs.ARM_r1 = (unsigned long)arg;
366 regs.ARM_r2 = (unsigned long)fn;
367 regs.ARM_r3 = (unsigned long)do_exit;
368 regs.ARM_pc = (unsigned long)kernel_thread_helper;
369 regs.ARM_cpsr = SVC_MODE;
371 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
373 EXPORT_SYMBOL(kernel_thread);
375 unsigned long get_wchan(struct task_struct *p)
377 unsigned long fp, lr;
378 unsigned long stack_start, stack_end;
379 int count = 0;
380 if (!p || p == current || p->state == TASK_RUNNING)
381 return 0;
383 stack_start = (unsigned long)end_of_stack(p);
384 stack_end = (unsigned long)task_stack_page(p) + THREAD_SIZE;
386 fp = thread_saved_fp(p);
387 do {
388 if (fp < stack_start || fp > stack_end)
389 return 0;
390 lr = ((unsigned long *)fp)[-1];
391 if (!in_sched_functions(lr))
392 return lr;
393 fp = *(unsigned long *) (fp - 12);
394 } while (count ++ < 16);
395 return 0;