Just a little correction at the it.po file.
[midnight-commander.git] / src / regex.c
blob1ee571aa91304ecc8bf18e0ade588f6ee3af1cde
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 02111-1307 USA. */
23 /* AIX requires this to be the first thing in the file. */
24 #if defined _AIX && !defined REGEX_MALLOC
25 #pragma alloca
26 #endif
28 #undef _GNU_SOURCE
29 #define _GNU_SOURCE
31 #ifdef HAVE_CONFIG_H
32 # include <config.h>
33 #endif
35 #ifdef USE_INCLUDED_REGEX
36 #ifndef PARAMS
37 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
38 # define PARAMS(args) args
39 # else
40 # define PARAMS(args) ()
41 # endif /* GCC. */
42 #endif /* Not PARAMS. */
44 #ifndef INSIDE_RECURSION
46 # if defined STDC_HEADERS && !defined emacs
47 # include <stddef.h>
48 # else
49 /* We need this for `regex.h', and perhaps for the Emacs include files. */
50 # include <sys/types.h>
51 # endif
53 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
55 /* For platform which support the ISO C amendement 1 functionality we
56 support user defined character classes. */
57 # if defined _LIBC || WIDE_CHAR_SUPPORT
58 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
59 # include <wchar.h>
60 # include <wctype.h>
61 # endif
63 # ifdef _LIBC
64 /* We have to keep the namespace clean. */
65 # define regfree(preg) __regfree (preg)
66 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
67 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
68 # define regerror(errcode, preg, errbuf, errbuf_size) \
69 __regerror(errcode, preg, errbuf, errbuf_size)
70 # define re_set_registers(bu, re, nu, st, en) \
71 __re_set_registers (bu, re, nu, st, en)
72 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
73 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
74 # define re_match(bufp, string, size, pos, regs) \
75 __re_match (bufp, string, size, pos, regs)
76 # define re_search(bufp, string, size, startpos, range, regs) \
77 __re_search (bufp, string, size, startpos, range, regs)
78 # define re_compile_pattern(pattern, length, bufp) \
79 __re_compile_pattern (pattern, length, bufp)
80 # define re_set_syntax(syntax) __re_set_syntax (syntax)
81 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
82 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
83 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85 # define btowc __btowc
87 /* We are also using some library internals. */
88 # include <locale/localeinfo.h>
89 # include <locale/elem-hash.h>
90 # include <langinfo.h>
91 # include <locale/coll-lookup.h>
92 # endif
94 /* This is for other GNU distributions with internationalized messages. */
95 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
96 # include <libintl.h>
97 # ifdef _LIBC
98 # undef gettext
99 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
100 # endif
101 # else
102 # define gettext(msgid) (msgid)
103 # endif
105 # ifndef gettext_noop
106 /* This define is so xgettext can find the internationalizable
107 strings. */
108 # define gettext_noop(String) String
109 # endif
111 /* The `emacs' switch turns on certain matching commands
112 that make sense only in Emacs. */
113 # ifdef emacs
115 # include "lisp.h"
116 # include "buffer.h"
117 # include "syntax.h"
119 # else /* not emacs */
121 /* If we are not linking with Emacs proper,
122 we can't use the relocating allocator
123 even if config.h says that we can. */
124 # undef REL_ALLOC
126 # if defined STDC_HEADERS || defined _LIBC
127 # include <stdlib.h>
128 # else
129 char *malloc ();
130 char *realloc ();
131 # endif
133 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
134 If nothing else has been done, use the method below. */
135 # ifdef INHIBIT_STRING_HEADER
136 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
137 # if !defined bzero && !defined bcopy
138 # undef INHIBIT_STRING_HEADER
139 # endif
140 # endif
141 # endif
143 /* This is the normal way of making sure we have a bcopy and a bzero.
144 This is used in most programs--a few other programs avoid this
145 by defining INHIBIT_STRING_HEADER. */
146 # ifndef INHIBIT_STRING_HEADER
147 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
148 # include <string.h>
149 # ifndef bzero
150 # ifndef _LIBC
151 # define bzero(s, n) (memset (s, '\0', n), (s))
152 # else
153 # define bzero(s, n) __bzero (s, n)
154 # endif
155 # endif
156 # else
157 # include <strings.h>
158 # ifndef memcmp
159 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
160 # endif
161 # ifndef memcpy
162 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
163 # endif
164 # endif
165 # endif
167 /* Define the syntax stuff for \<, \>, etc. */
169 /* This must be nonzero for the wordchar and notwordchar pattern
170 commands in re_match_2. */
171 # ifndef Sword
172 # define Sword 1
173 # endif
175 # ifdef SWITCH_ENUM_BUG
176 # define SWITCH_ENUM_CAST(x) ((int)(x))
177 # else
178 # define SWITCH_ENUM_CAST(x) (x)
179 # endif
181 # endif /* not emacs */
183 # if defined _LIBC || HAVE_LIMITS_H
184 # include <limits.h>
185 # endif
187 # ifndef MB_LEN_MAX
188 # define MB_LEN_MAX 1
189 # endif
191 /* Get the interface, including the syntax bits. */
192 # include "eregex.h"
194 /* isalpha etc. are used for the character classes. */
195 # include <ctype.h>
197 /* Jim Meyering writes:
199 "... Some ctype macros are valid only for character codes that
200 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
201 using /bin/cc or gcc but without giving an ansi option). So, all
202 ctype uses should be through macros like ISPRINT... If
203 STDC_HEADERS is defined, then autoconf has verified that the ctype
204 macros don't need to be guarded with references to isascii. ...
205 Defining isascii to 1 should let any compiler worth its salt
206 eliminate the && through constant folding."
207 Solaris defines some of these symbols so we must undefine them first. */
209 # undef ISASCII
210 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
211 # define ISASCII(c) 1
212 # else
213 # define ISASCII(c) isascii(c)
214 # endif
216 # ifdef isblank
217 # define ISBLANK(c) (ISASCII (c) && isblank (c))
218 # else
219 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
220 # endif
221 # ifdef isgraph
222 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
223 # else
224 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
225 # endif
227 # undef ISPRINT
228 # define ISPRINT(c) (ISASCII (c) && isprint (c))
229 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
230 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
231 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
232 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
233 # define ISLOWER(c) (ISASCII (c) && islower (c))
234 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
235 # define ISSPACE(c) (ISASCII (c) && isspace (c))
236 # define ISUPPER(c) (ISASCII (c) && isupper (c))
237 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
239 # ifdef _tolower
240 # define TOLOWER(c) _tolower(c)
241 # else
242 # define TOLOWER(c) tolower(c)
243 # endif
245 # ifndef NULL
246 # define NULL (void *)0
247 # endif
249 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
250 since ours (we hope) works properly with all combinations of
251 machines, compilers, `char' and `unsigned char' argument types.
252 (Per Bothner suggested the basic approach.) */
253 # undef SIGN_EXTEND_CHAR
254 # if __STDC__
255 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
256 # else /* not __STDC__ */
257 /* As in Harbison and Steele. */
258 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
259 # endif
261 # ifndef emacs
262 /* How many characters in the character set. */
263 # define CHAR_SET_SIZE 256
265 # ifdef SYNTAX_TABLE
267 extern char *re_syntax_table;
269 # else /* not SYNTAX_TABLE */
271 static char re_syntax_table[CHAR_SET_SIZE];
273 static void init_syntax_once PARAMS ((void));
275 static void
276 init_syntax_once ()
278 register int c;
279 static int done = 0;
281 if (done)
282 return;
283 bzero (re_syntax_table, sizeof re_syntax_table);
285 for (c = 0; c < CHAR_SET_SIZE; ++c)
286 if (ISALNUM (c))
287 re_syntax_table[c] = Sword;
289 re_syntax_table['_'] = Sword;
291 done = 1;
294 # endif /* not SYNTAX_TABLE */
296 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
298 # endif /* emacs */
300 /* Integer type for pointers. */
301 # if !defined _LIBC && !defined HAVE_UINTPTR_T
302 typedef unsigned long int uintptr_t;
303 # endif
305 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
306 use `alloca' instead of `malloc'. This is because using malloc in
307 re_search* or re_match* could cause memory leaks when C-g is used in
308 Emacs; also, malloc is slower and causes storage fragmentation. On
309 the other hand, malloc is more portable, and easier to debug.
311 Because we sometimes use alloca, some routines have to be macros,
312 not functions -- `alloca'-allocated space disappears at the end of the
313 function it is called in. */
315 # ifdef REGEX_MALLOC
317 # define REGEX_ALLOCATE malloc
318 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
319 # define REGEX_FREE free
321 # else /* not REGEX_MALLOC */
323 /* Emacs already defines alloca, sometimes. */
324 # ifndef alloca
326 /* Make alloca work the best possible way. */
327 # ifdef __GNUC__
328 # define alloca __builtin_alloca
329 # else /* not __GNUC__ */
330 # if HAVE_ALLOCA_H
331 # include <alloca.h>
332 # endif /* HAVE_ALLOCA_H */
333 # endif /* not __GNUC__ */
335 # endif /* not alloca */
337 # define REGEX_ALLOCATE alloca
339 /* Assumes a `char *destination' variable. */
340 # define REGEX_REALLOCATE(source, osize, nsize) \
341 (destination = (char *) alloca (nsize), \
342 memcpy (destination, source, osize))
344 /* No need to do anything to free, after alloca. */
345 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
347 # endif /* not REGEX_MALLOC */
349 /* Define how to allocate the failure stack. */
351 # if defined REL_ALLOC && defined REGEX_MALLOC
353 # define REGEX_ALLOCATE_STACK(size) \
354 r_alloc (&failure_stack_ptr, (size))
355 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
356 r_re_alloc (&failure_stack_ptr, (nsize))
357 # define REGEX_FREE_STACK(ptr) \
358 r_alloc_free (&failure_stack_ptr)
360 # else /* not using relocating allocator */
362 # ifdef REGEX_MALLOC
364 # define REGEX_ALLOCATE_STACK malloc
365 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
366 # define REGEX_FREE_STACK free
368 # else /* not REGEX_MALLOC */
370 # define REGEX_ALLOCATE_STACK alloca
372 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
373 REGEX_REALLOCATE (source, osize, nsize)
374 /* No need to explicitly free anything. */
375 # define REGEX_FREE_STACK(arg)
377 # endif /* not REGEX_MALLOC */
378 # endif /* not using relocating allocator */
381 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
382 `string1' or just past its end. This works if PTR is NULL, which is
383 a good thing. */
384 # define FIRST_STRING_P(ptr) \
385 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
387 /* (Re)Allocate N items of type T using malloc, or fail. */
388 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
389 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
390 # define RETALLOC_IF(addr, n, t) \
391 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
392 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
394 # define BYTEWIDTH 8 /* In bits. */
396 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
398 # undef MAX
399 # undef MIN
400 # define MAX(a, b) ((a) > (b) ? (a) : (b))
401 # define MIN(a, b) ((a) < (b) ? (a) : (b))
403 typedef char boolean;
404 # define false 0
405 # define true 1
407 static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
408 reg_syntax_t syntax,
409 struct re_pattern_buffer *bufp));
411 static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
412 const char *string1, int size1,
413 const char *string2, int size2,
414 int pos,
415 struct re_registers *regs,
416 int stop));
417 static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
418 const char *string1, int size1,
419 const char *string2, int size2,
420 int startpos, int range,
421 struct re_registers *regs, int stop));
422 static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
424 #ifdef MBS_SUPPORT
425 static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
426 reg_syntax_t syntax,
427 struct re_pattern_buffer *bufp));
430 static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
431 const char *cstring1, int csize1,
432 const char *cstring2, int csize2,
433 int pos,
434 struct re_registers *regs,
435 int stop,
436 wchar_t *string1, int size1,
437 wchar_t *string2, int size2,
438 int *mbs_offset1, int *mbs_offset2));
439 static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
440 const char *string1, int size1,
441 const char *string2, int size2,
442 int startpos, int range,
443 struct re_registers *regs, int stop));
444 static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
445 #endif
447 /* These are the command codes that appear in compiled regular
448 expressions. Some opcodes are followed by argument bytes. A
449 command code can specify any interpretation whatsoever for its
450 arguments. Zero bytes may appear in the compiled regular expression. */
452 typedef enum
454 no_op = 0,
456 /* Succeed right away--no more backtracking. */
457 succeed,
459 /* Followed by one byte giving n, then by n literal bytes. */
460 exactn,
462 # ifdef MBS_SUPPORT
463 /* Same as exactn, but contains binary data. */
464 exactn_bin,
465 # endif
467 /* Matches any (more or less) character. */
468 anychar,
470 /* Matches any one char belonging to specified set. First
471 following byte is number of bitmap bytes. Then come bytes
472 for a bitmap saying which chars are in. Bits in each byte
473 are ordered low-bit-first. A character is in the set if its
474 bit is 1. A character too large to have a bit in the map is
475 automatically not in the set. */
476 /* ifdef MBS_SUPPORT, following element is length of character
477 classes, length of collating symbols, length of equivalence
478 classes, length of character ranges, and length of characters.
479 Next, character class element, collating symbols elements,
480 equivalence class elements, range elements, and character
481 elements follow.
482 See regex_compile function. */
483 charset,
485 /* Same parameters as charset, but match any character that is
486 not one of those specified. */
487 charset_not,
489 /* Start remembering the text that is matched, for storing in a
490 register. Followed by one byte with the register number, in
491 the range 0 to one less than the pattern buffer's re_nsub
492 field. Then followed by one byte with the number of groups
493 inner to this one. (This last has to be part of the
494 start_memory only because we need it in the on_failure_jump
495 of re_match_2.) */
496 start_memory,
498 /* Stop remembering the text that is matched and store it in a
499 memory register. Followed by one byte with the register
500 number, in the range 0 to one less than `re_nsub' in the
501 pattern buffer, and one byte with the number of inner groups,
502 just like `start_memory'. (We need the number of inner
503 groups here because we don't have any easy way of finding the
504 corresponding start_memory when we're at a stop_memory.) */
505 stop_memory,
507 /* Match a duplicate of something remembered. Followed by one
508 byte containing the register number. */
509 duplicate,
511 /* Fail unless at beginning of line. */
512 begline,
514 /* Fail unless at end of line. */
515 endline,
517 /* Succeeds if at beginning of buffer (if emacs) or at beginning
518 of string to be matched (if not). */
519 begbuf,
521 /* Analogously, for end of buffer/string. */
522 endbuf,
524 /* Followed by two byte relative address to which to jump. */
525 jump,
527 /* Same as jump, but marks the end of an alternative. */
528 jump_past_alt,
530 /* Followed by two-byte relative address of place to resume at
531 in case of failure. */
532 /* ifdef MBS_SUPPORT, the size of address is 1. */
533 on_failure_jump,
535 /* Like on_failure_jump, but pushes a placeholder instead of the
536 current string position when executed. */
537 on_failure_keep_string_jump,
539 /* Throw away latest failure point and then jump to following
540 two-byte relative address. */
541 /* ifdef MBS_SUPPORT, the size of address is 1. */
542 pop_failure_jump,
544 /* Change to pop_failure_jump if know won't have to backtrack to
545 match; otherwise change to jump. This is used to jump
546 back to the beginning of a repeat. If what follows this jump
547 clearly won't match what the repeat does, such that we can be
548 sure that there is no use backtracking out of repetitions
549 already matched, then we change it to a pop_failure_jump.
550 Followed by two-byte address. */
551 /* ifdef MBS_SUPPORT, the size of address is 1. */
552 maybe_pop_jump,
554 /* Jump to following two-byte address, and push a dummy failure
555 point. This failure point will be thrown away if an attempt
556 is made to use it for a failure. A `+' construct makes this
557 before the first repeat. Also used as an intermediary kind
558 of jump when compiling an alternative. */
559 /* ifdef MBS_SUPPORT, the size of address is 1. */
560 dummy_failure_jump,
562 /* Push a dummy failure point and continue. Used at the end of
563 alternatives. */
564 push_dummy_failure,
566 /* Followed by two-byte relative address and two-byte number n.
567 After matching N times, jump to the address upon failure. */
568 /* ifdef MBS_SUPPORT, the size of address is 1. */
569 succeed_n,
571 /* Followed by two-byte relative address, and two-byte number n.
572 Jump to the address N times, then fail. */
573 /* ifdef MBS_SUPPORT, the size of address is 1. */
574 jump_n,
576 /* Set the following two-byte relative address to the
577 subsequent two-byte number. The address *includes* the two
578 bytes of number. */
579 /* ifdef MBS_SUPPORT, the size of address is 1. */
580 set_number_at,
582 wordchar, /* Matches any word-constituent character. */
583 notwordchar, /* Matches any char that is not a word-constituent. */
585 wordbeg, /* Succeeds if at word beginning. */
586 wordend, /* Succeeds if at word end. */
588 wordbound, /* Succeeds if at a word boundary. */
589 notwordbound /* Succeeds if not at a word boundary. */
591 # ifdef emacs
592 ,before_dot, /* Succeeds if before point. */
593 at_dot, /* Succeeds if at point. */
594 after_dot, /* Succeeds if after point. */
596 /* Matches any character whose syntax is specified. Followed by
597 a byte which contains a syntax code, e.g., Sword. */
598 syntaxspec,
600 /* Matches any character whose syntax is not that specified. */
601 notsyntaxspec
602 # endif /* emacs */
603 } re_opcode_t;
604 #endif /* not INSIDE_RECURSION */
607 #ifdef BYTE
608 # define CHAR_T char
609 # define UCHAR_T unsigned char
610 # define COMPILED_BUFFER_VAR bufp->buffer
611 # define OFFSET_ADDRESS_SIZE 2
612 # define PREFIX(name) byte_##name
613 # define ARG_PREFIX(name) name
614 # define PUT_CHAR(c) putchar (c)
615 #else
616 # ifdef WCHAR
617 # define CHAR_T wchar_t
618 # define UCHAR_T wchar_t
619 # define COMPILED_BUFFER_VAR wc_buffer
620 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
621 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
622 # define PREFIX(name) wcs_##name
623 # define ARG_PREFIX(name) c##name
624 /* Should we use wide stream?? */
625 # define PUT_CHAR(c) printf ("%C", c);
626 # define TRUE 1
627 # define FALSE 0
628 # else
629 # ifdef MBS_SUPPORT
630 # define WCHAR
631 # define INSIDE_RECURSION
632 # include "regex.c"
633 # undef INSIDE_RECURSION
634 # endif
635 # define BYTE
636 # define INSIDE_RECURSION
637 # include "regex.c"
638 # undef INSIDE_RECURSION
639 # endif
640 #endif
642 #ifdef INSIDE_RECURSION
643 /* Common operations on the compiled pattern. */
645 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
646 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
648 # ifdef WCHAR
649 # define STORE_NUMBER(destination, number) \
650 do { \
651 *(destination) = (UCHAR_T)(number); \
652 } while (0)
653 # else /* BYTE */
654 # define STORE_NUMBER(destination, number) \
655 do { \
656 (destination)[0] = (number) & 0377; \
657 (destination)[1] = (number) >> 8; \
658 } while (0)
659 # endif /* WCHAR */
661 /* Same as STORE_NUMBER, except increment DESTINATION to
662 the byte after where the number is stored. Therefore, DESTINATION
663 must be an lvalue. */
664 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
666 # define STORE_NUMBER_AND_INCR(destination, number) \
667 do { \
668 STORE_NUMBER (destination, number); \
669 (destination) += OFFSET_ADDRESS_SIZE; \
670 } while (0)
672 /* Put into DESTINATION a number stored in two contiguous bytes starting
673 at SOURCE. */
674 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
676 # ifdef WCHAR
677 # define EXTRACT_NUMBER(destination, source) \
678 do { \
679 (destination) = *(source); \
680 } while (0)
681 # else /* BYTE */
682 # define EXTRACT_NUMBER(destination, source) \
683 do { \
684 (destination) = *(source) & 0377; \
685 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
686 } while (0)
687 # endif
689 # ifdef DEBUG
690 static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
691 static void
692 PREFIX(extract_number) (dest, source)
693 int *dest;
694 UCHAR_T *source;
696 # ifdef WCHAR
697 *dest = *source;
698 # else /* BYTE */
699 int temp = SIGN_EXTEND_CHAR (*(source + 1));
700 *dest = *source & 0377;
701 *dest += temp << 8;
702 # endif
705 # ifndef EXTRACT_MACROS /* To debug the macros. */
706 # undef EXTRACT_NUMBER
707 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
708 # endif /* not EXTRACT_MACROS */
710 # endif /* DEBUG */
712 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
713 SOURCE must be an lvalue. */
715 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
716 do { \
717 EXTRACT_NUMBER (destination, source); \
718 (source) += OFFSET_ADDRESS_SIZE; \
719 } while (0)
721 # ifdef DEBUG
722 static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
723 UCHAR_T **source));
724 static void
725 PREFIX(extract_number_and_incr) (destination, source)
726 int *destination;
727 UCHAR_T **source;
729 PREFIX(extract_number) (destination, *source);
730 *source += OFFSET_ADDRESS_SIZE;
733 # ifndef EXTRACT_MACROS
734 # undef EXTRACT_NUMBER_AND_INCR
735 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
736 PREFIX(extract_number_and_incr) (&dest, &src)
737 # endif /* not EXTRACT_MACROS */
739 # endif /* DEBUG */
743 /* If DEBUG is defined, Regex prints many voluminous messages about what
744 it is doing (if the variable `debug' is nonzero). If linked with the
745 main program in `iregex.c', you can enter patterns and strings
746 interactively. And if linked with the main program in `main.c' and
747 the other test files, you can run the already-written tests. */
749 # ifdef DEBUG
751 # ifndef DEFINED_ONCE
753 /* We use standard I/O for debugging. */
754 # include <stdio.h>
756 /* It is useful to test things that ``must'' be true when debugging. */
757 # include <assert.h>
759 static int debug;
761 # define DEBUG_STATEMENT(e) e
762 # define DEBUG_PRINT1(x) if (debug) printf (x)
763 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
764 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
765 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
766 # endif /* not DEFINED_ONCE */
768 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
769 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
770 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
771 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
774 /* Print the fastmap in human-readable form. */
776 # ifndef DEFINED_ONCE
777 void
778 print_fastmap (fastmap)
779 char *fastmap;
781 unsigned was_a_range = 0;
782 unsigned i = 0;
784 while (i < (1 << BYTEWIDTH))
786 if (fastmap[i++])
788 was_a_range = 0;
789 putchar (i - 1);
790 while (i < (1 << BYTEWIDTH) && fastmap[i])
792 was_a_range = 1;
793 i++;
795 if (was_a_range)
797 printf ("-");
798 putchar (i - 1);
802 putchar ('\n');
804 # endif /* not DEFINED_ONCE */
807 /* Print a compiled pattern string in human-readable form, starting at
808 the START pointer into it and ending just before the pointer END. */
810 void
811 PREFIX(print_partial_compiled_pattern) (start, end)
812 UCHAR_T *start;
813 UCHAR_T *end;
815 int mcnt, mcnt2;
816 UCHAR_T *p1;
817 UCHAR_T *p = start;
818 UCHAR_T *pend = end;
820 if (start == NULL)
822 printf ("(null)\n");
823 return;
826 /* Loop over pattern commands. */
827 while (p < pend)
829 # ifdef _LIBC
830 printf ("%td:\t", p - start);
831 # else
832 printf ("%ld:\t", (long int) (p - start));
833 # endif
835 switch ((re_opcode_t) *p++)
837 case no_op:
838 printf ("/no_op");
839 break;
841 case exactn:
842 mcnt = *p++;
843 printf ("/exactn/%d", mcnt);
846 putchar ('/');
847 PUT_CHAR (*p++);
849 while (--mcnt);
850 break;
852 # ifdef MBS_SUPPORT
853 case exactn_bin:
854 mcnt = *p++;
855 printf ("/exactn_bin/%d", mcnt);
858 printf("/%lx", (long int) *p++);
860 while (--mcnt);
861 break;
862 # endif /* MBS_SUPPORT */
864 case start_memory:
865 mcnt = *p++;
866 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
867 break;
869 case stop_memory:
870 mcnt = *p++;
871 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
872 break;
874 case duplicate:
875 printf ("/duplicate/%ld", (long int) *p++);
876 break;
878 case anychar:
879 printf ("/anychar");
880 break;
882 case charset:
883 case charset_not:
885 # ifdef WCHAR
886 int i, length;
887 wchar_t *workp = p;
888 printf ("/charset [%s",
889 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
890 p += 5;
891 length = *workp++; /* the length of char_classes */
892 for (i=0 ; i<length ; i++)
893 printf("[:%lx:]", (long int) *p++);
894 length = *workp++; /* the length of collating_symbol */
895 for (i=0 ; i<length ;)
897 printf("[.");
898 while(*p != 0)
899 PUT_CHAR((i++,*p++));
900 i++,p++;
901 printf(".]");
903 length = *workp++; /* the length of equivalence_class */
904 for (i=0 ; i<length ;)
906 printf("[=");
907 while(*p != 0)
908 PUT_CHAR((i++,*p++));
909 i++,p++;
910 printf("=]");
912 length = *workp++; /* the length of char_range */
913 for (i=0 ; i<length ; i++)
915 wchar_t range_start = *p++;
916 wchar_t range_end = *p++;
917 printf("%C-%C", range_start, range_end);
919 length = *workp++; /* the length of char */
920 for (i=0 ; i<length ; i++)
921 printf("%C", *p++);
922 putchar (']');
923 # else
924 register int c, last = -100;
925 register int in_range = 0;
927 printf ("/charset [%s",
928 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
930 assert (p + *p < pend);
932 for (c = 0; c < 256; c++)
933 if (c / 8 < *p
934 && (p[1 + (c/8)] & (1 << (c % 8))))
936 /* Are we starting a range? */
937 if (last + 1 == c && ! in_range)
939 putchar ('-');
940 in_range = 1;
942 /* Have we broken a range? */
943 else if (last + 1 != c && in_range)
945 putchar (last);
946 in_range = 0;
949 if (! in_range)
950 putchar (c);
952 last = c;
955 if (in_range)
956 putchar (last);
958 putchar (']');
960 p += 1 + *p;
961 # endif /* WCHAR */
963 break;
965 case begline:
966 printf ("/begline");
967 break;
969 case endline:
970 printf ("/endline");
971 break;
973 case on_failure_jump:
974 PREFIX(extract_number_and_incr) (&mcnt, &p);
975 # ifdef _LIBC
976 printf ("/on_failure_jump to %td", p + mcnt - start);
977 # else
978 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
979 # endif
980 break;
982 case on_failure_keep_string_jump:
983 PREFIX(extract_number_and_incr) (&mcnt, &p);
984 # ifdef _LIBC
985 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
986 # else
987 printf ("/on_failure_keep_string_jump to %ld",
988 (long int) (p + mcnt - start));
989 # endif
990 break;
992 case dummy_failure_jump:
993 PREFIX(extract_number_and_incr) (&mcnt, &p);
994 # ifdef _LIBC
995 printf ("/dummy_failure_jump to %td", p + mcnt - start);
996 # else
997 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
998 # endif
999 break;
1001 case push_dummy_failure:
1002 printf ("/push_dummy_failure");
1003 break;
1005 case maybe_pop_jump:
1006 PREFIX(extract_number_and_incr) (&mcnt, &p);
1007 # ifdef _LIBC
1008 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1009 # else
1010 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1011 # endif
1012 break;
1014 case pop_failure_jump:
1015 PREFIX(extract_number_and_incr) (&mcnt, &p);
1016 # ifdef _LIBC
1017 printf ("/pop_failure_jump to %td", p + mcnt - start);
1018 # else
1019 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1020 # endif
1021 break;
1023 case jump_past_alt:
1024 PREFIX(extract_number_and_incr) (&mcnt, &p);
1025 # ifdef _LIBC
1026 printf ("/jump_past_alt to %td", p + mcnt - start);
1027 # else
1028 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1029 # endif
1030 break;
1032 case jump:
1033 PREFIX(extract_number_and_incr) (&mcnt, &p);
1034 # ifdef _LIBC
1035 printf ("/jump to %td", p + mcnt - start);
1036 # else
1037 printf ("/jump to %ld", (long int) (p + mcnt - start));
1038 # endif
1039 break;
1041 case succeed_n:
1042 PREFIX(extract_number_and_incr) (&mcnt, &p);
1043 p1 = p + mcnt;
1044 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1045 # ifdef _LIBC
1046 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1047 # else
1048 printf ("/succeed_n to %ld, %d times",
1049 (long int) (p1 - start), mcnt2);
1050 # endif
1051 break;
1053 case jump_n:
1054 PREFIX(extract_number_and_incr) (&mcnt, &p);
1055 p1 = p + mcnt;
1056 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1057 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1058 break;
1060 case set_number_at:
1061 PREFIX(extract_number_and_incr) (&mcnt, &p);
1062 p1 = p + mcnt;
1063 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1064 # ifdef _LIBC
1065 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1066 # else
1067 printf ("/set_number_at location %ld to %d",
1068 (long int) (p1 - start), mcnt2);
1069 # endif
1070 break;
1072 case wordbound:
1073 printf ("/wordbound");
1074 break;
1076 case notwordbound:
1077 printf ("/notwordbound");
1078 break;
1080 case wordbeg:
1081 printf ("/wordbeg");
1082 break;
1084 case wordend:
1085 printf ("/wordend");
1086 break;
1088 # ifdef emacs
1089 case before_dot:
1090 printf ("/before_dot");
1091 break;
1093 case at_dot:
1094 printf ("/at_dot");
1095 break;
1097 case after_dot:
1098 printf ("/after_dot");
1099 break;
1101 case syntaxspec:
1102 printf ("/syntaxspec");
1103 mcnt = *p++;
1104 printf ("/%d", mcnt);
1105 break;
1107 case notsyntaxspec:
1108 printf ("/notsyntaxspec");
1109 mcnt = *p++;
1110 printf ("/%d", mcnt);
1111 break;
1112 # endif /* emacs */
1114 case wordchar:
1115 printf ("/wordchar");
1116 break;
1118 case notwordchar:
1119 printf ("/notwordchar");
1120 break;
1122 case begbuf:
1123 printf ("/begbuf");
1124 break;
1126 case endbuf:
1127 printf ("/endbuf");
1128 break;
1130 default:
1131 printf ("?%ld", (long int) *(p-1));
1134 putchar ('\n');
1137 # ifdef _LIBC
1138 printf ("%td:\tend of pattern.\n", p - start);
1139 # else
1140 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1141 # endif
1145 void
1146 PREFIX(print_compiled_pattern) (bufp)
1147 struct re_pattern_buffer *bufp;
1149 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1151 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1152 + bufp->used / sizeof(UCHAR_T));
1153 printf ("%ld bytes used/%ld bytes allocated.\n",
1154 bufp->used, bufp->allocated);
1156 if (bufp->fastmap_accurate && bufp->fastmap)
1158 printf ("fastmap: ");
1159 print_fastmap (bufp->fastmap);
1162 # ifdef _LIBC
1163 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1164 # else
1165 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1166 # endif
1167 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1168 printf ("can_be_null: %d\t", bufp->can_be_null);
1169 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1170 printf ("no_sub: %d\t", bufp->no_sub);
1171 printf ("not_bol: %d\t", bufp->not_bol);
1172 printf ("not_eol: %d\t", bufp->not_eol);
1173 printf ("syntax: %lx\n", bufp->syntax);
1174 /* Perhaps we should print the translate table? */
1178 void
1179 PREFIX(print_double_string) (where, string1, size1, string2, size2)
1180 const CHAR_T *where;
1181 const CHAR_T *string1;
1182 const CHAR_T *string2;
1183 int size1;
1184 int size2;
1186 int this_char;
1188 if (where == NULL)
1189 printf ("(null)");
1190 else
1192 int cnt;
1194 if (FIRST_STRING_P (where))
1196 for (this_char = where - string1; this_char < size1; this_char++)
1197 PUT_CHAR (string1[this_char]);
1199 where = string2;
1202 cnt = 0;
1203 for (this_char = where - string2; this_char < size2; this_char++)
1205 PUT_CHAR (string2[this_char]);
1206 if (++cnt > 100)
1208 fputs ("...", stdout);
1209 break;
1215 # ifndef DEFINED_ONCE
1216 void
1217 printchar (c)
1218 int c;
1220 putc (c, stderr);
1222 # endif
1224 # else /* not DEBUG */
1226 # ifndef DEFINED_ONCE
1227 # undef assert
1228 # define assert(e)
1230 # define DEBUG_STATEMENT(e)
1231 # define DEBUG_PRINT1(x)
1232 # define DEBUG_PRINT2(x1, x2)
1233 # define DEBUG_PRINT3(x1, x2, x3)
1234 # define DEBUG_PRINT4(x1, x2, x3, x4)
1235 # endif /* not DEFINED_ONCE */
1236 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1237 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1239 # endif /* not DEBUG */
1243 # ifdef WCHAR
1244 /* This convert a multibyte string to a wide character string.
1245 And write their correspondances to offset_buffer(see below)
1246 and write whether each wchar_t is binary data to is_binary.
1247 This assume invalid multibyte sequences as binary data.
1248 We assume offset_buffer and is_binary is already allocated
1249 enough space. */
1251 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1252 size_t len, int *offset_buffer,
1253 char *is_binary);
1254 static size_t
1255 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1256 CHAR_T *dest;
1257 const unsigned char* src;
1258 size_t len; /* the length of multibyte string. */
1260 /* It hold correspondances between src(char string) and
1261 dest(wchar_t string) for optimization.
1262 e.g. src = "xxxyzz"
1263 dest = {'X', 'Y', 'Z'}
1264 (each "xxx", "y" and "zz" represent one multibyte character
1265 corresponding to 'X', 'Y' and 'Z'.)
1266 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1267 = {0, 3, 4, 6}
1269 int *offset_buffer;
1270 char *is_binary;
1272 wchar_t *pdest = dest;
1273 const unsigned char *psrc = src;
1274 size_t wc_count = 0;
1276 mbstate_t mbs;
1277 int i, consumed;
1278 size_t mb_remain = len;
1279 size_t mb_count = 0;
1281 /* Initialize the conversion state. */
1282 memset (&mbs, 0, sizeof (mbstate_t));
1284 offset_buffer[0] = 0;
1285 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1286 psrc += consumed)
1288 #ifdef _LIBC
1289 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1290 #else
1291 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1292 #endif
1294 if (consumed <= 0)
1295 /* failed to convert. maybe src contains binary data.
1296 So we consume 1 byte manualy. */
1298 *pdest = *psrc;
1299 consumed = 1;
1300 is_binary[wc_count] = TRUE;
1302 else
1303 is_binary[wc_count] = FALSE;
1304 /* In sjis encoding, we use yen sign as escape character in
1305 place of reverse solidus. So we convert 0x5c(yen sign in
1306 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1307 solidus in UCS2). */
1308 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1309 *pdest = (wchar_t) *psrc;
1311 offset_buffer[wc_count + 1] = mb_count += consumed;
1314 /* Fill remain of the buffer with sentinel. */
1315 for (i = wc_count + 1 ; i <= len ; i++)
1316 offset_buffer[i] = mb_count + 1;
1318 return wc_count;
1321 # endif /* WCHAR */
1323 #else /* not INSIDE_RECURSION */
1325 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1326 also be assigned to arbitrarily: each pattern buffer stores its own
1327 syntax, so it can be changed between regex compilations. */
1328 /* This has no initializer because initialized variables in Emacs
1329 become read-only after dumping. */
1330 reg_syntax_t re_syntax_options;
1333 /* Specify the precise syntax of regexps for compilation. This provides
1334 for compatibility for various utilities which historically have
1335 different, incompatible syntaxes.
1337 The argument SYNTAX is a bit mask comprised of the various bits
1338 defined in regex.h. We return the old syntax. */
1340 reg_syntax_t
1341 re_set_syntax (syntax)
1342 reg_syntax_t syntax;
1344 reg_syntax_t ret = re_syntax_options;
1346 re_syntax_options = syntax;
1347 # ifdef DEBUG
1348 if (syntax & RE_DEBUG)
1349 debug = 1;
1350 else if (debug) /* was on but now is not */
1351 debug = 0;
1352 # endif /* DEBUG */
1353 return ret;
1355 # ifdef _LIBC
1356 weak_alias (__re_set_syntax, re_set_syntax)
1357 # endif
1359 /* This table gives an error message for each of the error codes listed
1360 in regex.h. Obviously the order here has to be same as there.
1361 POSIX doesn't require that we do anything for REG_NOERROR,
1362 but why not be nice? */
1364 static const char re_error_msgid[] =
1366 # define REG_NOERROR_IDX 0
1367 gettext_noop ("Success") /* REG_NOERROR */
1368 "\0"
1369 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1370 gettext_noop ("No match") /* REG_NOMATCH */
1371 "\0"
1372 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1373 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1374 "\0"
1375 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1376 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1377 "\0"
1378 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1379 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1380 "\0"
1381 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1382 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1383 "\0"
1384 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1385 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1386 "\0"
1387 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1388 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1389 "\0"
1390 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1391 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1392 "\0"
1393 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1394 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1395 "\0"
1396 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1397 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1398 "\0"
1399 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1400 gettext_noop ("Invalid range end") /* REG_ERANGE */
1401 "\0"
1402 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1403 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1404 "\0"
1405 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1406 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1407 "\0"
1408 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1409 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1410 "\0"
1411 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1412 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1413 "\0"
1414 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1415 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1418 static const size_t re_error_msgid_idx[] =
1420 REG_NOERROR_IDX,
1421 REG_NOMATCH_IDX,
1422 REG_BADPAT_IDX,
1423 REG_ECOLLATE_IDX,
1424 REG_ECTYPE_IDX,
1425 REG_EESCAPE_IDX,
1426 REG_ESUBREG_IDX,
1427 REG_EBRACK_IDX,
1428 REG_EPAREN_IDX,
1429 REG_EBRACE_IDX,
1430 REG_BADBR_IDX,
1431 REG_ERANGE_IDX,
1432 REG_ESPACE_IDX,
1433 REG_BADRPT_IDX,
1434 REG_EEND_IDX,
1435 REG_ESIZE_IDX,
1436 REG_ERPAREN_IDX
1439 #endif /* INSIDE_RECURSION */
1441 #ifndef DEFINED_ONCE
1442 /* Avoiding alloca during matching, to placate r_alloc. */
1444 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1445 searching and matching functions should not call alloca. On some
1446 systems, alloca is implemented in terms of malloc, and if we're
1447 using the relocating allocator routines, then malloc could cause a
1448 relocation, which might (if the strings being searched are in the
1449 ralloc heap) shift the data out from underneath the regexp
1450 routines.
1452 Here's another reason to avoid allocation: Emacs
1453 processes input from X in a signal handler; processing X input may
1454 call malloc; if input arrives while a matching routine is calling
1455 malloc, then we're scrod. But Emacs can't just block input while
1456 calling matching routines; then we don't notice interrupts when
1457 they come in. So, Emacs blocks input around all regexp calls
1458 except the matching calls, which it leaves unprotected, in the
1459 faith that they will not malloc. */
1461 /* Normally, this is fine. */
1462 # define MATCH_MAY_ALLOCATE
1464 /* When using GNU C, we are not REALLY using the C alloca, no matter
1465 what config.h may say. So don't take precautions for it. */
1466 # ifdef __GNUC__
1467 # undef C_ALLOCA
1468 # endif
1470 /* The match routines may not allocate if (1) they would do it with malloc
1471 and (2) it's not safe for them to use malloc.
1472 Note that if REL_ALLOC is defined, matching would not use malloc for the
1473 failure stack, but we would still use it for the register vectors;
1474 so REL_ALLOC should not affect this. */
1475 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1476 # undef MATCH_MAY_ALLOCATE
1477 # endif
1478 #endif /* not DEFINED_ONCE */
1480 #ifdef INSIDE_RECURSION
1481 /* Failure stack declarations and macros; both re_compile_fastmap and
1482 re_match_2 use a failure stack. These have to be macros because of
1483 REGEX_ALLOCATE_STACK. */
1486 /* Number of failure points for which to initially allocate space
1487 when matching. If this number is exceeded, we allocate more
1488 space, so it is not a hard limit. */
1489 # ifndef INIT_FAILURE_ALLOC
1490 # define INIT_FAILURE_ALLOC 5
1491 # endif
1493 /* Roughly the maximum number of failure points on the stack. Would be
1494 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1495 This is a variable only so users of regex can assign to it; we never
1496 change it ourselves. */
1498 # ifdef INT_IS_16BIT
1500 # ifndef DEFINED_ONCE
1501 # if defined MATCH_MAY_ALLOCATE
1502 /* 4400 was enough to cause a crash on Alpha OSF/1,
1503 whose default stack limit is 2mb. */
1504 long int re_max_failures = 4000;
1505 # else
1506 long int re_max_failures = 2000;
1507 # endif
1508 # endif
1510 union PREFIX(fail_stack_elt)
1512 UCHAR_T *pointer;
1513 long int integer;
1516 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1518 typedef struct
1520 PREFIX(fail_stack_elt_t) *stack;
1521 unsigned long int size;
1522 unsigned long int avail; /* Offset of next open position. */
1523 } PREFIX(fail_stack_type);
1525 # else /* not INT_IS_16BIT */
1527 # ifndef DEFINED_ONCE
1528 # if defined MATCH_MAY_ALLOCATE
1529 /* 4400 was enough to cause a crash on Alpha OSF/1,
1530 whose default stack limit is 2mb. */
1531 int re_max_failures = 4000;
1532 # else
1533 int re_max_failures = 2000;
1534 # endif
1535 # endif
1537 union PREFIX(fail_stack_elt)
1539 UCHAR_T *pointer;
1540 int integer;
1543 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1545 typedef struct
1547 PREFIX(fail_stack_elt_t) *stack;
1548 unsigned size;
1549 unsigned avail; /* Offset of next open position. */
1550 } PREFIX(fail_stack_type);
1552 # endif /* INT_IS_16BIT */
1554 # ifndef DEFINED_ONCE
1555 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1556 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1557 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1558 # endif
1561 /* Define macros to initialize and free the failure stack.
1562 Do `return -2' if the alloc fails. */
1564 # ifdef MATCH_MAY_ALLOCATE
1565 # define INIT_FAIL_STACK() \
1566 do { \
1567 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1568 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1570 if (fail_stack.stack == NULL) \
1571 return -2; \
1573 fail_stack.size = INIT_FAILURE_ALLOC; \
1574 fail_stack.avail = 0; \
1575 } while (0)
1577 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1578 # else
1579 # define INIT_FAIL_STACK() \
1580 do { \
1581 fail_stack.avail = 0; \
1582 } while (0)
1584 # define RESET_FAIL_STACK()
1585 # endif
1588 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1590 Return 1 if succeeds, and 0 if either ran out of memory
1591 allocating space for it or it was already too large.
1593 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1595 # define DOUBLE_FAIL_STACK(fail_stack) \
1596 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1597 ? 0 \
1598 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1599 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1600 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1601 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1603 (fail_stack).stack == NULL \
1604 ? 0 \
1605 : ((fail_stack).size <<= 1, \
1606 1)))
1609 /* Push pointer POINTER on FAIL_STACK.
1610 Return 1 if was able to do so and 0 if ran out of memory allocating
1611 space to do so. */
1612 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1613 ((FAIL_STACK_FULL () \
1614 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1615 ? 0 \
1616 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1619 /* Push a pointer value onto the failure stack.
1620 Assumes the variable `fail_stack'. Probably should only
1621 be called from within `PUSH_FAILURE_POINT'. */
1622 # define PUSH_FAILURE_POINTER(item) \
1623 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1625 /* This pushes an integer-valued item onto the failure stack.
1626 Assumes the variable `fail_stack'. Probably should only
1627 be called from within `PUSH_FAILURE_POINT'. */
1628 # define PUSH_FAILURE_INT(item) \
1629 fail_stack.stack[fail_stack.avail++].integer = (item)
1631 /* Push a fail_stack_elt_t value onto the failure stack.
1632 Assumes the variable `fail_stack'. Probably should only
1633 be called from within `PUSH_FAILURE_POINT'. */
1634 # define PUSH_FAILURE_ELT(item) \
1635 fail_stack.stack[fail_stack.avail++] = (item)
1637 /* These three POP... operations complement the three PUSH... operations.
1638 All assume that `fail_stack' is nonempty. */
1639 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1640 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1641 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1643 /* Used to omit pushing failure point id's when we're not debugging. */
1644 # ifdef DEBUG
1645 # define DEBUG_PUSH PUSH_FAILURE_INT
1646 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1647 # else
1648 # define DEBUG_PUSH(item)
1649 # define DEBUG_POP(item_addr)
1650 # endif
1653 /* Push the information about the state we will need
1654 if we ever fail back to it.
1656 Requires variables fail_stack, regstart, regend, reg_info, and
1657 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1658 be declared.
1660 Does `return FAILURE_CODE' if runs out of memory. */
1662 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1663 do { \
1664 char *destination; \
1665 /* Must be int, so when we don't save any registers, the arithmetic \
1666 of 0 + -1 isn't done as unsigned. */ \
1667 /* Can't be int, since there is not a shred of a guarantee that int \
1668 is wide enough to hold a value of something to which pointer can \
1669 be assigned */ \
1670 active_reg_t this_reg; \
1672 DEBUG_STATEMENT (failure_id++); \
1673 DEBUG_STATEMENT (nfailure_points_pushed++); \
1674 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1675 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1676 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1678 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1679 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1681 /* Ensure we have enough space allocated for what we will push. */ \
1682 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1684 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1685 return failure_code; \
1687 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1688 (fail_stack).size); \
1689 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1692 /* Push the info, starting with the registers. */ \
1693 DEBUG_PRINT1 ("\n"); \
1695 if (1) \
1696 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1697 this_reg++) \
1699 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1700 DEBUG_STATEMENT (num_regs_pushed++); \
1702 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1703 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1705 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1706 PUSH_FAILURE_POINTER (regend[this_reg]); \
1708 DEBUG_PRINT2 (" info: %p\n ", \
1709 reg_info[this_reg].word.pointer); \
1710 DEBUG_PRINT2 (" match_null=%d", \
1711 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1712 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1713 DEBUG_PRINT2 (" matched_something=%d", \
1714 MATCHED_SOMETHING (reg_info[this_reg])); \
1715 DEBUG_PRINT2 (" ever_matched=%d", \
1716 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1717 DEBUG_PRINT1 ("\n"); \
1718 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1721 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1722 PUSH_FAILURE_INT (lowest_active_reg); \
1724 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1725 PUSH_FAILURE_INT (highest_active_reg); \
1727 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1728 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1729 PUSH_FAILURE_POINTER (pattern_place); \
1731 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1732 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1733 size2); \
1734 DEBUG_PRINT1 ("'\n"); \
1735 PUSH_FAILURE_POINTER (string_place); \
1737 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1738 DEBUG_PUSH (failure_id); \
1739 } while (0)
1741 # ifndef DEFINED_ONCE
1742 /* This is the number of items that are pushed and popped on the stack
1743 for each register. */
1744 # define NUM_REG_ITEMS 3
1746 /* Individual items aside from the registers. */
1747 # ifdef DEBUG
1748 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1749 # else
1750 # define NUM_NONREG_ITEMS 4
1751 # endif
1753 /* We push at most this many items on the stack. */
1754 /* We used to use (num_regs - 1), which is the number of registers
1755 this regexp will save; but that was changed to 5
1756 to avoid stack overflow for a regexp with lots of parens. */
1757 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1759 /* We actually push this many items. */
1760 # define NUM_FAILURE_ITEMS \
1761 (((0 \
1762 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1763 * NUM_REG_ITEMS) \
1764 + NUM_NONREG_ITEMS)
1766 /* How many items can still be added to the stack without overflowing it. */
1767 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1768 # endif /* not DEFINED_ONCE */
1771 /* Pops what PUSH_FAIL_STACK pushes.
1773 We restore into the parameters, all of which should be lvalues:
1774 STR -- the saved data position.
1775 PAT -- the saved pattern position.
1776 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1777 REGSTART, REGEND -- arrays of string positions.
1778 REG_INFO -- array of information about each subexpression.
1780 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1781 `pend', `string1', `size1', `string2', and `size2'. */
1782 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1784 DEBUG_STATEMENT (unsigned failure_id;) \
1785 active_reg_t this_reg; \
1786 const UCHAR_T *string_temp; \
1788 assert (!FAIL_STACK_EMPTY ()); \
1790 /* Remove failure points and point to how many regs pushed. */ \
1791 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1792 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1793 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1795 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1797 DEBUG_POP (&failure_id); \
1798 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1800 /* If the saved string location is NULL, it came from an \
1801 on_failure_keep_string_jump opcode, and we want to throw away the \
1802 saved NULL, thus retaining our current position in the string. */ \
1803 string_temp = POP_FAILURE_POINTER (); \
1804 if (string_temp != NULL) \
1805 str = (const CHAR_T *) string_temp; \
1807 DEBUG_PRINT2 (" Popping string %p: `", str); \
1808 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1809 DEBUG_PRINT1 ("'\n"); \
1811 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1812 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1813 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1815 /* Restore register info. */ \
1816 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1817 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1819 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1820 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1822 if (1) \
1823 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1825 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1827 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1828 DEBUG_PRINT2 (" info: %p\n", \
1829 reg_info[this_reg].word.pointer); \
1831 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1832 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1834 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1835 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1837 else \
1839 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1841 reg_info[this_reg].word.integer = 0; \
1842 regend[this_reg] = 0; \
1843 regstart[this_reg] = 0; \
1845 highest_active_reg = high_reg; \
1848 set_regs_matched_done = 0; \
1849 DEBUG_STATEMENT (nfailure_points_popped++); \
1850 } /* POP_FAILURE_POINT */
1852 /* Structure for per-register (a.k.a. per-group) information.
1853 Other register information, such as the
1854 starting and ending positions (which are addresses), and the list of
1855 inner groups (which is a bits list) are maintained in separate
1856 variables.
1858 We are making a (strictly speaking) nonportable assumption here: that
1859 the compiler will pack our bit fields into something that fits into
1860 the type of `word', i.e., is something that fits into one item on the
1861 failure stack. */
1864 /* Declarations and macros for re_match_2. */
1866 typedef union
1868 PREFIX(fail_stack_elt_t) word;
1869 struct
1871 /* This field is one if this group can match the empty string,
1872 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1873 # define MATCH_NULL_UNSET_VALUE 3
1874 unsigned match_null_string_p : 2;
1875 unsigned is_active : 1;
1876 unsigned matched_something : 1;
1877 unsigned ever_matched_something : 1;
1878 } bits;
1879 } PREFIX(register_info_type);
1881 # ifndef DEFINED_ONCE
1882 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1883 # define IS_ACTIVE(R) ((R).bits.is_active)
1884 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1885 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1888 /* Call this when have matched a real character; it sets `matched' flags
1889 for the subexpressions which we are currently inside. Also records
1890 that those subexprs have matched. */
1891 # define SET_REGS_MATCHED() \
1892 do \
1894 if (!set_regs_matched_done) \
1896 active_reg_t r; \
1897 set_regs_matched_done = 1; \
1898 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1900 MATCHED_SOMETHING (reg_info[r]) \
1901 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1902 = 1; \
1906 while (0)
1907 # endif /* not DEFINED_ONCE */
1909 /* Registers are set to a sentinel when they haven't yet matched. */
1910 static CHAR_T PREFIX(reg_unset_dummy);
1911 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1912 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1914 /* Subroutine declarations and macros for regex_compile. */
1915 static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1916 static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1917 int arg1, int arg2));
1918 static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1919 int arg, UCHAR_T *end));
1920 static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1921 int arg1, int arg2, UCHAR_T *end));
1922 static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1923 const CHAR_T *p,
1924 reg_syntax_t syntax));
1925 static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1926 const CHAR_T *pend,
1927 reg_syntax_t syntax));
1928 # ifdef WCHAR
1929 static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1930 const CHAR_T **p_ptr,
1931 const CHAR_T *pend,
1932 char *translate,
1933 reg_syntax_t syntax,
1934 UCHAR_T *b,
1935 CHAR_T *char_set));
1936 static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1937 # else /* BYTE */
1938 static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1939 const char **p_ptr,
1940 const char *pend,
1941 char *translate,
1942 reg_syntax_t syntax,
1943 unsigned char *b));
1944 # endif /* WCHAR */
1946 /* Fetch the next character in the uncompiled pattern---translating it
1947 if necessary. Also cast from a signed character in the constant
1948 string passed to us by the user to an unsigned char that we can use
1949 as an array index (in, e.g., `translate'). */
1950 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1951 because it is impossible to allocate 4GB array for some encodings
1952 which have 4 byte character_set like UCS4. */
1953 # ifndef PATFETCH
1954 # ifdef WCHAR
1955 # define PATFETCH(c) \
1956 do {if (p == pend) return REG_EEND; \
1957 c = (UCHAR_T) *p++; \
1958 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1959 } while (0)
1960 # else /* BYTE */
1961 # define PATFETCH(c) \
1962 do {if (p == pend) return REG_EEND; \
1963 c = (unsigned char) *p++; \
1964 if (translate) c = (unsigned char) translate[c]; \
1965 } while (0)
1966 # endif /* WCHAR */
1967 # endif
1969 /* Fetch the next character in the uncompiled pattern, with no
1970 translation. */
1971 # define PATFETCH_RAW(c) \
1972 do {if (p == pend) return REG_EEND; \
1973 c = (UCHAR_T) *p++; \
1974 } while (0)
1976 /* Go backwards one character in the pattern. */
1977 # define PATUNFETCH p--
1980 /* If `translate' is non-null, return translate[D], else just D. We
1981 cast the subscript to translate because some data is declared as
1982 `char *', to avoid warnings when a string constant is passed. But
1983 when we use a character as a subscript we must make it unsigned. */
1984 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1985 because it is impossible to allocate 4GB array for some encodings
1986 which have 4 byte character_set like UCS4. */
1988 # ifndef TRANSLATE
1989 # ifdef WCHAR
1990 # define TRANSLATE(d) \
1991 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1992 ? (char) translate[(unsigned char) (d)] : (d))
1993 # else /* BYTE */
1994 # define TRANSLATE(d) \
1995 (translate ? (char) translate[(unsigned char) (d)] : (d))
1996 # endif /* WCHAR */
1997 # endif
2000 /* Macros for outputting the compiled pattern into `buffer'. */
2002 /* If the buffer isn't allocated when it comes in, use this. */
2003 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2005 /* Make sure we have at least N more bytes of space in buffer. */
2006 # ifdef WCHAR
2007 # define GET_BUFFER_SPACE(n) \
2008 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2009 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2010 EXTEND_BUFFER ()
2011 # else /* BYTE */
2012 # define GET_BUFFER_SPACE(n) \
2013 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2014 EXTEND_BUFFER ()
2015 # endif /* WCHAR */
2017 /* Make sure we have one more byte of buffer space and then add C to it. */
2018 # define BUF_PUSH(c) \
2019 do { \
2020 GET_BUFFER_SPACE (1); \
2021 *b++ = (UCHAR_T) (c); \
2022 } while (0)
2025 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2026 # define BUF_PUSH_2(c1, c2) \
2027 do { \
2028 GET_BUFFER_SPACE (2); \
2029 *b++ = (UCHAR_T) (c1); \
2030 *b++ = (UCHAR_T) (c2); \
2031 } while (0)
2034 /* As with BUF_PUSH_2, except for three bytes. */
2035 # define BUF_PUSH_3(c1, c2, c3) \
2036 do { \
2037 GET_BUFFER_SPACE (3); \
2038 *b++ = (UCHAR_T) (c1); \
2039 *b++ = (UCHAR_T) (c2); \
2040 *b++ = (UCHAR_T) (c3); \
2041 } while (0)
2043 /* Store a jump with opcode OP at LOC to location TO. We store a
2044 relative address offset by the three bytes the jump itself occupies. */
2045 # define STORE_JUMP(op, loc, to) \
2046 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2048 /* Likewise, for a two-argument jump. */
2049 # define STORE_JUMP2(op, loc, to, arg) \
2050 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2052 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2053 # define INSERT_JUMP(op, loc, to) \
2054 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2056 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2057 # define INSERT_JUMP2(op, loc, to, arg) \
2058 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2059 arg, b)
2061 /* This is not an arbitrary limit: the arguments which represent offsets
2062 into the pattern are two bytes long. So if 2^16 bytes turns out to
2063 be too small, many things would have to change. */
2064 /* Any other compiler which, like MSC, has allocation limit below 2^16
2065 bytes will have to use approach similar to what was done below for
2066 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2067 reallocating to 0 bytes. Such thing is not going to work too well.
2068 You have been warned!! */
2069 # ifndef DEFINED_ONCE
2070 # if defined _MSC_VER && !defined WIN32
2071 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2072 The REALLOC define eliminates a flurry of conversion warnings,
2073 but is not required. */
2074 # define MAX_BUF_SIZE 65500L
2075 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2076 # else
2077 # define MAX_BUF_SIZE (1L << 16)
2078 # define REALLOC(p,s) realloc ((p), (s))
2079 # endif
2081 /* Extend the buffer by twice its current size via realloc and
2082 reset the pointers that pointed into the old block to point to the
2083 correct places in the new one. If extending the buffer results in it
2084 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2085 # if __BOUNDED_POINTERS__
2086 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2087 # define MOVE_BUFFER_POINTER(P) \
2088 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2089 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2090 else \
2092 SET_HIGH_BOUND (b); \
2093 SET_HIGH_BOUND (begalt); \
2094 if (fixup_alt_jump) \
2095 SET_HIGH_BOUND (fixup_alt_jump); \
2096 if (laststart) \
2097 SET_HIGH_BOUND (laststart); \
2098 if (pending_exact) \
2099 SET_HIGH_BOUND (pending_exact); \
2101 # else
2102 # define MOVE_BUFFER_POINTER(P) (P) += incr
2103 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2104 # endif
2105 # endif /* not DEFINED_ONCE */
2107 # ifdef WCHAR
2108 # define EXTEND_BUFFER() \
2109 do { \
2110 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2111 int wchar_count; \
2112 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2113 return REG_ESIZE; \
2114 bufp->allocated <<= 1; \
2115 if (bufp->allocated > MAX_BUF_SIZE) \
2116 bufp->allocated = MAX_BUF_SIZE; \
2117 /* How many characters the new buffer can have? */ \
2118 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2119 if (wchar_count == 0) wchar_count = 1; \
2120 /* Truncate the buffer to CHAR_T align. */ \
2121 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2122 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2123 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2124 if (COMPILED_BUFFER_VAR == NULL) \
2125 return REG_ESPACE; \
2126 /* If the buffer moved, move all the pointers into it. */ \
2127 if (old_buffer != COMPILED_BUFFER_VAR) \
2129 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2130 MOVE_BUFFER_POINTER (b); \
2131 MOVE_BUFFER_POINTER (begalt); \
2132 if (fixup_alt_jump) \
2133 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2134 if (laststart) \
2135 MOVE_BUFFER_POINTER (laststart); \
2136 if (pending_exact) \
2137 MOVE_BUFFER_POINTER (pending_exact); \
2139 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2140 } while (0)
2141 # else /* BYTE */
2142 # define EXTEND_BUFFER() \
2143 do { \
2144 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2145 if (bufp->allocated == MAX_BUF_SIZE) \
2146 return REG_ESIZE; \
2147 bufp->allocated <<= 1; \
2148 if (bufp->allocated > MAX_BUF_SIZE) \
2149 bufp->allocated = MAX_BUF_SIZE; \
2150 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2151 bufp->allocated); \
2152 if (COMPILED_BUFFER_VAR == NULL) \
2153 return REG_ESPACE; \
2154 /* If the buffer moved, move all the pointers into it. */ \
2155 if (old_buffer != COMPILED_BUFFER_VAR) \
2157 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2158 MOVE_BUFFER_POINTER (b); \
2159 MOVE_BUFFER_POINTER (begalt); \
2160 if (fixup_alt_jump) \
2161 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2162 if (laststart) \
2163 MOVE_BUFFER_POINTER (laststart); \
2164 if (pending_exact) \
2165 MOVE_BUFFER_POINTER (pending_exact); \
2167 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2168 } while (0)
2169 # endif /* WCHAR */
2171 # ifndef DEFINED_ONCE
2172 /* Since we have one byte reserved for the register number argument to
2173 {start,stop}_memory, the maximum number of groups we can report
2174 things about is what fits in that byte. */
2175 # define MAX_REGNUM 255
2177 /* But patterns can have more than `MAX_REGNUM' registers. We just
2178 ignore the excess. */
2179 typedef unsigned regnum_t;
2182 /* Macros for the compile stack. */
2184 /* Since offsets can go either forwards or backwards, this type needs to
2185 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2186 /* int may be not enough when sizeof(int) == 2. */
2187 typedef long pattern_offset_t;
2189 typedef struct
2191 pattern_offset_t begalt_offset;
2192 pattern_offset_t fixup_alt_jump;
2193 pattern_offset_t inner_group_offset;
2194 pattern_offset_t laststart_offset;
2195 regnum_t regnum;
2196 } compile_stack_elt_t;
2199 typedef struct
2201 compile_stack_elt_t *stack;
2202 unsigned size;
2203 unsigned avail; /* Offset of next open position. */
2204 } compile_stack_type;
2207 # define INIT_COMPILE_STACK_SIZE 32
2209 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2210 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2212 /* The next available element. */
2213 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2215 # endif /* not DEFINED_ONCE */
2217 /* Set the bit for character C in a list. */
2218 # ifndef DEFINED_ONCE
2219 # define SET_LIST_BIT(c) \
2220 (b[((unsigned char) (c)) / BYTEWIDTH] \
2221 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2222 # endif /* DEFINED_ONCE */
2224 /* Get the next unsigned number in the uncompiled pattern. */
2225 # define GET_UNSIGNED_NUMBER(num) \
2227 while (p != pend) \
2229 PATFETCH (c); \
2230 if (c < '0' || c > '9') \
2231 break; \
2232 if (num <= RE_DUP_MAX) \
2234 if (num < 0) \
2235 num = 0; \
2236 num = num * 10 + c - '0'; \
2241 # ifndef DEFINED_ONCE
2242 # if defined _LIBC || WIDE_CHAR_SUPPORT
2243 /* The GNU C library provides support for user-defined character classes
2244 and the functions from ISO C amendement 1. */
2245 # ifdef CHARCLASS_NAME_MAX
2246 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2247 # else
2248 /* This shouldn't happen but some implementation might still have this
2249 problem. Use a reasonable default value. */
2250 # define CHAR_CLASS_MAX_LENGTH 256
2251 # endif
2253 # ifdef _LIBC
2254 # define IS_CHAR_CLASS(string) __wctype (string)
2255 # else
2256 # define IS_CHAR_CLASS(string) wctype (string)
2257 # endif
2258 # else
2259 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2261 # define IS_CHAR_CLASS(string) \
2262 (STREQ (string, "alpha") || STREQ (string, "upper") \
2263 || STREQ (string, "lower") || STREQ (string, "digit") \
2264 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2265 || STREQ (string, "space") || STREQ (string, "print") \
2266 || STREQ (string, "punct") || STREQ (string, "graph") \
2267 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2268 # endif
2269 # endif /* DEFINED_ONCE */
2271 # ifndef MATCH_MAY_ALLOCATE
2273 /* If we cannot allocate large objects within re_match_2_internal,
2274 we make the fail stack and register vectors global.
2275 The fail stack, we grow to the maximum size when a regexp
2276 is compiled.
2277 The register vectors, we adjust in size each time we
2278 compile a regexp, according to the number of registers it needs. */
2280 static PREFIX(fail_stack_type) fail_stack;
2282 /* Size with which the following vectors are currently allocated.
2283 That is so we can make them bigger as needed,
2284 but never make them smaller. */
2285 # ifdef DEFINED_ONCE
2286 static int regs_allocated_size;
2288 static const char ** regstart, ** regend;
2289 static const char ** old_regstart, ** old_regend;
2290 static const char **best_regstart, **best_regend;
2291 static const char **reg_dummy;
2292 # endif /* DEFINED_ONCE */
2294 static PREFIX(register_info_type) *PREFIX(reg_info);
2295 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2297 /* Make the register vectors big enough for NUM_REGS registers,
2298 but don't make them smaller. */
2300 static void
2301 PREFIX(regex_grow_registers) (num_regs)
2302 int num_regs;
2304 if (num_regs > regs_allocated_size)
2306 RETALLOC_IF (regstart, num_regs, const char *);
2307 RETALLOC_IF (regend, num_regs, const char *);
2308 RETALLOC_IF (old_regstart, num_regs, const char *);
2309 RETALLOC_IF (old_regend, num_regs, const char *);
2310 RETALLOC_IF (best_regstart, num_regs, const char *);
2311 RETALLOC_IF (best_regend, num_regs, const char *);
2312 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2313 RETALLOC_IF (reg_dummy, num_regs, const char *);
2314 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2316 regs_allocated_size = num_regs;
2320 # endif /* not MATCH_MAY_ALLOCATE */
2322 # ifndef DEFINED_ONCE
2323 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2324 compile_stack,
2325 regnum_t regnum));
2326 # endif /* not DEFINED_ONCE */
2328 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2329 Returns one of error codes defined in `regex.h', or zero for success.
2331 Assumes the `allocated' (and perhaps `buffer') and `translate'
2332 fields are set in BUFP on entry.
2334 If it succeeds, results are put in BUFP (if it returns an error, the
2335 contents of BUFP are undefined):
2336 `buffer' is the compiled pattern;
2337 `syntax' is set to SYNTAX;
2338 `used' is set to the length of the compiled pattern;
2339 `fastmap_accurate' is zero;
2340 `re_nsub' is the number of subexpressions in PATTERN;
2341 `not_bol' and `not_eol' are zero;
2343 The `fastmap' and `newline_anchor' fields are neither
2344 examined nor set. */
2346 /* Return, freeing storage we allocated. */
2347 # ifdef WCHAR
2348 # define FREE_STACK_RETURN(value) \
2349 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2350 # else
2351 # define FREE_STACK_RETURN(value) \
2352 return (free (compile_stack.stack), value)
2353 # endif /* WCHAR */
2355 static reg_errcode_t
2356 PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2357 const char *ARG_PREFIX(pattern);
2358 size_t ARG_PREFIX(size);
2359 reg_syntax_t syntax;
2360 struct re_pattern_buffer *bufp;
2362 /* We fetch characters from PATTERN here. Even though PATTERN is
2363 `char *' (i.e., signed), we declare these variables as unsigned, so
2364 they can be reliably used as array indices. */
2365 register UCHAR_T c, c1;
2367 #ifdef WCHAR
2368 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2369 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2370 size_t size;
2371 /* offset buffer for optimization. See convert_mbs_to_wc. */
2372 int *mbs_offset = NULL;
2373 /* It hold whether each wchar_t is binary data or not. */
2374 char *is_binary = NULL;
2375 /* A flag whether exactn is handling binary data or not. */
2376 char is_exactn_bin = FALSE;
2377 #endif /* WCHAR */
2379 /* A random temporary spot in PATTERN. */
2380 const CHAR_T *p1;
2382 /* Points to the end of the buffer, where we should append. */
2383 register UCHAR_T *b;
2385 /* Keeps track of unclosed groups. */
2386 compile_stack_type compile_stack;
2388 /* Points to the current (ending) position in the pattern. */
2389 #ifdef WCHAR
2390 const CHAR_T *p;
2391 const CHAR_T *pend;
2392 #else /* BYTE */
2393 const CHAR_T *p = pattern;
2394 const CHAR_T *pend = pattern + size;
2395 #endif /* WCHAR */
2397 /* How to translate the characters in the pattern. */
2398 RE_TRANSLATE_TYPE translate = bufp->translate;
2400 /* Address of the count-byte of the most recently inserted `exactn'
2401 command. This makes it possible to tell if a new exact-match
2402 character can be added to that command or if the character requires
2403 a new `exactn' command. */
2404 UCHAR_T *pending_exact = 0;
2406 /* Address of start of the most recently finished expression.
2407 This tells, e.g., postfix * where to find the start of its
2408 operand. Reset at the beginning of groups and alternatives. */
2409 UCHAR_T *laststart = 0;
2411 /* Address of beginning of regexp, or inside of last group. */
2412 UCHAR_T *begalt;
2414 /* Address of the place where a forward jump should go to the end of
2415 the containing expression. Each alternative of an `or' -- except the
2416 last -- ends with a forward jump of this sort. */
2417 UCHAR_T *fixup_alt_jump = 0;
2419 /* Counts open-groups as they are encountered. Remembered for the
2420 matching close-group on the compile stack, so the same register
2421 number is put in the stop_memory as the start_memory. */
2422 regnum_t regnum = 0;
2424 #ifdef WCHAR
2425 /* Initialize the wchar_t PATTERN and offset_buffer. */
2426 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2427 mbs_offset = TALLOC(csize + 1, int);
2428 is_binary = TALLOC(csize + 1, char);
2429 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2431 free(pattern);
2432 free(mbs_offset);
2433 free(is_binary);
2434 return REG_ESPACE;
2436 pattern[csize] = L'\0'; /* sentinel */
2437 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2438 pend = p + size;
2439 if (size < 0)
2441 free(pattern);
2442 free(mbs_offset);
2443 free(is_binary);
2444 return REG_BADPAT;
2446 #endif
2448 #ifdef DEBUG
2449 DEBUG_PRINT1 ("\nCompiling pattern: ");
2450 if (debug)
2452 unsigned debug_count;
2454 for (debug_count = 0; debug_count < size; debug_count++)
2455 PUT_CHAR (pattern[debug_count]);
2456 putchar ('\n');
2458 #endif /* DEBUG */
2460 /* Initialize the compile stack. */
2461 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2462 if (compile_stack.stack == NULL)
2464 #ifdef WCHAR
2465 free(pattern);
2466 free(mbs_offset);
2467 free(is_binary);
2468 #endif
2469 return REG_ESPACE;
2472 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2473 compile_stack.avail = 0;
2475 /* Initialize the pattern buffer. */
2476 bufp->syntax = syntax;
2477 bufp->fastmap_accurate = 0;
2478 bufp->not_bol = bufp->not_eol = 0;
2480 /* Set `used' to zero, so that if we return an error, the pattern
2481 printer (for debugging) will think there's no pattern. We reset it
2482 at the end. */
2483 bufp->used = 0;
2485 /* Always count groups, whether or not bufp->no_sub is set. */
2486 bufp->re_nsub = 0;
2488 #if !defined emacs && !defined SYNTAX_TABLE
2489 /* Initialize the syntax table. */
2490 init_syntax_once ();
2491 #endif
2493 if (bufp->allocated == 0)
2495 if (bufp->buffer)
2496 { /* If zero allocated, but buffer is non-null, try to realloc
2497 enough space. This loses if buffer's address is bogus, but
2498 that is the user's responsibility. */
2499 #ifdef WCHAR
2500 /* Free bufp->buffer and allocate an array for wchar_t pattern
2501 buffer. */
2502 free(bufp->buffer);
2503 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2504 UCHAR_T);
2505 #else
2506 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2507 #endif /* WCHAR */
2509 else
2510 { /* Caller did not allocate a buffer. Do it for them. */
2511 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2512 UCHAR_T);
2515 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2516 #ifdef WCHAR
2517 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2518 #endif /* WCHAR */
2519 bufp->allocated = INIT_BUF_SIZE;
2521 #ifdef WCHAR
2522 else
2523 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2524 #endif
2526 begalt = b = COMPILED_BUFFER_VAR;
2528 /* Loop through the uncompiled pattern until we're at the end. */
2529 while (p != pend)
2531 PATFETCH (c);
2533 switch (c)
2535 case '^':
2537 if ( /* If at start of pattern, it's an operator. */
2538 p == pattern + 1
2539 /* If context independent, it's an operator. */
2540 || syntax & RE_CONTEXT_INDEP_ANCHORS
2541 /* Otherwise, depends on what's come before. */
2542 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2543 BUF_PUSH (begline);
2544 else
2545 goto normal_char;
2547 break;
2550 case '$':
2552 if ( /* If at end of pattern, it's an operator. */
2553 p == pend
2554 /* If context independent, it's an operator. */
2555 || syntax & RE_CONTEXT_INDEP_ANCHORS
2556 /* Otherwise, depends on what's next. */
2557 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2558 BUF_PUSH (endline);
2559 else
2560 goto normal_char;
2562 break;
2565 case '+':
2566 case '?':
2567 if ((syntax & RE_BK_PLUS_QM)
2568 || (syntax & RE_LIMITED_OPS))
2569 goto normal_char;
2570 handle_plus:
2571 case '*':
2572 /* If there is no previous pattern... */
2573 if (!laststart)
2575 if (syntax & RE_CONTEXT_INVALID_OPS)
2576 FREE_STACK_RETURN (REG_BADRPT);
2577 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2578 goto normal_char;
2582 /* Are we optimizing this jump? */
2583 boolean keep_string_p = false;
2585 /* 1 means zero (many) matches is allowed. */
2586 char zero_times_ok = 0, many_times_ok = 0;
2588 /* If there is a sequence of repetition chars, collapse it
2589 down to just one (the right one). We can't combine
2590 interval operators with these because of, e.g., `a{2}*',
2591 which should only match an even number of `a's. */
2593 for (;;)
2595 zero_times_ok |= c != '+';
2596 many_times_ok |= c != '?';
2598 if (p == pend)
2599 break;
2601 PATFETCH (c);
2603 if (c == '*'
2604 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2607 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2609 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2611 PATFETCH (c1);
2612 if (!(c1 == '+' || c1 == '?'))
2614 PATUNFETCH;
2615 PATUNFETCH;
2616 break;
2619 c = c1;
2621 else
2623 PATUNFETCH;
2624 break;
2627 /* If we get here, we found another repeat character. */
2630 /* Star, etc. applied to an empty pattern is equivalent
2631 to an empty pattern. */
2632 if (!laststart)
2633 break;
2635 /* Now we know whether or not zero matches is allowed
2636 and also whether or not two or more matches is allowed. */
2637 if (many_times_ok)
2638 { /* More than one repetition is allowed, so put in at the
2639 end a backward relative jump from `b' to before the next
2640 jump we're going to put in below (which jumps from
2641 laststart to after this jump).
2643 But if we are at the `*' in the exact sequence `.*\n',
2644 insert an unconditional jump backwards to the .,
2645 instead of the beginning of the loop. This way we only
2646 push a failure point once, instead of every time
2647 through the loop. */
2648 assert (p - 1 > pattern);
2650 /* Allocate the space for the jump. */
2651 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2653 /* We know we are not at the first character of the pattern,
2654 because laststart was nonzero. And we've already
2655 incremented `p', by the way, to be the character after
2656 the `*'. Do we have to do something analogous here
2657 for null bytes, because of RE_DOT_NOT_NULL? */
2658 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2659 && zero_times_ok
2660 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2661 && !(syntax & RE_DOT_NEWLINE))
2662 { /* We have .*\n. */
2663 STORE_JUMP (jump, b, laststart);
2664 keep_string_p = true;
2666 else
2667 /* Anything else. */
2668 STORE_JUMP (maybe_pop_jump, b, laststart -
2669 (1 + OFFSET_ADDRESS_SIZE));
2671 /* We've added more stuff to the buffer. */
2672 b += 1 + OFFSET_ADDRESS_SIZE;
2675 /* On failure, jump from laststart to b + 3, which will be the
2676 end of the buffer after this jump is inserted. */
2677 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2678 'b + 3'. */
2679 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2680 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2681 : on_failure_jump,
2682 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2683 pending_exact = 0;
2684 b += 1 + OFFSET_ADDRESS_SIZE;
2686 if (!zero_times_ok)
2688 /* At least one repetition is required, so insert a
2689 `dummy_failure_jump' before the initial
2690 `on_failure_jump' instruction of the loop. This
2691 effects a skip over that instruction the first time
2692 we hit that loop. */
2693 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2694 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2695 2 + 2 * OFFSET_ADDRESS_SIZE);
2696 b += 1 + OFFSET_ADDRESS_SIZE;
2699 break;
2702 case '.':
2703 laststart = b;
2704 BUF_PUSH (anychar);
2705 break;
2708 case '[':
2710 boolean had_char_class = false;
2711 #ifdef WCHAR
2712 CHAR_T range_start = 0xffffffff;
2713 #else
2714 unsigned int range_start = 0xffffffff;
2715 #endif
2716 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2718 #ifdef WCHAR
2719 /* We assume a charset(_not) structure as a wchar_t array.
2720 charset[0] = (re_opcode_t) charset(_not)
2721 charset[1] = l (= length of char_classes)
2722 charset[2] = m (= length of collating_symbols)
2723 charset[3] = n (= length of equivalence_classes)
2724 charset[4] = o (= length of char_ranges)
2725 charset[5] = p (= length of chars)
2727 charset[6] = char_class (wctype_t)
2728 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2730 charset[l+5] = char_class (wctype_t)
2732 charset[l+6] = collating_symbol (wchar_t)
2734 charset[l+m+5] = collating_symbol (wchar_t)
2735 ifdef _LIBC we use the index if
2736 _NL_COLLATE_SYMB_EXTRAMB instead of
2737 wchar_t string.
2739 charset[l+m+6] = equivalence_classes (wchar_t)
2741 charset[l+m+n+5] = equivalence_classes (wchar_t)
2742 ifdef _LIBC we use the index in
2743 _NL_COLLATE_WEIGHT instead of
2744 wchar_t string.
2746 charset[l+m+n+6] = range_start
2747 charset[l+m+n+7] = range_end
2749 charset[l+m+n+2o+4] = range_start
2750 charset[l+m+n+2o+5] = range_end
2751 ifdef _LIBC we use the value looked up
2752 in _NL_COLLATE_COLLSEQ instead of
2753 wchar_t character.
2755 charset[l+m+n+2o+6] = char
2757 charset[l+m+n+2o+p+5] = char
2761 /* We need at least 6 spaces: the opcode, the length of
2762 char_classes, the length of collating_symbols, the length of
2763 equivalence_classes, the length of char_ranges, the length of
2764 chars. */
2765 GET_BUFFER_SPACE (6);
2767 /* Save b as laststart. And We use laststart as the pointer
2768 to the first element of the charset here.
2769 In other words, laststart[i] indicates charset[i]. */
2770 laststart = b;
2772 /* We test `*p == '^' twice, instead of using an if
2773 statement, so we only need one BUF_PUSH. */
2774 BUF_PUSH (*p == '^' ? charset_not : charset);
2775 if (*p == '^')
2776 p++;
2778 /* Push the length of char_classes, the length of
2779 collating_symbols, the length of equivalence_classes, the
2780 length of char_ranges and the length of chars. */
2781 BUF_PUSH_3 (0, 0, 0);
2782 BUF_PUSH_2 (0, 0);
2784 /* Remember the first position in the bracket expression. */
2785 p1 = p;
2787 /* charset_not matches newline according to a syntax bit. */
2788 if ((re_opcode_t) b[-6] == charset_not
2789 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2791 BUF_PUSH('\n');
2792 laststart[5]++; /* Update the length of characters */
2795 /* Read in characters and ranges, setting map bits. */
2796 for (;;)
2798 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2800 PATFETCH (c);
2802 /* \ might escape characters inside [...] and [^...]. */
2803 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2805 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2807 PATFETCH (c1);
2808 BUF_PUSH(c1);
2809 laststart[5]++; /* Update the length of chars */
2810 range_start = c1;
2811 continue;
2814 /* Could be the end of the bracket expression. If it's
2815 not (i.e., when the bracket expression is `[]' so
2816 far), the ']' character bit gets set way below. */
2817 if (c == ']' && p != p1 + 1)
2818 break;
2820 /* Look ahead to see if it's a range when the last thing
2821 was a character class. */
2822 if (had_char_class && c == '-' && *p != ']')
2823 FREE_STACK_RETURN (REG_ERANGE);
2825 /* Look ahead to see if it's a range when the last thing
2826 was a character: if this is a hyphen not at the
2827 beginning or the end of a list, then it's the range
2828 operator. */
2829 if (c == '-'
2830 && !(p - 2 >= pattern && p[-2] == '[')
2831 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2832 && *p != ']')
2834 reg_errcode_t ret;
2835 /* Allocate the space for range_start and range_end. */
2836 GET_BUFFER_SPACE (2);
2837 /* Update the pointer to indicate end of buffer. */
2838 b += 2;
2839 ret = wcs_compile_range (range_start, &p, pend, translate,
2840 syntax, b, laststart);
2841 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2842 range_start = 0xffffffff;
2844 else if (p[0] == '-' && p[1] != ']')
2845 { /* This handles ranges made up of characters only. */
2846 reg_errcode_t ret;
2848 /* Move past the `-'. */
2849 PATFETCH (c1);
2850 /* Allocate the space for range_start and range_end. */
2851 GET_BUFFER_SPACE (2);
2852 /* Update the pointer to indicate end of buffer. */
2853 b += 2;
2854 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2855 laststart);
2856 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2857 range_start = 0xffffffff;
2860 /* See if we're at the beginning of a possible character
2861 class. */
2862 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2863 { /* Leave room for the null. */
2864 char str[CHAR_CLASS_MAX_LENGTH + 1];
2866 PATFETCH (c);
2867 c1 = 0;
2869 /* If pattern is `[[:'. */
2870 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2872 for (;;)
2874 PATFETCH (c);
2875 if ((c == ':' && *p == ']') || p == pend)
2876 break;
2877 if (c1 < CHAR_CLASS_MAX_LENGTH)
2878 str[c1++] = c;
2879 else
2880 /* This is in any case an invalid class name. */
2881 str[0] = '\0';
2883 str[c1] = '\0';
2885 /* If isn't a word bracketed by `[:' and `:]':
2886 undo the ending character, the letters, and leave
2887 the leading `:' and `[' (but store them as character). */
2888 if (c == ':' && *p == ']')
2890 wctype_t wt;
2891 uintptr_t alignedp;
2893 /* Query the character class as wctype_t. */
2894 wt = IS_CHAR_CLASS (str);
2895 if (wt == 0)
2896 FREE_STACK_RETURN (REG_ECTYPE);
2898 /* Throw away the ] at the end of the character
2899 class. */
2900 PATFETCH (c);
2902 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2904 /* Allocate the space for character class. */
2905 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2906 /* Update the pointer to indicate end of buffer. */
2907 b += CHAR_CLASS_SIZE;
2908 /* Move data which follow character classes
2909 not to violate the data. */
2910 insert_space(CHAR_CLASS_SIZE,
2911 laststart + 6 + laststart[1],
2912 b - 1);
2913 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2914 + __alignof__(wctype_t) - 1)
2915 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2916 /* Store the character class. */
2917 *((wctype_t*)alignedp) = wt;
2918 /* Update length of char_classes */
2919 laststart[1] += CHAR_CLASS_SIZE;
2921 had_char_class = true;
2923 else
2925 c1++;
2926 while (c1--)
2927 PATUNFETCH;
2928 BUF_PUSH ('[');
2929 BUF_PUSH (':');
2930 laststart[5] += 2; /* Update the length of characters */
2931 range_start = ':';
2932 had_char_class = false;
2935 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2936 || *p == '.'))
2938 CHAR_T str[128]; /* Should be large enough. */
2939 CHAR_T delim = *p; /* '=' or '.' */
2940 # ifdef _LIBC
2941 uint32_t nrules =
2942 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2943 # endif
2944 PATFETCH (c);
2945 c1 = 0;
2947 /* If pattern is `[[=' or '[[.'. */
2948 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2950 for (;;)
2952 PATFETCH (c);
2953 if ((c == delim && *p == ']') || p == pend)
2954 break;
2955 if (c1 < sizeof (str) - 1)
2956 str[c1++] = c;
2957 else
2958 /* This is in any case an invalid class name. */
2959 str[0] = '\0';
2961 str[c1] = '\0';
2963 if (c == delim && *p == ']' && str[0] != '\0')
2965 unsigned int i, offset;
2966 /* If we have no collation data we use the default
2967 collation in which each character is in a class
2968 by itself. It also means that ASCII is the
2969 character set and therefore we cannot have character
2970 with more than one byte in the multibyte
2971 representation. */
2973 /* If not defined _LIBC, we push the name and
2974 `\0' for the sake of matching performance. */
2975 int datasize = c1 + 1;
2977 # ifdef _LIBC
2978 int32_t idx = 0;
2979 if (nrules == 0)
2980 # endif
2982 if (c1 != 1)
2983 FREE_STACK_RETURN (REG_ECOLLATE);
2985 # ifdef _LIBC
2986 else
2988 const int32_t *table;
2989 const int32_t *weights;
2990 const int32_t *extra;
2991 const int32_t *indirect;
2992 wint_t *cp;
2994 /* This #include defines a local function! */
2995 # include <locale/weightwc.h>
2997 if(delim == '=')
2999 /* We push the index for equivalence class. */
3000 cp = (wint_t*)str;
3002 table = (const int32_t *)
3003 _NL_CURRENT (LC_COLLATE,
3004 _NL_COLLATE_TABLEWC);
3005 weights = (const int32_t *)
3006 _NL_CURRENT (LC_COLLATE,
3007 _NL_COLLATE_WEIGHTWC);
3008 extra = (const int32_t *)
3009 _NL_CURRENT (LC_COLLATE,
3010 _NL_COLLATE_EXTRAWC);
3011 indirect = (const int32_t *)
3012 _NL_CURRENT (LC_COLLATE,
3013 _NL_COLLATE_INDIRECTWC);
3015 idx = findidx ((const wint_t**)&cp);
3016 if (idx == 0 || cp < (wint_t*) str + c1)
3017 /* This is no valid character. */
3018 FREE_STACK_RETURN (REG_ECOLLATE);
3020 str[0] = (wchar_t)idx;
3022 else /* delim == '.' */
3024 /* We push collation sequence value
3025 for collating symbol. */
3026 int32_t table_size;
3027 const int32_t *symb_table;
3028 const unsigned char *extra;
3029 int32_t idx;
3030 int32_t elem;
3031 int32_t second;
3032 int32_t hash;
3033 char char_str[c1];
3035 /* We have to convert the name to a single-byte
3036 string. This is possible since the names
3037 consist of ASCII characters and the internal
3038 representation is UCS4. */
3039 for (i = 0; i < c1; ++i)
3040 char_str[i] = str[i];
3042 table_size =
3043 _NL_CURRENT_WORD (LC_COLLATE,
3044 _NL_COLLATE_SYMB_HASH_SIZEMB);
3045 symb_table = (const int32_t *)
3046 _NL_CURRENT (LC_COLLATE,
3047 _NL_COLLATE_SYMB_TABLEMB);
3048 extra = (const unsigned char *)
3049 _NL_CURRENT (LC_COLLATE,
3050 _NL_COLLATE_SYMB_EXTRAMB);
3052 /* Locate the character in the hashing table. */
3053 hash = elem_hash (char_str, c1);
3055 idx = 0;
3056 elem = hash % table_size;
3057 second = hash % (table_size - 2);
3058 while (symb_table[2 * elem] != 0)
3060 /* First compare the hashing value. */
3061 if (symb_table[2 * elem] == hash
3062 && c1 == extra[symb_table[2 * elem + 1]]
3063 && memcmp (char_str,
3064 &extra[symb_table[2 * elem + 1]
3065 + 1], c1) == 0)
3067 /* Yep, this is the entry. */
3068 idx = symb_table[2 * elem + 1];
3069 idx += 1 + extra[idx];
3070 break;
3073 /* Next entry. */
3074 elem += second;
3077 if (symb_table[2 * elem] != 0)
3079 /* Compute the index of the byte sequence
3080 in the table. */
3081 idx += 1 + extra[idx];
3082 /* Adjust for the alignment. */
3083 idx = (idx + 3) & ~3;
3085 str[0] = (wchar_t) idx + 4;
3087 else if (symb_table[2 * elem] == 0 && c1 == 1)
3089 /* No valid character. Match it as a
3090 single byte character. */
3091 had_char_class = false;
3092 BUF_PUSH(str[0]);
3093 /* Update the length of characters */
3094 laststart[5]++;
3095 range_start = str[0];
3097 /* Throw away the ] at the end of the
3098 collating symbol. */
3099 PATFETCH (c);
3100 /* exit from the switch block. */
3101 continue;
3103 else
3104 FREE_STACK_RETURN (REG_ECOLLATE);
3106 datasize = 1;
3108 # endif
3109 /* Throw away the ] at the end of the equivalence
3110 class (or collating symbol). */
3111 PATFETCH (c);
3113 /* Allocate the space for the equivalence class
3114 (or collating symbol) (and '\0' if needed). */
3115 GET_BUFFER_SPACE(datasize);
3116 /* Update the pointer to indicate end of buffer. */
3117 b += datasize;
3119 if (delim == '=')
3120 { /* equivalence class */
3121 /* Calculate the offset of char_ranges,
3122 which is next to equivalence_classes. */
3123 offset = laststart[1] + laststart[2]
3124 + laststart[3] +6;
3125 /* Insert space. */
3126 insert_space(datasize, laststart + offset, b - 1);
3128 /* Write the equivalence_class and \0. */
3129 for (i = 0 ; i < datasize ; i++)
3130 laststart[offset + i] = str[i];
3132 /* Update the length of equivalence_classes. */
3133 laststart[3] += datasize;
3134 had_char_class = true;
3136 else /* delim == '.' */
3137 { /* collating symbol */
3138 /* Calculate the offset of the equivalence_classes,
3139 which is next to collating_symbols. */
3140 offset = laststart[1] + laststart[2] + 6;
3141 /* Insert space and write the collationg_symbol
3142 and \0. */
3143 insert_space(datasize, laststart + offset, b-1);
3144 for (i = 0 ; i < datasize ; i++)
3145 laststart[offset + i] = str[i];
3147 /* In re_match_2_internal if range_start < -1, we
3148 assume -range_start is the offset of the
3149 collating symbol which is specified as
3150 the character of the range start. So we assign
3151 -(laststart[1] + laststart[2] + 6) to
3152 range_start. */
3153 range_start = -(laststart[1] + laststart[2] + 6);
3154 /* Update the length of collating_symbol. */
3155 laststart[2] += datasize;
3156 had_char_class = false;
3159 else
3161 c1++;
3162 while (c1--)
3163 PATUNFETCH;
3164 BUF_PUSH ('[');
3165 BUF_PUSH (delim);
3166 laststart[5] += 2; /* Update the length of characters */
3167 range_start = delim;
3168 had_char_class = false;
3171 else
3173 had_char_class = false;
3174 BUF_PUSH(c);
3175 laststart[5]++; /* Update the length of characters */
3176 range_start = c;
3180 #else /* BYTE */
3181 /* Ensure that we have enough space to push a charset: the
3182 opcode, the length count, and the bitset; 34 bytes in all. */
3183 GET_BUFFER_SPACE (34);
3185 laststart = b;
3187 /* We test `*p == '^' twice, instead of using an if
3188 statement, so we only need one BUF_PUSH. */
3189 BUF_PUSH (*p == '^' ? charset_not : charset);
3190 if (*p == '^')
3191 p++;
3193 /* Remember the first position in the bracket expression. */
3194 p1 = p;
3196 /* Push the number of bytes in the bitmap. */
3197 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3199 /* Clear the whole map. */
3200 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3202 /* charset_not matches newline according to a syntax bit. */
3203 if ((re_opcode_t) b[-2] == charset_not
3204 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3205 SET_LIST_BIT ('\n');
3207 /* Read in characters and ranges, setting map bits. */
3208 for (;;)
3210 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3212 PATFETCH (c);
3214 /* \ might escape characters inside [...] and [^...]. */
3215 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3217 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3219 PATFETCH (c1);
3220 SET_LIST_BIT (c1);
3221 range_start = c1;
3222 continue;
3225 /* Could be the end of the bracket expression. If it's
3226 not (i.e., when the bracket expression is `[]' so
3227 far), the ']' character bit gets set way below. */
3228 if (c == ']' && p != p1 + 1)
3229 break;
3231 /* Look ahead to see if it's a range when the last thing
3232 was a character class. */
3233 if (had_char_class && c == '-' && *p != ']')
3234 FREE_STACK_RETURN (REG_ERANGE);
3236 /* Look ahead to see if it's a range when the last thing
3237 was a character: if this is a hyphen not at the
3238 beginning or the end of a list, then it's the range
3239 operator. */
3240 if (c == '-'
3241 && !(p - 2 >= pattern && p[-2] == '[')
3242 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3243 && *p != ']')
3245 reg_errcode_t ret
3246 = byte_compile_range (range_start, &p, pend, translate,
3247 syntax, b);
3248 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3249 range_start = 0xffffffff;
3252 else if (p[0] == '-' && p[1] != ']')
3253 { /* This handles ranges made up of characters only. */
3254 reg_errcode_t ret;
3256 /* Move past the `-'. */
3257 PATFETCH (c1);
3259 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3260 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3261 range_start = 0xffffffff;
3264 /* See if we're at the beginning of a possible character
3265 class. */
3267 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3268 { /* Leave room for the null. */
3269 char str[CHAR_CLASS_MAX_LENGTH + 1];
3271 PATFETCH (c);
3272 c1 = 0;
3274 /* If pattern is `[[:'. */
3275 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3277 for (;;)
3279 PATFETCH (c);
3280 if ((c == ':' && *p == ']') || p == pend)
3281 break;
3282 if (c1 < CHAR_CLASS_MAX_LENGTH)
3283 str[c1++] = c;
3284 else
3285 /* This is in any case an invalid class name. */
3286 str[0] = '\0';
3288 str[c1] = '\0';
3290 /* If isn't a word bracketed by `[:' and `:]':
3291 undo the ending character, the letters, and leave
3292 the leading `:' and `[' (but set bits for them). */
3293 if (c == ':' && *p == ']')
3295 # if defined _LIBC || WIDE_CHAR_SUPPORT
3296 boolean is_lower = STREQ (str, "lower");
3297 boolean is_upper = STREQ (str, "upper");
3298 wctype_t wt;
3299 int ch;
3301 wt = IS_CHAR_CLASS (str);
3302 if (wt == 0)
3303 FREE_STACK_RETURN (REG_ECTYPE);
3305 /* Throw away the ] at the end of the character
3306 class. */
3307 PATFETCH (c);
3309 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3311 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3313 # ifdef _LIBC
3314 if (__iswctype (__btowc (ch), wt))
3315 SET_LIST_BIT (ch);
3316 # else
3317 if (iswctype (btowc (ch), wt))
3318 SET_LIST_BIT (ch);
3319 # endif
3321 if (translate && (is_upper || is_lower)
3322 && (ISUPPER (ch) || ISLOWER (ch)))
3323 SET_LIST_BIT (ch);
3326 had_char_class = true;
3327 # else
3328 int ch;
3329 boolean is_alnum = STREQ (str, "alnum");
3330 boolean is_alpha = STREQ (str, "alpha");
3331 boolean is_blank = STREQ (str, "blank");
3332 boolean is_cntrl = STREQ (str, "cntrl");
3333 boolean is_digit = STREQ (str, "digit");
3334 boolean is_graph = STREQ (str, "graph");
3335 boolean is_lower = STREQ (str, "lower");
3336 boolean is_print = STREQ (str, "print");
3337 boolean is_punct = STREQ (str, "punct");
3338 boolean is_space = STREQ (str, "space");
3339 boolean is_upper = STREQ (str, "upper");
3340 boolean is_xdigit = STREQ (str, "xdigit");
3342 if (!IS_CHAR_CLASS (str))
3343 FREE_STACK_RETURN (REG_ECTYPE);
3345 /* Throw away the ] at the end of the character
3346 class. */
3347 PATFETCH (c);
3349 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3351 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3353 /* This was split into 3 if's to
3354 avoid an arbitrary limit in some compiler. */
3355 if ( (is_alnum && ISALNUM (ch))
3356 || (is_alpha && ISALPHA (ch))
3357 || (is_blank && ISBLANK (ch))
3358 || (is_cntrl && ISCNTRL (ch)))
3359 SET_LIST_BIT (ch);
3360 if ( (is_digit && ISDIGIT (ch))
3361 || (is_graph && ISGRAPH (ch))
3362 || (is_lower && ISLOWER (ch))
3363 || (is_print && ISPRINT (ch)))
3364 SET_LIST_BIT (ch);
3365 if ( (is_punct && ISPUNCT (ch))
3366 || (is_space && ISSPACE (ch))
3367 || (is_upper && ISUPPER (ch))
3368 || (is_xdigit && ISXDIGIT (ch)))
3369 SET_LIST_BIT (ch);
3370 if ( translate && (is_upper || is_lower)
3371 && (ISUPPER (ch) || ISLOWER (ch)))
3372 SET_LIST_BIT (ch);
3374 had_char_class = true;
3375 # endif /* libc || wctype.h */
3377 else
3379 c1++;
3380 while (c1--)
3381 PATUNFETCH;
3382 SET_LIST_BIT ('[');
3383 SET_LIST_BIT (':');
3384 range_start = ':';
3385 had_char_class = false;
3388 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3390 unsigned char str[MB_LEN_MAX + 1];
3391 # ifdef _LIBC
3392 uint32_t nrules =
3393 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3394 # endif
3396 PATFETCH (c);
3397 c1 = 0;
3399 /* If pattern is `[[='. */
3400 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3402 for (;;)
3404 PATFETCH (c);
3405 if ((c == '=' && *p == ']') || p == pend)
3406 break;
3407 if (c1 < MB_LEN_MAX)
3408 str[c1++] = c;
3409 else
3410 /* This is in any case an invalid class name. */
3411 str[0] = '\0';
3413 str[c1] = '\0';
3415 if (c == '=' && *p == ']' && str[0] != '\0')
3417 /* If we have no collation data we use the default
3418 collation in which each character is in a class
3419 by itself. It also means that ASCII is the
3420 character set and therefore we cannot have character
3421 with more than one byte in the multibyte
3422 representation. */
3423 # ifdef _LIBC
3424 if (nrules == 0)
3425 # endif
3427 if (c1 != 1)
3428 FREE_STACK_RETURN (REG_ECOLLATE);
3430 /* Throw away the ] at the end of the equivalence
3431 class. */
3432 PATFETCH (c);
3434 /* Set the bit for the character. */
3435 SET_LIST_BIT (str[0]);
3437 # ifdef _LIBC
3438 else
3440 /* Try to match the byte sequence in `str' against
3441 those known to the collate implementation.
3442 First find out whether the bytes in `str' are
3443 actually from exactly one character. */
3444 const int32_t *table;
3445 const unsigned char *weights;
3446 const unsigned char *extra;
3447 const int32_t *indirect;
3448 int32_t idx;
3449 const unsigned char *cp = str;
3450 int ch;
3452 /* This #include defines a local function! */
3453 # include <locale/weight.h>
3455 table = (const int32_t *)
3456 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3457 weights = (const unsigned char *)
3458 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3459 extra = (const unsigned char *)
3460 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3461 indirect = (const int32_t *)
3462 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3464 idx = findidx (&cp);
3465 if (idx == 0 || cp < str + c1)
3466 /* This is no valid character. */
3467 FREE_STACK_RETURN (REG_ECOLLATE);
3469 /* Throw away the ] at the end of the equivalence
3470 class. */
3471 PATFETCH (c);
3473 /* Now we have to go throught the whole table
3474 and find all characters which have the same
3475 first level weight.
3477 XXX Note that this is not entirely correct.
3478 we would have to match multibyte sequences
3479 but this is not possible with the current
3480 implementation. */
3481 for (ch = 1; ch < 256; ++ch)
3482 /* XXX This test would have to be changed if we
3483 would allow matching multibyte sequences. */
3484 if (table[ch] > 0)
3486 int32_t idx2 = table[ch];
3487 size_t len = weights[idx2];
3489 /* Test whether the lenghts match. */
3490 if (weights[idx] == len)
3492 /* They do. New compare the bytes of
3493 the weight. */
3494 size_t cnt = 0;
3496 while (cnt < len
3497 && (weights[idx + 1 + cnt]
3498 == weights[idx2 + 1 + cnt]))
3499 ++cnt;
3501 if (cnt == len)
3502 /* They match. Mark the character as
3503 acceptable. */
3504 SET_LIST_BIT (ch);
3508 # endif
3509 had_char_class = true;
3511 else
3513 c1++;
3514 while (c1--)
3515 PATUNFETCH;
3516 SET_LIST_BIT ('[');
3517 SET_LIST_BIT ('=');
3518 range_start = '=';
3519 had_char_class = false;
3522 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3524 unsigned char str[128]; /* Should be large enough. */
3525 # ifdef _LIBC
3526 uint32_t nrules =
3527 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3528 # endif
3530 PATFETCH (c);
3531 c1 = 0;
3533 /* If pattern is `[[.'. */
3534 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3536 for (;;)
3538 PATFETCH (c);
3539 if ((c == '.' && *p == ']') || p == pend)
3540 break;
3541 if (c1 < sizeof (str))
3542 str[c1++] = c;
3543 else
3544 /* This is in any case an invalid class name. */
3545 str[0] = '\0';
3547 str[c1] = '\0';
3549 if (c == '.' && *p == ']' && str[0] != '\0')
3551 /* If we have no collation data we use the default
3552 collation in which each character is the name
3553 for its own class which contains only the one
3554 character. It also means that ASCII is the
3555 character set and therefore we cannot have character
3556 with more than one byte in the multibyte
3557 representation. */
3558 # ifdef _LIBC
3559 if (nrules == 0)
3560 # endif
3562 if (c1 != 1)
3563 FREE_STACK_RETURN (REG_ECOLLATE);
3565 /* Throw away the ] at the end of the equivalence
3566 class. */
3567 PATFETCH (c);
3569 /* Set the bit for the character. */
3570 SET_LIST_BIT (str[0]);
3571 range_start = ((const unsigned char *) str)[0];
3573 # ifdef _LIBC
3574 else
3576 /* Try to match the byte sequence in `str' against
3577 those known to the collate implementation.
3578 First find out whether the bytes in `str' are
3579 actually from exactly one character. */
3580 int32_t table_size;
3581 const int32_t *symb_table;
3582 const unsigned char *extra;
3583 int32_t idx;
3584 int32_t elem;
3585 int32_t second;
3586 int32_t hash;
3588 table_size =
3589 _NL_CURRENT_WORD (LC_COLLATE,
3590 _NL_COLLATE_SYMB_HASH_SIZEMB);
3591 symb_table = (const int32_t *)
3592 _NL_CURRENT (LC_COLLATE,
3593 _NL_COLLATE_SYMB_TABLEMB);
3594 extra = (const unsigned char *)
3595 _NL_CURRENT (LC_COLLATE,
3596 _NL_COLLATE_SYMB_EXTRAMB);
3598 /* Locate the character in the hashing table. */
3599 hash = elem_hash (str, c1);
3601 idx = 0;
3602 elem = hash % table_size;
3603 second = hash % (table_size - 2);
3604 while (symb_table[2 * elem] != 0)
3606 /* First compare the hashing value. */
3607 if (symb_table[2 * elem] == hash
3608 && c1 == extra[symb_table[2 * elem + 1]]
3609 && memcmp (str,
3610 &extra[symb_table[2 * elem + 1]
3611 + 1],
3612 c1) == 0)
3614 /* Yep, this is the entry. */
3615 idx = symb_table[2 * elem + 1];
3616 idx += 1 + extra[idx];
3617 break;
3620 /* Next entry. */
3621 elem += second;
3624 if (symb_table[2 * elem] == 0)
3625 /* This is no valid character. */
3626 FREE_STACK_RETURN (REG_ECOLLATE);
3628 /* Throw away the ] at the end of the equivalence
3629 class. */
3630 PATFETCH (c);
3632 /* Now add the multibyte character(s) we found
3633 to the accept list.
3635 XXX Note that this is not entirely correct.
3636 we would have to match multibyte sequences
3637 but this is not possible with the current
3638 implementation. Also, we have to match
3639 collating symbols, which expand to more than
3640 one file, as a whole and not allow the
3641 individual bytes. */
3642 c1 = extra[idx++];
3643 if (c1 == 1)
3644 range_start = extra[idx];
3645 while (c1-- > 0)
3647 SET_LIST_BIT (extra[idx]);
3648 ++idx;
3651 # endif
3652 had_char_class = false;
3654 else
3656 c1++;
3657 while (c1--)
3658 PATUNFETCH;
3659 SET_LIST_BIT ('[');
3660 SET_LIST_BIT ('.');
3661 range_start = '.';
3662 had_char_class = false;
3665 else
3667 had_char_class = false;
3668 SET_LIST_BIT (c);
3669 range_start = c;
3673 /* Discard any (non)matching list bytes that are all 0 at the
3674 end of the map. Decrease the map-length byte too. */
3675 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3676 b[-1]--;
3677 b += b[-1];
3678 #endif /* WCHAR */
3680 break;
3683 case '(':
3684 if (syntax & RE_NO_BK_PARENS)
3685 goto handle_open;
3686 else
3687 goto normal_char;
3690 case ')':
3691 if (syntax & RE_NO_BK_PARENS)
3692 goto handle_close;
3693 else
3694 goto normal_char;
3697 case '\n':
3698 if (syntax & RE_NEWLINE_ALT)
3699 goto handle_alt;
3700 else
3701 goto normal_char;
3704 case '|':
3705 if (syntax & RE_NO_BK_VBAR)
3706 goto handle_alt;
3707 else
3708 goto normal_char;
3711 case '{':
3712 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3713 goto handle_interval;
3714 else
3715 goto normal_char;
3718 case '\\':
3719 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3721 /* Do not translate the character after the \, so that we can
3722 distinguish, e.g., \B from \b, even if we normally would
3723 translate, e.g., B to b. */
3724 PATFETCH_RAW (c);
3726 switch (c)
3728 case '(':
3729 if (syntax & RE_NO_BK_PARENS)
3730 goto normal_backslash;
3732 handle_open:
3733 bufp->re_nsub++;
3734 regnum++;
3736 if (COMPILE_STACK_FULL)
3738 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3739 compile_stack_elt_t);
3740 if (compile_stack.stack == NULL) return REG_ESPACE;
3742 compile_stack.size <<= 1;
3745 /* These are the values to restore when we hit end of this
3746 group. They are all relative offsets, so that if the
3747 whole pattern moves because of realloc, they will still
3748 be valid. */
3749 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3750 COMPILE_STACK_TOP.fixup_alt_jump
3751 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3752 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3753 COMPILE_STACK_TOP.regnum = regnum;
3755 /* We will eventually replace the 0 with the number of
3756 groups inner to this one. But do not push a
3757 start_memory for groups beyond the last one we can
3758 represent in the compiled pattern. */
3759 if (regnum <= MAX_REGNUM)
3761 COMPILE_STACK_TOP.inner_group_offset = b
3762 - COMPILED_BUFFER_VAR + 2;
3763 BUF_PUSH_3 (start_memory, regnum, 0);
3766 compile_stack.avail++;
3768 fixup_alt_jump = 0;
3769 laststart = 0;
3770 begalt = b;
3771 /* If we've reached MAX_REGNUM groups, then this open
3772 won't actually generate any code, so we'll have to
3773 clear pending_exact explicitly. */
3774 pending_exact = 0;
3775 break;
3778 case ')':
3779 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3781 if (COMPILE_STACK_EMPTY)
3783 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3784 goto normal_backslash;
3785 else
3786 FREE_STACK_RETURN (REG_ERPAREN);
3789 handle_close:
3790 if (fixup_alt_jump)
3791 { /* Push a dummy failure point at the end of the
3792 alternative for a possible future
3793 `pop_failure_jump' to pop. See comments at
3794 `push_dummy_failure' in `re_match_2'. */
3795 BUF_PUSH (push_dummy_failure);
3797 /* We allocated space for this jump when we assigned
3798 to `fixup_alt_jump', in the `handle_alt' case below. */
3799 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3802 /* See similar code for backslashed left paren above. */
3803 if (COMPILE_STACK_EMPTY)
3805 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3806 goto normal_char;
3807 else
3808 FREE_STACK_RETURN (REG_ERPAREN);
3811 /* Since we just checked for an empty stack above, this
3812 ``can't happen''. */
3813 assert (compile_stack.avail != 0);
3815 /* We don't just want to restore into `regnum', because
3816 later groups should continue to be numbered higher,
3817 as in `(ab)c(de)' -- the second group is #2. */
3818 regnum_t this_group_regnum;
3820 compile_stack.avail--;
3821 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3822 fixup_alt_jump
3823 = COMPILE_STACK_TOP.fixup_alt_jump
3824 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3825 : 0;
3826 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3827 this_group_regnum = COMPILE_STACK_TOP.regnum;
3828 /* If we've reached MAX_REGNUM groups, then this open
3829 won't actually generate any code, so we'll have to
3830 clear pending_exact explicitly. */
3831 pending_exact = 0;
3833 /* We're at the end of the group, so now we know how many
3834 groups were inside this one. */
3835 if (this_group_regnum <= MAX_REGNUM)
3837 UCHAR_T *inner_group_loc
3838 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3840 *inner_group_loc = regnum - this_group_regnum;
3841 BUF_PUSH_3 (stop_memory, this_group_regnum,
3842 regnum - this_group_regnum);
3845 break;
3848 case '|': /* `\|'. */
3849 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3850 goto normal_backslash;
3851 handle_alt:
3852 if (syntax & RE_LIMITED_OPS)
3853 goto normal_char;
3855 /* Insert before the previous alternative a jump which
3856 jumps to this alternative if the former fails. */
3857 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3858 INSERT_JUMP (on_failure_jump, begalt,
3859 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3860 pending_exact = 0;
3861 b += 1 + OFFSET_ADDRESS_SIZE;
3863 /* The alternative before this one has a jump after it
3864 which gets executed if it gets matched. Adjust that
3865 jump so it will jump to this alternative's analogous
3866 jump (put in below, which in turn will jump to the next
3867 (if any) alternative's such jump, etc.). The last such
3868 jump jumps to the correct final destination. A picture:
3869 _____ _____
3870 | | | |
3871 | v | v
3872 a | b | c
3874 If we are at `b', then fixup_alt_jump right now points to a
3875 three-byte space after `a'. We'll put in the jump, set
3876 fixup_alt_jump to right after `b', and leave behind three
3877 bytes which we'll fill in when we get to after `c'. */
3879 if (fixup_alt_jump)
3880 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3882 /* Mark and leave space for a jump after this alternative,
3883 to be filled in later either by next alternative or
3884 when know we're at the end of a series of alternatives. */
3885 fixup_alt_jump = b;
3886 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3887 b += 1 + OFFSET_ADDRESS_SIZE;
3889 laststart = 0;
3890 begalt = b;
3891 break;
3894 case '{':
3895 /* If \{ is a literal. */
3896 if (!(syntax & RE_INTERVALS)
3897 /* If we're at `\{' and it's not the open-interval
3898 operator. */
3899 || (syntax & RE_NO_BK_BRACES))
3900 goto normal_backslash;
3902 handle_interval:
3904 /* If got here, then the syntax allows intervals. */
3906 /* At least (most) this many matches must be made. */
3907 int lower_bound = -1, upper_bound = -1;
3909 /* Place in the uncompiled pattern (i.e., just after
3910 the '{') to go back to if the interval is invalid. */
3911 const CHAR_T *beg_interval = p;
3913 if (p == pend)
3914 goto invalid_interval;
3916 GET_UNSIGNED_NUMBER (lower_bound);
3918 if (c == ',')
3920 GET_UNSIGNED_NUMBER (upper_bound);
3921 if (upper_bound < 0)
3922 upper_bound = RE_DUP_MAX;
3924 else
3925 /* Interval such as `{1}' => match exactly once. */
3926 upper_bound = lower_bound;
3928 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3929 goto invalid_interval;
3931 if (!(syntax & RE_NO_BK_BRACES))
3933 if (c != '\\' || p == pend)
3934 goto invalid_interval;
3935 PATFETCH (c);
3938 if (c != '}')
3939 goto invalid_interval;
3941 /* If it's invalid to have no preceding re. */
3942 if (!laststart)
3944 if (syntax & RE_CONTEXT_INVALID_OPS
3945 && !(syntax & RE_INVALID_INTERVAL_ORD))
3946 FREE_STACK_RETURN (REG_BADRPT);
3947 else if (syntax & RE_CONTEXT_INDEP_OPS)
3948 laststart = b;
3949 else
3950 goto unfetch_interval;
3953 /* We just parsed a valid interval. */
3955 if (RE_DUP_MAX < upper_bound)
3956 FREE_STACK_RETURN (REG_BADBR);
3958 /* If the upper bound is zero, don't want to succeed at
3959 all; jump from `laststart' to `b + 3', which will be
3960 the end of the buffer after we insert the jump. */
3961 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3962 instead of 'b + 3'. */
3963 if (upper_bound == 0)
3965 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3966 INSERT_JUMP (jump, laststart, b + 1
3967 + OFFSET_ADDRESS_SIZE);
3968 b += 1 + OFFSET_ADDRESS_SIZE;
3971 /* Otherwise, we have a nontrivial interval. When
3972 we're all done, the pattern will look like:
3973 set_number_at <jump count> <upper bound>
3974 set_number_at <succeed_n count> <lower bound>
3975 succeed_n <after jump addr> <succeed_n count>
3976 <body of loop>
3977 jump_n <succeed_n addr> <jump count>
3978 (The upper bound and `jump_n' are omitted if
3979 `upper_bound' is 1, though.) */
3980 else
3981 { /* If the upper bound is > 1, we need to insert
3982 more at the end of the loop. */
3983 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3984 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3986 GET_BUFFER_SPACE (nbytes);
3988 /* Initialize lower bound of the `succeed_n', even
3989 though it will be set during matching by its
3990 attendant `set_number_at' (inserted next),
3991 because `re_compile_fastmap' needs to know.
3992 Jump to the `jump_n' we might insert below. */
3993 INSERT_JUMP2 (succeed_n, laststart,
3994 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3995 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3996 , lower_bound);
3997 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3999 /* Code to initialize the lower bound. Insert
4000 before the `succeed_n'. The `5' is the last two
4001 bytes of this `set_number_at', plus 3 bytes of
4002 the following `succeed_n'. */
4003 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4004 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4005 of the following `succeed_n'. */
4006 PREFIX(insert_op2) (set_number_at, laststart, 1
4007 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4008 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4010 if (upper_bound > 1)
4011 { /* More than one repetition is allowed, so
4012 append a backward jump to the `succeed_n'
4013 that starts this interval.
4015 When we've reached this during matching,
4016 we'll have matched the interval once, so
4017 jump back only `upper_bound - 1' times. */
4018 STORE_JUMP2 (jump_n, b, laststart
4019 + 2 * OFFSET_ADDRESS_SIZE + 1,
4020 upper_bound - 1);
4021 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4023 /* The location we want to set is the second
4024 parameter of the `jump_n'; that is `b-2' as
4025 an absolute address. `laststart' will be
4026 the `set_number_at' we're about to insert;
4027 `laststart+3' the number to set, the source
4028 for the relative address. But we are
4029 inserting into the middle of the pattern --
4030 so everything is getting moved up by 5.
4031 Conclusion: (b - 2) - (laststart + 3) + 5,
4032 i.e., b - laststart.
4034 We insert this at the beginning of the loop
4035 so that if we fail during matching, we'll
4036 reinitialize the bounds. */
4037 PREFIX(insert_op2) (set_number_at, laststart,
4038 b - laststart,
4039 upper_bound - 1, b);
4040 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4043 pending_exact = 0;
4044 break;
4046 invalid_interval:
4047 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4048 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4049 unfetch_interval:
4050 /* Match the characters as literals. */
4051 p = beg_interval;
4052 c = '{';
4053 if (syntax & RE_NO_BK_BRACES)
4054 goto normal_char;
4055 else
4056 goto normal_backslash;
4059 #ifdef emacs
4060 /* There is no way to specify the before_dot and after_dot
4061 operators. rms says this is ok. --karl */
4062 case '=':
4063 BUF_PUSH (at_dot);
4064 break;
4066 case 's':
4067 laststart = b;
4068 PATFETCH (c);
4069 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4070 break;
4072 case 'S':
4073 laststart = b;
4074 PATFETCH (c);
4075 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4076 break;
4077 #endif /* emacs */
4080 case 'w':
4081 if (syntax & RE_NO_GNU_OPS)
4082 goto normal_char;
4083 laststart = b;
4084 BUF_PUSH (wordchar);
4085 break;
4088 case 'W':
4089 if (syntax & RE_NO_GNU_OPS)
4090 goto normal_char;
4091 laststart = b;
4092 BUF_PUSH (notwordchar);
4093 break;
4096 case '<':
4097 if (syntax & RE_NO_GNU_OPS)
4098 goto normal_char;
4099 BUF_PUSH (wordbeg);
4100 break;
4102 case '>':
4103 if (syntax & RE_NO_GNU_OPS)
4104 goto normal_char;
4105 BUF_PUSH (wordend);
4106 break;
4108 case 'b':
4109 if (syntax & RE_NO_GNU_OPS)
4110 goto normal_char;
4111 BUF_PUSH (wordbound);
4112 break;
4114 case 'B':
4115 if (syntax & RE_NO_GNU_OPS)
4116 goto normal_char;
4117 BUF_PUSH (notwordbound);
4118 break;
4120 case '`':
4121 if (syntax & RE_NO_GNU_OPS)
4122 goto normal_char;
4123 BUF_PUSH (begbuf);
4124 break;
4126 case '\'':
4127 if (syntax & RE_NO_GNU_OPS)
4128 goto normal_char;
4129 BUF_PUSH (endbuf);
4130 break;
4132 case '1': case '2': case '3': case '4': case '5':
4133 case '6': case '7': case '8': case '9':
4134 if (syntax & RE_NO_BK_REFS)
4135 goto normal_char;
4137 c1 = c - '0';
4139 if (c1 > regnum)
4140 FREE_STACK_RETURN (REG_ESUBREG);
4142 /* Can't back reference to a subexpression if inside of it. */
4143 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4144 goto normal_char;
4146 laststart = b;
4147 BUF_PUSH_2 (duplicate, c1);
4148 break;
4151 case '+':
4152 case '?':
4153 if (syntax & RE_BK_PLUS_QM)
4154 goto handle_plus;
4155 else
4156 goto normal_backslash;
4158 default:
4159 normal_backslash:
4160 /* You might think it would be useful for \ to mean
4161 not to translate; but if we don't translate it
4162 it will never match anything. */
4163 c = TRANSLATE (c);
4164 goto normal_char;
4166 break;
4169 default:
4170 /* Expects the character in `c'. */
4171 normal_char:
4172 /* If no exactn currently being built. */
4173 if (!pending_exact
4174 #ifdef WCHAR
4175 /* If last exactn handle binary(or character) and
4176 new exactn handle character(or binary). */
4177 || is_exactn_bin != is_binary[p - 1 - pattern]
4178 #endif /* WCHAR */
4180 /* If last exactn not at current position. */
4181 || pending_exact + *pending_exact + 1 != b
4183 /* We have only one byte following the exactn for the count. */
4184 || *pending_exact == (1 << BYTEWIDTH) - 1
4186 /* If followed by a repetition operator. */
4187 || *p == '*' || *p == '^'
4188 || ((syntax & RE_BK_PLUS_QM)
4189 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4190 : (*p == '+' || *p == '?'))
4191 || ((syntax & RE_INTERVALS)
4192 && ((syntax & RE_NO_BK_BRACES)
4193 ? *p == '{'
4194 : (p[0] == '\\' && p[1] == '{'))))
4196 /* Start building a new exactn. */
4198 laststart = b;
4200 #ifdef WCHAR
4201 /* Is this exactn binary data or character? */
4202 is_exactn_bin = is_binary[p - 1 - pattern];
4203 if (is_exactn_bin)
4204 BUF_PUSH_2 (exactn_bin, 0);
4205 else
4206 BUF_PUSH_2 (exactn, 0);
4207 #else
4208 BUF_PUSH_2 (exactn, 0);
4209 #endif /* WCHAR */
4210 pending_exact = b - 1;
4213 BUF_PUSH (c);
4214 (*pending_exact)++;
4215 break;
4216 } /* switch (c) */
4217 } /* while p != pend */
4220 /* Through the pattern now. */
4222 if (fixup_alt_jump)
4223 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4225 if (!COMPILE_STACK_EMPTY)
4226 FREE_STACK_RETURN (REG_EPAREN);
4228 /* If we don't want backtracking, force success
4229 the first time we reach the end of the compiled pattern. */
4230 if (syntax & RE_NO_POSIX_BACKTRACKING)
4231 BUF_PUSH (succeed);
4233 #ifdef WCHAR
4234 free (pattern);
4235 free (mbs_offset);
4236 free (is_binary);
4237 #endif
4238 free (compile_stack.stack);
4240 /* We have succeeded; set the length of the buffer. */
4241 #ifdef WCHAR
4242 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4243 #else
4244 bufp->used = b - bufp->buffer;
4245 #endif
4247 #ifdef DEBUG
4248 if (debug)
4250 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4251 PREFIX(print_compiled_pattern) (bufp);
4253 #endif /* DEBUG */
4255 #ifndef MATCH_MAY_ALLOCATE
4256 /* Initialize the failure stack to the largest possible stack. This
4257 isn't necessary unless we're trying to avoid calling alloca in
4258 the search and match routines. */
4260 int num_regs = bufp->re_nsub + 1;
4262 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4263 is strictly greater than re_max_failures, the largest possible stack
4264 is 2 * re_max_failures failure points. */
4265 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4267 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4269 # ifdef emacs
4270 if (! fail_stack.stack)
4271 fail_stack.stack
4272 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4273 * sizeof (PREFIX(fail_stack_elt_t)));
4274 else
4275 fail_stack.stack
4276 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4277 (fail_stack.size
4278 * sizeof (PREFIX(fail_stack_elt_t))));
4279 # else /* not emacs */
4280 if (! fail_stack.stack)
4281 fail_stack.stack
4282 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4283 * sizeof (PREFIX(fail_stack_elt_t)));
4284 else
4285 fail_stack.stack
4286 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4287 (fail_stack.size
4288 * sizeof (PREFIX(fail_stack_elt_t))));
4289 # endif /* not emacs */
4292 PREFIX(regex_grow_registers) (num_regs);
4294 #endif /* not MATCH_MAY_ALLOCATE */
4296 return REG_NOERROR;
4297 } /* regex_compile */
4299 /* Subroutines for `regex_compile'. */
4301 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4302 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4304 static void
4305 PREFIX(store_op1) (op, loc, arg)
4306 re_opcode_t op;
4307 UCHAR_T *loc;
4308 int arg;
4310 *loc = (UCHAR_T) op;
4311 STORE_NUMBER (loc + 1, arg);
4315 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4316 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4318 static void
4319 PREFIX(store_op2) (op, loc, arg1, arg2)
4320 re_opcode_t op;
4321 UCHAR_T *loc;
4322 int arg1, arg2;
4324 *loc = (UCHAR_T) op;
4325 STORE_NUMBER (loc + 1, arg1);
4326 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4330 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4331 for OP followed by two-byte integer parameter ARG. */
4332 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4334 static void
4335 PREFIX(insert_op1) (op, loc, arg, end)
4336 re_opcode_t op;
4337 UCHAR_T *loc;
4338 int arg;
4339 UCHAR_T *end;
4341 register UCHAR_T *pfrom = end;
4342 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4344 while (pfrom != loc)
4345 *--pto = *--pfrom;
4347 PREFIX(store_op1) (op, loc, arg);
4351 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4352 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4354 static void
4355 PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4356 re_opcode_t op;
4357 UCHAR_T *loc;
4358 int arg1, arg2;
4359 UCHAR_T *end;
4361 register UCHAR_T *pfrom = end;
4362 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4364 while (pfrom != loc)
4365 *--pto = *--pfrom;
4367 PREFIX(store_op2) (op, loc, arg1, arg2);
4371 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4372 after an alternative or a begin-subexpression. We assume there is at
4373 least one character before the ^. */
4375 static boolean
4376 PREFIX(at_begline_loc_p) (pattern, p, syntax)
4377 const CHAR_T *pattern, *p;
4378 reg_syntax_t syntax;
4380 const CHAR_T *prev = p - 2;
4381 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4383 return
4384 /* After a subexpression? */
4385 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4386 /* After an alternative? */
4387 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4391 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4392 at least one character after the $, i.e., `P < PEND'. */
4394 static boolean
4395 PREFIX(at_endline_loc_p) (p, pend, syntax)
4396 const CHAR_T *p, *pend;
4397 reg_syntax_t syntax;
4399 const CHAR_T *next = p;
4400 boolean next_backslash = *next == '\\';
4401 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4403 return
4404 /* Before a subexpression? */
4405 (syntax & RE_NO_BK_PARENS ? *next == ')'
4406 : next_backslash && next_next && *next_next == ')')
4407 /* Before an alternative? */
4408 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4409 : next_backslash && next_next && *next_next == '|');
4412 #else /* not INSIDE_RECURSION */
4414 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4415 false if it's not. */
4417 static boolean
4418 group_in_compile_stack (compile_stack, regnum)
4419 compile_stack_type compile_stack;
4420 regnum_t regnum;
4422 int this_element;
4424 for (this_element = compile_stack.avail - 1;
4425 this_element >= 0;
4426 this_element--)
4427 if (compile_stack.stack[this_element].regnum == regnum)
4428 return true;
4430 return false;
4432 #endif /* not INSIDE_RECURSION */
4434 #ifdef INSIDE_RECURSION
4436 #ifdef WCHAR
4437 /* This insert space, which size is "num", into the pattern at "loc".
4438 "end" must point the end of the allocated buffer. */
4439 static void
4440 insert_space (num, loc, end)
4441 int num;
4442 CHAR_T *loc;
4443 CHAR_T *end;
4445 register CHAR_T *pto = end;
4446 register CHAR_T *pfrom = end - num;
4448 while (pfrom >= loc)
4449 *pto-- = *pfrom--;
4451 #endif /* WCHAR */
4453 #ifdef WCHAR
4454 static reg_errcode_t
4455 wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4456 char_set)
4457 CHAR_T range_start_char;
4458 const CHAR_T **p_ptr, *pend;
4459 CHAR_T *char_set, *b;
4460 RE_TRANSLATE_TYPE translate;
4461 reg_syntax_t syntax;
4463 const CHAR_T *p = *p_ptr;
4464 CHAR_T range_start, range_end;
4465 reg_errcode_t ret;
4466 # ifdef _LIBC
4467 uint32_t nrules;
4468 uint32_t start_val, end_val;
4469 # endif
4470 if (p == pend)
4471 return REG_ERANGE;
4473 # ifdef _LIBC
4474 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4475 if (nrules != 0)
4477 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4478 _NL_COLLATE_COLLSEQWC);
4479 const unsigned char *extra = (const unsigned char *)
4480 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4482 if (range_start_char < -1)
4484 /* range_start is a collating symbol. */
4485 int32_t *wextra;
4486 /* Retreive the index and get collation sequence value. */
4487 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4488 start_val = wextra[1 + *wextra];
4490 else
4491 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4493 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4495 /* Report an error if the range is empty and the syntax prohibits
4496 this. */
4497 ret = ((syntax & RE_NO_EMPTY_RANGES)
4498 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4500 /* Insert space to the end of the char_ranges. */
4501 insert_space(2, b - char_set[5] - 2, b - 1);
4502 *(b - char_set[5] - 2) = (wchar_t)start_val;
4503 *(b - char_set[5] - 1) = (wchar_t)end_val;
4504 char_set[4]++; /* ranges_index */
4506 else
4507 # endif
4509 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4510 range_start_char;
4511 range_end = TRANSLATE (p[0]);
4512 /* Report an error if the range is empty and the syntax prohibits
4513 this. */
4514 ret = ((syntax & RE_NO_EMPTY_RANGES)
4515 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4517 /* Insert space to the end of the char_ranges. */
4518 insert_space(2, b - char_set[5] - 2, b - 1);
4519 *(b - char_set[5] - 2) = range_start;
4520 *(b - char_set[5] - 1) = range_end;
4521 char_set[4]++; /* ranges_index */
4523 /* Have to increment the pointer into the pattern string, so the
4524 caller isn't still at the ending character. */
4525 (*p_ptr)++;
4527 return ret;
4529 #else /* BYTE */
4530 /* Read the ending character of a range (in a bracket expression) from the
4531 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4532 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4533 Then we set the translation of all bits between the starting and
4534 ending characters (inclusive) in the compiled pattern B.
4536 Return an error code.
4538 We use these short variable names so we can use the same macros as
4539 `regex_compile' itself. */
4541 static reg_errcode_t
4542 byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4543 unsigned int range_start_char;
4544 const char **p_ptr, *pend;
4545 RE_TRANSLATE_TYPE translate;
4546 reg_syntax_t syntax;
4547 unsigned char *b;
4549 unsigned this_char;
4550 const char *p = *p_ptr;
4551 reg_errcode_t ret;
4552 # if _LIBC
4553 const unsigned char *collseq;
4554 unsigned int start_colseq;
4555 unsigned int end_colseq;
4556 # else
4557 unsigned end_char;
4558 # endif
4560 if (p == pend)
4561 return REG_ERANGE;
4563 /* Have to increment the pointer into the pattern string, so the
4564 caller isn't still at the ending character. */
4565 (*p_ptr)++;
4567 /* Report an error if the range is empty and the syntax prohibits this. */
4568 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4570 # if _LIBC
4571 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4572 _NL_COLLATE_COLLSEQMB);
4574 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4575 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4576 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4578 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4580 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4582 SET_LIST_BIT (TRANSLATE (this_char));
4583 ret = REG_NOERROR;
4586 # else
4587 /* Here we see why `this_char' has to be larger than an `unsigned
4588 char' -- we would otherwise go into an infinite loop, since all
4589 characters <= 0xff. */
4590 range_start_char = TRANSLATE (range_start_char);
4591 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4592 and some compilers cast it to int implicitly, so following for_loop
4593 may fall to (almost) infinite loop.
4594 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4595 To avoid this, we cast p[0] to unsigned int and truncate it. */
4596 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4598 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4600 SET_LIST_BIT (TRANSLATE (this_char));
4601 ret = REG_NOERROR;
4603 # endif
4605 return ret;
4607 #endif /* WCHAR */
4609 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4610 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4611 characters can start a string that matches the pattern. This fastmap
4612 is used by re_search to skip quickly over impossible starting points.
4614 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4615 area as BUFP->fastmap.
4617 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4618 the pattern buffer.
4620 Returns 0 if we succeed, -2 if an internal error. */
4622 #ifdef WCHAR
4623 /* local function for re_compile_fastmap.
4624 truncate wchar_t character to char. */
4625 static unsigned char truncate_wchar (CHAR_T c);
4627 static unsigned char
4628 truncate_wchar (c)
4629 CHAR_T c;
4631 unsigned char buf[MB_CUR_MAX];
4632 mbstate_t state;
4633 int retval;
4634 memset (&state, '\0', sizeof (state));
4635 # ifdef _LIBC
4636 retval = __wcrtomb (buf, c, &state);
4637 # else
4638 retval = wcrtomb (buf, c, &state);
4639 # endif
4640 return retval > 0 ? buf[0] : (unsigned char) c;
4642 #endif /* WCHAR */
4644 static int
4645 PREFIX(re_compile_fastmap) (bufp)
4646 struct re_pattern_buffer *bufp;
4648 int j, k;
4649 #ifdef MATCH_MAY_ALLOCATE
4650 PREFIX(fail_stack_type) fail_stack;
4651 #endif
4652 #ifndef REGEX_MALLOC
4653 char *destination;
4654 #endif
4656 register char *fastmap = bufp->fastmap;
4658 #ifdef WCHAR
4659 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4660 pattern to (char*) in regex_compile. */
4661 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4662 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4663 #else /* BYTE */
4664 UCHAR_T *pattern = bufp->buffer;
4665 register UCHAR_T *pend = pattern + bufp->used;
4666 #endif /* WCHAR */
4667 UCHAR_T *p = pattern;
4669 #ifdef REL_ALLOC
4670 /* This holds the pointer to the failure stack, when
4671 it is allocated relocatably. */
4672 fail_stack_elt_t *failure_stack_ptr;
4673 #endif
4675 /* Assume that each path through the pattern can be null until
4676 proven otherwise. We set this false at the bottom of switch
4677 statement, to which we get only if a particular path doesn't
4678 match the empty string. */
4679 boolean path_can_be_null = true;
4681 /* We aren't doing a `succeed_n' to begin with. */
4682 boolean succeed_n_p = false;
4684 assert (fastmap != NULL && p != NULL);
4686 INIT_FAIL_STACK ();
4687 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4688 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4689 bufp->can_be_null = 0;
4691 while (1)
4693 if (p == pend || *p == succeed)
4695 /* We have reached the (effective) end of pattern. */
4696 if (!FAIL_STACK_EMPTY ())
4698 bufp->can_be_null |= path_can_be_null;
4700 /* Reset for next path. */
4701 path_can_be_null = true;
4703 p = fail_stack.stack[--fail_stack.avail].pointer;
4705 continue;
4707 else
4708 break;
4711 /* We should never be about to go beyond the end of the pattern. */
4712 assert (p < pend);
4714 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4717 /* I guess the idea here is to simply not bother with a fastmap
4718 if a backreference is used, since it's too hard to figure out
4719 the fastmap for the corresponding group. Setting
4720 `can_be_null' stops `re_search_2' from using the fastmap, so
4721 that is all we do. */
4722 case duplicate:
4723 bufp->can_be_null = 1;
4724 goto done;
4727 /* Following are the cases which match a character. These end
4728 with `break'. */
4730 #ifdef WCHAR
4731 case exactn:
4732 fastmap[truncate_wchar(p[1])] = 1;
4733 break;
4734 #else /* BYTE */
4735 case exactn:
4736 fastmap[p[1]] = 1;
4737 break;
4738 #endif /* WCHAR */
4739 #ifdef MBS_SUPPORT
4740 case exactn_bin:
4741 fastmap[p[1]] = 1;
4742 break;
4743 #endif
4745 #ifdef WCHAR
4746 /* It is hard to distinguish fastmap from (multi byte) characters
4747 which depends on current locale. */
4748 case charset:
4749 case charset_not:
4750 case wordchar:
4751 case notwordchar:
4752 bufp->can_be_null = 1;
4753 goto done;
4754 #else /* BYTE */
4755 case charset:
4756 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4757 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4758 fastmap[j] = 1;
4759 break;
4762 case charset_not:
4763 /* Chars beyond end of map must be allowed. */
4764 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4765 fastmap[j] = 1;
4767 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4768 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4769 fastmap[j] = 1;
4770 break;
4773 case wordchar:
4774 for (j = 0; j < (1 << BYTEWIDTH); j++)
4775 if (SYNTAX (j) == Sword)
4776 fastmap[j] = 1;
4777 break;
4780 case notwordchar:
4781 for (j = 0; j < (1 << BYTEWIDTH); j++)
4782 if (SYNTAX (j) != Sword)
4783 fastmap[j] = 1;
4784 break;
4785 #endif /* WCHAR */
4787 case anychar:
4789 int fastmap_newline = fastmap['\n'];
4791 /* `.' matches anything ... */
4792 for (j = 0; j < (1 << BYTEWIDTH); j++)
4793 fastmap[j] = 1;
4795 /* ... except perhaps newline. */
4796 if (!(bufp->syntax & RE_DOT_NEWLINE))
4797 fastmap['\n'] = fastmap_newline;
4799 /* Return if we have already set `can_be_null'; if we have,
4800 then the fastmap is irrelevant. Something's wrong here. */
4801 else if (bufp->can_be_null)
4802 goto done;
4804 /* Otherwise, have to check alternative paths. */
4805 break;
4808 #ifdef emacs
4809 case syntaxspec:
4810 k = *p++;
4811 for (j = 0; j < (1 << BYTEWIDTH); j++)
4812 if (SYNTAX (j) == (enum syntaxcode) k)
4813 fastmap[j] = 1;
4814 break;
4817 case notsyntaxspec:
4818 k = *p++;
4819 for (j = 0; j < (1 << BYTEWIDTH); j++)
4820 if (SYNTAX (j) != (enum syntaxcode) k)
4821 fastmap[j] = 1;
4822 break;
4825 /* All cases after this match the empty string. These end with
4826 `continue'. */
4829 case before_dot:
4830 case at_dot:
4831 case after_dot:
4832 continue;
4833 #endif /* emacs */
4836 case no_op:
4837 case begline:
4838 case endline:
4839 case begbuf:
4840 case endbuf:
4841 case wordbound:
4842 case notwordbound:
4843 case wordbeg:
4844 case wordend:
4845 case push_dummy_failure:
4846 continue;
4849 case jump_n:
4850 case pop_failure_jump:
4851 case maybe_pop_jump:
4852 case jump:
4853 case jump_past_alt:
4854 case dummy_failure_jump:
4855 EXTRACT_NUMBER_AND_INCR (j, p);
4856 p += j;
4857 if (j > 0)
4858 continue;
4860 /* Jump backward implies we just went through the body of a
4861 loop and matched nothing. Opcode jumped to should be
4862 `on_failure_jump' or `succeed_n'. Just treat it like an
4863 ordinary jump. For a * loop, it has pushed its failure
4864 point already; if so, discard that as redundant. */
4865 if ((re_opcode_t) *p != on_failure_jump
4866 && (re_opcode_t) *p != succeed_n)
4867 continue;
4869 p++;
4870 EXTRACT_NUMBER_AND_INCR (j, p);
4871 p += j;
4873 /* If what's on the stack is where we are now, pop it. */
4874 if (!FAIL_STACK_EMPTY ()
4875 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4876 fail_stack.avail--;
4878 continue;
4881 case on_failure_jump:
4882 case on_failure_keep_string_jump:
4883 handle_on_failure_jump:
4884 EXTRACT_NUMBER_AND_INCR (j, p);
4886 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4887 end of the pattern. We don't want to push such a point,
4888 since when we restore it above, entering the switch will
4889 increment `p' past the end of the pattern. We don't need
4890 to push such a point since we obviously won't find any more
4891 fastmap entries beyond `pend'. Such a pattern can match
4892 the null string, though. */
4893 if (p + j < pend)
4895 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4897 RESET_FAIL_STACK ();
4898 return -2;
4901 else
4902 bufp->can_be_null = 1;
4904 if (succeed_n_p)
4906 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4907 succeed_n_p = false;
4910 continue;
4913 case succeed_n:
4914 /* Get to the number of times to succeed. */
4915 p += OFFSET_ADDRESS_SIZE;
4917 /* Increment p past the n for when k != 0. */
4918 EXTRACT_NUMBER_AND_INCR (k, p);
4919 if (k == 0)
4921 p -= 2 * OFFSET_ADDRESS_SIZE;
4922 succeed_n_p = true; /* Spaghetti code alert. */
4923 goto handle_on_failure_jump;
4925 continue;
4928 case set_number_at:
4929 p += 2 * OFFSET_ADDRESS_SIZE;
4930 continue;
4933 case start_memory:
4934 case stop_memory:
4935 p += 2;
4936 continue;
4939 default:
4940 abort (); /* We have listed all the cases. */
4941 } /* switch *p++ */
4943 /* Getting here means we have found the possible starting
4944 characters for one path of the pattern -- and that the empty
4945 string does not match. We need not follow this path further.
4946 Instead, look at the next alternative (remembered on the
4947 stack), or quit if no more. The test at the top of the loop
4948 does these things. */
4949 path_can_be_null = false;
4950 p = pend;
4951 } /* while p */
4953 /* Set `can_be_null' for the last path (also the first path, if the
4954 pattern is empty). */
4955 bufp->can_be_null |= path_can_be_null;
4957 done:
4958 RESET_FAIL_STACK ();
4959 return 0;
4962 #else /* not INSIDE_RECURSION */
4965 re_compile_fastmap (bufp)
4966 struct re_pattern_buffer *bufp;
4968 # ifdef MBS_SUPPORT
4969 if (MB_CUR_MAX != 1)
4970 return wcs_re_compile_fastmap(bufp);
4971 else
4972 # endif
4973 return byte_re_compile_fastmap(bufp);
4974 } /* re_compile_fastmap */
4975 #ifdef _LIBC
4976 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4977 #endif
4980 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4981 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4982 this memory for recording register information. STARTS and ENDS
4983 must be allocated using the malloc library routine, and must each
4984 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4986 If NUM_REGS == 0, then subsequent matches should allocate their own
4987 register data.
4989 Unless this function is called, the first search or match using
4990 PATTERN_BUFFER will allocate its own register data, without
4991 freeing the old data. */
4993 void
4994 re_set_registers (bufp, regs, num_regs, starts, ends)
4995 struct re_pattern_buffer *bufp;
4996 struct re_registers *regs;
4997 unsigned num_regs;
4998 regoff_t *starts, *ends;
5000 if (num_regs)
5002 bufp->regs_allocated = REGS_REALLOCATE;
5003 regs->num_regs = num_regs;
5004 regs->start = starts;
5005 regs->end = ends;
5007 else
5009 bufp->regs_allocated = REGS_UNALLOCATED;
5010 regs->num_regs = 0;
5011 regs->start = regs->end = (regoff_t *) 0;
5014 #ifdef _LIBC
5015 weak_alias (__re_set_registers, re_set_registers)
5016 #endif
5018 /* Searching routines. */
5020 /* Like re_search_2, below, but only one string is specified, and
5021 doesn't let you say where to stop matching. */
5024 re_search (bufp, string, size, startpos, range, regs)
5025 struct re_pattern_buffer *bufp;
5026 const char *string;
5027 int size, startpos, range;
5028 struct re_registers *regs;
5030 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5031 regs, size);
5033 #ifdef _LIBC
5034 weak_alias (__re_search, re_search)
5035 #endif
5038 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5039 virtual concatenation of STRING1 and STRING2, starting first at index
5040 STARTPOS, then at STARTPOS + 1, and so on.
5042 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5044 RANGE is how far to scan while trying to match. RANGE = 0 means try
5045 only at STARTPOS; in general, the last start tried is STARTPOS +
5046 RANGE.
5048 In REGS, return the indices of the virtual concatenation of STRING1
5049 and STRING2 that matched the entire BUFP->buffer and its contained
5050 subexpressions.
5052 Do not consider matching one past the index STOP in the virtual
5053 concatenation of STRING1 and STRING2.
5055 We return either the position in the strings at which the match was
5056 found, -1 if no match, or -2 if error (such as failure
5057 stack overflow). */
5060 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5061 struct re_pattern_buffer *bufp;
5062 const char *string1, *string2;
5063 int size1, size2;
5064 int startpos;
5065 int range;
5066 struct re_registers *regs;
5067 int stop;
5069 # ifdef MBS_SUPPORT
5070 if (MB_CUR_MAX != 1)
5071 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5072 range, regs, stop);
5073 else
5074 # endif
5075 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5076 range, regs, stop);
5077 } /* re_search_2 */
5078 #ifdef _LIBC
5079 weak_alias (__re_search_2, re_search_2)
5080 #endif
5082 #endif /* not INSIDE_RECURSION */
5084 #ifdef INSIDE_RECURSION
5086 #ifdef MATCH_MAY_ALLOCATE
5087 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5088 #else
5089 # define FREE_VAR(var) if (var) free (var); var = NULL
5090 #endif
5092 #ifdef WCHAR
5093 # define MAX_ALLOCA_SIZE 2000
5095 # define FREE_WCS_BUFFERS() \
5096 do { \
5097 if (size1 > MAX_ALLOCA_SIZE) \
5099 free (wcs_string1); \
5100 free (mbs_offset1); \
5102 else \
5104 FREE_VAR (wcs_string1); \
5105 FREE_VAR (mbs_offset1); \
5107 if (size2 > MAX_ALLOCA_SIZE) \
5109 free (wcs_string2); \
5110 free (mbs_offset2); \
5112 else \
5114 FREE_VAR (wcs_string2); \
5115 FREE_VAR (mbs_offset2); \
5117 } while (0)
5119 #endif
5122 static int
5123 PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5124 regs, stop)
5125 struct re_pattern_buffer *bufp;
5126 const char *string1, *string2;
5127 int size1, size2;
5128 int startpos;
5129 int range;
5130 struct re_registers *regs;
5131 int stop;
5133 int val;
5134 register char *fastmap = bufp->fastmap;
5135 register RE_TRANSLATE_TYPE translate = bufp->translate;
5136 int total_size = size1 + size2;
5137 int endpos = startpos + range;
5138 #ifdef WCHAR
5139 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5140 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5141 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5142 int wcs_size1 = 0, wcs_size2 = 0;
5143 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5144 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5145 /* They hold whether each wchar_t is binary data or not. */
5146 char *is_binary = NULL;
5147 #endif /* WCHAR */
5149 /* Check for out-of-range STARTPOS. */
5150 if (startpos < 0 || startpos > total_size)
5151 return -1;
5153 /* Fix up RANGE if it might eventually take us outside
5154 the virtual concatenation of STRING1 and STRING2.
5155 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5156 if (endpos < 0)
5157 range = 0 - startpos;
5158 else if (endpos > total_size)
5159 range = total_size - startpos;
5161 /* If the search isn't to be a backwards one, don't waste time in a
5162 search for a pattern that must be anchored. */
5163 if (bufp->used > 0 && range > 0
5164 && ((re_opcode_t) bufp->buffer[0] == begbuf
5165 /* `begline' is like `begbuf' if it cannot match at newlines. */
5166 || ((re_opcode_t) bufp->buffer[0] == begline
5167 && !bufp->newline_anchor)))
5169 if (startpos > 0)
5170 return -1;
5171 else
5172 range = 1;
5175 #ifdef emacs
5176 /* In a forward search for something that starts with \=.
5177 don't keep searching past point. */
5178 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5180 range = PT - startpos;
5181 if (range <= 0)
5182 return -1;
5184 #endif /* emacs */
5186 /* Update the fastmap now if not correct already. */
5187 if (fastmap && !bufp->fastmap_accurate)
5188 if (re_compile_fastmap (bufp) == -2)
5189 return -2;
5191 #ifdef WCHAR
5192 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5193 fill them with converted string. */
5194 if (size1 != 0)
5196 if (size1 > MAX_ALLOCA_SIZE)
5198 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5199 mbs_offset1 = TALLOC (size1 + 1, int);
5200 is_binary = TALLOC (size1 + 1, char);
5202 else
5204 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5205 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5206 is_binary = REGEX_TALLOC (size1 + 1, char);
5208 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5210 if (size1 > MAX_ALLOCA_SIZE)
5212 free (wcs_string1);
5213 free (mbs_offset1);
5214 free (is_binary);
5216 else
5218 FREE_VAR (wcs_string1);
5219 FREE_VAR (mbs_offset1);
5220 FREE_VAR (is_binary);
5222 return -2;
5224 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5225 mbs_offset1, is_binary);
5226 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5227 if (size1 > MAX_ALLOCA_SIZE)
5228 free (is_binary);
5229 else
5230 FREE_VAR (is_binary);
5232 if (size2 != 0)
5234 if (size2 > MAX_ALLOCA_SIZE)
5236 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5237 mbs_offset2 = TALLOC (size2 + 1, int);
5238 is_binary = TALLOC (size2 + 1, char);
5240 else
5242 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5243 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5244 is_binary = REGEX_TALLOC (size2 + 1, char);
5246 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5248 FREE_WCS_BUFFERS ();
5249 if (size2 > MAX_ALLOCA_SIZE)
5250 free (is_binary);
5251 else
5252 FREE_VAR (is_binary);
5253 return -2;
5255 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5256 mbs_offset2, is_binary);
5257 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5258 if (size2 > MAX_ALLOCA_SIZE)
5259 free (is_binary);
5260 else
5261 FREE_VAR (is_binary);
5263 #endif /* WCHAR */
5266 /* Loop through the string, looking for a place to start matching. */
5267 for (;;)
5269 /* If a fastmap is supplied, skip quickly over characters that
5270 cannot be the start of a match. If the pattern can match the
5271 null string, however, we don't need to skip characters; we want
5272 the first null string. */
5273 if (fastmap && startpos < total_size && !bufp->can_be_null)
5275 if (range > 0) /* Searching forwards. */
5277 register const char *d;
5278 register int lim = 0;
5279 int irange = range;
5281 if (startpos < size1 && startpos + range >= size1)
5282 lim = range - (size1 - startpos);
5284 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5286 /* Written out as an if-else to avoid testing `translate'
5287 inside the loop. */
5288 if (translate)
5289 while (range > lim
5290 && !fastmap[(unsigned char)
5291 translate[(unsigned char) *d++]])
5292 range--;
5293 else
5294 while (range > lim && !fastmap[(unsigned char) *d++])
5295 range--;
5297 startpos += irange - range;
5299 else /* Searching backwards. */
5301 register CHAR_T c = (size1 == 0 || startpos >= size1
5302 ? string2[startpos - size1]
5303 : string1[startpos]);
5305 if (!fastmap[(unsigned char) TRANSLATE (c)])
5306 goto advance;
5310 /* If can't match the null string, and that's all we have left, fail. */
5311 if (range >= 0 && startpos == total_size && fastmap
5312 && !bufp->can_be_null)
5314 #ifdef WCHAR
5315 FREE_WCS_BUFFERS ();
5316 #endif
5317 return -1;
5320 #ifdef WCHAR
5321 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5322 size2, startpos, regs, stop,
5323 wcs_string1, wcs_size1,
5324 wcs_string2, wcs_size2,
5325 mbs_offset1, mbs_offset2);
5326 #else /* BYTE */
5327 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5328 size2, startpos, regs, stop);
5329 #endif /* BYTE */
5331 #ifndef REGEX_MALLOC
5332 # ifdef C_ALLOCA
5333 alloca (0);
5334 # endif
5335 #endif
5337 if (val >= 0)
5339 #ifdef WCHAR
5340 FREE_WCS_BUFFERS ();
5341 #endif
5342 return startpos;
5345 if (val == -2)
5347 #ifdef WCHAR
5348 FREE_WCS_BUFFERS ();
5349 #endif
5350 return -2;
5353 advance:
5354 if (!range)
5355 break;
5356 else if (range > 0)
5358 range--;
5359 startpos++;
5361 else
5363 range++;
5364 startpos--;
5367 #ifdef WCHAR
5368 FREE_WCS_BUFFERS ();
5369 #endif
5370 return -1;
5373 #ifdef WCHAR
5374 /* This converts PTR, a pointer into one of the search wchar_t strings
5375 `string1' and `string2' into an multibyte string offset from the
5376 beginning of that string. We use mbs_offset to optimize.
5377 See convert_mbs_to_wcs. */
5378 # define POINTER_TO_OFFSET(ptr) \
5379 (FIRST_STRING_P (ptr) \
5380 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5381 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5382 + csize1)))
5383 #else /* BYTE */
5384 /* This converts PTR, a pointer into one of the search strings `string1'
5385 and `string2' into an offset from the beginning of that string. */
5386 # define POINTER_TO_OFFSET(ptr) \
5387 (FIRST_STRING_P (ptr) \
5388 ? ((regoff_t) ((ptr) - string1)) \
5389 : ((regoff_t) ((ptr) - string2 + size1)))
5390 #endif /* WCHAR */
5392 /* Macros for dealing with the split strings in re_match_2. */
5394 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5396 /* Call before fetching a character with *d. This switches over to
5397 string2 if necessary. */
5398 #define PREFETCH() \
5399 while (d == dend) \
5401 /* End of string2 => fail. */ \
5402 if (dend == end_match_2) \
5403 goto fail; \
5404 /* End of string1 => advance to string2. */ \
5405 d = string2; \
5406 dend = end_match_2; \
5409 /* Test if at very beginning or at very end of the virtual concatenation
5410 of `string1' and `string2'. If only one string, it's `string2'. */
5411 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5412 #define AT_STRINGS_END(d) ((d) == end2)
5415 /* Test if D points to a character which is word-constituent. We have
5416 two special cases to check for: if past the end of string1, look at
5417 the first character in string2; and if before the beginning of
5418 string2, look at the last character in string1. */
5419 #ifdef WCHAR
5420 /* Use internationalized API instead of SYNTAX. */
5421 # define WORDCHAR_P(d) \
5422 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5423 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5424 || ((d) == end1 ? *string2 \
5425 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5426 #else /* BYTE */
5427 # define WORDCHAR_P(d) \
5428 (SYNTAX ((d) == end1 ? *string2 \
5429 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5430 == Sword)
5431 #endif /* WCHAR */
5433 /* Disabled due to a compiler bug -- see comment at case wordbound */
5434 #if 0
5435 /* Test if the character before D and the one at D differ with respect
5436 to being word-constituent. */
5437 #define AT_WORD_BOUNDARY(d) \
5438 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5439 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5440 #endif
5442 /* Free everything we malloc. */
5443 #ifdef MATCH_MAY_ALLOCATE
5444 # ifdef WCHAR
5445 # define FREE_VARIABLES() \
5446 do { \
5447 REGEX_FREE_STACK (fail_stack.stack); \
5448 FREE_VAR (regstart); \
5449 FREE_VAR (regend); \
5450 FREE_VAR (old_regstart); \
5451 FREE_VAR (old_regend); \
5452 FREE_VAR (best_regstart); \
5453 FREE_VAR (best_regend); \
5454 FREE_VAR (reg_info); \
5455 FREE_VAR (reg_dummy); \
5456 FREE_VAR (reg_info_dummy); \
5457 if (!cant_free_wcs_buf) \
5459 FREE_VAR (string1); \
5460 FREE_VAR (string2); \
5461 FREE_VAR (mbs_offset1); \
5462 FREE_VAR (mbs_offset2); \
5464 } while (0)
5465 # else /* BYTE */
5466 # define FREE_VARIABLES() \
5467 do { \
5468 REGEX_FREE_STACK (fail_stack.stack); \
5469 FREE_VAR (regstart); \
5470 FREE_VAR (regend); \
5471 FREE_VAR (old_regstart); \
5472 FREE_VAR (old_regend); \
5473 FREE_VAR (best_regstart); \
5474 FREE_VAR (best_regend); \
5475 FREE_VAR (reg_info); \
5476 FREE_VAR (reg_dummy); \
5477 FREE_VAR (reg_info_dummy); \
5478 } while (0)
5479 # endif /* WCHAR */
5480 #else
5481 # ifdef WCHAR
5482 # define FREE_VARIABLES() \
5483 do { \
5484 if (!cant_free_wcs_buf) \
5486 FREE_VAR (string1); \
5487 FREE_VAR (string2); \
5488 FREE_VAR (mbs_offset1); \
5489 FREE_VAR (mbs_offset2); \
5491 } while (0)
5492 # else /* BYTE */
5493 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5494 # endif /* WCHAR */
5495 #endif /* not MATCH_MAY_ALLOCATE */
5497 /* These values must meet several constraints. They must not be valid
5498 register values; since we have a limit of 255 registers (because
5499 we use only one byte in the pattern for the register number), we can
5500 use numbers larger than 255. They must differ by 1, because of
5501 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5502 be larger than the value for the highest register, so we do not try
5503 to actually save any registers when none are active. */
5504 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5505 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5507 #else /* not INSIDE_RECURSION */
5508 /* Matching routines. */
5510 #ifndef emacs /* Emacs never uses this. */
5511 /* re_match is like re_match_2 except it takes only a single string. */
5514 re_match (bufp, string, size, pos, regs)
5515 struct re_pattern_buffer *bufp;
5516 const char *string;
5517 int size, pos;
5518 struct re_registers *regs;
5520 int result;
5521 # ifdef MBS_SUPPORT
5522 if (MB_CUR_MAX != 1)
5523 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5524 pos, regs, size,
5525 NULL, 0, NULL, 0, NULL, NULL);
5526 else
5527 # endif
5528 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5529 pos, regs, size);
5530 # ifndef REGEX_MALLOC
5531 # ifdef C_ALLOCA
5532 alloca (0);
5533 # endif
5534 # endif
5535 return result;
5537 # ifdef _LIBC
5538 weak_alias (__re_match, re_match)
5539 # endif
5540 #endif /* not emacs */
5542 #endif /* not INSIDE_RECURSION */
5544 #ifdef INSIDE_RECURSION
5545 static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5546 UCHAR_T *end,
5547 PREFIX(register_info_type) *reg_info));
5548 static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5549 UCHAR_T *end,
5550 PREFIX(register_info_type) *reg_info));
5551 static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5552 UCHAR_T *end,
5553 PREFIX(register_info_type) *reg_info));
5554 static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5555 int len, char *translate));
5556 #else /* not INSIDE_RECURSION */
5558 /* re_match_2 matches the compiled pattern in BUFP against the
5559 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5560 and SIZE2, respectively). We start matching at POS, and stop
5561 matching at STOP.
5563 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5564 store offsets for the substring each group matched in REGS. See the
5565 documentation for exactly how many groups we fill.
5567 We return -1 if no match, -2 if an internal error (such as the
5568 failure stack overflowing). Otherwise, we return the length of the
5569 matched substring. */
5572 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5573 struct re_pattern_buffer *bufp;
5574 const char *string1, *string2;
5575 int size1, size2;
5576 int pos;
5577 struct re_registers *regs;
5578 int stop;
5580 int result;
5581 # ifdef MBS_SUPPORT
5582 if (MB_CUR_MAX != 1)
5583 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5584 pos, regs, stop,
5585 NULL, 0, NULL, 0, NULL, NULL);
5586 else
5587 # endif
5588 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5589 pos, regs, stop);
5591 #ifndef REGEX_MALLOC
5592 # ifdef C_ALLOCA
5593 alloca (0);
5594 # endif
5595 #endif
5596 return result;
5598 #ifdef _LIBC
5599 weak_alias (__re_match_2, re_match_2)
5600 #endif
5602 #endif /* not INSIDE_RECURSION */
5604 #ifdef INSIDE_RECURSION
5606 #ifdef WCHAR
5607 static int count_mbs_length PARAMS ((int *, int));
5609 /* This check the substring (from 0, to length) of the multibyte string,
5610 to which offset_buffer correspond. And count how many wchar_t_characters
5611 the substring occupy. We use offset_buffer to optimization.
5612 See convert_mbs_to_wcs. */
5614 static int
5615 count_mbs_length(offset_buffer, length)
5616 int *offset_buffer;
5617 int length;
5619 int upper, lower;
5621 /* Check whether the size is valid. */
5622 if (length < 0)
5623 return -1;
5625 if (offset_buffer == NULL)
5626 return 0;
5628 /* If there are no multibyte character, offset_buffer[i] == i.
5629 Optmize for this case. */
5630 if (offset_buffer[length] == length)
5631 return length;
5633 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5634 upper = length;
5635 lower = 0;
5637 while (true)
5639 int middle = (lower + upper) / 2;
5640 if (middle == lower || middle == upper)
5641 break;
5642 if (offset_buffer[middle] > length)
5643 upper = middle;
5644 else if (offset_buffer[middle] < length)
5645 lower = middle;
5646 else
5647 return middle;
5650 return -1;
5652 #endif /* WCHAR */
5654 /* This is a separate function so that we can force an alloca cleanup
5655 afterwards. */
5656 #ifdef WCHAR
5657 static int
5658 wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5659 regs, stop, string1, size1, string2, size2,
5660 mbs_offset1, mbs_offset2)
5661 struct re_pattern_buffer *bufp;
5662 const char *cstring1, *cstring2;
5663 int csize1, csize2;
5664 int pos;
5665 struct re_registers *regs;
5666 int stop;
5667 /* string1 == string2 == NULL means string1/2, size1/2 and
5668 mbs_offset1/2 need seting up in this function. */
5669 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5670 wchar_t *string1, *string2;
5671 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5672 int size1, size2;
5673 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5674 int *mbs_offset1, *mbs_offset2;
5675 #else /* BYTE */
5676 static int
5677 byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5678 regs, stop)
5679 struct re_pattern_buffer *bufp;
5680 const char *string1, *string2;
5681 int size1, size2;
5682 int pos;
5683 struct re_registers *regs;
5684 int stop;
5685 #endif /* BYTE */
5687 /* General temporaries. */
5688 int mcnt;
5689 UCHAR_T *p1;
5690 #ifdef WCHAR
5691 /* They hold whether each wchar_t is binary data or not. */
5692 char *is_binary = NULL;
5693 /* If true, we can't free string1/2, mbs_offset1/2. */
5694 int cant_free_wcs_buf = 1;
5695 #endif /* WCHAR */
5697 /* Just past the end of the corresponding string. */
5698 const CHAR_T *end1, *end2;
5700 /* Pointers into string1 and string2, just past the last characters in
5701 each to consider matching. */
5702 const CHAR_T *end_match_1, *end_match_2;
5704 /* Where we are in the data, and the end of the current string. */
5705 const CHAR_T *d, *dend;
5707 /* Where we are in the pattern, and the end of the pattern. */
5708 #ifdef WCHAR
5709 UCHAR_T *pattern, *p;
5710 register UCHAR_T *pend;
5711 #else /* BYTE */
5712 UCHAR_T *p = bufp->buffer;
5713 register UCHAR_T *pend = p + bufp->used;
5714 #endif /* WCHAR */
5716 /* Mark the opcode just after a start_memory, so we can test for an
5717 empty subpattern when we get to the stop_memory. */
5718 UCHAR_T *just_past_start_mem = 0;
5720 /* We use this to map every character in the string. */
5721 RE_TRANSLATE_TYPE translate = bufp->translate;
5723 /* Failure point stack. Each place that can handle a failure further
5724 down the line pushes a failure point on this stack. It consists of
5725 restart, regend, and reg_info for all registers corresponding to
5726 the subexpressions we're currently inside, plus the number of such
5727 registers, and, finally, two char *'s. The first char * is where
5728 to resume scanning the pattern; the second one is where to resume
5729 scanning the strings. If the latter is zero, the failure point is
5730 a ``dummy''; if a failure happens and the failure point is a dummy,
5731 it gets discarded and the next next one is tried. */
5732 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5733 PREFIX(fail_stack_type) fail_stack;
5734 #endif
5735 #ifdef DEBUG
5736 static unsigned failure_id;
5737 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5738 #endif
5740 #ifdef REL_ALLOC
5741 /* This holds the pointer to the failure stack, when
5742 it is allocated relocatably. */
5743 fail_stack_elt_t *failure_stack_ptr;
5744 #endif
5746 /* We fill all the registers internally, independent of what we
5747 return, for use in backreferences. The number here includes
5748 an element for register zero. */
5749 size_t num_regs = bufp->re_nsub + 1;
5751 /* The currently active registers. */
5752 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5753 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5755 /* Information on the contents of registers. These are pointers into
5756 the input strings; they record just what was matched (on this
5757 attempt) by a subexpression part of the pattern, that is, the
5758 regnum-th regstart pointer points to where in the pattern we began
5759 matching and the regnum-th regend points to right after where we
5760 stopped matching the regnum-th subexpression. (The zeroth register
5761 keeps track of what the whole pattern matches.) */
5762 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5763 const CHAR_T **regstart, **regend;
5764 #endif
5766 /* If a group that's operated upon by a repetition operator fails to
5767 match anything, then the register for its start will need to be
5768 restored because it will have been set to wherever in the string we
5769 are when we last see its open-group operator. Similarly for a
5770 register's end. */
5771 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5772 const CHAR_T **old_regstart, **old_regend;
5773 #endif
5775 /* The is_active field of reg_info helps us keep track of which (possibly
5776 nested) subexpressions we are currently in. The matched_something
5777 field of reg_info[reg_num] helps us tell whether or not we have
5778 matched any of the pattern so far this time through the reg_num-th
5779 subexpression. These two fields get reset each time through any
5780 loop their register is in. */
5781 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5782 PREFIX(register_info_type) *reg_info;
5783 #endif
5785 /* The following record the register info as found in the above
5786 variables when we find a match better than any we've seen before.
5787 This happens as we backtrack through the failure points, which in
5788 turn happens only if we have not yet matched the entire string. */
5789 unsigned best_regs_set = false;
5790 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5791 const CHAR_T **best_regstart, **best_regend;
5792 #endif
5794 /* Logically, this is `best_regend[0]'. But we don't want to have to
5795 allocate space for that if we're not allocating space for anything
5796 else (see below). Also, we never need info about register 0 for
5797 any of the other register vectors, and it seems rather a kludge to
5798 treat `best_regend' differently than the rest. So we keep track of
5799 the end of the best match so far in a separate variable. We
5800 initialize this to NULL so that when we backtrack the first time
5801 and need to test it, it's not garbage. */
5802 const CHAR_T *match_end = NULL;
5804 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5805 int set_regs_matched_done = 0;
5807 /* Used when we pop values we don't care about. */
5808 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5809 const CHAR_T **reg_dummy;
5810 PREFIX(register_info_type) *reg_info_dummy;
5811 #endif
5813 #ifdef DEBUG
5814 /* Counts the total number of registers pushed. */
5815 unsigned num_regs_pushed = 0;
5816 #endif
5818 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5820 INIT_FAIL_STACK ();
5822 #ifdef MATCH_MAY_ALLOCATE
5823 /* Do not bother to initialize all the register variables if there are
5824 no groups in the pattern, as it takes a fair amount of time. If
5825 there are groups, we include space for register 0 (the whole
5826 pattern), even though we never use it, since it simplifies the
5827 array indexing. We should fix this. */
5828 if (bufp->re_nsub)
5830 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5831 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5832 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5833 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5834 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5835 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5836 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5837 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5838 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5840 if (!(regstart && regend && old_regstart && old_regend && reg_info
5841 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5843 FREE_VARIABLES ();
5844 return -2;
5847 else
5849 /* We must initialize all our variables to NULL, so that
5850 `FREE_VARIABLES' doesn't try to free them. */
5851 regstart = regend = old_regstart = old_regend = best_regstart
5852 = best_regend = reg_dummy = NULL;
5853 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5855 #endif /* MATCH_MAY_ALLOCATE */
5857 /* The starting position is bogus. */
5858 #ifdef WCHAR
5859 if (pos < 0 || pos > csize1 + csize2)
5860 #else /* BYTE */
5861 if (pos < 0 || pos > size1 + size2)
5862 #endif
5864 FREE_VARIABLES ();
5865 return -1;
5868 #ifdef WCHAR
5869 /* Allocate wchar_t array for string1 and string2 and
5870 fill them with converted string. */
5871 if (string1 == NULL && string2 == NULL)
5873 /* We need seting up buffers here. */
5875 /* We must free wcs buffers in this function. */
5876 cant_free_wcs_buf = 0;
5878 if (csize1 != 0)
5880 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5881 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5882 is_binary = REGEX_TALLOC (csize1 + 1, char);
5883 if (!string1 || !mbs_offset1 || !is_binary)
5885 FREE_VAR (string1);
5886 FREE_VAR (mbs_offset1);
5887 FREE_VAR (is_binary);
5888 return -2;
5891 if (csize2 != 0)
5893 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5894 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5895 is_binary = REGEX_TALLOC (csize2 + 1, char);
5896 if (!string2 || !mbs_offset2 || !is_binary)
5898 FREE_VAR (string1);
5899 FREE_VAR (mbs_offset1);
5900 FREE_VAR (string2);
5901 FREE_VAR (mbs_offset2);
5902 FREE_VAR (is_binary);
5903 return -2;
5905 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5906 mbs_offset2, is_binary);
5907 string2[size2] = L'\0'; /* for a sentinel */
5908 FREE_VAR (is_binary);
5912 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5913 pattern to (char*) in regex_compile. */
5914 p = pattern = (CHAR_T*)bufp->buffer;
5915 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5917 #endif /* WCHAR */
5919 /* Initialize subexpression text positions to -1 to mark ones that no
5920 start_memory/stop_memory has been seen for. Also initialize the
5921 register information struct. */
5922 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5924 regstart[mcnt] = regend[mcnt]
5925 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5927 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5928 IS_ACTIVE (reg_info[mcnt]) = 0;
5929 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5930 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5933 /* We move `string1' into `string2' if the latter's empty -- but not if
5934 `string1' is null. */
5935 if (size2 == 0 && string1 != NULL)
5937 string2 = string1;
5938 size2 = size1;
5939 string1 = 0;
5940 size1 = 0;
5941 #ifdef WCHAR
5942 mbs_offset2 = mbs_offset1;
5943 csize2 = csize1;
5944 mbs_offset1 = NULL;
5945 csize1 = 0;
5946 #endif
5948 end1 = string1 + size1;
5949 end2 = string2 + size2;
5951 /* Compute where to stop matching, within the two strings. */
5952 #ifdef WCHAR
5953 if (stop <= csize1)
5955 mcnt = count_mbs_length(mbs_offset1, stop);
5956 end_match_1 = string1 + mcnt;
5957 end_match_2 = string2;
5959 else
5961 if (stop > csize1 + csize2)
5962 stop = csize1 + csize2;
5963 end_match_1 = end1;
5964 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5965 end_match_2 = string2 + mcnt;
5967 if (mcnt < 0)
5968 { /* count_mbs_length return error. */
5969 FREE_VARIABLES ();
5970 return -1;
5972 #else
5973 if (stop <= size1)
5975 end_match_1 = string1 + stop;
5976 end_match_2 = string2;
5978 else
5980 end_match_1 = end1;
5981 end_match_2 = string2 + stop - size1;
5983 #endif /* WCHAR */
5985 /* `p' scans through the pattern as `d' scans through the data.
5986 `dend' is the end of the input string that `d' points within. `d'
5987 is advanced into the following input string whenever necessary, but
5988 this happens before fetching; therefore, at the beginning of the
5989 loop, `d' can be pointing at the end of a string, but it cannot
5990 equal `string2'. */
5991 #ifdef WCHAR
5992 if (size1 > 0 && pos <= csize1)
5994 mcnt = count_mbs_length(mbs_offset1, pos);
5995 d = string1 + mcnt;
5996 dend = end_match_1;
5998 else
6000 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
6001 d = string2 + mcnt;
6002 dend = end_match_2;
6005 if (mcnt < 0)
6006 { /* count_mbs_length return error. */
6007 FREE_VARIABLES ();
6008 return -1;
6010 #else
6011 if (size1 > 0 && pos <= size1)
6013 d = string1 + pos;
6014 dend = end_match_1;
6016 else
6018 d = string2 + pos - size1;
6019 dend = end_match_2;
6021 #endif /* WCHAR */
6023 DEBUG_PRINT1 ("The compiled pattern is:\n");
6024 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6025 DEBUG_PRINT1 ("The string to match is: `");
6026 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6027 DEBUG_PRINT1 ("'\n");
6029 /* This loops over pattern commands. It exits by returning from the
6030 function if the match is complete, or it drops through if the match
6031 fails at this starting point in the input data. */
6032 for (;;)
6034 #ifdef _LIBC
6035 DEBUG_PRINT2 ("\n%p: ", p);
6036 #else
6037 DEBUG_PRINT2 ("\n0x%x: ", p);
6038 #endif
6040 if (p == pend)
6041 { /* End of pattern means we might have succeeded. */
6042 DEBUG_PRINT1 ("end of pattern ... ");
6044 /* If we haven't matched the entire string, and we want the
6045 longest match, try backtracking. */
6046 if (d != end_match_2)
6048 /* 1 if this match ends in the same string (string1 or string2)
6049 as the best previous match. */
6050 boolean same_str_p = (FIRST_STRING_P (match_end)
6051 == MATCHING_IN_FIRST_STRING);
6052 /* 1 if this match is the best seen so far. */
6053 boolean best_match_p;
6055 /* AIX compiler got confused when this was combined
6056 with the previous declaration. */
6057 if (same_str_p)
6058 best_match_p = d > match_end;
6059 else
6060 best_match_p = !MATCHING_IN_FIRST_STRING;
6062 DEBUG_PRINT1 ("backtracking.\n");
6064 if (!FAIL_STACK_EMPTY ())
6065 { /* More failure points to try. */
6067 /* If exceeds best match so far, save it. */
6068 if (!best_regs_set || best_match_p)
6070 best_regs_set = true;
6071 match_end = d;
6073 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6075 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6077 best_regstart[mcnt] = regstart[mcnt];
6078 best_regend[mcnt] = regend[mcnt];
6081 goto fail;
6084 /* If no failure points, don't restore garbage. And if
6085 last match is real best match, don't restore second
6086 best one. */
6087 else if (best_regs_set && !best_match_p)
6089 restore_best_regs:
6090 /* Restore best match. It may happen that `dend ==
6091 end_match_1' while the restored d is in string2.
6092 For example, the pattern `x.*y.*z' against the
6093 strings `x-' and `y-z-', if the two strings are
6094 not consecutive in memory. */
6095 DEBUG_PRINT1 ("Restoring best registers.\n");
6097 d = match_end;
6098 dend = ((d >= string1 && d <= end1)
6099 ? end_match_1 : end_match_2);
6101 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6103 regstart[mcnt] = best_regstart[mcnt];
6104 regend[mcnt] = best_regend[mcnt];
6107 } /* d != end_match_2 */
6109 succeed_label:
6110 DEBUG_PRINT1 ("Accepting match.\n");
6111 /* If caller wants register contents data back, do it. */
6112 if (regs && !bufp->no_sub)
6114 /* Have the register data arrays been allocated? */
6115 if (bufp->regs_allocated == REGS_UNALLOCATED)
6116 { /* No. So allocate them with malloc. We need one
6117 extra element beyond `num_regs' for the `-1' marker
6118 GNU code uses. */
6119 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6120 regs->start = TALLOC (regs->num_regs, regoff_t);
6121 regs->end = TALLOC (regs->num_regs, regoff_t);
6122 if (regs->start == NULL || regs->end == NULL)
6124 FREE_VARIABLES ();
6125 return -2;
6127 bufp->regs_allocated = REGS_REALLOCATE;
6129 else if (bufp->regs_allocated == REGS_REALLOCATE)
6130 { /* Yes. If we need more elements than were already
6131 allocated, reallocate them. If we need fewer, just
6132 leave it alone. */
6133 if (regs->num_regs < num_regs + 1)
6135 regs->num_regs = num_regs + 1;
6136 RETALLOC (regs->start, regs->num_regs, regoff_t);
6137 RETALLOC (regs->end, regs->num_regs, regoff_t);
6138 if (regs->start == NULL || regs->end == NULL)
6140 FREE_VARIABLES ();
6141 return -2;
6145 else
6147 /* These braces fend off a "empty body in an else-statement"
6148 warning under GCC when assert expands to nothing. */
6149 assert (bufp->regs_allocated == REGS_FIXED);
6152 /* Convert the pointer data in `regstart' and `regend' to
6153 indices. Register zero has to be set differently,
6154 since we haven't kept track of any info for it. */
6155 if (regs->num_regs > 0)
6157 regs->start[0] = pos;
6158 #ifdef WCHAR
6159 if (MATCHING_IN_FIRST_STRING)
6160 regs->end[0] = mbs_offset1 != NULL ?
6161 mbs_offset1[d-string1] : 0;
6162 else
6163 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6164 mbs_offset2[d-string2] : 0);
6165 #else
6166 regs->end[0] = (MATCHING_IN_FIRST_STRING
6167 ? ((regoff_t) (d - string1))
6168 : ((regoff_t) (d - string2 + size1)));
6169 #endif /* WCHAR */
6172 /* Go through the first `min (num_regs, regs->num_regs)'
6173 registers, since that is all we initialized. */
6174 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6175 mcnt++)
6177 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6178 regs->start[mcnt] = regs->end[mcnt] = -1;
6179 else
6181 regs->start[mcnt]
6182 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6183 regs->end[mcnt]
6184 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6188 /* If the regs structure we return has more elements than
6189 were in the pattern, set the extra elements to -1. If
6190 we (re)allocated the registers, this is the case,
6191 because we always allocate enough to have at least one
6192 -1 at the end. */
6193 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6194 regs->start[mcnt] = regs->end[mcnt] = -1;
6195 } /* regs && !bufp->no_sub */
6197 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6198 nfailure_points_pushed, nfailure_points_popped,
6199 nfailure_points_pushed - nfailure_points_popped);
6200 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6202 #ifdef WCHAR
6203 if (MATCHING_IN_FIRST_STRING)
6204 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6205 else
6206 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6207 csize1;
6208 mcnt -= pos;
6209 #else
6210 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6211 ? string1
6212 : string2 - size1);
6213 #endif /* WCHAR */
6215 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6217 FREE_VARIABLES ();
6218 return mcnt;
6221 /* Otherwise match next pattern command. */
6222 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6224 /* Ignore these. Used to ignore the n of succeed_n's which
6225 currently have n == 0. */
6226 case no_op:
6227 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6228 break;
6230 case succeed:
6231 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6232 goto succeed_label;
6234 /* Match the next n pattern characters exactly. The following
6235 byte in the pattern defines n, and the n bytes after that
6236 are the characters to match. */
6237 case exactn:
6238 #ifdef MBS_SUPPORT
6239 case exactn_bin:
6240 #endif
6241 mcnt = *p++;
6242 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6244 /* This is written out as an if-else so we don't waste time
6245 testing `translate' inside the loop. */
6246 if (translate)
6250 PREFETCH ();
6251 #ifdef WCHAR
6252 if (*d <= 0xff)
6254 if ((UCHAR_T) translate[(unsigned char) *d++]
6255 != (UCHAR_T) *p++)
6256 goto fail;
6258 else
6260 if (*d++ != (CHAR_T) *p++)
6261 goto fail;
6263 #else
6264 if ((UCHAR_T) translate[(unsigned char) *d++]
6265 != (UCHAR_T) *p++)
6266 goto fail;
6267 #endif /* WCHAR */
6269 while (--mcnt);
6271 else
6275 PREFETCH ();
6276 if (*d++ != (CHAR_T) *p++) goto fail;
6278 while (--mcnt);
6280 SET_REGS_MATCHED ();
6281 break;
6284 /* Match any character except possibly a newline or a null. */
6285 case anychar:
6286 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6288 PREFETCH ();
6290 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6291 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6292 goto fail;
6294 SET_REGS_MATCHED ();
6295 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6296 d++;
6297 break;
6300 case charset:
6301 case charset_not:
6303 register UCHAR_T c;
6304 #ifdef WCHAR
6305 unsigned int i, char_class_length, coll_symbol_length,
6306 equiv_class_length, ranges_length, chars_length, length;
6307 CHAR_T *workp, *workp2, *charset_top;
6308 #define WORK_BUFFER_SIZE 128
6309 CHAR_T str_buf[WORK_BUFFER_SIZE];
6310 # ifdef _LIBC
6311 uint32_t nrules;
6312 # endif /* _LIBC */
6313 #endif /* WCHAR */
6314 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6316 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6317 PREFETCH ();
6318 c = TRANSLATE (*d); /* The character to match. */
6319 #ifdef WCHAR
6320 # ifdef _LIBC
6321 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6322 # endif /* _LIBC */
6323 charset_top = p - 1;
6324 char_class_length = *p++;
6325 coll_symbol_length = *p++;
6326 equiv_class_length = *p++;
6327 ranges_length = *p++;
6328 chars_length = *p++;
6329 /* p points charset[6], so the address of the next instruction
6330 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6331 where l=length of char_classes, m=length of collating_symbol,
6332 n=equivalence_class, o=length of char_range,
6333 p'=length of character. */
6334 workp = p;
6335 /* Update p to indicate the next instruction. */
6336 p += char_class_length + coll_symbol_length+ equiv_class_length +
6337 2*ranges_length + chars_length;
6339 /* match with char_class? */
6340 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6342 wctype_t wctype;
6343 uintptr_t alignedp = ((uintptr_t)workp
6344 + __alignof__(wctype_t) - 1)
6345 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6346 wctype = *((wctype_t*)alignedp);
6347 workp += CHAR_CLASS_SIZE;
6348 # ifdef _LIBC
6349 if (__iswctype((wint_t)c, wctype))
6350 goto char_set_matched;
6351 # else
6352 if (iswctype((wint_t)c, wctype))
6353 goto char_set_matched;
6354 # endif
6357 /* match with collating_symbol? */
6358 # ifdef _LIBC
6359 if (nrules != 0)
6361 const unsigned char *extra = (const unsigned char *)
6362 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6364 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6365 workp++)
6367 int32_t *wextra;
6368 wextra = (int32_t*)(extra + *workp++);
6369 for (i = 0; i < *wextra; ++i)
6370 if (TRANSLATE(d[i]) != wextra[1 + i])
6371 break;
6373 if (i == *wextra)
6375 /* Update d, however d will be incremented at
6376 char_set_matched:, we decrement d here. */
6377 d += i - 1;
6378 goto char_set_matched;
6382 else /* (nrules == 0) */
6383 # endif
6384 /* If we can't look up collation data, we use wcscoll
6385 instead. */
6387 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6389 const CHAR_T *backup_d = d, *backup_dend = dend;
6390 # ifdef _LIBC
6391 length = __wcslen (workp);
6392 # else
6393 length = wcslen (workp);
6394 # endif
6396 /* If wcscoll(the collating symbol, whole string) > 0,
6397 any substring of the string never match with the
6398 collating symbol. */
6399 # ifdef _LIBC
6400 if (__wcscoll (workp, d) > 0)
6401 # else
6402 if (wcscoll (workp, d) > 0)
6403 # endif
6405 workp += length + 1;
6406 continue;
6409 /* First, we compare the collating symbol with
6410 the first character of the string.
6411 If it don't match, we add the next character to
6412 the compare buffer in turn. */
6413 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6415 int match;
6416 if (d == dend)
6418 if (dend == end_match_2)
6419 break;
6420 d = string2;
6421 dend = end_match_2;
6424 /* add next character to the compare buffer. */
6425 str_buf[i] = TRANSLATE(*d);
6426 str_buf[i+1] = '\0';
6428 # ifdef _LIBC
6429 match = __wcscoll (workp, str_buf);
6430 # else
6431 match = wcscoll (workp, str_buf);
6432 # endif
6433 if (match == 0)
6434 goto char_set_matched;
6436 if (match < 0)
6437 /* (str_buf > workp) indicate (str_buf + X > workp),
6438 because for all X (str_buf + X > str_buf).
6439 So we don't need continue this loop. */
6440 break;
6442 /* Otherwise(str_buf < workp),
6443 (str_buf+next_character) may equals (workp).
6444 So we continue this loop. */
6446 /* not matched */
6447 d = backup_d;
6448 dend = backup_dend;
6449 workp += length + 1;
6452 /* match with equivalence_class? */
6453 # ifdef _LIBC
6454 if (nrules != 0)
6456 const CHAR_T *backup_d = d, *backup_dend = dend;
6457 /* Try to match the equivalence class against
6458 those known to the collate implementation. */
6459 const int32_t *table;
6460 const int32_t *weights;
6461 const int32_t *extra;
6462 const int32_t *indirect;
6463 int32_t idx, idx2;
6464 wint_t *cp;
6465 size_t len;
6467 /* This #include defines a local function! */
6468 # include <locale/weightwc.h>
6470 table = (const int32_t *)
6471 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6472 weights = (const wint_t *)
6473 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6474 extra = (const wint_t *)
6475 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6476 indirect = (const int32_t *)
6477 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6479 /* Write 1 collating element to str_buf, and
6480 get its index. */
6481 idx2 = 0;
6483 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6485 cp = (wint_t*)str_buf;
6486 if (d == dend)
6488 if (dend == end_match_2)
6489 break;
6490 d = string2;
6491 dend = end_match_2;
6493 str_buf[i] = TRANSLATE(*(d+i));
6494 str_buf[i+1] = '\0'; /* sentinel */
6495 idx2 = findidx ((const wint_t**)&cp);
6498 /* Update d, however d will be incremented at
6499 char_set_matched:, we decrement d here. */
6500 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6501 if (d >= dend)
6503 if (dend == end_match_2)
6504 d = dend;
6505 else
6507 d = string2;
6508 dend = end_match_2;
6512 len = weights[idx2];
6514 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6515 workp++)
6517 idx = (int32_t)*workp;
6518 /* We already checked idx != 0 in regex_compile. */
6520 if (idx2 != 0 && len == weights[idx])
6522 int cnt = 0;
6523 while (cnt < len && (weights[idx + 1 + cnt]
6524 == weights[idx2 + 1 + cnt]))
6525 ++cnt;
6527 if (cnt == len)
6528 goto char_set_matched;
6531 /* not matched */
6532 d = backup_d;
6533 dend = backup_dend;
6535 else /* (nrules == 0) */
6536 # endif
6537 /* If we can't look up collation data, we use wcscoll
6538 instead. */
6540 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6542 const CHAR_T *backup_d = d, *backup_dend = dend;
6543 # ifdef _LIBC
6544 length = __wcslen (workp);
6545 # else
6546 length = wcslen (workp);
6547 # endif
6549 /* If wcscoll(the collating symbol, whole string) > 0,
6550 any substring of the string never match with the
6551 collating symbol. */
6552 # ifdef _LIBC
6553 if (__wcscoll (workp, d) > 0)
6554 # else
6555 if (wcscoll (workp, d) > 0)
6556 # endif
6558 workp += length + 1;
6559 break;
6562 /* First, we compare the equivalence class with
6563 the first character of the string.
6564 If it don't match, we add the next character to
6565 the compare buffer in turn. */
6566 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6568 int match;
6569 if (d == dend)
6571 if (dend == end_match_2)
6572 break;
6573 d = string2;
6574 dend = end_match_2;
6577 /* add next character to the compare buffer. */
6578 str_buf[i] = TRANSLATE(*d);
6579 str_buf[i+1] = '\0';
6581 # ifdef _LIBC
6582 match = __wcscoll (workp, str_buf);
6583 # else
6584 match = wcscoll (workp, str_buf);
6585 # endif
6587 if (match == 0)
6588 goto char_set_matched;
6590 if (match < 0)
6591 /* (str_buf > workp) indicate (str_buf + X > workp),
6592 because for all X (str_buf + X > str_buf).
6593 So we don't need continue this loop. */
6594 break;
6596 /* Otherwise(str_buf < workp),
6597 (str_buf+next_character) may equals (workp).
6598 So we continue this loop. */
6600 /* not matched */
6601 d = backup_d;
6602 dend = backup_dend;
6603 workp += length + 1;
6607 /* match with char_range? */
6608 # ifdef _LIBC
6609 if (nrules != 0)
6611 uint32_t collseqval;
6612 const char *collseq = (const char *)
6613 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6615 collseqval = collseq_table_lookup (collseq, c);
6617 for (; workp < p - chars_length ;)
6619 uint32_t start_val, end_val;
6621 /* We already compute the collation sequence value
6622 of the characters (or collating symbols). */
6623 start_val = (uint32_t) *workp++; /* range_start */
6624 end_val = (uint32_t) *workp++; /* range_end */
6626 if (start_val <= collseqval && collseqval <= end_val)
6627 goto char_set_matched;
6630 else
6631 # endif
6633 /* We set range_start_char at str_buf[0], range_end_char
6634 at str_buf[4], and compared char at str_buf[2]. */
6635 str_buf[1] = 0;
6636 str_buf[2] = c;
6637 str_buf[3] = 0;
6638 str_buf[5] = 0;
6639 for (; workp < p - chars_length ;)
6641 wchar_t *range_start_char, *range_end_char;
6643 /* match if (range_start_char <= c <= range_end_char). */
6645 /* If range_start(or end) < 0, we assume -range_start(end)
6646 is the offset of the collating symbol which is specified
6647 as the character of the range start(end). */
6649 /* range_start */
6650 if (*workp < 0)
6651 range_start_char = charset_top - (*workp++);
6652 else
6654 str_buf[0] = *workp++;
6655 range_start_char = str_buf;
6658 /* range_end */
6659 if (*workp < 0)
6660 range_end_char = charset_top - (*workp++);
6661 else
6663 str_buf[4] = *workp++;
6664 range_end_char = str_buf + 4;
6667 # ifdef _LIBC
6668 if (__wcscoll (range_start_char, str_buf+2) <= 0
6669 && __wcscoll (str_buf+2, range_end_char) <= 0)
6670 # else
6671 if (wcscoll (range_start_char, str_buf+2) <= 0
6672 && wcscoll (str_buf+2, range_end_char) <= 0)
6673 # endif
6674 goto char_set_matched;
6678 /* match with char? */
6679 for (; workp < p ; workp++)
6680 if (c == *workp)
6681 goto char_set_matched;
6683 not = !not;
6685 char_set_matched:
6686 if (not) goto fail;
6687 #else
6688 /* Cast to `unsigned' instead of `unsigned char' in case the
6689 bit list is a full 32 bytes long. */
6690 if (c < (unsigned) (*p * BYTEWIDTH)
6691 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6692 not = !not;
6694 p += 1 + *p;
6696 if (!not) goto fail;
6697 #undef WORK_BUFFER_SIZE
6698 #endif /* WCHAR */
6699 SET_REGS_MATCHED ();
6700 d++;
6701 break;
6705 /* The beginning of a group is represented by start_memory.
6706 The arguments are the register number in the next byte, and the
6707 number of groups inner to this one in the next. The text
6708 matched within the group is recorded (in the internal
6709 registers data structure) under the register number. */
6710 case start_memory:
6711 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6712 (long int) *p, (long int) p[1]);
6714 /* Find out if this group can match the empty string. */
6715 p1 = p; /* To send to group_match_null_string_p. */
6717 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6718 REG_MATCH_NULL_STRING_P (reg_info[*p])
6719 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6721 /* Save the position in the string where we were the last time
6722 we were at this open-group operator in case the group is
6723 operated upon by a repetition operator, e.g., with `(a*)*b'
6724 against `ab'; then we want to ignore where we are now in
6725 the string in case this attempt to match fails. */
6726 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6727 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6728 : regstart[*p];
6729 DEBUG_PRINT2 (" old_regstart: %d\n",
6730 POINTER_TO_OFFSET (old_regstart[*p]));
6732 regstart[*p] = d;
6733 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6735 IS_ACTIVE (reg_info[*p]) = 1;
6736 MATCHED_SOMETHING (reg_info[*p]) = 0;
6738 /* Clear this whenever we change the register activity status. */
6739 set_regs_matched_done = 0;
6741 /* This is the new highest active register. */
6742 highest_active_reg = *p;
6744 /* If nothing was active before, this is the new lowest active
6745 register. */
6746 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6747 lowest_active_reg = *p;
6749 /* Move past the register number and inner group count. */
6750 p += 2;
6751 just_past_start_mem = p;
6753 break;
6756 /* The stop_memory opcode represents the end of a group. Its
6757 arguments are the same as start_memory's: the register
6758 number, and the number of inner groups. */
6759 case stop_memory:
6760 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6761 (long int) *p, (long int) p[1]);
6763 /* We need to save the string position the last time we were at
6764 this close-group operator in case the group is operated
6765 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6766 against `aba'; then we want to ignore where we are now in
6767 the string in case this attempt to match fails. */
6768 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6769 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6770 : regend[*p];
6771 DEBUG_PRINT2 (" old_regend: %d\n",
6772 POINTER_TO_OFFSET (old_regend[*p]));
6774 regend[*p] = d;
6775 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6777 /* This register isn't active anymore. */
6778 IS_ACTIVE (reg_info[*p]) = 0;
6780 /* Clear this whenever we change the register activity status. */
6781 set_regs_matched_done = 0;
6783 /* If this was the only register active, nothing is active
6784 anymore. */
6785 if (lowest_active_reg == highest_active_reg)
6787 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6788 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6790 else
6791 { /* We must scan for the new highest active register, since
6792 it isn't necessarily one less than now: consider
6793 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6794 new highest active register is 1. */
6795 UCHAR_T r = *p - 1;
6796 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6797 r--;
6799 /* If we end up at register zero, that means that we saved
6800 the registers as the result of an `on_failure_jump', not
6801 a `start_memory', and we jumped to past the innermost
6802 `stop_memory'. For example, in ((.)*) we save
6803 registers 1 and 2 as a result of the *, but when we pop
6804 back to the second ), we are at the stop_memory 1.
6805 Thus, nothing is active. */
6806 if (r == 0)
6808 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6809 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6811 else
6812 highest_active_reg = r;
6815 /* If just failed to match something this time around with a
6816 group that's operated on by a repetition operator, try to
6817 force exit from the ``loop'', and restore the register
6818 information for this group that we had before trying this
6819 last match. */
6820 if ((!MATCHED_SOMETHING (reg_info[*p])
6821 || just_past_start_mem == p - 1)
6822 && (p + 2) < pend)
6824 boolean is_a_jump_n = false;
6826 p1 = p + 2;
6827 mcnt = 0;
6828 switch ((re_opcode_t) *p1++)
6830 case jump_n:
6831 is_a_jump_n = true;
6832 case pop_failure_jump:
6833 case maybe_pop_jump:
6834 case jump:
6835 case dummy_failure_jump:
6836 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6837 if (is_a_jump_n)
6838 p1 += OFFSET_ADDRESS_SIZE;
6839 break;
6841 default:
6842 /* do nothing */ ;
6844 p1 += mcnt;
6846 /* If the next operation is a jump backwards in the pattern
6847 to an on_failure_jump right before the start_memory
6848 corresponding to this stop_memory, exit from the loop
6849 by forcing a failure after pushing on the stack the
6850 on_failure_jump's jump in the pattern, and d. */
6851 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6852 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6853 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6855 /* If this group ever matched anything, then restore
6856 what its registers were before trying this last
6857 failed match, e.g., with `(a*)*b' against `ab' for
6858 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6859 against `aba' for regend[3].
6861 Also restore the registers for inner groups for,
6862 e.g., `((a*)(b*))*' against `aba' (register 3 would
6863 otherwise get trashed). */
6865 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6867 unsigned r;
6869 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6871 /* Restore this and inner groups' (if any) registers. */
6872 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6873 r++)
6875 regstart[r] = old_regstart[r];
6877 /* xx why this test? */
6878 if (old_regend[r] >= regstart[r])
6879 regend[r] = old_regend[r];
6882 p1++;
6883 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6884 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6886 goto fail;
6890 /* Move past the register number and the inner group count. */
6891 p += 2;
6892 break;
6895 /* \<digit> has been turned into a `duplicate' command which is
6896 followed by the numeric value of <digit> as the register number. */
6897 case duplicate:
6899 register const CHAR_T *d2, *dend2;
6900 int regno = *p++; /* Get which register to match against. */
6901 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6903 /* Can't back reference a group which we've never matched. */
6904 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6905 goto fail;
6907 /* Where in input to try to start matching. */
6908 d2 = regstart[regno];
6910 /* Where to stop matching; if both the place to start and
6911 the place to stop matching are in the same string, then
6912 set to the place to stop, otherwise, for now have to use
6913 the end of the first string. */
6915 dend2 = ((FIRST_STRING_P (regstart[regno])
6916 == FIRST_STRING_P (regend[regno]))
6917 ? regend[regno] : end_match_1);
6918 for (;;)
6920 /* If necessary, advance to next segment in register
6921 contents. */
6922 while (d2 == dend2)
6924 if (dend2 == end_match_2) break;
6925 if (dend2 == regend[regno]) break;
6927 /* End of string1 => advance to string2. */
6928 d2 = string2;
6929 dend2 = regend[regno];
6931 /* At end of register contents => success */
6932 if (d2 == dend2) break;
6934 /* If necessary, advance to next segment in data. */
6935 PREFETCH ();
6937 /* How many characters left in this segment to match. */
6938 mcnt = dend - d;
6940 /* Want how many consecutive characters we can match in
6941 one shot, so, if necessary, adjust the count. */
6942 if (mcnt > dend2 - d2)
6943 mcnt = dend2 - d2;
6945 /* Compare that many; failure if mismatch, else move
6946 past them. */
6947 if (translate
6948 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6949 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6950 goto fail;
6951 d += mcnt, d2 += mcnt;
6953 /* Do this because we've match some characters. */
6954 SET_REGS_MATCHED ();
6957 break;
6960 /* begline matches the empty string at the beginning of the string
6961 (unless `not_bol' is set in `bufp'), and, if
6962 `newline_anchor' is set, after newlines. */
6963 case begline:
6964 DEBUG_PRINT1 ("EXECUTING begline.\n");
6966 if (AT_STRINGS_BEG (d))
6968 if (!bufp->not_bol) break;
6970 else if (d[-1] == '\n' && bufp->newline_anchor)
6972 break;
6974 /* In all other cases, we fail. */
6975 goto fail;
6978 /* endline is the dual of begline. */
6979 case endline:
6980 DEBUG_PRINT1 ("EXECUTING endline.\n");
6982 if (AT_STRINGS_END (d))
6984 if (!bufp->not_eol) break;
6987 /* We have to ``prefetch'' the next character. */
6988 else if ((d == end1 ? *string2 : *d) == '\n'
6989 && bufp->newline_anchor)
6991 break;
6993 goto fail;
6996 /* Match at the very beginning of the data. */
6997 case begbuf:
6998 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6999 if (AT_STRINGS_BEG (d))
7000 break;
7001 goto fail;
7004 /* Match at the very end of the data. */
7005 case endbuf:
7006 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7007 if (AT_STRINGS_END (d))
7008 break;
7009 goto fail;
7012 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7013 pushes NULL as the value for the string on the stack. Then
7014 `pop_failure_point' will keep the current value for the
7015 string, instead of restoring it. To see why, consider
7016 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7017 then the . fails against the \n. But the next thing we want
7018 to do is match the \n against the \n; if we restored the
7019 string value, we would be back at the foo.
7021 Because this is used only in specific cases, we don't need to
7022 check all the things that `on_failure_jump' does, to make
7023 sure the right things get saved on the stack. Hence we don't
7024 share its code. The only reason to push anything on the
7025 stack at all is that otherwise we would have to change
7026 `anychar's code to do something besides goto fail in this
7027 case; that seems worse than this. */
7028 case on_failure_keep_string_jump:
7029 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7031 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7032 #ifdef _LIBC
7033 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
7034 #else
7035 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
7036 #endif
7038 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7039 break;
7042 /* Uses of on_failure_jump:
7044 Each alternative starts with an on_failure_jump that points
7045 to the beginning of the next alternative. Each alternative
7046 except the last ends with a jump that in effect jumps past
7047 the rest of the alternatives. (They really jump to the
7048 ending jump of the following alternative, because tensioning
7049 these jumps is a hassle.)
7051 Repeats start with an on_failure_jump that points past both
7052 the repetition text and either the following jump or
7053 pop_failure_jump back to this on_failure_jump. */
7054 case on_failure_jump:
7055 on_failure:
7056 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7058 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7059 #ifdef _LIBC
7060 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7061 #else
7062 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7063 #endif
7065 /* If this on_failure_jump comes right before a group (i.e.,
7066 the original * applied to a group), save the information
7067 for that group and all inner ones, so that if we fail back
7068 to this point, the group's information will be correct.
7069 For example, in \(a*\)*\1, we need the preceding group,
7070 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7072 /* We can't use `p' to check ahead because we push
7073 a failure point to `p + mcnt' after we do this. */
7074 p1 = p;
7076 /* We need to skip no_op's before we look for the
7077 start_memory in case this on_failure_jump is happening as
7078 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7079 against aba. */
7080 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7081 p1++;
7083 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7085 /* We have a new highest active register now. This will
7086 get reset at the start_memory we are about to get to,
7087 but we will have saved all the registers relevant to
7088 this repetition op, as described above. */
7089 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7090 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7091 lowest_active_reg = *(p1 + 1);
7094 DEBUG_PRINT1 (":\n");
7095 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7096 break;
7099 /* A smart repeat ends with `maybe_pop_jump'.
7100 We change it to either `pop_failure_jump' or `jump'. */
7101 case maybe_pop_jump:
7102 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7103 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7105 register UCHAR_T *p2 = p;
7107 /* Compare the beginning of the repeat with what in the
7108 pattern follows its end. If we can establish that there
7109 is nothing that they would both match, i.e., that we
7110 would have to backtrack because of (as in, e.g., `a*a')
7111 then we can change to pop_failure_jump, because we'll
7112 never have to backtrack.
7114 This is not true in the case of alternatives: in
7115 `(a|ab)*' we do need to backtrack to the `ab' alternative
7116 (e.g., if the string was `ab'). But instead of trying to
7117 detect that here, the alternative has put on a dummy
7118 failure point which is what we will end up popping. */
7120 /* Skip over open/close-group commands.
7121 If what follows this loop is a ...+ construct,
7122 look at what begins its body, since we will have to
7123 match at least one of that. */
7124 while (1)
7126 if (p2 + 2 < pend
7127 && ((re_opcode_t) *p2 == stop_memory
7128 || (re_opcode_t) *p2 == start_memory))
7129 p2 += 3;
7130 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7131 && (re_opcode_t) *p2 == dummy_failure_jump)
7132 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7133 else
7134 break;
7137 p1 = p + mcnt;
7138 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7139 to the `maybe_finalize_jump' of this case. Examine what
7140 follows. */
7142 /* If we're at the end of the pattern, we can change. */
7143 if (p2 == pend)
7145 /* Consider what happens when matching ":\(.*\)"
7146 against ":/". I don't really understand this code
7147 yet. */
7148 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7149 pop_failure_jump;
7150 DEBUG_PRINT1
7151 (" End of pattern: change to `pop_failure_jump'.\n");
7154 else if ((re_opcode_t) *p2 == exactn
7155 #ifdef MBS_SUPPORT
7156 || (re_opcode_t) *p2 == exactn_bin
7157 #endif
7158 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7160 register UCHAR_T c
7161 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7163 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7164 #ifdef MBS_SUPPORT
7165 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7166 #endif
7167 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7169 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7170 pop_failure_jump;
7171 #ifdef WCHAR
7172 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7173 (wint_t) c,
7174 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7175 #else
7176 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7177 (char) c,
7178 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7179 #endif
7182 #ifndef WCHAR
7183 else if ((re_opcode_t) p1[3] == charset
7184 || (re_opcode_t) p1[3] == charset_not)
7186 int not = (re_opcode_t) p1[3] == charset_not;
7188 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7189 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7190 not = !not;
7192 /* `not' is equal to 1 if c would match, which means
7193 that we can't change to pop_failure_jump. */
7194 if (!not)
7196 p[-3] = (unsigned char) pop_failure_jump;
7197 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7200 #endif /* not WCHAR */
7202 #ifndef WCHAR
7203 else if ((re_opcode_t) *p2 == charset)
7205 /* We win if the first character of the loop is not part
7206 of the charset. */
7207 if ((re_opcode_t) p1[3] == exactn
7208 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7209 && (p2[2 + p1[5] / BYTEWIDTH]
7210 & (1 << (p1[5] % BYTEWIDTH)))))
7212 p[-3] = (unsigned char) pop_failure_jump;
7213 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7216 else if ((re_opcode_t) p1[3] == charset_not)
7218 int idx;
7219 /* We win if the charset_not inside the loop
7220 lists every character listed in the charset after. */
7221 for (idx = 0; idx < (int) p2[1]; idx++)
7222 if (! (p2[2 + idx] == 0
7223 || (idx < (int) p1[4]
7224 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7225 break;
7227 if (idx == p2[1])
7229 p[-3] = (unsigned char) pop_failure_jump;
7230 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7233 else if ((re_opcode_t) p1[3] == charset)
7235 int idx;
7236 /* We win if the charset inside the loop
7237 has no overlap with the one after the loop. */
7238 for (idx = 0;
7239 idx < (int) p2[1] && idx < (int) p1[4];
7240 idx++)
7241 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7242 break;
7244 if (idx == p2[1] || idx == p1[4])
7246 p[-3] = (unsigned char) pop_failure_jump;
7247 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7251 #endif /* not WCHAR */
7253 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7254 if ((re_opcode_t) p[-1] != pop_failure_jump)
7256 p[-1] = (UCHAR_T) jump;
7257 DEBUG_PRINT1 (" Match => jump.\n");
7258 goto unconditional_jump;
7260 /* Note fall through. */
7263 /* The end of a simple repeat has a pop_failure_jump back to
7264 its matching on_failure_jump, where the latter will push a
7265 failure point. The pop_failure_jump takes off failure
7266 points put on by this pop_failure_jump's matching
7267 on_failure_jump; we got through the pattern to here from the
7268 matching on_failure_jump, so didn't fail. */
7269 case pop_failure_jump:
7271 /* We need to pass separate storage for the lowest and
7272 highest registers, even though we don't care about the
7273 actual values. Otherwise, we will restore only one
7274 register from the stack, since lowest will == highest in
7275 `pop_failure_point'. */
7276 active_reg_t dummy_low_reg, dummy_high_reg;
7277 UCHAR_T *pdummy = NULL;
7278 const CHAR_T *sdummy = NULL;
7280 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7281 POP_FAILURE_POINT (sdummy, pdummy,
7282 dummy_low_reg, dummy_high_reg,
7283 reg_dummy, reg_dummy, reg_info_dummy);
7285 /* Note fall through. */
7287 unconditional_jump:
7288 #ifdef _LIBC
7289 DEBUG_PRINT2 ("\n%p: ", p);
7290 #else
7291 DEBUG_PRINT2 ("\n0x%x: ", p);
7292 #endif
7293 /* Note fall through. */
7295 /* Unconditionally jump (without popping any failure points). */
7296 case jump:
7297 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7298 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7299 p += mcnt; /* Do the jump. */
7300 #ifdef _LIBC
7301 DEBUG_PRINT2 ("(to %p).\n", p);
7302 #else
7303 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7304 #endif
7305 break;
7308 /* We need this opcode so we can detect where alternatives end
7309 in `group_match_null_string_p' et al. */
7310 case jump_past_alt:
7311 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7312 goto unconditional_jump;
7315 /* Normally, the on_failure_jump pushes a failure point, which
7316 then gets popped at pop_failure_jump. We will end up at
7317 pop_failure_jump, also, and with a pattern of, say, `a+', we
7318 are skipping over the on_failure_jump, so we have to push
7319 something meaningless for pop_failure_jump to pop. */
7320 case dummy_failure_jump:
7321 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7322 /* It doesn't matter what we push for the string here. What
7323 the code at `fail' tests is the value for the pattern. */
7324 PUSH_FAILURE_POINT (NULL, NULL, -2);
7325 goto unconditional_jump;
7328 /* At the end of an alternative, we need to push a dummy failure
7329 point in case we are followed by a `pop_failure_jump', because
7330 we don't want the failure point for the alternative to be
7331 popped. For example, matching `(a|ab)*' against `aab'
7332 requires that we match the `ab' alternative. */
7333 case push_dummy_failure:
7334 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7335 /* See comments just above at `dummy_failure_jump' about the
7336 two zeroes. */
7337 PUSH_FAILURE_POINT (NULL, NULL, -2);
7338 break;
7340 /* Have to succeed matching what follows at least n times.
7341 After that, handle like `on_failure_jump'. */
7342 case succeed_n:
7343 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7344 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7346 assert (mcnt >= 0);
7347 /* Originally, this is how many times we HAVE to succeed. */
7348 if (mcnt > 0)
7350 mcnt--;
7351 p += OFFSET_ADDRESS_SIZE;
7352 STORE_NUMBER_AND_INCR (p, mcnt);
7353 #ifdef _LIBC
7354 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7355 , mcnt);
7356 #else
7357 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7358 , mcnt);
7359 #endif
7361 else if (mcnt == 0)
7363 #ifdef _LIBC
7364 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7365 p + OFFSET_ADDRESS_SIZE);
7366 #else
7367 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7368 p + OFFSET_ADDRESS_SIZE);
7369 #endif /* _LIBC */
7371 #ifdef WCHAR
7372 p[1] = (UCHAR_T) no_op;
7373 #else
7374 p[2] = (UCHAR_T) no_op;
7375 p[3] = (UCHAR_T) no_op;
7376 #endif /* WCHAR */
7377 goto on_failure;
7379 break;
7381 case jump_n:
7382 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7383 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7385 /* Originally, this is how many times we CAN jump. */
7386 if (mcnt)
7388 mcnt--;
7389 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7391 #ifdef _LIBC
7392 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7393 mcnt);
7394 #else
7395 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7396 mcnt);
7397 #endif /* _LIBC */
7398 goto unconditional_jump;
7400 /* If don't have to jump any more, skip over the rest of command. */
7401 else
7402 p += 2 * OFFSET_ADDRESS_SIZE;
7403 break;
7405 case set_number_at:
7407 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7409 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7410 p1 = p + mcnt;
7411 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7412 #ifdef _LIBC
7413 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7414 #else
7415 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7416 #endif
7417 STORE_NUMBER (p1, mcnt);
7418 break;
7421 #if 0
7422 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7423 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7424 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7425 macro and introducing temporary variables works around the bug. */
7427 case wordbound:
7428 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7429 if (AT_WORD_BOUNDARY (d))
7430 break;
7431 goto fail;
7433 case notwordbound:
7434 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7435 if (AT_WORD_BOUNDARY (d))
7436 goto fail;
7437 break;
7438 #else
7439 case wordbound:
7441 boolean prevchar, thischar;
7443 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7444 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7445 break;
7447 prevchar = WORDCHAR_P (d - 1);
7448 thischar = WORDCHAR_P (d);
7449 if (prevchar != thischar)
7450 break;
7451 goto fail;
7454 case notwordbound:
7456 boolean prevchar, thischar;
7458 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7459 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7460 goto fail;
7462 prevchar = WORDCHAR_P (d - 1);
7463 thischar = WORDCHAR_P (d);
7464 if (prevchar != thischar)
7465 goto fail;
7466 break;
7468 #endif
7470 case wordbeg:
7471 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7472 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7473 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7474 break;
7475 goto fail;
7477 case wordend:
7478 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7479 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7480 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7481 break;
7482 goto fail;
7484 #ifdef emacs
7485 case before_dot:
7486 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7487 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7488 goto fail;
7489 break;
7491 case at_dot:
7492 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7493 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7494 goto fail;
7495 break;
7497 case after_dot:
7498 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7499 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7500 goto fail;
7501 break;
7503 case syntaxspec:
7504 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7505 mcnt = *p++;
7506 goto matchsyntax;
7508 case wordchar:
7509 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7510 mcnt = (int) Sword;
7511 matchsyntax:
7512 PREFETCH ();
7513 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7514 d++;
7515 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7516 goto fail;
7517 SET_REGS_MATCHED ();
7518 break;
7520 case notsyntaxspec:
7521 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7522 mcnt = *p++;
7523 goto matchnotsyntax;
7525 case notwordchar:
7526 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7527 mcnt = (int) Sword;
7528 matchnotsyntax:
7529 PREFETCH ();
7530 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7531 d++;
7532 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7533 goto fail;
7534 SET_REGS_MATCHED ();
7535 break;
7537 #else /* not emacs */
7538 case wordchar:
7539 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7540 PREFETCH ();
7541 if (!WORDCHAR_P (d))
7542 goto fail;
7543 SET_REGS_MATCHED ();
7544 d++;
7545 break;
7547 case notwordchar:
7548 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7549 PREFETCH ();
7550 if (WORDCHAR_P (d))
7551 goto fail;
7552 SET_REGS_MATCHED ();
7553 d++;
7554 break;
7555 #endif /* not emacs */
7557 default:
7558 abort ();
7560 continue; /* Successfully executed one pattern command; keep going. */
7563 /* We goto here if a matching operation fails. */
7564 fail:
7565 if (!FAIL_STACK_EMPTY ())
7566 { /* A restart point is known. Restore to that state. */
7567 DEBUG_PRINT1 ("\nFAIL:\n");
7568 POP_FAILURE_POINT (d, p,
7569 lowest_active_reg, highest_active_reg,
7570 regstart, regend, reg_info);
7572 /* If this failure point is a dummy, try the next one. */
7573 if (!p)
7574 goto fail;
7576 /* If we failed to the end of the pattern, don't examine *p. */
7577 assert (p <= pend);
7578 if (p < pend)
7580 boolean is_a_jump_n = false;
7582 /* If failed to a backwards jump that's part of a repetition
7583 loop, need to pop this failure point and use the next one. */
7584 switch ((re_opcode_t) *p)
7586 case jump_n:
7587 is_a_jump_n = true;
7588 case maybe_pop_jump:
7589 case pop_failure_jump:
7590 case jump:
7591 p1 = p + 1;
7592 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7593 p1 += mcnt;
7595 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7596 || (!is_a_jump_n
7597 && (re_opcode_t) *p1 == on_failure_jump))
7598 goto fail;
7599 break;
7600 default:
7601 /* do nothing */ ;
7605 if (d >= string1 && d <= end1)
7606 dend = end_match_1;
7608 else
7609 break; /* Matching at this starting point really fails. */
7610 } /* for (;;) */
7612 if (best_regs_set)
7613 goto restore_best_regs;
7615 FREE_VARIABLES ();
7617 return -1; /* Failure to match. */
7618 } /* re_match_2 */
7620 /* Subroutine definitions for re_match_2. */
7623 /* We are passed P pointing to a register number after a start_memory.
7625 Return true if the pattern up to the corresponding stop_memory can
7626 match the empty string, and false otherwise.
7628 If we find the matching stop_memory, sets P to point to one past its number.
7629 Otherwise, sets P to an undefined byte less than or equal to END.
7631 We don't handle duplicates properly (yet). */
7633 static boolean
7634 PREFIX(group_match_null_string_p) (p, end, reg_info)
7635 UCHAR_T **p, *end;
7636 PREFIX(register_info_type) *reg_info;
7638 int mcnt;
7639 /* Point to after the args to the start_memory. */
7640 UCHAR_T *p1 = *p + 2;
7642 while (p1 < end)
7644 /* Skip over opcodes that can match nothing, and return true or
7645 false, as appropriate, when we get to one that can't, or to the
7646 matching stop_memory. */
7648 switch ((re_opcode_t) *p1)
7650 /* Could be either a loop or a series of alternatives. */
7651 case on_failure_jump:
7652 p1++;
7653 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7655 /* If the next operation is not a jump backwards in the
7656 pattern. */
7658 if (mcnt >= 0)
7660 /* Go through the on_failure_jumps of the alternatives,
7661 seeing if any of the alternatives cannot match nothing.
7662 The last alternative starts with only a jump,
7663 whereas the rest start with on_failure_jump and end
7664 with a jump, e.g., here is the pattern for `a|b|c':
7666 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7667 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7668 /exactn/1/c
7670 So, we have to first go through the first (n-1)
7671 alternatives and then deal with the last one separately. */
7674 /* Deal with the first (n-1) alternatives, which start
7675 with an on_failure_jump (see above) that jumps to right
7676 past a jump_past_alt. */
7678 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7679 jump_past_alt)
7681 /* `mcnt' holds how many bytes long the alternative
7682 is, including the ending `jump_past_alt' and
7683 its number. */
7685 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7686 (1 + OFFSET_ADDRESS_SIZE),
7687 reg_info))
7688 return false;
7690 /* Move to right after this alternative, including the
7691 jump_past_alt. */
7692 p1 += mcnt;
7694 /* Break if it's the beginning of an n-th alternative
7695 that doesn't begin with an on_failure_jump. */
7696 if ((re_opcode_t) *p1 != on_failure_jump)
7697 break;
7699 /* Still have to check that it's not an n-th
7700 alternative that starts with an on_failure_jump. */
7701 p1++;
7702 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7704 jump_past_alt)
7706 /* Get to the beginning of the n-th alternative. */
7707 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7708 break;
7712 /* Deal with the last alternative: go back and get number
7713 of the `jump_past_alt' just before it. `mcnt' contains
7714 the length of the alternative. */
7715 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7717 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7718 return false;
7720 p1 += mcnt; /* Get past the n-th alternative. */
7721 } /* if mcnt > 0 */
7722 break;
7725 case stop_memory:
7726 assert (p1[1] == **p);
7727 *p = p1 + 2;
7728 return true;
7731 default:
7732 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7733 return false;
7735 } /* while p1 < end */
7737 return false;
7738 } /* group_match_null_string_p */
7741 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7742 It expects P to be the first byte of a single alternative and END one
7743 byte past the last. The alternative can contain groups. */
7745 static boolean
7746 PREFIX(alt_match_null_string_p) (p, end, reg_info)
7747 UCHAR_T *p, *end;
7748 PREFIX(register_info_type) *reg_info;
7750 int mcnt;
7751 UCHAR_T *p1 = p;
7753 while (p1 < end)
7755 /* Skip over opcodes that can match nothing, and break when we get
7756 to one that can't. */
7758 switch ((re_opcode_t) *p1)
7760 /* It's a loop. */
7761 case on_failure_jump:
7762 p1++;
7763 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7764 p1 += mcnt;
7765 break;
7767 default:
7768 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7769 return false;
7771 } /* while p1 < end */
7773 return true;
7774 } /* alt_match_null_string_p */
7777 /* Deals with the ops common to group_match_null_string_p and
7778 alt_match_null_string_p.
7780 Sets P to one after the op and its arguments, if any. */
7782 static boolean
7783 PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7784 UCHAR_T **p, *end;
7785 PREFIX(register_info_type) *reg_info;
7787 int mcnt;
7788 boolean ret;
7789 int reg_no;
7790 UCHAR_T *p1 = *p;
7792 switch ((re_opcode_t) *p1++)
7794 case no_op:
7795 case begline:
7796 case endline:
7797 case begbuf:
7798 case endbuf:
7799 case wordbeg:
7800 case wordend:
7801 case wordbound:
7802 case notwordbound:
7803 #ifdef emacs
7804 case before_dot:
7805 case at_dot:
7806 case after_dot:
7807 #endif
7808 break;
7810 case start_memory:
7811 reg_no = *p1;
7812 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7813 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7815 /* Have to set this here in case we're checking a group which
7816 contains a group and a back reference to it. */
7818 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7819 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7821 if (!ret)
7822 return false;
7823 break;
7825 /* If this is an optimized succeed_n for zero times, make the jump. */
7826 case jump:
7827 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7828 if (mcnt >= 0)
7829 p1 += mcnt;
7830 else
7831 return false;
7832 break;
7834 case succeed_n:
7835 /* Get to the number of times to succeed. */
7836 p1 += OFFSET_ADDRESS_SIZE;
7837 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7839 if (mcnt == 0)
7841 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7842 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7843 p1 += mcnt;
7845 else
7846 return false;
7847 break;
7849 case duplicate:
7850 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7851 return false;
7852 break;
7854 case set_number_at:
7855 p1 += 2 * OFFSET_ADDRESS_SIZE;
7857 default:
7858 /* All other opcodes mean we cannot match the empty string. */
7859 return false;
7862 *p = p1;
7863 return true;
7864 } /* common_op_match_null_string_p */
7867 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7868 bytes; nonzero otherwise. */
7870 static int
7871 PREFIX(bcmp_translate) (s1, s2, len, translate)
7872 const CHAR_T *s1, *s2;
7873 register int len;
7874 RE_TRANSLATE_TYPE translate;
7876 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7877 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7878 while (len)
7880 #ifdef WCHAR
7881 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7882 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7883 return 1;
7884 #else /* BYTE */
7885 if (translate[*p1++] != translate[*p2++]) return 1;
7886 #endif /* WCHAR */
7887 len--;
7889 return 0;
7893 #else /* not INSIDE_RECURSION */
7895 /* Entry points for GNU code. */
7897 /* re_compile_pattern is the GNU regular expression compiler: it
7898 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7899 Returns 0 if the pattern was valid, otherwise an error string.
7901 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7902 are set in BUFP on entry.
7904 We call regex_compile to do the actual compilation. */
7906 const char *
7907 re_compile_pattern (pattern, length, bufp)
7908 const char *pattern;
7909 size_t length;
7910 struct re_pattern_buffer *bufp;
7912 reg_errcode_t ret;
7914 /* GNU code is written to assume at least RE_NREGS registers will be set
7915 (and at least one extra will be -1). */
7916 bufp->regs_allocated = REGS_UNALLOCATED;
7918 /* And GNU code determines whether or not to get register information
7919 by passing null for the REGS argument to re_match, etc., not by
7920 setting no_sub. */
7921 bufp->no_sub = 0;
7923 /* Match anchors at newline. */
7924 bufp->newline_anchor = 1;
7926 # ifdef MBS_SUPPORT
7927 if (MB_CUR_MAX != 1)
7928 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7929 else
7930 # endif
7931 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7933 if (!ret)
7934 return NULL;
7935 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7937 #ifdef _LIBC
7938 weak_alias (__re_compile_pattern, re_compile_pattern)
7939 #endif
7941 /* Entry points compatible with 4.2 BSD regex library. We don't define
7942 them unless specifically requested. */
7944 #if defined _REGEX_RE_COMP || defined _LIBC
7946 /* BSD has one and only one pattern buffer. */
7947 static struct re_pattern_buffer re_comp_buf;
7949 char *
7950 #ifdef _LIBC
7951 /* Make these definitions weak in libc, so POSIX programs can redefine
7952 these names if they don't use our functions, and still use
7953 regcomp/regexec below without link errors. */
7954 weak_function
7955 #endif
7956 re_comp (s)
7957 const char *s;
7959 reg_errcode_t ret;
7961 if (!s)
7963 if (!re_comp_buf.buffer)
7964 return gettext ("No previous regular expression");
7965 return 0;
7968 if (!re_comp_buf.buffer)
7970 re_comp_buf.buffer = (unsigned char *) malloc (200);
7971 if (re_comp_buf.buffer == NULL)
7972 return (char *) gettext (re_error_msgid
7973 + re_error_msgid_idx[(int) REG_ESPACE]);
7974 re_comp_buf.allocated = 200;
7976 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7977 if (re_comp_buf.fastmap == NULL)
7978 return (char *) gettext (re_error_msgid
7979 + re_error_msgid_idx[(int) REG_ESPACE]);
7982 /* Since `re_exec' always passes NULL for the `regs' argument, we
7983 don't need to initialize the pattern buffer fields which affect it. */
7985 /* Match anchors at newlines. */
7986 re_comp_buf.newline_anchor = 1;
7988 # ifdef MBS_SUPPORT
7989 if (MB_CUR_MAX != 1)
7990 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7991 else
7992 # endif
7993 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7995 if (!ret)
7996 return NULL;
7998 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7999 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8004 #ifdef _LIBC
8005 weak_function
8006 #endif
8007 re_exec (s)
8008 const char *s;
8010 const int len = strlen (s);
8011 return
8012 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
8015 #endif /* _REGEX_RE_COMP */
8017 /* POSIX.2 functions. Don't define these for Emacs. */
8019 #ifndef emacs
8021 /* regcomp takes a regular expression as a string and compiles it.
8023 PREG is a regex_t *. We do not expect any fields to be initialized,
8024 since POSIX says we shouldn't. Thus, we set
8026 `buffer' to the compiled pattern;
8027 `used' to the length of the compiled pattern;
8028 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8029 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8030 RE_SYNTAX_POSIX_BASIC;
8031 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8032 `fastmap' to an allocated space for the fastmap;
8033 `fastmap_accurate' to zero;
8034 `re_nsub' to the number of subexpressions in PATTERN.
8036 PATTERN is the address of the pattern string.
8038 CFLAGS is a series of bits which affect compilation.
8040 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8041 use POSIX basic syntax.
8043 If REG_NEWLINE is set, then . and [^...] don't match newline.
8044 Also, regexec will try a match beginning after every newline.
8046 If REG_ICASE is set, then we considers upper- and lowercase
8047 versions of letters to be equivalent when matching.
8049 If REG_NOSUB is set, then when PREG is passed to regexec, that
8050 routine will report only success or failure, and nothing about the
8051 registers.
8053 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8054 the return codes and their meanings.) */
8057 regcomp (preg, pattern, cflags)
8058 regex_t *preg;
8059 const char *pattern;
8060 int cflags;
8062 reg_errcode_t ret;
8063 reg_syntax_t syntax
8064 = (cflags & REG_EXTENDED) ?
8065 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8067 /* regex_compile will allocate the space for the compiled pattern. */
8068 preg->buffer = 0;
8069 preg->allocated = 0;
8070 preg->used = 0;
8072 /* Try to allocate space for the fastmap. */
8073 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8075 if (cflags & REG_ICASE)
8077 unsigned i;
8079 preg->translate
8080 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8081 * sizeof (*(RE_TRANSLATE_TYPE)0));
8082 if (preg->translate == NULL)
8083 return (int) REG_ESPACE;
8085 /* Map uppercase characters to corresponding lowercase ones. */
8086 for (i = 0; i < CHAR_SET_SIZE; i++)
8087 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8089 else
8090 preg->translate = NULL;
8092 /* If REG_NEWLINE is set, newlines are treated differently. */
8093 if (cflags & REG_NEWLINE)
8094 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8095 syntax &= ~RE_DOT_NEWLINE;
8096 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8097 /* It also changes the matching behavior. */
8098 preg->newline_anchor = 1;
8100 else
8101 preg->newline_anchor = 0;
8103 preg->no_sub = !!(cflags & REG_NOSUB);
8105 /* POSIX says a null character in the pattern terminates it, so we
8106 can use strlen here in compiling the pattern. */
8107 # ifdef MBS_SUPPORT
8108 if (MB_CUR_MAX != 1)
8109 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8110 else
8111 # endif
8112 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8114 /* POSIX doesn't distinguish between an unmatched open-group and an
8115 unmatched close-group: both are REG_EPAREN. */
8116 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8118 if (ret == REG_NOERROR && preg->fastmap)
8120 /* Compute the fastmap now, since regexec cannot modify the pattern
8121 buffer. */
8122 if (re_compile_fastmap (preg) == -2)
8124 /* Some error occurred while computing the fastmap, just forget
8125 about it. */
8126 free (preg->fastmap);
8127 preg->fastmap = NULL;
8131 return (int) ret;
8133 #ifdef _LIBC
8134 weak_alias (__regcomp, regcomp)
8135 #endif
8138 /* regexec searches for a given pattern, specified by PREG, in the
8139 string STRING.
8141 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8142 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8143 least NMATCH elements, and we set them to the offsets of the
8144 corresponding matched substrings.
8146 EFLAGS specifies `execution flags' which affect matching: if
8147 REG_NOTBOL is set, then ^ does not match at the beginning of the
8148 string; if REG_NOTEOL is set, then $ does not match at the end.
8150 We return 0 if we find a match and REG_NOMATCH if not. */
8153 regexec (preg, string, nmatch, pmatch, eflags)
8154 const regex_t *preg;
8155 const char *string;
8156 size_t nmatch;
8157 regmatch_t pmatch[];
8158 int eflags;
8160 int ret;
8161 struct re_registers regs;
8162 regex_t private_preg;
8163 int len = strlen (string);
8164 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8166 private_preg = *preg;
8168 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8169 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8171 /* The user has told us exactly how many registers to return
8172 information about, via `nmatch'. We have to pass that on to the
8173 matching routines. */
8174 private_preg.regs_allocated = REGS_FIXED;
8176 if (want_reg_info)
8178 regs.num_regs = nmatch;
8179 regs.start = TALLOC (nmatch * 2, regoff_t);
8180 if (regs.start == NULL)
8181 return (int) REG_NOMATCH;
8182 regs.end = regs.start + nmatch;
8185 /* Perform the searching operation. */
8186 ret = re_search (&private_preg, string, len,
8187 /* start: */ 0, /* range: */ len,
8188 want_reg_info ? &regs : (struct re_registers *) 0);
8190 /* Copy the register information to the POSIX structure. */
8191 if (want_reg_info)
8193 if (ret >= 0)
8195 unsigned r;
8197 for (r = 0; r < nmatch; r++)
8199 pmatch[r].rm_so = regs.start[r];
8200 pmatch[r].rm_eo = regs.end[r];
8204 /* If we needed the temporary register info, free the space now. */
8205 free (regs.start);
8208 /* We want zero return to mean success, unlike `re_search'. */
8209 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8211 #ifdef _LIBC
8212 weak_alias (__regexec, regexec)
8213 #endif
8216 /* Returns a message corresponding to an error code, ERRCODE, returned
8217 from either regcomp or regexec. We don't use PREG here. */
8219 size_t
8220 regerror (errcode, preg, errbuf, errbuf_size)
8221 int errcode;
8222 const regex_t *preg;
8223 char *errbuf;
8224 size_t errbuf_size;
8226 const char *msg;
8227 size_t msg_size;
8229 if (errcode < 0
8230 || errcode >= (int) (sizeof (re_error_msgid_idx)
8231 / sizeof (re_error_msgid_idx[0])))
8232 /* Only error codes returned by the rest of the code should be passed
8233 to this routine. If we are given anything else, or if other regex
8234 code generates an invalid error code, then the program has a bug.
8235 Dump core so we can fix it. */
8236 abort ();
8238 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8240 msg_size = strlen (msg) + 1; /* Includes the null. */
8242 if (errbuf_size != 0)
8244 if (msg_size > errbuf_size)
8246 #if defined HAVE_MEMPCPY || defined _LIBC
8247 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8248 #else
8249 memcpy (errbuf, msg, errbuf_size - 1);
8250 errbuf[errbuf_size - 1] = 0;
8251 #endif
8253 else
8254 memcpy (errbuf, msg, msg_size);
8257 return msg_size;
8259 #ifdef _LIBC
8260 weak_alias (__regerror, regerror)
8261 #endif
8264 /* Free dynamically allocated space used by PREG. */
8266 void
8267 regfree (preg)
8268 regex_t *preg;
8270 if (preg->buffer != NULL)
8271 free (preg->buffer);
8272 preg->buffer = NULL;
8274 preg->allocated = 0;
8275 preg->used = 0;
8277 if (preg->fastmap != NULL)
8278 free (preg->fastmap);
8279 preg->fastmap = NULL;
8280 preg->fastmap_accurate = 0;
8282 if (preg->translate != NULL)
8283 free (preg->translate);
8284 preg->translate = NULL;
8286 #ifdef _LIBC
8287 weak_alias (__regfree, regfree)
8288 #endif
8290 #endif /* not emacs */
8292 #endif /* not INSIDE_RECURSION */
8295 #undef STORE_NUMBER
8296 #undef STORE_NUMBER_AND_INCR
8297 #undef EXTRACT_NUMBER
8298 #undef EXTRACT_NUMBER_AND_INCR
8300 #undef DEBUG_PRINT_COMPILED_PATTERN
8301 #undef DEBUG_PRINT_DOUBLE_STRING
8303 #undef INIT_FAIL_STACK
8304 #undef RESET_FAIL_STACK
8305 #undef DOUBLE_FAIL_STACK
8306 #undef PUSH_PATTERN_OP
8307 #undef PUSH_FAILURE_POINTER
8308 #undef PUSH_FAILURE_INT
8309 #undef PUSH_FAILURE_ELT
8310 #undef POP_FAILURE_POINTER
8311 #undef POP_FAILURE_INT
8312 #undef POP_FAILURE_ELT
8313 #undef DEBUG_PUSH
8314 #undef DEBUG_POP
8315 #undef PUSH_FAILURE_POINT
8316 #undef POP_FAILURE_POINT
8318 #undef REG_UNSET_VALUE
8319 #undef REG_UNSET
8321 #undef PATFETCH
8322 #undef PATFETCH_RAW
8323 #undef PATUNFETCH
8324 #undef TRANSLATE
8326 #undef INIT_BUF_SIZE
8327 #undef GET_BUFFER_SPACE
8328 #undef BUF_PUSH
8329 #undef BUF_PUSH_2
8330 #undef BUF_PUSH_3
8331 #undef STORE_JUMP
8332 #undef STORE_JUMP2
8333 #undef INSERT_JUMP
8334 #undef INSERT_JUMP2
8335 #undef EXTEND_BUFFER
8336 #undef GET_UNSIGNED_NUMBER
8337 #undef FREE_STACK_RETURN
8339 # undef POINTER_TO_OFFSET
8340 # undef MATCHING_IN_FRST_STRING
8341 # undef PREFETCH
8342 # undef AT_STRINGS_BEG
8343 # undef AT_STRINGS_END
8344 # undef WORDCHAR_P
8345 # undef FREE_VAR
8346 # undef FREE_VARIABLES
8347 # undef NO_HIGHEST_ACTIVE_REG
8348 # undef NO_LOWEST_ACTIVE_REG
8350 # undef CHAR_T
8351 # undef UCHAR_T
8352 # undef COMPILED_BUFFER_VAR
8353 # undef OFFSET_ADDRESS_SIZE
8354 # undef CHAR_CLASS_SIZE
8355 # undef PREFIX
8356 # undef ARG_PREFIX
8357 # undef PUT_CHAR
8358 # undef BYTE
8359 # undef WCHAR
8361 # define DEFINED_ONCE
8362 #endif /* USE_INCLUDED_REGEX */